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The following attempt to modify the classical mechawitdeformable bodies in the
sense of relativity theory is the extension of-aat the time occasional activity that
grew out of the definition of the equations of motion dorelativistic rigid body — itself
far from completely achieved, by the way — whose deve@p and publication | was
first led to in this spring from considering the circuamstes that emerge in the theory of
relativistic rigid bodies through the fact that M. Lauresented some equations of motion
in a general form from a different viewpoit Moreover, this comparison also leads to
the extension of the model to non-adiabatic motionhghat | am obliged to extend my
heartfelt thanks to M. Laue in both of these direwidor his providing me with the
means to do this at the time.

The assumption that comes out of the aforementioaadiderations is, in following
the direction that M. Planck took in his own wdjkon the principle of least action, that
there exists a kinetic potential for the motion of lesdiwhich is, first of all, invariant
under Lorentz transformations (in homogeneous form),seeond, reduces in the rest
case to a given function of the deformations and entod@yunit volume element, from
which its general expression is determined immediately (818)particular, one finds
that the rest deformations (88 1, 2) are definitive ia dase of motion, i.e., any
deformations that return the volume element to itsnabiform by reversing the Lorentz
contraction that corresponds to its velocily.

The equations of motion flow directly from the fikgtriation of this kinetic potential,
first in the Lagrangian form (8 6), and then in the Hateform (8 7). In the latter form,
they are formally identical with the system that Wbraham has presented in his
investigations) into the electrodynamics of moving bodies, from whiomparison, the
meaning of the 16-component matrix that he derived can décdd. The ten relations
(8 7) that the symmetry properties of that matrix, dr@dombining of impulse, energy,
and stress with each other bring to the expressionepmbe the complete system of
partial differential equations (8 3) that the kinetic patdmhust satisfy as a result of the
form that it takes on from both of the aforementioassumptions.

! Which meanwhile appeared in the paper “Das Relatipititzp,” Braunschweig 1911, and in the Ann.
d. Phys. 35, pp. 524, 1911.

2 M. Planck, Berl. Ber. 1907, pp. 642, Ann. d. Phys. 26, pp. 1,.1908

% This remark has already been made by M. Born, Ann. d. BAygp. 1, 1909.

* M. Abraham, Rendiconti del circolo mat. Di Palermo @8, 1, 1909.



The 10-term group of “motions” in the corresponding spacg,of, z, } imply ten
general integrals (8 9) for the motion of the total hoalyd actually correspond to the
four translations, the three impulse theorems ancetisegy theorem; the six rotations,
however, correspond, in one case, to the three sufieoeems, and in another, to three
more that are — as a result of the equal status of, thez, - completely analogous to the
equations that one derives in classical mechanics byiotegrating the center of gravity
theorems in a parallel manner. For force-free ad@lpabtion, in particular, it follows
from them that the center of energy — which appeass &ethe center of mass or gravity
— moves in a uniform rectilinear fashion and that itee®y gives the total impulse when
multiplied by the total energy.

If the rest potential depends only upon entropy and voliwer dne obtains the case
of an ideal fluid with everywhere equal pressure (8 109, e Weber form of the
hydrodynamic equations vyields the Helmholtz theorem orntex motion for the
hydrodynamics of relativity theory (8 11).

If one starts with the considerations of part oneceamng the kinetic potential then
those of the second part — on the inertial resistanden@ve mechanics — depend upon
the second variation itself. For the unit volume @atmthe components of the inertial
resistance are connected with the components of ttelemation that it arouses by a
linear transformation with a symmetric determinant seéhcsix coefficients can be
identified with the coefficients of inertia or mass diees at the location of the body in
guestion. If one would now wish to not find any directibat leads to circumstances
that are completely contrary to the usual situatjathen the postulate of positive mass in
classical mechanics will be analogous to the requiremanthl quadratic formi that is
constructed from six coefficients of inertia — whiclsisiply the second variation of the
kinetic potential with respect to velocity — shall besigee definite, or that, intuitively,
the inertial resistance shall always subtend an olatugke with the acceleration (8 1).

