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 The following attempt to modify the classical mechanics of deformable bodies in the 
sense of relativity theory is the extension of an − at the time occasional − activity that 
grew out of the definition of the equations of motion for a relativistic rigid body – itself 
far from completely achieved, by the way – whose development and publication I was 
first led to in this spring from considering the circumstances that emerge in the theory of 
relativistic rigid bodies through the fact that M. Laue presented some equations of motion 
in a general form from a different viewpoint 1).  Moreover, this comparison also leads to 
the extension of the model to non-adiabatic motion, such that I am obliged to extend my 
heartfelt thanks to M. Laue in both of these directions for his providing me with the 
means to do this at the time. 
 The assumption that comes out of the aforementioned considerations is, in following 
the direction that M. Planck took in his own work 2) on the principle of least action, that 
there exists a kinetic potential for the motion of bodies, which is, first of all, invariant 
under Lorentz transformations (in homogeneous form), and second, reduces in the rest 
case to a given function of the deformations and entropy of a unit volume element, from 
which its general expression is determined immediately (§ 5).  In particular, one finds 
that the rest deformations (§§ 1, 2) are definitive in the case of motion, i.e., any 
deformations that return the volume element to its normal form by reversing the Lorentz 
contraction that corresponds to its velocity. 3) 
 The equations of motion flow directly from the first variation of this kinetic potential, 
first in the Lagrangian form (§ 6), and then in the Eulerian form (§ 7).  In the latter form, 
they are formally identical with the system that M. Abraham has presented in his 
investigations 4) into the electrodynamics of moving bodies, from which comparison, the 
meaning of the 16-component matrix that he derived can be deduced.  The ten relations 
(§ 7) that the symmetry properties of that matrix, and the combining of impulse, energy, 
and stress with each other bring to the expression, prove to be the complete system of 
partial differential equations (§ 3) that the kinetic potential must satisfy as a result of the 
form that it takes on from both of the aforementioned assumptions.  

                                                
 1 Which meanwhile appeared in the paper “Das Relativitätsprinzip,” Braunschweig 1911, and in the Ann. 
d. Phys. 35, pp. 524, 1911. 
 2 M. Planck, Berl. Ber. 1907, pp. 642, Ann. d. Phys. 26, pp. 1, 1908. 
 3 This remark has already been made by M. Born, Ann. d. Phys. 30, pp. 1, 1909. 
 4 M. Abraham, Rendiconti del circolo mat. Di Palermo 28, pp. 1, 1909. 
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 The 10-term group of “motions” in the corresponding space of (x, y, z, t) imply ten 
general integrals (§ 9) for the motion of the total body, and actually correspond to the 
four translations, the three impulse theorems and the energy theorem; the six rotations, 
however, correspond, in one case, to the three surface theorems, and in another, to three 
more that are – as a result of the equal status of the x, y, z, t – completely analogous to the 
equations that one derives in classical mechanics by once integrating the center of gravity 
theorems in a parallel manner.  For force-free adiabatic motion, in particular, it follows 
from them that the center of energy – which appears here as the center of mass or gravity 
– moves in a uniform rectilinear fashion and that its velocity gives the total impulse when 
multiplied by the total energy. 
 If the rest potential depends only upon entropy and volume then one obtains the case 
of an ideal fluid with everywhere equal pressure (§ 10), and the Weber form of the 
hydrodynamic equations yields the Helmholtz theorem on vortex motion for the 
hydrodynamics of relativity theory (§ 11). 
 If one starts with the considerations of part one concerning the kinetic potential then 
those of the second part – on the inertial resistance and wave mechanics – depend upon 
the second variation itself.  For the unit volume element, the components of the inertial 
resistance are connected with the components of the acceleration that it arouses by a 
linear transformation with a symmetric determinant whose six coefficients can be 
identified with the coefficients of inertia or mass densities at the location of the body in 
question.  If one would now wish to not find any direction that leads to circumstances 
that are completely contrary to the usual situation 1) then the postulate of positive mass in 
classical mechanics will be analogous to the requirement that the quadratic form Γ that is 
constructed from six coefficients of inertia – which is simply the second variation of the 
kinetic potential with respect to velocity – shall be positive definite, or that, intuitively, 
the inertial resistance shall always subtend an obtuse angle with the acceleration (§ 1). 
 The laws of wave mechanics are produced (§ 4) by means of another quadratic form 
W – which is simply the complete second variation of the kinetic potential – and it then 
emerges that the two forms Γ and W are mutually derivable from each other on the basis 
of their representations (§§ 2, 3, and 5).  From this general connection, it follows that the 
requirement that is placed on inertial resistance of the impossibility of waves with 
velocity greater than light is implied; however, here it is actually necessary (§ 6). 
 If the six inertial coefficients reduce to only two – one longitudinal and one 
transversal – then only longitudinal and transversal waves with propagation velocities 
that are equal in all directions are possible, and conversely (§ 7).  Thus, both inertial 
coefficients and both wave velocities are derivable from each other. 
 These special circumstances are realized for the ideal fluid (§ 8) – for which, 
however, the velocity of the transversal waves will be null – and for the isotropic elastic 
bodies (§ 9) with vanishing rest deformations.  For the latter, the requirements that were 
placed on the inertial coefficients above come about as a result of the limits that are given 
by the rest mass density for the elastic coefficients. 
 

                                                
 1 Say, e.g., the hyperbolic character of the equations of motion is not guaranteed in all cases (cf., remark 
1, pp. 26). 
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PART ONE 
 

The kinetic potential and the equations of motion. 
 

§ 1.  The rest deformations. 
 

 One thinks of a deformable body as itself being in a state of motion.  Each particle, 
which takes on the coordinates ξ, η, ζ in the normal state of the body, is found at time t at 
the location x, y, z in space: 

(1)     

( , , , )

( , , , )

( , , , ).

x x t

y y t

z z t

ξ η ζ
ξ η ζ
ξ η ζ

=
 =
 =

 

 
 In order make the formulas homogeneous, one may somehow introduce a sort of time 
position: 

(2)     τ = τ(ξ, η, ζ, t),  
t

τ∂
∂

> 0 

for the body, and then set: 
 

(3)    1 2 3 4

1 2 3 4

, , , ,

, , , ,

x x x y x z x t

ξ ξ ξ η ξ ζ ξ τ
= = = =

 = = = =
 

 
in which (1) may be written in the equivalent form: 
 
(4)    xi = xi(ξ1, ξ2, ξ3, ξ4), i = 1, 2, 3, 4. 
 
 If one denotes the partial differential quotients of xi with respect ξj by aij: 
 

(5)     aij = i

j

x

ξ
∂
∂

, i, j = 1, 2, 3, 4, 

such that: 

(6)      dxi = 
4

1
ij j

j

a dξ
=
∑ , 

 
then one has, if one understands s, u, v, w to mean the components of the velocity of the 
particle: 

(7)   14

44

a

a
= u, 24

44

a

a
= v, 34

44

a

a
= w, a44 = 

t

τ∂
∂

> 0, 

 
and under the ongoing assumption of always having subluminal velocity (c = 1): 
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(8)     s = 2 2 2u v w+ +  < 1. 
 
 Those Lorentz transformations that take the velocity of the particle to null – viz., the 
“rest transformations” – take x, y, z, t over to: 
 

(9)    

0

0

0

0

( )

( )

( )

( ) .

x x u ux vy wz ut

y y v ux vy wz vt

z z w ux vy wz wt

t ux vy wz t

α β
α β
α β

β β

 = + + + −
 = + + + −


= + + + −
 = − + + +

 

 

(10)   α = 
2 2

1

1 (1 1 )s s− + −
, β =

2

1

1 s−
, 

 
and the transformation that is inverse to it will be obtained simply by exchanging the x, y, 
z, t with x0, y0, z0, t0 with a simultaneous change of sign in the u, w, w. 
 If one goes from the dxi to the 0

idx by way of the rest transformation: 

 

(11)   0
idx =

4
0

1
ij j

j

a dξ
=
∑ , i = 1, 2, 3, 4, 

then one has: 

(12)   

0
1 1 1 2 3 4
0
2 2 1 2 3 4
0
3 3 1 2 3 4
0
4 1 2 3 4

( )

( )

( )

( )

i i i i i i

i i i i i i

i i i i i i

i i i i i

a a u ua va wa ua

a a v ua va wa va

a a w ua va wa wa

a ua va wa a

α β
α β
α β
β β

 = + + + −
 = + + + −
 = + + + −
 = − + + +

 

and, in particular: 
 

(13)  0
14a = 0

24a = 0
34a = 0, 0

44a = 2
44 1a s− = 44A− > 0. 

 
Moreover, let: 
(14)  (dx0)2 + (dy0)2 + (dz0)2 = dξ2 + dη2 + dζ2 + 2de2, 
 
(15)  2 2 2 2

11 22 33 23 31 122 2 2de e d e d e d e d d e d d e d dξ η ζ η ζ ζ ξ ξ η= + + + + + , 

hence: 
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(16)  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 20 0 0
11 11 21 31

2 2 20 0 0
22 12 22 32

2 2 20 0 0
33 13 23 33

0 0 0 0 0 01
23 32 12 13 22 23 32 332

0 0 0 0 0 01
31 13 13 11 23 21 33 312

0 0 0 0 0 01
12 21 11 12 21 22 31 322

1 2

1 2

1 2

( )

( )

( ),

e a a a

e a a a

e a a a

e e a a a a a a

e e a a a a a a

e e a a a a a a

 + = + +

 + = + +
 + = + +
 = = + +
 = = + +


= = + +

 

 
then the eij – viz., the “rest deformations – produce those transformations that convert the 
“rest form” of a volume element into its normal form, or its actual deformation relative to 
the Lorentz contraction that corresponds to its velocity. 
 For a volume element at rest, the eij coincide with the actual deformations as they are 
usually defined. 
 Since the determinant of the rest transformation is + 1, the determinants of the aij and 
the 0

ija  are equal to each other: 

 

(16)  D = 
( , , , )

( , , , )

x y z t

ξ η ζ τ
∂
∂

 = | aij | = 0
ija , i, j = 1, 2, 3, 4. 