The laws of wave mechanics are produced (8 4) by meaasottier quadratic form
W — which is simply the complete second variation ofKkimetic potential — and it then
emerges that the two formd{SandW are mutually derivable from each other on the basis
of their representations (88 2, 3, and 5). From this geoeralection, it follows that the
requirement that is placed on inertial resistancehef itmpossibility of waves with
velocity greater than light is implied; however, dndris actually necessary (§ 6).

If the six inertial coefficients reduce to only two —eotongitudinal and one
transversal — then only longitudinal and transversalewavith propagation velocities
that are equal in all directions are possible, and esele (8 7). Thus, both inertial
coefficients and both wave velocities are derivaldenfeach other.

These special circumstances are realized for thd ftled (8 8) — for which,
however, the velocity of the transversal waves walInull — and for the isotropic elastic
bodies (8 9) with vanishing rest deformations. For ttterlathe requirements that were
placed on the inertial coefficients above come absuat @sult of the limits that are given
by the rest mass density for the elastic coefficients.

! say, e.g., the hyperbolic character of the equationsotibn is not guaranteed in all cases (cf., remark
1, pp. 26).



PART ONE
The kinetic potential and the equations of motion.
§ 1. The rest deformations.

One thinks of a deformable body as itself being in a&siamotion. Each particle,

which takes on the coordinatéss, ¢ in the normal state of the body, is found at tiraé
the locatior, y, zin space:

x=X&,n,4,t)
1) y=Y(,n,{.1)
z=24¢,n,4,1).

In order make the formulas homogeneous, one may sametoduce a sort of time
position:
or

2) r=1(4, 1 1), E>O

for the body, and then set:

3) {XFX, %=y, %=2Z %=1
&=¢, &=n, &=4, é,=T,

in which (1) may be written in the equivalent form:

4) X =X(é1, &2, &3, &), 1=1,2,3,4.

If one denotes the partial differential quotients;afith respect by a;:

0X .
5 i = —, i,]=1, 2, 3, 4,
(5) ajj afj J
such that:
4
(6) dx = zau dé; ,
i=1

then one has, if one understaisds, v, w to mean the components of the velocity of the
particle:

(7) &:u, %zv, ﬁzw, a44:a—tr>0,

and under the ongoing assumption of always having sublurefadity (c = 1):
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(8) s=JUu*+Vi+wW <1

Those Lorentz transformations that take the velamiitthe particle to null — viz., the
“rest transformations” — take y, z, t over to:

x? = x+au(ux+ vy wr- [ ut

©) yo = y+avux+ vy wi— 8 vt
2= z+awux vy wp—5 W
t°= - Blux+vy+ wi+pSt
1 1
10 = , = ,
(10) “ J1-82 (1+4/1- &) b 1-¢°

and the transformation that is inverse to it wdldibtained simply by exchanging they,
z, twith X’ y°, 2, t° with a simultaneous change of sign in thev, w.

If one goes from thdX to the dx’by way of the rest transformation:

4
(11) dy=>a’dé , i=1,2 3,4,
j=1

then one has:
a, =a +au(ug + vg + wg)- S ug

a =a, +avug + vg + wg)- S va
(12) o
3; =3 taw(ug + vg + wg)- B wg
ay = — Pug +va +wg)+p g
and, in particular:
(13) af4:a(2)4:ag4201 a24: ":]-44‘11_Sz :\]_A44>0-
Moreover, let:
(14) @X)% + @Y)* + (d2)? =d& + dr + d&* + 20€,
(15) d€=¢g &+ ¢, g°+ ¢ d°+2 gl @+2 g a2 ,pldy,

hence:
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125, =(d) + () ()
120, = () + () +( )

(16) 1+ 28, = () +( ) +( &)

%3:%2:%({:?2@3 %2%3 %2%
€= 653 (&t Adhit o)
elZ = %l:%( 6@1@2-*_ %13224_ %1832’

then theg; — viz., the “rest deformations — produce those transfoormsthat convert the
“rest form” of a volume element into its normalaror its actual deformation relative to
the Lorentz contraction that corresponds to its usjoc

For a volume element at rest, #ecoincide with the actual deformations as they are
usually defined.

Since the determinant of the rest transformation is the determinants of tlag and

the &’ are equal to each other:

_ 0% y.2Y

16
(16) a(¢.n,¢,1)

=lay|=[a], i.j=1234

Due to (13), however, one hﬁ‘:Aai, where:
(17) =g, i,j=1,23
denotes the ratio of the rest volume to the norrakime, such that:

(18) D=AJ-A,.

The ratio of the actual volume to the normal volusjdowever, given b / as4 .
One may further remark that the relation (14) gitlee representation:

1+2e,, 2e,, 2¢
(17) N=| 2, 1t+2e,, 2e,].

2e,, 28, l+2¢
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8 2. Second representation of rest deformations.

The quadratic differential form:

4

(19) ds =dX +dy* +dZ —df = Y A dEdé

(20) {

ij=1

A=aa+a3+a3g-aq JFL234
A&m:_a:zm(l_ 52)<0’

and the linear differential form:

4
(21) dv:a14dx+a24dy+a34dz—a44dt: ZAMde ,

i=1

due to its invariance under Lorentz transformations, witid the introduction ofdx’in
place of thedx , goes to:

(19)
(21)
such that:

(22)

dg = (@)% + [dy)? +(dF)? - (dt)?,

dv=- a,dt’,

ds* = —A% dv2 = (0)? + [dy’)? +(d2)>.

New expressions for the rest deformations theonolly means of (14):

(16') 1+ 2322 = Azz__

§ 3.

— A124 — a — AuAu
1+28,= A, - ' 3= &3 3 :
= A A w8 A Pus j
A224 — a1 _AA,
A, v 8T G575 Ay A, j ,
1+ 28, = A~ o v &= %1:% A~ AMAMJ :

A Pus

The complete system of ten partial differential equations
for an arbitrary function of the rest deformations

What are the necessary and sufficient condition &ofunction Q(a;) of the 16

quantitiesa; to be expressed in terms of the 6 rest deformatgnalone?

If one

considers, for the moment, a fourfold extended f#&hiR,(X1, Xo, X3, X4) with the

metric:
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(23) dS = dX2 +dX2+ dX2 - dX¥,
and at these five poinio, M, M, M3, M4 with the coordinates:

(24) M, (X,=0, X,=0, X;=0, X,=0),

Mo (X, =g, X,=a&, X=3a, X=3§) FL234
then the expressions (20) for tAg show that they, and therefore al3p merely depend
upon the relative positions of these five points to edbbro ThereforeQ is invariant

under the “rotations” dflp and thus admits the six infinitesimal transformations

of of of of of of

Lo o Cax T Naxe Max Cax

(25) 3 2 1 3 2 ><1
VLAV SV VT SN S .0

X,  “oX, X, toX, X, ‘X

From this fact, when one sets:

(26) Qij:a—Q, i,j:]., 2, 3, 4,
03,
4

(27) Q=Y a,Q . i,j=1,2, 3,4,
h=1

the six partial differential equations fOrensue:

(28) §_223 §_232’ §_23l:§_213 g_z 12:§_2 21
3,+0,=0, 0,+0 G.+0

Furthermore, one must consider the fact thatgjheand therefore alsQ, are entirely
independent of the choice of the time parameter. Howéwene introduces”’ in place
of r.

(29)

r=1r'+A(n,{,1),
dr=dr'+Adé+A,d7+ A, +A,d,

then thes; go over to the transformation:
(30) a;] = aij +/]j A, i,j =1, 2, 3,4,

which must therefore lea@ invariant.
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From this fact, when thel; are chosen to be infinitely small the four partial
differential equations foR2 then follow:

4 4 4 4

(31) 2814Qi1201 2814Qi2201 2814Qi3201 2814Qi4201
i=L i=L i=L i=L

or, by means of (27):

(31) Zamﬁil:O’ Zainz:Q Zaing:Q ZamQM:O-

Conversely, however, due to the group property of thesfivamations (28) and (31)
define a complete system of partial differential equestiovith the six independent
solutionse; such that we have the necessary and sufficient tomslifor this before us,
namely:

(32) Q(ay) = Q(ey).
84. A general transformation formula

If the four functiondi(xq, X, X3, Xa) (i = 1, 2, 3, 4) are related to the four functions
&(&, & & &) (=1, 2, 3, 4) by way of:

4
(33) Dfi=>a,¢, , i=1,2,3,4
j=1
then one has the identity:
4 of 4 a¢
(34) DY =% 1,
;axi ;afj

To prove this, one regards the equations (4) as the trerafon of the point{) in a
EuclidianRy into the point X).