 

Due to (13), however, one has 0ija = 0
44a∆ , where: 

 

(17)   ∆ = 0
ija , i, j = 1, 2, 3 

 
denotes the ratio of the rest volume to the normal volume, such that: 
 

(18)    D = 44A∆ − . 

 
The ratio of the actual volume to the normal volume is, however, given by D / a44 . 
 One may further remark that the relation (14) gives the representation: 
 

(17′)   ∆2 = 
11 12 13

21 22 23

31 32 33

1 2 , 2 , 2

2 , 1 2 , 2

2 , 2 , 1 2

e e e

e e e

e e e

+
+

+
. 

 
 

 
 
 
 
 



Mechanics of deformable bodies                                                        6 

§ 2. Second representation of rest deformations. 
 
 The quadratic differential form: 
 

(19)  ds2 = dx2 + dy2 + dz2 – dt2 = 
4

, 1
ij i j

i j

A d dξ ξ
=
∑ , 

(20)  1 1 2 2 3 3 4 4
2 2

44 44

, , 1,2,3,4,

(1 ) 0,
ij i j i j i j i jA a a a a a a a a i j

A a s

= + + − =
 = − − <

 

 
and the linear differential form: 
 

(21)  dν = a14 dx + a24 dy + a34 dz − a44 dt = 
4

4
1

i i
i

A dξ
=
∑ , 

 
due to its invariance under Lorentz transformations, and with the introduction of 0

idx in 

place of the dxi , goes to: 
 
(19′)   ds2 = (dx0)2 + (dy0)2 +(dz0)2 − (dt0)2, 
(21′)    dν = − 0 0

44a dt , 

such that: 

(22)   ds2 = −
44

1

A
dν2 = (dx0)2 + (dy0)2 +(dz0)2. 

 
New expressions for the rest deformations then follow by means of (14): 
 

(16′)  

2
24 3414 1

11 11 23 32 232
44 44

2
34 1424 1

22 22 31 13 312
44 44

2
34 14 241

33 33 12 21 122
44 44

1 2 , ,

1 2 , ,

1 2 , .

A AA
e A e e A

A A

A AA
e A e e A

A A

A A A
e A e e A

A A

  
+ = − = = −  

 
   + = − = = −  

 
   + = − = = − 
  

 

 
 

§ 3. The complete system of ten partial differential equations 
for an arbitrary function of the rest deformations 

 
 What are the necessary and sufficient condition for a function Ω(aij) of the 16 
quantities aij to be expressed in terms of the 6 rest deformations eij alone?  If one 
considers, for the moment, a fourfold extended manifold R4(X1, X2, X3, X4) with the 
metric: 
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(23)    dS2 = 2 2 2 2
1 2 3 4dX dX dX dX+ + − , 

 

and at these five points M0, M1, M2, M3, M4 with the coordinates: 
 

(24)  0 1 2 3 4

1 1 2 2 3 3 4 4

( 0, 0, 0, 0),

( , , , ), 1,2,3,4,i i i i i

M X X X X

M X a X a X a X a i

= = = =
 = = = = =

 

 
then the expressions (20) for the Aij show that they, and therefore also Ω, merely depend 
upon the relative positions of these five points to each other.  Therefore, Ω is invariant 
under the “rotations” of M0 and thus admits the six infinitesimal transformations: 
 

(25) 
2 3 3 1 1 2

3 2 1 3 2 1

1 4 2 4 3 4
4 1 4 2 4 3

, , ,

, , ,

f f f f f f
X X X X X X

X X X X X X

f f f f f f
X X X X X X

X X X X X X

∂ ∂ ∂ ∂ ∂ ∂ − − − ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ + + +
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
From this fact, when one sets: 
 

(26)   Ωij = 
ija

∂Ω
∂

,  i, j = 1, 2, 3, 4, 

(27)   ijΩ =
4

1
jh ih

h

a
=

Ω∑ , i, j = 1, 2, 3, 4, 

 
the six partial differential equations for Ω ensue: 
 

(28)  23 32 31 13 12 21

14 41 24 42 34 43

, , ,

0, 0, 0.

Ω = Ω Ω = Ω Ω = Ω
Ω + Ω = Ω + Ω = Ω + Ω =

 

 
Furthermore, one must consider the fact that the eij, and therefore also Ω, are entirely 
independent of the choice of the time parameter.  However, if one introduces τ′ in place 
of τ: 

(29)  
1 2 3 4

( , , , ),

,d d d d d d

τ τ λ ξ η ζ τ
τ τ λ ξ λ η λ ζ λ τ

′ ′= +
 ′ ′= + + + +

 

 
then the aij go over to the transformation: 
 
(30)   ija′ = aij + λj ai4, i, j = 1, 2, 3, 4, 

 
which must therefore leave Ω invariant. 
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 From this fact, when the λj are chosen to be infinitely small the four partial 
differential equations for Ω then follow: 
 

(31)  
4

4 1
1

i i
i

a
=

Ω∑ = 0, 
4

4 2
1

i i
i

a
=

Ω∑ = 0, 
4

4 3
1

i i
i

a
=

Ω∑ = 0,  
4

4 4
1

i i
i

a
=

Ω∑ = 0, 

 
or, by means of (27): 
 

(31′)  
4

4 1
1

i i
i

a
=

Ω∑ = 0, 
4

4 2
1

i i
i

a
=

Ω∑ = 0, 
4

4 3
1

i i
i

a
=

Ω∑ = 0,  
4

4 4
1

i i
i

a
=

Ω∑ = 0. 

 
Conversely, however, due to the group property of the transformations (28) and (31) 
define a complete system of partial differential equations with the six independent 
solutions eij such that we have the necessary and sufficient conditions for this before us, 
namely: 
(32)    Ω(aij) = Ω(eij). 
 
 

§ 4. A general transformation formula 
 

 If the four functions fi(x1, x2, x3, x4) (i = 1, 2, 3, 4) are related to the four functions 
ϕj(ξ1, ξ2, ξ3, ξ4) (j = 1, 2, 3, 4) by way of: 
 

(33)    Dfi = 
4

1
ij j

j

a ϕ
=
∑ ,  i = 1, 2, 3, 4 

then one has the identity: 

(34)    
4

1

i

j i

f
D

x=

∂
∂∑ =

4

1

j

j j

ϕ
ξ=

∂
∂∑ . 

 
To prove this, one regards the equations (4) as the transformation of the point (ξi) in a 
Euclidian R4 into the point (xi). 
 Thus, if a surface element dω with the projections dωj onto the four coordinate planes 
and a line element dσ that goes through it, with the projections dξj onto the four 
coordinate axes, goes to a surface element do with the projections doi and a line element 
ds through it that has the projections dxi then one has: 
 

(36)    
4

1
i i

i

do dx
=
∑ = 

4

1
j j

j

D d dω ξ
=
∑  

 
if the sum represents the fourfold volume of the infinitely small cone with do (dω, resp.) 
as its base surface and the endpoint of ds (dσ, resp.) as its vertex. 
 Since, from (6), one now has that the Ddξj transform into the dxi in precisely the same 
way that, from (33), the ϕj transform into the fi , one must therefore also have that: 
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(37)    
4

1
i i

i

f do
=
∑ =

4

1
j j

j

dϕ ω
=
∑ . 

 
If one integrates here over a closed surface and likewise converts the hypersurface 
integral into a volume integral that is taken over the interior of the surface then it follows 
that: 

(38)  
4

1 2 3 4
1

i

i i

f
dx dx dx dx

x=

∂
∂∑∫ = 

4

1 2 3 4
1

j

j j

d d d d
x

ϕ
ξ ξ ξ ξ

=

∂
∂∑∫  

 
and from this, by contracting the surface to a point one obtains the relation (34) that was 
to be proved. 
 As a special consequence of (34), for: 
 

(39)  1 2 3 4

1 14 2 24 3 34 4 44

0, 0, 0, ,

, , ,

Df

f a f f a f f a f f a f

ϕ ϕ ϕ ϕ= = = =
 = = = =

 

 
one must point out, in particular, the relation: 
 

(40)  
1 ( )Df

D τ
∂

∂
= 3414 24 44( )( ) ( ) ( )a fa f a f a f

x y z t

∂∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

. 

 
From it, the differentiation symbols: 
 

(41)   
df

dt
=

f f f f
u v w

t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

, 

(42)   Dtf =
( ) ( ) ( )f uf vf wf

t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

, 

 
admit the perfectly intuitive representation: 
 

(41′)    
df

dt
= 

44

1 f

a τ
∂
∂

, 

(42′)    Dtf = 
44

1 Df

D aτ
 ∂
 ∂  

. 

 
 

§ 5.  The kinetic potential 
 

 In order to go to the dynamics of bodies, we start by letting: 
 
(4′)     ε = ε(ξ, η, ζ, τ) 
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denote the entropy per unit normal volume and remark that this is invariant 1) under all 
Lorentz transformations and, in particular, all of the rest transformations. 
 Moreover, it will be assumed that there exists a kinetic potential of the form: 
 
(43)    ∫ Φ dξ dη dζ dτ 
 
for the body.  First, this potential shall, for the case of rest, assume the form: 
 
(43′)    ∫ Ω(eij, ε) dξ dη dζ dt 
 
of an ordinary kinetic potential that depends upon the deformation quantities eij and 
entropy ε; i.e., one must have: 
 
(44)    Φ = Ω(eij, ε) a44 
for the case of rest. 
 Second, this potential shall be invariant under the Lorentz transformations; i.e., Φ 
shall exhibit the same invariance. 
 From this assumption, it follows that the general expression of Φ will be obtained 
when one subjects (44) to the inverse of the rest transformation.  However, this happens 
simply when one understands the eij to mean the rest deformations (16) and replaces a44 
with its rest value 0

44a using (13).  Thus, one will generally have: 

 

(45)   Φ(aij, ε) = Ω(eij, ε) 0
44a = Ω(eij, ε) 44A− . 