Thus, if a surface elemedtvwith the projectionsley onto the four coordinate planes
and a line elementlo that goes through it, with the projectiodg; onto the four
coordinate axes, goes to a surface elerdentith the projectionslag and a line element
dsthrough it that has the projectiods then one has:

4 4
(36) > dadx= D> dwd¢
i=1 =1

if the sum represents the fourfold volume of the indilyitsmall cone witldo (da resp.)
as its base surface and the endpoirdsqtio, resp.) as its vertex.

Since, from (6), one now has that eé; transform into thelx in precisely the same
way that, from (33), the, transform into thé; , one must therefore also have that:
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(37) 24: f.dq :i¢idwl :

If one integrates here over a closed surface and likewisverts the hypersurface
integral into a volume integral that is taken overititerior of the surface then it follows
that:

4 of 4 00.
(38) | Zg—id&dg d dy= [ Za%dgidfzd@d@

and from this, by contracting the surface to a pointabitains the relation (34) that was
to be proved.
As a special consequence of (34), for:

¢1:O' ¢2:O’ ¢3:01 ¢4:Df,
fi=a,f, f,=a,f, fy=a,f f,=a,f

(39) {

one must point out, in particular, the relation:

(40) 10(Df)_0(auf), 0(auf) , 9@uf)  o(auf)
D or 0x oy 0z ot

From it, the differentiation symbols:

df _of A of of of

(42) o =9+ oWf) , o(v) | a(wf)

ot ox oy 0z

admit the perfectly intuitive representation:

(1) df _ 1of
dt a,o0r
42) th:ii bt :
Dor\ a,

8 5. Thekinetic potential

In order to go to the dynamics of bodies, we siatetting:

4) e=8é,n 41
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denote the entropy per unit normal volume and remarkthiigis invariant') under all
Lorentz transformations and, in particular, all of tbst transformations.
Moreover, it will be assumed that there exists atlarotential of the form:

(43) | ®dédndddr
for the body. First, this potential shall, for theeaf rest, assume the form:
(43) [ Q(ej, &) d&dnp d dt

of an ordinary kinetic potential that depends upon therd&ftion quantitiess; and
entropys; i.e., one must have:

(44) ® =Q(ej, &) aus
for the case of rest.

Second, this potential shall be invariant under the Lorgatrsformations; i.e.p
shall exhibit the same invariance.

From this assumption, it follows that the general egpion of® will be obtained
when one subjects (44) to the inverse of the rest tremation. However, this happens
simply when one understands #eto mean the rest deformations (16) and replages

with its rest valuay, using (13). Thus, one will generally have:

(45) ®(ay, &) =Q(ey, & ay,= Qe H-A, .
The temperatur@is, from its connection to the kinetic potentiallne rest case:

e

(46) 0= g,

and since the rest transformation for it re3ds

a'44

(47) & =p0=—">2-9,
\/_A&m
it will generally be given by:
0P
(48) al =—.
e

The heat produced per unit time and normal volume isréesented by:

(49) de_ 1 p06__ 1090
dt a, or &, deodr

1) M. Planck, Berl. Ber. 1907, pp. 542.
2) M. Planck, loc. cit.
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For the differential quotients 6 with respect ta; :

(26) 0;=22  ij=12334
03,
(for the quantities:

_ 4
(27) Q=Y a,Q . i,j=1,2,3,4
h=1

that are derived from the, resp.), precisely the sameetations (28) and (3)lthat were
derived in 8§ 3 are true. The differential quotientsddgb;, & with respect tog; are
expressed in terms of theQg :

(50) d; = 9® , i,j=1,2,3,4
aaﬁ
in the form:
1 Q 0A .
51 d; = J-A,Q ———- 14 i,j=1, 2,3, 4.
( ) J A44 ij 2A44 aq] J

§ 6. The Lagrangian equations of motion
For the motion of the body, one shall now have:
(52) 0=0/ddéfdndddr +] EXK+HI +Za+TA&+Ed) dfdndfdr.