 
The temperature θ is, from its connection to the kinetic potential in the rest case: 
 

(46)    θ = −
ε

∂Ω
∂

, 

 
and since the rest transformation for it reads 2): 
 

(47)    θ0 = βθ = 44

44

a

A
θ

−
, 

it will generally be given by: 

(48)    a44θ  = −
ε

∂Φ
∂

. 

 
 The heat produced per unit time and normal volume is then represented by: 
 

(49)   
d

dt

εθ = 
44

1

a

εθ
τ

∂
∂

= −
2
44

1

a

ε
ε τ

∂Φ ∂
∂ ∂

. 

                                                
 1 ) M. Planck, Berl. Ber. 1907, pp. 542. 
 2 ) M. Planck, loc. cit. 
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 For the differential quotients of Ω with respect to aij : 
 

(26)   Ωij = 
ija

∂Ω
∂

, i, j = 1, 2, 3, 4, 

(for the quantities: 

(27)   ijΩ =
4

1
jh ih

h

a
=

Ω∑ , i, j = 1, 2, 3, 4 

 
that are derived from the, resp.), precisely the same ten relations (28) and (31′) that were 
derived in § 3 are true.  The differential quotients of Φ(aij, ε) with respect to aij are 
expressed in terms of these Ωij : 
 

(50)   Φij = 
ija

∂Φ
∂

,  i, j = 1, 2, 3, 4 

in the form: 

(51)  Φij = 44
44

44

1

2ij
ij

A
A

A a

∂Ω− Ω −
∂

,  i, j = 1, 2, 3, 4. 

 
 

§ 6.  The Lagrangian equations of motion 
 

For the motion of the body, one shall now have: 
 
(52) 0 = δ ∫ Φ dξ dη dζ dτ  + ∫ (Ξδx + Hδy + Zδz + Tδt + Eδε) dξ dη dζ dτ . 
 
 The integration with respect to ξ, η, ζ shall be carried out over the entire finitely 
extended body, while the integration over τ shall, however, extend from τ1 to τ2 .  
Geometrically speaking, if: 
(53)     ϕ(ξ, η, ζ) = 0 
 
represents the bounding surface of the body then the integral in (ξ, η, ζ, τ)-space shall be 
taken over the volume that lies between the two planes τ = τ1 and τ = τ2 in the cylinder 
(53).  The δx, δy, δz, δt, δε shall mean any variations of the five functions x, y, z, t, ε of 
the independent variables ξ, η, ζ, τ, of which only δx, δy, δz, δt vanish for τ = τ1 and τ = 
τ2 − i.e., the two base surfaces for the cylinder – while the δε shall be chosen arbitrarily. 
 The quantities: 

44

1

a
Ξ , 

44

1

a
H , 

44

1

a
Z  

 
represent the external forces that act on a unit normal volume, whereas the meaning of T 
and E in the further course of motion can be derived from (52). 
 From this, and the rules of the variational calculus, it next follows that for each point 
of the body one has the Lagrangian equations of motion: 
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(54)  

1311 12 14

2321 22 24

31 32 33 34

4341 42 44

,

,

,

,

.

ξ η ζ τ

ξ η ζ τ

ξ η ζ τ

ξ η ζ τ

ε

∂Φ∂Φ ∂Φ ∂ΦΞ = + + + ∂ ∂ ∂ ∂


∂Φ∂Φ ∂Φ ∂Φ = + + + ∂ ∂ ∂ ∂


∂Φ ∂Φ ∂Φ ∂Φ = + + +
∂ ∂ ∂ ∂

 ∂Φ∂Φ ∂Φ ∂Φ= + + +
∂ ∂ ∂ ∂

 ∂Φ= −
∂

H

Z

T

E

 

 
 These five equations are, however, independent of each other corresponding to the 
arbitrariness of the time parameter τ .  Namely, if one sets in (52): 
 

(55)    δxi = ai4ω, δε = 
ε
τ

∂
∂

ω, 

 
where ω = ω(ξ, η, ζ, τ) vanishes for τ =τ1 and τ =τ2, but is otherwise arbitrary, then one 
has: 

(56)  δaij = 4i

j

a

ξ
∂
∂

= 4
4

i
i

i

a
a

ωω
τ ξ

∂ ∂+
∂ ∂

,  i, j = 1, 2, 3, 4, 

 

(57)  δΦ = 
4

, 1
ij

i j ij

a
a

δ δε
ε=

∂Φ ∂Φ+
∂ ∂∑  = 

4

4
, 1

i
i j ij j

a
a

ωω
τ ξ=

∂Φ ∂Φ ∂+
∂ ∂ ∂∑ . 

 
Here, the second term represents the variation of Φ under the transformation (30) for the 
differential values λj = ∂ω /∂xj .  From (45), this transformation generally takes Φ to: 
 
(58)   ( , )ija ε′Φ = (1 + λ4) Φ(aij, ε), 

 
such that any variation equals λ4Φ = ∂ω /∂xj , and therefore: 
 

(57′)    δΦ = 
ω

τ
∂Φ
∂

. 

 
 Now, since ω shall vanish for τ = τ1 and τ = τ2 the first term in (52) drops out, and 
what results is the desired relation: 

(59)   a14 Ξ + a24 H + a34 Z + a44T + 
ε
τ

∂
∂

E = 0. 

Since, from (48): 
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(60)    E = −
ε

∂Φ
∂

= a44θ, 

then: 

(61)   − T = uΞ + vH + wZ + θ ε
τ

∂
∂

, 

 
and therefore – T/a44 represents the sum of the work done and the heat produced per unit 
time and normal volume. 
 The rules of variational calculus next yield the boundary terms in the right-hand side 
of (52): 

(62)    
4

, 1
ij i j

i j

x dδ ω
=

Φ∑∫ , 

 
in which the integral is taken over the entire boundary surface of the domain of 
integration in (ξ, η, ζ, τ)-space, and the dωj denotes the projections of an element dω of 
this surface.  Now, at the two base surfaces of the cylinders one has δxi = 0, whereas for 
the element of the sleeve one has: 
 
(63)   dω1 : dω2 : dω3 : dω4 = ϕ1 : ϕ2 : ϕ3 : ϕ4 , 
in which we have set: 
(64)   dϕ = ϕ1 dξ + ϕ2 dη +ϕ3 dζ + ϕ4 dτ, ϕ4 = 0. 
 
 Annulling the boundary terms then delivers the boundary conditions that are valid on 
the bounding surface of the body: 
 
(65)   ϕ1Φi1 + ϕ2Φi2 + ϕ3 Φi3 = 0, i = 1, 2, 3, 4. 
 
 Now, since for the special variation (55) the boundary terms drop out, one must have: 
 

(66)    
4

4
, 1

i j ij
i j

a ϕ
=

Φ∑ = 0, 

 
along the sleeve of the cylinder, and therefore since a44 ≠ 0 the fourth of equations (65) is 
a consequence of the remaining ones, and can therefore be omitted. 
 
 

§ 7.  The Eulerian equations of motion and the 
relations between impulse, energy, and stress 

 
 From the theorem of § 4, in order to obtain the Eulerian form of the equations of 
motion, one need only introduce the differential quotients with respect to x, y, z, t in place 
of ones with respect to ξ, η, ζ, τ . 
 When one sets: 
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(67)  DX = Ξ, DY = H, DZ = Z, Dt = T, 
 

(68)   DFij = 
4

1
jh ih

h

a
=

Φ∑ , i, j = 1, 2, 3, 4, 

(69)    F = − 
Ω
∆

= − 
D

Φ
, 

 
one immediately obtains the Eulerian equations of motion: 
 

(70)  

1311 12 14

2321 22 24

31 32 33 34

4341 42 44

2

,

,

,

,

1 .

FF F F
X

x y z t

FF F F
Y

x y z t

F F F F
Z

x y z t

FF F F
T

x y z t

F
sθ

ε

∂∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂


∂∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ = + + +
∂ ∂ ∂ ∂

 ∂∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 ∂= ∆ −
∂

 

 
Here, X, Y, Z are the external forces that act on the unit of actual volume, and since, from 
(61): 
(71)    − T = uX + vY + wZ + Q, 
 

(72)    Q = 
21

d

dts

θ ε
∆ −

= 
F d

dt

ε
ε

∂
∂

, 

 
then – T represents the work done and heat produced per unit of time and actual volume. 
 From (27) and (51), one further obtains for the Fij : 
 

(73)  ∆Fij = 44
4

44 4

1

2ij j
i

A
a

A a

∂ΩΩ +
∂

,  i, j = 1, 2, 3, 4, 

 
and the relations (28) and (31′) between the ijΩ  yield the 10 relations for the Fij : 

 

(74)  23 32 31 13 12 21

14 41 24 42 34 43

, , ,

0, 0, 0.

F F F F F F

F F F F F F

= = =
 + = + = + =

 

 

(75)  
4

4 4
1

i ij j
i

a F a F
=

+∑ = 0, j = 1, 2, 3, 4. 
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 From the form 1) of equations (70), one deduces that the Fij (i, j = 1, 2, 3) represent 
the stresses, and that the impulse X, Y, Z and energy E per unit of actual volume, which 

are computed by means of: 
 
(76)  X = F14, Y = F24, Z = F34, E = − F44 , 

 
are given in such a way that one has, in particular, the energy equation before one in the 
fourth of these equations: 
 

(70′)   
t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
E X Y Z

= uX + vY + wZ + Q 

 
 Impulse, energy, and stress are, from (75), coupled with each other by the relations: 
 

(77)   

11 21 31

12 22 32

13 23 33

,

,

,

uF uF vF wF

vF uF vF wF

wF uF vF wF

F u v w

= + + +
 = + + +
 = + + +
 = + + +

X

Y

Z

E X Y Z.

 

 
When computed per unit time and normal volume, impulse and energy: 
 

(78)  X = 
44

D

a
X , Y= 

44

D

a
Y , Z= 

44

D

a
Z , E = 

44

D

a
E , 

 
or, by observing the connection between the Fij and the Φij : 
 

(78′)  

4 4 4

44 4 1 44 4 2 44 4 3
1 1 1

4

44 4 4
1

, , ,

,

i i i i i i
i i i

i i
i

a a a a a a

a a

= = =

=

 = Φ = Φ = Φ


 − = Φ


∑ ∑ ∑

∑

X Y X

E

 

 
and especially, in the event that one chooses t = τ : 
 

(78")  14 24 34

14

, , ,

.
u v w

u v wu v w

 = Φ = Φ = Φ = Φ = Φ = Φ


= −Φ = Φ + Φ + Φ − Φ

X Y Z

E
 

 
In order to also ultimately express the boundary conditions (65) for the Fij, one first 
writes them symmetrically: 
 
(65)  ϕ1Φi1 + ϕ2Φi2 + ϕ3Φi3 + ϕ4Φi4 = 0, i = 1, 2, 3, 

                                                
 1 ) M. Abraham, Rendiconti del. circ. mat. d. Palermo 28, pp. 1, 1909. 
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and then solves it for x, y, z, t : 
 

(79)   
1 2 3 4

( , , ) ( , , , ),

.

f x y z t

df f dx f dy f dz f dt

ϕ ξ η ζ =
 = + + +

 

 
If one then remarks that the transformation that takes ϕ1, ϕ2, ϕ3, ϕ4 to f1, f2, f3 , f4 – 
omitting the factor D – is precisely contragredient to the one that takes Φi1, Φi2, Φi3, Φi1 
into Fi1, Fi2, Fi3, Fi4 then this illuminates the fact that the boundary conditions, when 
expressed in terms of Fij, read: 
 
(80)   f1Fi1 + f2Fi2 + f3Fi3 + f4Fi4 = 0,  i = 1, 2, 3. 
 
 
Now, if n1 , n2 , n3 are the direction cosines of the normal to the bounding surface of the 
body and if sn are the components of the velocity of a particle in the same frame as this 
normal then one has: 
(81)    f1 : f2 : f3 : f4 = n1 : n2 : n3 : − sn . 
 
 Thus, in place of (80) one can also write: 
 
(80′)   n1Fi1 + n2Fi2 + n3Fi3 = sn Fi4 ,  i = 1, 2, 3. 
 
 Under any Lorentz transformation the Fij transform the xj in exactly the same way that 
the product ui xj transforms the xj into the ui that are contragredient to them. 
 The “rest values” 0

ijF of the Fij are obtained from the previous values for u = v = w = 0, 

in which aij =
0
ija  (i, j = 1, 2, 3): 

 

(82)   

3
0 0

0
1

0 0
4 4

0 0
44

, , 1,2,3,

0, 1,2,3,

.

ij jh
h ih

i i

F a i j
a

F F i

F F

=

∂Ω∆ = = ∂
 = = =
 Ω
 = = − = −

∆

∑

E

 

 
The Fij may be derived from them by the transformation that is inverse to the rest 
transformation. 
 
 

§ 8.  A third form for the equations of motion and the relative stresses 
 
 If one introduces the differential symbol Di (cf., § 4) in place of the differential 
quotients ∂/∂t then one obtains the third form of the equations of motion: 
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(83)  

1311 12

2321 22

31 32 33

,

,

,

( ) ( ) ( )
,

t

t

t

t

SS S
X D

x y z

SS S
Y D

x y z

S S S
Z D

x y z

u v w
T D

x y z

∂∂ ∂ = + + + ∂ ∂ ∂


∂∂ ∂ = + + + ∂ ∂ ∂
 ∂ ∂ ∂ = + + +
 ∂ ∂ ∂
 ∂ − ∂ − ∂ −− = + + +
 ∂ ∂ ∂

X

Y

Z

X E Y E Z E
E

 

 
in which the “relative” 1) stresses Sij (i, j = 1, 2, 3) that enter here: 
 

(84)  
11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

, , ,

, , ,

, , ,

S F u S F v S F w

S F u S F v S F w

S F u S F v S F w

= − = − = −
 = − = − = −
 = − = − = −

X X X

Y Y Y

Z Z Z

 

 
are coupled with the impulse and energy by: 
 

(85)   
11 21 31

12 22 32

13 23 33

,

,

.

u uS vS wS

v uS vS wS

w uS vS wS

= + + +
 = + + +
 = + + +

X E

Y E

Z E

 

 
 The boundary conditions (80′) will be expressed in terms of the Sij by way of: 
 
(86)    sn = u n1 + v n2 + w n3 , 
and read: 
(87)   n1 Si1 + n2 Si2 + n3 Si3 = 0, i = 1, 2, 3 
 
and thus demand the vanishing of the relative stresses for each bounding surface element. 
 
 

§ 9.  The ten general integrals of the equations of motion 
 

 The ten-term group of “motions” in (x, y, z, t)-space with the corresponding metric: 
 
(88)    ds2 = dx2 + dy2 + dz2 – dt2, 
 
makes the 10 principles of the center of mass point, surfaces, and energy valid for the 
entire body, which are analogous to the theorems of ordinary mechanics. 
 Namely, if the components of an infinitely small motion were taken for δx, δy, δz, δt 
in the relation (52), and thus one were to choose δs = 0, then one would have δΦ = 0 for 

                                                
 1 ) M. Abraham, loc. cit. 
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these variations, and therefore the first term on the right-hand side would vanish.  
However, since these variations do not satisfy the condition of vanishing for τ = τ1 and 
τ = τ2, the left-hand side of any relation will not, on the other hand, be null, but will be 
replaced by the boundary term (62): 
 

(89)  
4

, 1
ij i j

i j

x dδ ω
=

Φ∑ = ∫ (Ξ δx + H δy + Z δz + T δt) dξ dη dζ dτ .  

 
As a result of the boundary condition (65), the part of the bounding surface integral on 
the left that comes from the sleeve of the cylinder drops out, while for the base surfaces 
τ = τ1 and τ = τ2 of the cylinder one has: dω1 = dω2 = dω3 = 0, dω4 = dξ dη dζ, such that: 
 

(89′)  
2

1

4

4
1

i i
i

x d d d
τ

τ

δ ξ η ζ
=

Φ∑∫ = ∫ (Ξ δx + H δy + Z δz + T δt) dξ dη dζ dτ . 

 
If one now lets τ1 = τ2 = τ and chooses t = τ then it follows that: 
 

(90) ( )
d

x y z t dv
dt

δ δ δ δ+ + −∫ X Y Z E = ∫ (X δx + Y δy + Z δz + T δt) dv, 

 
where dv = dx dy dz denotes the volume element of the body, and the integral is taken 
over the entire space swept out by the body up to time t. 
 From this, for each relation that is true for an infinitely small motion δx, δy, δz, δt 
there ensue 10 independent infinitesimal motions that correspond to the aforementioned 
theorem, and indeed the infinitesimal translations: 
 

(91)   
f

x

∂
∂

, 
f

y

∂
∂

, 
f

z

∂
∂

, 
f

t

∂
∂

 

 
correspond to the impulse and energy theorem: 
 

(92)  
, ,

, ,

d d
dv X dv dv Y dv

dt dt
d d

dv Z dv dv T dv
dt dt

 = =

 = − =


∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

X Y

Z E

 

 
the infinitesimal rotations: 
 

(93)  
f f

y x
x y

∂ ∂−
∂ ∂

, 
f f

z x
x z

∂ ∂−
∂ ∂

, 
f f

x y
y x

∂ ∂−
∂ ∂

, 

 
correspond to the surface theorem: 
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(94)  

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

d
y z dv yZ zY dv

dt
d

z x dv zX xZ dv
dt
d

x y dv xY yX dv
dt

 − = −

 − = −

 − = −


∫ ∫

∫ ∫

∫ ∫

Z Y

X Z

Y X

 

 
and the infinitesimal rotations: 
 

(95)  
f f

t x
x t

∂ ∂+
∂ ∂

, 
f f

t y
y t

∂ ∂+
∂ ∂

, 
f f

t z
z t

∂ ∂+
∂ ∂

, 

 
correspond to the theorems: 
 

(96)  

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

d
t x dv tX xT dv

dt
d

t y dv tY yT dv
dt
d

t z dv tZ zT dv
dt

 − = +

 − = +

 − = +


∫ ∫

∫ ∫

∫ ∫

X E

Y E

Z E

 

 
If one were to subtract the corresponding equations (92), multiplied by t, from equations 
(96) then they would take on the form: 
 

(96′)  

,

,

,

d
dv x dv xT dv

dt
d

dv y dv yT dv
dt
d

dv z dv zT dv
dt

 = +

 = +

 = +


∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

X E

Y E

Z Z

 

 
from which a certain parallel with the once-integrated center-of-mass theorem of ordinary 
mechanics emerges. 
 In particular, if the body moves adiabatically in the absence of forces then the 
impulse, impulse moment, and energy are constant, and moreover, the energy midpoint 
moves in a uniform, rectilinear manner, and its velocity, when multiplied by the energy, 
yields the impulse. 
 
 

§ 10.  The hydrodynamic equations 
 

 In order to obtain the basic equations of hydrodynamics, one must let Ω depend only 
upon rest volume and entropy: 
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(97)    Ω = Ω(∆, ε) = 
44

,
D

A
ε

 
Ω  − 

. 

This Ansatz yields, when one sets: 

(98)     p =
∂Ω
∂∆

, 

by a brief intermediate computation: 
 

(99)  ijΩ = 44
4

44 4

1

2ij j
i

A
p a

A a
δ
 ∂∆ − ∂ 

 i, j = 1, 2, 3, 4, 

 
δij = 0 for i ≠ j, δii = 1, 

 
and from this it then follows that: 
 

(100)   Fij = pδij - 44
42

44 4
j

i

Am
a

a a

∂
∂

 i, j = 1, 2, 3, 4, 

 

(101)   m = 
21

F p

s

+
−

= 2(1 )s
∆∆Ω − Ω

∆ −
= −

21

F

s
∆∆

−
. 