The integration with respect t§ 77, { shall be carried out over the entire finitely
extended body, while the integration overshall, however, extend fromm to 7 .
Geometrically speaking, if:

(53) P& =0

represents the bounding surface of the body themtegral in §, 7, {, 1)-space shall be

taken over the volume that lies between the twogda = r; and 7 = > in the cylinder

(53). Theox, oy, & 4, oc shall mean any variations of the five functiony, z, t, £ of

the independent variablds 7, {, 7, of which onlyd, dy, o, & vanish forr=r, andr =

> — i.e., the two base surfaces for the cylinder Jemtie o shall be chosen arbitrarily.
The quantities:

11,1,

Ay Ay Ay

represent the external forces that act on a umihabvolume, whereas the meaningTof
andE in the further course of motion can be derivedf(®2).

From this, and the rules of the variational calsult next follows that for each point
of the body one has the Lagrangian equations oibmot
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(54) Z=

T— 42+

0¢ on 14 or '
g=-9¢

o€

These five equations are, however, independemiach other corresponding to the
arbitrariness of the time parameter Namely, if one sets in (52):

0
(55) & = 2 ds-a—%

wherew= (¢, 1, {, 1) vanishes forr =r; and 7 =1, but is otherwise arbitrary, then one
has:

Oy, _ Oa, .
56 4_ 4 I ’ Il :11 21 31 41
(56) o8jj = 0f) GT 65 314 J
0P & 0D dw
(57) o = —55 = —wt+ty ———a
,2%6@1 o or  470a, 0¢, A

Here, the second term represents the variatich ohder the transformation (30) for the
differential valuesi; = dw/0x; . From (45), this transformation generally tales:

(58) B(a), €)= (1 +1a) D(ay, o),

such that any variation equalgP = 0w/dx;, and therefore:

(57) _ 00w
or

Now, sincew shall vanish forr = i, and 7 = 1> the first term in (52) drops out, and
what results is the desired relation:
(59) a=+auH +334Z+a44T+?E:0.
r

Since, from (48):
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(60) E=-2%=a,9
o€
then:
o o€
(61) —T—u:+vH+WZ+Ha—,
T

and therefore F/as4 represents the sum of the work done and the heat produceditpe
time and normal volume.

The rules of variational calculus next yield the bidany terms in the right-hand side
of (52):

(62) J

4
i,j=1

®,0xdw ,

in which the integral is taken over the entire boundaryaear of the domain of
integration in € 7, {, 1)-space, and theqy denotes the projections of an elemeatof
this surface. Now, at the two base surfaces of thedeys one hagx; = 0, whereas for
the element of the sleeve one has:

(63) dar i dar :day :daw=¢1: @2 @3 ¢,
in which we have set:
(64) dg=¢1dé+ @ dn +@sd{+ @adr, ¢4=0.

Annulling the boundary terms then delivers the boundaryigons that are valid on
the bounding surface of the body:

(65) ¢1q3i1 + ¢2CDi2 + ¢3 d3=0, i=1,2,3,4.

Now, since for the special variation (55) the boundarsns drop out, one must have:

(66) > a,4,0, =0,

ij=1

along the sleeve of the cylinder, and therefore siagg 0 the fourth of equations (65) is
a consequence of the remaining ones, and can therefamitied.

8§ 7. TheEulerian equations of motion and the
relations between impulse, energy, and stress

From the theorem of § 4, in order to obtain the Eutef@am of the equations of
motion, one need only introduce the differential quosievith respect ta, y, z t in place
of ones with respect t§ 77, {, T .