 
From this, the impulse and energy per unit actual volume are: 
 
(102)  X = mu, Y = mv, Z = mw, E = m – p, 

 
and the relative stresses take on the simple values: 
 

(103)   11 22 33

23 32 31 13 12 21

,

0.

S S S p

S S S S S S

= = =
 = = = = = =

 

 
From this, however, the third form of the equations of motion (81) goes over to the basic 
hydrodynamic equations: 

(104)   

( ) ,

( ) ,

( ) ,

( ) .

t

t

t

t

p
D mu X

x
p

D mv Y
y

p
D mw Z

z
p

D m T
t

∂ + = ∂


∂ + =
 ∂


∂ + =
 ∂
 ∂− + =
 ∂

 

 
The impulse and energy, when computed per unit normal volume, are: 
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(105)  X = µ u, Y= µ v, Z= µ w, E = µ − 21p s∆ −  , 
 

(106)    m = 21m s∆ − = β(∆Ω∆ – Ω). 
 
If one chooses t = τ and considers that one has: 
 

(107)    Φ = 2

2
, 1

1

D
s

s
ε

 
Ω − 

− 
, 

 

since D = | aij | (i, j = 1, 2, 3) involves the u, v, w merely in the form s = 2 2 2u v w+ + , 
then (78") then teaches us that: 
 

(108)    µ = 
1

ss
Φ , E = s Φs – Φ. 

 
In particular, the expression (105) for the impulses shows us that the fluid takes on a 
longitudinal and a transversal inertia, which will be given per unit normal volume by: 
 

(109)    µt = µ =
1

ss
Φ ,  µl = Φss , 

where one computes: 

(110)    3 2 3 2

( ),

( ) .
s

ss

s

s

β
β β

∆

∆ ∆∆

Φ = ∆Ω − Ω
Φ = ∆Ω − Ω + ∆ Ω

 

 
Since the independent variables are D, s, ε here, one thus has precisely specified the 
adiabatic-isochoric values of the coefficients of inertia. 
 
 

§ 11.  The Weber form of the hydrodynamical equations 
and the Helmholtz theorem on vortex motion 

 
 From equations (10), it follows in an obvious way that: 
 

(111)  
[ ( ) ( ) ( ) ( )]

.
t t t tD dx D mu dy D mv dz D m w dt D m

D dp dx dy dz Tdt

+ + −
 = − + Ξ + + + H Z

 

 
If one now sets: 

(112)    M = 
2
44

m D

a
 = 

44a

µ
 

 
and employs the representation (42) for Dt then the left-hand side of (111) goes over to: 
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(113)  

3414 24 14

1
442

44 44 44

( )

( ) ( ).

MaMa Ma Ma
dx dy dz dt

d d d d

M dv M dA

M dv M dA A d M A

τ τ τ τ

τ

τ

∂∂ ∂ ∂ + + −


∂ = − ∂
∂ = − − − − ∂

 

 
However, since one further has: 
 

(114)   44M A− = 21 sµ − = ∆Ω∆ – Ω, 

 
(111) is finally written, after a brief reduction: 
 

(115)  44( ) ( ) ,

.

M dv d M A d

d dx dy dz dt d
τ

ε

∂ = + Π
∂

 Π = Ξ + + + + H Z T E
 

 
Therefore, if this is expressed in terms of dξ, dη, dζ, dτ: 
 
(116)   dΠ = A dξ + B dη + Γ dζ, 
 
then a comparison of the coefficients of dξ, dη, dζ in (115) produces ordinary 
hydrodynamic equations that are analogous to those of H. Weber: 
 

(117)   

14 44

24 44

34 44

,

,

.

M A M A

M A M A

M A M A

τ ξ

τ η

τ ζ

∂ ∂= + ∂ ∂
∂ ∂= + ∂ ∂
∂ ∂= + Γ ∂ ∂

A

B  

 
On the other hand, if one sets dτ = 0 in (115) and chooses t = τ then it follows that: 
 

(118)  ( )
d

dx dy dz
dt

+ +X Y Z = dµ (s2 – 1) + Ξ dx + H dy + Z dz + θ dε. 

 
Therefore, in the case of dt = 0: 
 
(119)   Ξ dx + H dy + Z dz + θ dε = dω(x, y, z, t), 
 
for each closed integration path that is reducible to null, one has: 
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(120)    ( )
d

dx dy dz
dt

+ +∫ X Y Z = 0, 

 
or: a line integral of the impulse that is taken over a closed curve that always represents 
the same particle has a constant value in time during the motion of the fluid. 
 However, from this the Helmholtz vortex theorem immediately comes into play, 
where the vorticial velocity p, q, r is defined by the curl of the impulse here: 
 

(121)  p = 
y z

∂ ∂−
∂ ∂
Z Y

,  q = 
z x

∂ ∂−
∂ ∂
X Z

,  r =
x y

∂ ∂−
∂ ∂
Y X

. 

 
 

§ 12.  The kinetic potential of isotropic elastic bodies for small rest deformations 
 

 If one is dealing with an elastic body that is isotropic in the normal state then, other 
than entropy, Ω can depend upon only three principal dilatations that take the rest form of 
a volume element to its normal form.  However, in their place one can introduce the three 
invariants J1, J2, J3 of the rest deformation that are symmetrically constructed from them, 
and are determined from the identity in λ: 
 

(122)  
11 12 13

21 22 23

31 32 33

, ,

, ,

, ,

e e e

e e e

e e e

λ
λ

λ

+
+

+
 = λ3 + J1λ2 + J3λ + J3 , 

by way of: 

(123)  

1 11 22 33
2 2 2

2 23 33 23 33 11 31 11 22 12
2 2 2

3 11 22 33 23 31 12 11 23 23 31 33 12

,

( ) ( ) ( ),

2 ,

,ij

J e e e

J e e e e e e e e e

J e e e e e e e e e e e e

e

= + +
 = − + − + −
 = + − − −

 =

 

 
and is connected with ∆ by: 
 
(124)    ∆2 = 1 + 2J1 + 4J2 + 8J3. 
 
In particular, if the rest deformations eij are sufficiently small and the stresses vanish in 
the normal state then one can assume that Ω is a quadratic function of the eij; hence, it has 
the form: 
(125)    Ω = − M − 21

1 22 2AJ BJ+ , 

 
where A, B, M can still depend upon ε. 



PART TWO 
 

Inertial resistance and wave mechanics 
 

§ 1.  The six inertial coefficients and the postulate of the 
 positive-definite character of the form Γ. 

 
 If one chooses the special case τ = t in the sequel then one has: 
 
(1)    Φ = Φ(aij , u, v, w, ε)  i, j = 1, 2, 3 
 
and the impulse per unit normal volume is: 
 

(2)    X = Φu, Y= Φv , Z= Φw . 
 
If one now varies the velocity components u, v, w by the addition of γ1dt, γ2 dt, γ3 dt and 
varies the impulse components by the addition of Γ1 dt, Γ2 dt, Γ3 dt, then − Γ1, − Γ2, − Γ3 
are called the inertial resistance per unit normal volume that is aroused by the computed 
components of the acceleration: 
 

(3)    γ1 , γ2 , γ3 , γ = 2 2 2
1 2 3γ γ γ+ + . 

 
 Obviously, from (2), if: 
 

(4) Γ(γ1, γ2, γ3)  = 
3

, 1
ij i j

i j

µ γ γ
=
∑  

    = δ2Φ for  δu = γ1 , δv = γ2, δw = γ3  
then one will set: 
 

(5)   

1 11 1 12 2 13 3
1

2 21 1 22 2 23 3
2

3 31 1 32 2 33 3
3

1
,

2

1
,

2

1
,

2

.ij ji

µ γ µ γ µ γ
γ

µ γ µ γ µ γ
γ

µ γ µ γ µ γ
γ

µ µ

∂Γ Γ = = + + ∂


∂ΓΓ = = + + ∂
 ∂ΓΓ = = + +

∂
 =
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The “inertial coefficients” µij represent the masses per unit normal volume or densities of 
the body. 1)  Since aij, u, v, w, s are the independent variables, they specify the adiabatic-
isochoric inertial coefficients precisely. 
 Hereafter there are always three mutually normal directions of the acceleration – the 
“principal inertial directions” – for which the inertial resistance possesses a direction that 
is equal or opposite to the acceleration.  They are the principal axes of the second-degree 
surface: Γ(x, y, z) = C. 
 If one takes the components of the acceleration and the inertial resistance with respect 
to these three principal axes then one has: 
 
(4′)     Γ = 2 2 2

1 1 2 2 3 3µ γ µ γ µ γ+ + , 

 
(5′)    Γ1 = µ1γ1, Γ2 = µ2γ2, Γ3 = µ3γ3. 
 
Therefore, if one excludes the possibility that an acceleration provokes an inertial 
resistance that is in the same direction then the three principal inertial coefficients µ1, µ2, 
µ3 are positive and thus the quadratic form Γ(γ1, γ2, γ3) is positive-definite. 
 Since: 
(6)    Γ(γ1, γ2, γ3) = µ1Γ1 + µ2Γ2 + µ3Γ3  
 
one can also express this assumption as: The inertial resistance shall always define an 
obtuse angle with the acceleration. 
 If the direction of the velocity and each of its normals is a principal direction then one 
obtains the well-known case of purely longitudinal and transversal inertial coefficients ul 
and ut .  One then has: 
(4")    Γ = 2 2

l l t tµ γ µ γ+ , 

in which: 

(7)   γl =
1

s
(uγ1 + vγ2 + wγ3), γt = 2 2

lγ γ−   

 
denote the longitudinal and transversal components of the acceleration; i.e., the ones that 
are parallel and normal to the velocity. 
 For a rest element the inertial coefficients 0

iµ are given immediately.  From I (77), it 

immediately follows that: 

(8)     
0 0

0 0 0

, ,

,
ij ij

ii ii

F i j

F

µ
µ
 = ∆ ≠
 = + ∆ E

 

hence: 

(9)   Γ0(γ1 + γ2 + γ3) = 
3

0 2 2 2 0
1 2 3

, 1

( ) ij i j
i j

Fγ γ γ γ γ
=

+ + + ∆∑E . 

                                                
 1 ) In general, equations I (54) are linear in the second derivatives of the functions x, y, z, t with respect 
to ξ, η, ζ, τ.  If one now chooses in particular: t = τ then the µij are the coefficients by which the three 
derivatives of second order of x, y, z, with respect to t are multiplied, hence, the accelerations enter into the 
first three of equations I (54). 
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The principal inertial directions are thus simply the principal stress directions for a rest 
element. 
 For the case of pure longitudinal and transversal mass one must obviously set: 
 
(10)    0

ijF = 0,  i ≠ j, 0
iiF = p, 

hence, one has: 
(11)     0

lµ = 0
tµ = 0E + p∆. 

 
 

§ 2.  First representation of the form Γ 
 
 In order to compute the inertial coefficients for a moving element one must now only 
define the form Γ(γ1, γ2, γ3), hence, the second variation δ2Φ of: 
 

(12)      Φ = Ω(eij, ε) 21 s−  
for: 
(13)   δu = γ1, δu = γ2, δu = γ3 . 
One next has: 

(14)  δ2Φ = 21 s− δ2Ω + 2δΩ δ 21 s− + Ωδ2 21 s− , 
 

(15)   

3

, 1

23 3
2 2

1 , 1

,

.

ij
i j ij

ij ij ij
ijhk i jij hk ij

e
e

e e e
e e e

δ δ

δ δ δ δ

=

= =

∂Ω Ω = ∂


∂ Ω ∂Ω Ω = +
 ∂ ∂ ∂

∑

∑ ∑
 

 
For the definition of the δeij, δ2eij , one starts by assuming that dt = dτ = 0, so: 
 

(16)   dσ2 = dx2 + dy2 + dz2 + 
2

2

( )

1

udx vdy wdz

s

+ +
−

, 

 
when expressed in terms of dξ, dη, dζ, reads: 
 
(16′)    dσ2 = dξ2 + dη2 + dζ2 + 2de2, 
 

(17)    de2 = 
3

, 1
ij i j

i j

e d dξ ξ
=
∑ . 

 
Thus, if one lets the u, v, w in dσ2 go to u + γ1, v + γ2, w + γ3 and then develops it in 
powers of the γ1, γ2, γ3 then dσ2 will become: 
 
(18)   dσ*2  = dσ2 + 2δ de2 + δ2 de2 + … 
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(19)   

3
2

, 1

3
2 2

, 1

,

.

ij i j
i j

ij i j
i j

de e d d

de e d d

δ δ ξ ξ

δ δ ξ ξ

=

=

 =


 =


∑

∑
 

 
The directly produced development of dσ*2 in the γi from (16) will thus be furnished by 
its linear terms in the δeij, and its quadratic terms in δ2eij . 
 In order to carry out any truncated development, one first remarks that the γ1, γ2, γ3 , 
expressed in terms of the components of the “rest acceleration:” 
 

(20)   1
0γ , 2

0γ , 3
0γ , γ0 = 0 2 0 2 0 2

1 2 3( ) ( ) ( )γ γ γ+ +  

 
by means of the rest transformation, are: 
 

(21)   

2 0
1 1 1 2 3

2 0
2 2 1 2 3

2 0
3 3 1 2 3

( ),

( ),

( ),

u u v w

v u v w

w u v w

β γ γ α γ γ γ
β γ γ α γ γ γ
β γ γ α γ γ γ

−

−

−

 = + + +
 = + + +
 = + + +

 

 
and especially for the longitudinal and transversal components one has: 
 
(22)    0

lγ = β3γl , 
0
tγ = β3γt . 

Second, one replaces: 

(23)   0 0 0 0

,

,

dv udx vdy wdz

dv udx vdy wdz

= + +
 = + +

 

(24)   1 2 3
0 0 0 0 0 0 0

1 2 3

,

,

d dx dy dz

d dx dy dz

γ γ γ γ
γ γ γ γ

= + +
 = + +

 

 
and establishes, on the basis of the equations that couple the dx, dy, dz with the dx0, dy0, 
dz0 for dt = 0 (I. § 1), that: 
 

(25)   
1 0

2 0 0 0

,

( ).t

dv dv

d d s dv

β
γ β γ γ

−

−

 =
 = −

 

 
Having made this assumption, one now has, with no further assumptions: 
 

(26) 

2
*2 2 2 2

2 2

2 0 0 0 2 0 0 0 0 2 0 2
2

( )

1 2

2 1
[( ) 2 ( ) ( ) ,

l

l

dv d
d dx dy dz

s s

d dv d d s dv d dv

γσ
γ γ

σ γ γ γ γ γ
β β

 += + + + − − −

 = + + + + +


⋯
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hence: 

(27)  

2 0 0

2 2 0 2 0 0 0 0 2 0 2
2

1
,

1
[( ) 2 ( ) ( ) ,l

de dv d

de d s dv d dv

δ γ
β

δ γ γ γ γ
β

 =

 = + + +


⋯

 

 
and ultimately one finds that: 
 

(28)  
2 2 0

2 2 2 3 2 2 3 2 0 2

1 ,

1 ( ) .

l l

l

s s s

s s s

δ β γ β γ

δ βγ β γ β γ−

 − = − = −


− = − − = −

 

 
Substituting everything in (14) finally yields the result: 
 

(29)  β3Γ = 
23 3

* 0 2

1 1

( )ij hk ij
ijhk ijij hk ije e e

ε ε ε γ
= =

∂ Ω ∂Ω+ − Ω
∂ ∂ ∂∑ ∑ , 

 
in which εij and are *

ijε defined by: 

 

(30)  

3
0 0

, 1

3
0 2 0 2 0 2 *

, 1

( ) ( ) ( ) .

ij i j
i j

ij i j
i j

dv d d d

d dv d d

γ ε ξ ξ

γ γ ε ξ ξ

=

=

 =


 + =


∑

∑
 

 
 Thus, if one sets: 
 

(31)  
0

1 2 3
0

1 2 3

,

,

dv d d d

d d d d

χ ξ χ η χ ζ
γ π ξ π η π ζ

 = + +
 = + +

 

 
in which obviously: 
 

(32)  
0 0 0
1 2 3
0 0 0 0 0 0
1 1 2 2 3 3

,

,
i i i i

i i i i

a u a v a w

a a a

χ
π γ γ γ
 = + +
 = + +

 

 
then one obtains: 
 

(33)  
1
2

* 0 2

( ), , 1,2,3,

( ) .
ij i j j i

ij i j j i

i jε π χ π χ
ε π π γ χ χ

= + =
 = +

 

 
Thus, Γ has the form: 
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(34)  β3Γ = 0 0 0 0 0 0
1 2 3 1 2 3( , , , , , ) ( , , )P u v w Qγ γ γ γ γ γ+ , 

where: 

(35)  P = 
23 3

0

1 1

( )ij hk i j
ijhk ijij hk ije e e

ε ε γ χ χ
= =

∂ Ω ∂Ω+
∂ ∂ ∂∑ ∑  

 
is a quadratic form in0 0 0

1 2 3, ,γ γ γ , as well as in u, v, w, while: 

 

(36)   Q = 
3

, 1
i j

i j ije
π π

=

∂Ω
∂∑ − Ω(γ0)2 

 
is a quadratic form in0 0 0

1 2 3, ,γ γ γ alone.  The coefficients of both forms depend upon only 

the 0
ija  (i, j = 1, 2, 3) and ε. 

 For a rest element u = v = w = 0, one has: 
 
(37)    Γ0 = Q(γ1, γ2, γ3), 
 
and a comparison with (9) shows that in general, one has: 
 

(38)   Q = 
3

0 0 2 0 0 0

, 1

( ) ij i j
i j

Fγ γ γ
=

+ ∆∑E . 

 
 

§ 3.  Second representation of the form Γ 
and the character of the forms P and Q 

 
The assumption that was made in § 1 relative to the inertial resistance yields: 
 

(39) 
0 0 0 2 2
1 2 3
0 0 0
1 2 3

0 for all , ,  and 1,

0 for all , , .

P Q u v

Q

γ γ γ
γ γ γ

 + ≥ + <
 ≥

 

 
The character of the form P alone gives us information about a second representation of 
P and Q in which, by means of I (16), Ω is thought of as a function of the 0ija  (i, j = 1, 2, 

3) and ε. 
 Namely, also due to eq. II (14), one has: 
 
(40)   dσ2 = (dx0)2 + (dy0)2 +(dz0)2, 
 
and thus, if – under the assumption that αi, βi  (i = 1, 2, 3) are arbitrary numbers and one 
sets: 
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(41)   
0 0 0 0

1 2 3
0 0 0 0

1 2 3

,

,

d dx dy dz

d dx dy dz

α α α α
β β β β

 = + +
 = + +

 

 
the 0

ija are given the variations: 

 
(42)   0

ijaδ = 0 0 0
1 1 2 2 3 3( )i j j ja a aα β β β+ + , 

 
in which one likewise sets: 
 
(43)  δ dx0 = α1 dβ0,  δ dy0 = α2 dβ0,  δ dz0 = α3 dβ0,  
 
then it follows from the same argument as above that: 
 

(44)   
2 0 0

2 2 2 2 2 0 2
1 2 3( )( ) .

de d d

de d

δ α β
δ α α α β
 =
 = + +

 

 
A comparison of (35) and (36) immediately shows that one can also write: 
 

(35′)   P = 
23

0 0
0 0

1
i h j k

ijhk ij hka a
γ γ χ χ

=

∂ Ω
∂ ∂∑ , 

 

(36′)   Q = 
3

0 0
0

, 1
i j

i j ija
γ π

=

∂Ω
∂∑ − Ω(γ0)2, 

 
such that P is simply the second variation of Ω: 
 
(35")  P = δ2Ω for 0

ijaδ = 0
i jγ χ , i, j = 1, 2, 3. 