When one sets:
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(67) DX =Z, DY =H, DZ =2, Dt=T,
4
(68) DFj=>a,®,, i,j=1234,
h=1
(69) F=- Q__ E
A D

one immediately obtains the Eulerian equations ofonot

w < OFy , OFy, , OF, |, OF,,

ox o9y 0z Ot

y OFy  OF,  OF,  OF,,

ox o9y 0z Ot

(70) , _OF,  OF,  OF, OF,

ox 9y o0z Ot
L _OF,  OF, OF, OF,
ox o9y 0z Ot

=NAJ1-¢° Z—F
£

Here, X, Y, Z are the external forces that act on the unit tfac/olume, and since, from
(61):
(71) - T=uX+vY+wZ+Q,

6 de_ OF de

O et e dt’

then —T represents the work done and heat produced peofumnme and actual volume.
From (27) and (51), one further obtains for e

(72)

(73) AFj; = Q, +53%aj4, i,j=1,2, 3,4,
2 A44 aa4

and the relations (28) and (3between thd_)ij yield the 10 relations for tHg; :

(74) F23 = I:32’ F3l: F13 F12: F 21
I:14 + I:4l: O’ I:24+ F42: O’ F 34+ F 43: 0

4
(75) > a,F+a,F=0, j=1,234

1
i=1
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From the fornt) of equations (70), one deduces thathdi, j = 1, 2, 3) represent
the stresses, and that the impus€)), 3 and energ¥ per unit of actual volume, which

are computed by means of:
(76) X =Fua, ) = Fa4, 3 =Fay, ¢ =-Fu4,

are given in such a way that one has, in particutar gnergy equation before one in the
fourth of these equations:

(70) 0¢, 0%, 0%, ﬁ—UX+VY+WZ+Q
ot ox dy o0z

Impulse, energy, and stress are, from (75), coupledeaith other by the relations:

X =UF + URy + VF + W,
2 =VF +uF, + vE,+ Wk,
3= WF +UF + VR + W
€= F+uX+v)+Ww3.

(77)

When computed per unit time and normal volume, impulse aeid)g

(78) ¥=Lx, 9=Lg 3=L3 &

D¢
a'44 a'44 a44 a44

(78) i=1 i=1 i=1

and especially, in the event that one chobses:

(78") iiCDM:cDu’ @IQDM:CDV, 3:cD34:ch’
E=-0, =ud, +vd, +wb, —b.

In order to also ultimately express the boundargd@@mns (65) for theF;, one first
writes them symmetrically:

(65) P1Pi1 + GoDip + Pxdiz + PP, =0, =1, 2,3,

1) M. Abraham, Rendiconti del. circ. mat. d. Paler2Bppp. 1, 1909.



Mechanics of deformable bodies 16
and then solves it fog y, z t :

(79) {d o(&n,{)=1(xy,21),

f = fdx+ f,dy+ fdz f di

If one then remarks that the transformation thatdake @,, @3, @4 to fy, Ty, f3, f4 —
omitting the factoD — is precisely contragredient to the one that takes®i,, i3, Pix
into Fj1, Fi2, Fis, Fis then this illuminates the fact that the boundary damk, when
expressed in terms &f;, read:

(80) fiFip +foFio +f3Fis+ f4F4 = O, i=1,2, 3.

Now, if ny , ny , ng are the direction cosines of the normal to the dmghsurface of the
body and ifs, are the components of the velocity of a particle @ shme frame as this
normal then one has:

(81) f1:f2:f3:f4:n1:n2:n3:—s1.

Thus, in place of (80) one can also write:
(80) mFip + pF; + sFiz=s,Fig, 1= 1, 2, 3.

Under any Lorentz transformation thgtransform the in exactly the same way that
the producu; x transforms the; into theu; that are contragredient to them.

The “rest valuesF,’ of theF; are obtained from the previous valuesdarv =w =0,
in whicha; =g (i,j =1, 2, 3):

3 0Q . .

AF-OZ ao —~ A |1 :112131
P o "

(82) |:|2 = F4|O = Ol I = 1! 2131

Q
Fa=y =-F=-¢

The Fj may be derived from them by the transformation thainverse to the rest
transformation.
8 8. A third form for the equations of motion and therelative stresses

If one introduces the differential symbbk (cf., 8 4) in place of the differential
guotientsd/ot then one obtains the third form of the equations ofonot
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X - Dt%+a§1+a§2+a%3,
ox o0y 0z
v=Dy+5:,08:, 05,
(83) ox o0y 0z
Z: Dt3+a%1+a%2+a %3,
ox o0y 0z
1= pe+ 208 0D -w) 93— we)
X oy 0z

in which the “relative™) stresse§; (i, ] = 1, 2, 3) that enter here:

811 = Fll_ X, %2: Ez_ %, 53: Es_ w,
(84) 821 = le_ W), %2: I:22_ v, %3: Es_ ),
Ssl = F31_ u3, %2: F32_ %, %3: Es_ B,

are coupled with the impulse and energy by:

X =u¢+u§; + v§,+ w§

(85) P=VE+UF, + VS, + WS
I=WEHUG + v+ W

The boundary conditions (§Qwill be expressed in terms of tBg by way of:

(86) SSSUMm+Vmp+wng,
and read:
(87) NS1+mS+nS3=0, 1=1,2,3

and thus demand the vanishing of the relative stresseadbrbounding surface element.

89. Theten general integrals of the equations of motion
The ten-term group of “motions” ix,(y, z, t)-space with the corresponding metric:
(88) ds’ = dx¥ +dy? +dZ —df,

makes the 10 principles of the center of mass point, @sfaand energy valid for the
entire body, which are analogous to the theorems ofangimechanics.

Namely, if the components of an infinitely small motwere taken foex, oy, oz, &
in the relation (52), and thus one were to chasse 0, then one would hawb = 0 for

1) M. Abraham, loc. cit.
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these variations, and therefore the first term on rigbt-hand side would vanish.
However, since these variations do not satisfy thaliton of vanishing forr= r; and
T= D, the left-hand side of any relation will not, on thbey hand, be null, but will be
replaced by the boundary term (62):

(89) id)ijcfxdwj=I(Ec5<+Hc§/+Zcfz+Td)dEd/7dZdr.

i,j=1

As a result of the boundary condition (65), the parthef bounding surface integral on
the left that comes from the sleeve of the cylindieps out, while for the base surfaces
=1 and7r= r; of the cylinder one hastacy =dw =das = 0,dw = dé drp dJ, such that:

[ E&+H & +Z @+ T &) dEdpdrdr.

£}

(89) [>.0xdedra

If one now letsr; = 1 = rand chooses= rthen it follows that:
(90) %j(%5x+@5y+352—€51) dnzf XX+Yoy+Z&e+TX)dy,

wheredv = dx dy dzdenotes the volume element of the body, and the aitéegtaken
over the entire space swept out by the body up tottime

From this, for each relation that is true for an inéilyitsmall motiondx, dy, dz, &
there ensue 10 independent infinitesimal motions that syoorel to the aforementioned
theorem, and indeed the infinitesimal translations:

of of of of

(9 1) ! S A AL
0x oy 0z ot

correspond to the impulse and energy theorem:

d d

—|(Xdv=| Xdy — |9 dw| Ydy
L [aleer el
%dev:jZdv —dﬂtjez dv=[ T dy

the infinitesimal rotations:

of of of  of of of
(93) Yy——X—, Z——X—, X—-Yy—,
ox oy ox 0z dy ~ox

correspond to the surface theorem:
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S 3-ydv=[(yz 2y o

d
(94) m j (X - X3) dv= j (zX- XX dv

9 - yaydv= [(xv- ¥ dy
dt

and the infinitesimal rotations:

(95) tﬂ+xﬂ, tﬁ+ ﬂ tﬂ+zﬂ,
ox ot dy ~ ot 0z Ot

correspond to the theorems:
Ej(tae—xez)dv:j(tm xT) dy
dt

d
(96) ) (0= y&)dv= [ (tv+ yT) dy

d
aj(tz,—zqz) dv:j(tz+ zT) dv

19

If one were to subtract the corresponding equations (@&fjplied byt, from equations

(96) then they would take on the form:
I%dv=i'[x£ dv+'[ XT dy
dt

(96) j@dv:%jﬁdwj yT dy

jz,dv:%jza dv+J' zT dv

from which a certain parallel with the once-integratedter-of-mass theorem of ordinary

mechanics emerges.