 
 However, for the stability of equilibrium it is necessary 1) that δ2Ω must be negative-
definite for all variations of the 0ija of the form 0

ijaδ = Ai Bj .  Therefore, if this stability 

condition is satisfied then one will have: 
 
(39′)   P ≤ 0 for all 0

1γ , 0
2γ , 0

3γ , u, v, w . 

 
 
 
 
 
 

                                                
 1 ) J. Hadamard, Propagation des Ondes, Paris 1903, art. 270. 
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§ 4.  The discontinuous solutions of the equations of motion  
and the form W. 

 
 The examination of the possible waves in a body necessarily raises some issues from 
the theory 1) of discontinuous solutions of differential equations that arise from a 
variational problem. 
 We will then direct our attention to the general form I (54) of the equations of motion, 
in which ε is assumed to be continuous, along with its first differential quotients; i.e., 
restrict ourselves the consideration of adiabatic waves. 
 Now, should the second differential quotients of x, y, z, t with respect on the “wave 
surface:” 

(45)  
1 2 3 4

( , , , ) 0

d d d d d

ϕ ξ η ζ τ
ϕ ϕ ξ ϕ η ϕ ζ ϕ τ

=
 = + + +

 

 
be discontinuous then, by the aid of four quantities λ1, λ2, λ3, λ4 , the resulting variations 
of the values of these differential quotients when one crosses the wave surface can be 
represented in the form: 
 

(46)   
2

i

h k

x

ξ ξ
 ∂
 ∂ ∂ 

= λi ϕh ϕk,  i, h, k = 1, 2, 3, 4, 

 
which culminate in the requirement of the so-called compatibility conditions. 
 If one further defines for: 
 
(47)   δaij = λi ϕj, i, j = 1, 2, 3, 4 
 
the second variation of the kinetic potential Φ: 
 

(48)   W = δ2Φ = 
24

1
i j h k

ijhk ij hka a
λ λ ϕ ϕ

=

∂ Φ
∂ ∂∑  

 
then λi , ϕj must satisfy the conditions: 
 

(49)   
1

W

λ
∂
∂

= 
2

W

λ
∂
∂

=
3

W

λ
∂
∂

=
4

W

λ
∂
∂

= 0. 

 
However, since W is a quadratic form in the λi, as well as in the ϕj, these are linear, 
homogeneous equations in the λi, and thus their determinant – i.e., the discriminant of the 
form W relative to the λi − must vanish: 
 

                                                
 1 ) J. Hadamard, loc. cit., Chap. VII. 
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(50)    
2

i j

W

λ λ
∂

∂ ∂
= 0, 

 
an equation that represents a relation between just the ϕj – viz., the partial differential 
equation of the wave surface. 
 In order to better comprehend its meaning, one considers the equation (45) for the 
wave surface when expressed in terms of x, y, z, t: 
 

(51)  
1 2 3 4

( , , , ) 0,

,

f x y z t

df f dx f dy f dz f dt

=
 = + + +

 

 
in which the fi will be connected with the ϕj: 
 

(52)   ϕj = 
4

1
ij i

i

a f
=
∑ ,  j = 1, 2, 3, 4. 

 
 If one then denotes the direction cosines of the wave normal by n1, n2, n3 and 
Θ denotes the normal velocity of the wave then one has: 
 

(53)  
1 2 3 4 1 2 3

4

2 2 2
1 2 3

: : : : : : ,

,

f f f f n n n

f

f f f

= −Θ

 Θ = ±
 + +

 

 
and it therefore equation (50), which is homogeneous in ϕj, represents a relation between 
n1, n2, n3 and Θ. 
 For a given wave normal n1, n2, n3, the first things that follow from (50) are the 
possible values of the wave velocity Θ and then (49) gives the associated possible 
directions of the “wave vectors” λ1, λ 2, λ 3 , λ4. 
 Without proof, because the fact will not be used in what follows, let us finally remark 
that that the direction cosines of the ray s1, s2, s3 and the reciprocal ray velocity s4 will be 
given by: 

(49′)   s1: s2 : s3 : s4 = 
1

W

f

∂
∂

:
2

W

f

∂
∂

:
3

W

f

∂
∂

:
4

W

f

∂
∂

. 

 
 

§ 5.  Representation of the form W and its connection with the form Γ. 
 

 The form W(λi, ϕj), which thus completely delivers the laws of wave propagation, 
shall now be constructed for a rest element in particular, since one may in fact arrive at 
the laws that are valid for a moving element from those of a rest element by a Lorentz 
transformation. 
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 Moreover, corresponding to the arbitrariness of the time parameter, which will always 
be assumed, it can happen that at the spacetime point in question, one has indeed: 
 

a41 = a42 = a43 = 0, a43 = 1 
 
such that one must therefore define the second variation of Φ for δaij = λi ϕj with the 
initial values: 

(54)  

0

14 41 24 42 34 43

44

, , 1,2,3,

0,

1.

ij ija a i j

a a a a a a

a

 = =
 = = = = = =
 =

 

 
One then has: 

(55)  δ2Φ = 2 2
44 44 442A A Aδ δ δ δ− Ω + Ω − + Ω −  

 

(56)  

3

, 1

23 3
2 2

1 , 1

,

.

ij
i j ij

ij hk ij
ijhk i jij hk ij

e
e

e e e
e e e

δ δ

δ δ δ δ

=

= =

∂Ω Ω = ∂


∂ Ω ∂Ω Ω = +
 ∂ ∂ ∂

∑

∑ ∑
 

 
However, in order to define the δeij, δ2eij one must – using an argument that is analogous 
to the one in § 2 – start with the fact that when: 
 

(57)  
2 2 2 2 2

44

14 24 34 44

1
,d dx dy dz dv

A

dv a dx a dy a dz a dt

σ = + + −

 = + + −

 

 
is expressed in terms of dξ, dη, dζ, dτ, it looks like: 
 
(57′)   dσ2 = dξ2 + dη2 + dζ2 + 2de2. 
 
In order to once more carry out the truncated development of the form dσ*2, in which the 
aij in dσ2 are replaced by aij + λi ϕj, one sets: 
 
(58)   λ2 = 2 2 2

1 2 3λ λ λ+ +  

 

(59)  

1 2 3

1 2 3

4
1 2 3

1 2 3

,

,

.

d dx dx dx

d d d d

f
f dx f dy f dz dn

dn n dx n dy n dz

λ λ λ λ
ϕ ϕ ξ ϕ η ϕ ζ

= + +
 = + +
 = + + = Θ


= + +
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If one then remarks that generally dτ falls out of dσ2 − hence, from now on we will set dτ 
= 0 – then, considering the special nature of the initial values (54) of the aij, when the aij 
are replaced with aij + λi ϕj the dx, dy, dz, dt, dv, A44 go to: 
 

(60)  1 2

3 4

, ,

, ,

dx dx d dy dy d

dz dz d dt d

λ ϕ λ ϕ
λ ϕ λ ϕ

∗ ∗

∗ ∗

 = + = +
 = + =

 

(61)  
2 2

4 4 4 4
2 2 2

44 4 4 4

( ) ,

(1 ) .

dv d d d

A

ϕ λ λ ϕ λ λ ϕ ϕ
λ ϕ λ ϕ

∗

∗

 = − + −
 = − + +

 

 
However, it then follows, with no further assumptions, that: 
 
(62)  dσ*2 = dσ2 + 2 dλ dϕ + [λ2 dϕ2 – 2λ4ϕ4 dλ dϕ + 2 2

4dϕ λ ] + …; 

hence: 

(63)  
2

2 2 2 2 2 2
4 4 4

,

2 ,

de d d

de d d d d

δ λ ϕ
δ λ ϕ λ ϕ λ ϕ ϕ λ
 =
 = − +

 

 
which finally gives 44A∗ from: 

 

(64)   44 4 4

2 2 2
44 4

,

.

A

A

δ λ ϕ

δ λ ϕ

 − =


− = −
 

 
When everything is substituted in (55), one ultimately derives the result: 
 

(65)  Θ2 2
4f
− W = 

23 3
2 2

1 , 1
ij hk ij

ijhk i jij hk ije e e
ε ε ε λ∗

= =

∂ Ω ∂Ω+ − Θ Ω
∂ ∂ ∂∑ ∑ , 

 
in which the εij, ijε ∗ are defined by: 

 

(66)   

3

, 1

3
2 2 2 2

, 1

.

ij i j
i j

ij i j
i j

d dn d d

dn d d d

λ ε ξ ξ

λ λ ε ξ ξ

=

∗

=

 =


 + Θ =


∑

∑
 

 
 A comparison with the representation (29) of Γ gives: 
 
(67)  2 2

4f W− Θ = P(λ1, λ2, λ3, n1, n2, n3) + Θ2Q(λ1, λ2, λ3). 
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The quantity λ4 drops out of W – as would correspond to the arbitrariness of the time 
parameter – and therefore one may drop the fourth of equations (49), and use the 
discriminant of W with respect to λ1, λ2, λ3 in (50). 
 
 

§ 6.  The adiabatic waves 
 

 Each of the wave normals n1, n2, n3 are then associated with the three possible wave 
velocities through the third order equation in Θ2: 
 

(68)    
2 2

2

i j i j

P Q

λ λ λ λ
∂ ∂+ Θ

∂ ∂ ∂ ∂
= 0 

 
which then correspond to the three possible directions of the wave vectors λ1, λ2, λ 3 by 
way of: 

(69)   2

i i

P Q

λ λ
∂ ∂+ Θ
∂ ∂

= 0, i = 1, 2, 3. 

 
In particular, from (69), there exists the relation between ni, λi, Θ2: 
 
(70)   P(λ1, λ2, λ 3, n1, n2, n3) + Θ2Q(λ1, λ2, λ 3) = 0. 
 
Now, if the assumption that was stated in § 1 relative to the inertial resistance is made 
and the stability condition that was stated in § 3 is satisfied then one may assert the 
following about the roots Θ2 of (68): 
 Since the form Q in the pencil of linear forms P + Θ2Q is definite the three roots Θ2 
are certainly real and finite, and since one always has P < 0, Q > 0, because (70) is never 
negative, the value of Θ itself is always real. 
 Furthermore, from (39), for 0 ≤ s <1 one always has: 
 
(71)    s2P + Q ≥ 0. 
Hence, by means of (70): 
(72)    (1 – s2Θ2)Q ≥ 0, 
and thus, since Q > 0: 
 

(73)  1 – s2Θ2 ≥ 0 or Θ2 ≤ 
2

1

s
, i.e. Θ ≤ 1. 

 
Each wave normal is thus always associated with three possible wave velocities, which 
never exceed unity – i.e., the speed of light – and they correspond to the three possible 
directions of the wave vectors. 
 These three directions may be defined geometrically as the common triple of 
mutually conjugate intersectors of the two ellipsoids: 
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(74)    1 2 3( , , , , , ) 1,

( , , ) 1.

P x y z n n n

Q x y z

= −
 = +

 

 
If l1, l2, l3 denote the components of the wave vectors λ1, λ2, λ3 in these three directions 
and Θ1, Θ2, Θ3 those of the corresponding wave velocities then one has: 
 

(75)  

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

2 2 2
1 1 2 2 3 3

( , ) ,

( , ) ,

0.

i i

i i

i

P n m l m l m l

Q n m l m l m l

m

λ
λ

− = Θ + Θ + Θ
 = + +
 >

 

 
Therefore, if 0

1γ , 0
2γ , 0

3γ are the components of the rest acceleration relative to the velocity 

direction in the same way that the wave normal corresponds to the three directions of the 
wave vectors then Γ assumes the form: 
 
(76)  β3Γ = 2 2 0 2 2 2 0 2 2 2 0 2

1 1 1 2 2 2 3 3 3(1 )( ) (1 )( ) (1 )( )m s m s m sγ γ γ− Θ + − Θ + − Θ . 

 
 

§ 7.  Connections between the longitudinal and transversal waves with 
the longitudinal and transversal inertia 

 
 If the body has simply a transversal and longitudinal inertial coefficient µt and µl and 
µ0 is their common rest value that depends only upon the 0

ija  (i, j = 1, 2, 3) then one has: 

 
(77)  Γ = 2 2

l l t tµ γ µ γ+ = 6 0 2 4 0 2( ) ( )l l t tµ β γ µ β γ− −+ , 

and from this: 

(78)  
0 0 2 0 0 2

0
3 3 0 0 2 1 0 0 2

0

( ) ( ) ,

( )( ) ( )( ) .
l t

l l t t

Q

P

µ γ µ γ
β µ β µ γ µ β µ γ− −

 = Γ = +
 = Γ − Γ = − + −

 

 
Now, since P is a quadratic form in the0

1γ , 0
2γ , 0

3γ  as well as in the u, v, w, with 

coefficients that depend only upon the 0
ija (i, j = 1, 2, 3), due to the fact that: 

 
(79)  0

lsγ = 0 0 0
1 2 3u v wγ γ γ+ + , 0 2 0 2( ) ( )l tγ γ+ = 0 2 0 2 0 2

1 2 3( ) ( ) ( )γ γ γ+ + , 

one must have: 

(80)  
3 0 0 2

1 0 0 2

,

,
l

t

a s

b s

µ β µ µ
µ β µ µ

−

−

 − = −
 − = −

 or 
0 2 2

0 2

(1 ) ,

(1 ) ,
l

t

as

bs

µ µ β
µ µ β

= −
= −

 

 
where a, b, as well as as µ0, merely depend upon the 0ija (i, j = 1, 2, 3), from which, one 

has: 
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(81)  
( )

( )
0 2 0 2 0 2

0 0 2 0 2

( ) ( ) ,

( ) ( ) .

l t

l t

P s a b

Q

µ γ γ

µ γ γ

− = +


= +

 

 
Hence, if λl and λt are taken to be the longitudinal and transversal components of the 
wave vector λ1, λ2, λ3 – i.e., parallel and normal to the wave normal – then one has: 
 

(82)  
( )

( )
0 2 2 2

0 0 2 0 2

( , ) ,

( ) ( ) ( ) .

i i l t

i l t

P n s a b

Q

λ µ λ λ

λ µ γ γ

− = +


= +

 

 
Comparing this with (75) shows that the wave vector must be either parallel (longitudinal 
waves) or normal (transversal waves) to the wave normal, and that the propagation 
velocities of both types of waves are: 
 

(83)   Θl = a , Θt = b . 
 
Conversely, if one assumes the possibility of pure longitudinal and pure transversal 
waves of velocities Θl and Θt then any two mutually normal directions will be conjugate 
intersectors of the second ellipsoid (74), which is then a sphere: 
 

(84)   Q(λi) = ( )0 2 2 2
1 2 3µ λ λ λ+ + . 

 
The common triple of conjugate intersectors will be linked with the wave normal and any 
two directions that are normal to it and each other; i.e., from (75): 
 

(85)   − P(λi, ni) = ( )0 2 2 2 2
l l t tµ λ λΘ + Θ . 

Hence: 

(86)  β3Γ = ( ) ( )0 2 2 0 2 0 2 2 0 21 ( ) 1 ( )l l t ts sµ γ µ γ− Θ + − Θ , 

 

(87)  Γ = ( ) ( )0 3 2 2 0 2 0 2 2 0 21 ( ) 1 ( )l l t ts sµ β γ µ β γ− Θ + − Θ , 

 
and the body therefore possesses only a longitudinal and a transversal inertial coefficient: 
 

(88)  µl = ( )0 2 21 lsµ − Θ β3,  µt = ( )0 2 21 tsµ − Θ β. 

 
 Transversal and longitudinal waves, on the one hand, and transversal and longitudinal 
inertia, on the other, thus cause each other, and the inertial coefficients are always 
coupled with the wave velocities by (88). 
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§ 8.  Adiabatic gas waves 
 

 That a fluid possesses merely a longitudinal and a transversal inertial coefficient was 
established already in I, § 10, and we found that: 
 

(89)   
2 3( ) ,

( ) .
l

t

sµ β
µ β

∆ ∆∆

∆

 = ∆Ω − Ω + Ω
 = ∆Ω − Ω

 

 
Also, there are thus merely longitudinal and transversal waves in them with the 
velocities: 

(90)   Θl =
2

∆∆

∆

∆ Ω
Ω − ∆Ω

 Θl = 0; 

 
i.e., only longitudinal waves are possible. 
 By the introduction of pressure and rest energy: 
 

(91)   p = Ω∆ , E0 = − 
Ω
∆

 

one simply has: 

(90′)    Θl = 0

dp

dE
. 

 
 

§ 9.  Adiabatic, elastic waves with vanishing rest deformations 
 

 In the case of elastic, isotropic bodies (cf., I § 12) with: 
 
(92)   Ω = − M − 21

12 AJ + 2B J2 

 
the form Γ may be computed merely for vanishing rest deformations; i.e., eij = 0.  In its 
representation (29), one must set: 
 

(93)   Ω = − M, 
3

, 1
ij

i j ije
ε ∗

=

∂Ω
∂∑ = 0, 

 
whereas, since 21J , J2 are quadratic forms in the eij, one has: 

 

(94)   
23

1
ij hk

ijhk ij hke e
ε ε

=

∂ Ω
∂ ∂∑ = - 2

1 24AJ BJ+ , 

 
if 1J , 2J  mean the expressions I (123) for J1, J2 defined with εij instead of eij .  The values 

(33) for the εij make them equal to: 
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(95) 
1 1 1 2 2 3 3

2 2 2
2 2 3 3 2 3 1 1 3 1 2 2 1

2 2 2 2 2 2 2
1 2 3 1 2 3 1

,

4 ( ) ( ) ( ) ,

( )( ) .

J

J

J

π χ π χ π χ
π χ π χ π χ π χ π χ π χ
π π π χ χ χ

 = + +
− = − + − + −
 = + + + + −

 

 
However, since for eij = 0, one has: 
 

(dx0)2 + (dy0)2 + (dz0)2 = dξ2 + dη2 + dζ2, 
 
hence, the0

ija  (i, j = 1, 2, 3) are then the coefficients of an orthogonal transformation, the 

substitution of the values (33) for πi, χi further yields: 
 

(95′)  
0 0 0 0

1 1 2 3
2 0 2 2 0 2 2 0 2

2

,

4 ( ) ( ) ( ) .
l

l t

J u v w s

J s s s

γ γ γ γ
γ γ γ

 = + + =
− = − =

 

 
Thus, one finally has: 
 
(96)   β3Γ = M(γ0)2 − 2 0 2 2 0 2( ) ( )l tAs Bsγ γ− , 

 
(97)   Γ = (M − As2)β3 2

lγ − (M – Bs2)β 2
tγ . 

 
The body thus possesses just a transversal inertial coefficient and a longitudinal one: 
 
(98)  µl = (M − As2)β3, µt = (M − Bs2)β, 0

tµ = 0
lµ = M, 

 
and purely longitudinal and purely transversal waves propagate in it with the velocities: 
 

(99)    Θl =
A

M
 , Θt =

B

M
. 

 
 The elasticity coefficients A, B are linked by the condition: 
 
(100)    0 ≤ A ≤ M, 0 ≤ B ≤ M. 
 
 Leipzig, July 1911. 
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