In particular, if the body moves adiabatically imetabsence of forces then the
impulse, impulse moment, and energy are constant, andowver, the energy midpoint
moves in a uniform, rectilinear manner, and its veloaitigen multiplied by the energy,

yields the impulse.

§ 10. The hydrodynamic equations

In order to obtain the basic equations of hydrodynamoies,must lefd depend only

upon rest volume and entropy:
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(97) Q=Q(, ¢ = Q(L,EJ.
V_A&m
This Ansatz yields, when one sets:
0Q
98 =27
(98) P=ox
by a brief intermediate computation:
= 1 0A, -
(99) Q, = pA[é'i. - 4 j i,j=1,2,3,4,
' ' T2n, 08,
g =0 fori#j, a=1,
and from this it then follows that:
(100) = pd - T Mg, ij=1,2 3, 4,
44 aa

_F+p_0Q,-Q__AF,
T 1-8 A(L-§)  1-9°

(101)

From this, the impulse and energy per unit actoalme are:
(102) X =muy ) =my, 3=mw E=m-p

and the relative stresses take on the simple values

(103)

{Sﬂ: S
ST T HT BT »° F 0

From this, however, the third form of the equatiofsnotion (81) goes over to the basic
hydrodynamic equations:

op
D (mu)+—= X
. (Mu) ™
D,(my+ L=,
(104) dy
D(mv@+@:
ap
-D,(m)+—=
. (m) 3t

The impulse and energy, when computed per unit abvolume, are:
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(105) X=puu, D= v, 3=uw, E=u-pAV1-¢ |
(106) m= mAVi- € = AAQs Q).

If one chooses= r and considers that one has:

D
107 D=Q| ——— ¢ V1-¢,
(107) ( o sj S

sinceD = | g | (,] =1, 2, 3) involves the, v, w merely in the forns = \u®+ v’ + W,
then (78") then teaches us that:

(108) yzécb E=sPs—D.

In particular, the expression (105) for the impslséiows us that the fluid takes on a
longitudinal and a transversal inertia, which Wil given per unit normal volume by:

1
(109) Hm=H :g(bs, U =Dss,
where one computes:
®, =sp(AQ, - Q),
(110) ot ) s
cDss - ﬁ (AQA _Q) +s ﬁ AZQAA

Since the independent variables &res, £ here, one thus has precisely specified the
adiabatic-isochoric values of the coefficientsradrtia.

811. TheWeber form of the hydrodynamical equations
and the Helmholtz theorem on vortex motion

From equations (10), it follows in an obvious wht:

a1 {D[dxmmw dy( my+ dzp mw dtD )

=-Ddp+Zdx+HdyZ dz# Tdt

If one now sets:

(112) m="P - A
a'44 a'44

and employs the representation (42)@ethen the left-hand side of (111) goes over to:
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<3Ma14dX+aMa24 C}|y+6Ma34 dz_aMa14 at
dr dr dar ar

_0 _1
(113) = (Mdv)-3 M dA,

0
=——(Mdy-M dA, =y~ A, d MJ- A).
However, since one further has:

(114) MJ=A, = i1-5° =AQs -0,

(111) is finally written, after a brief reduction:

4 _
(115) 5, (Mdv)=d(M A+ dT,

dn ==dx+Hdy+Z dzT d¢E @

Therefore, if this is expressatterms ofdé, ds, d, dr
(116) din=Adé+Bdn+T d¢

then a comparison of the coefficients df, dn, d{ in (115) produces ordinary
hydrodynamic equations that are analogous to thbke Weber:

MA, _IMA,, ,
or oé ’

(117) oM A, _ oM A“4+B,
or on

MA, _OMA,
or od

r.

On the other hand, if one sets= 0 in (115) and choosés rthen it follows that:
(118) %(B_de+@dy+3 di=du (- 1) +=dx+Hdy+Z dz+ 8de

Therefore, in the case df = 0:
(119 Zdx+Hdy+Zdz+ 8de=dafx, y, z 1),

for each closed integration path that is redudibleull, one has:
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d . — _ —
(120) " [(@dx+Pdy+3d3=0,

or: a line integral of the impulse that is taken ovetosed curve that always represents
the same particle has a constant value in time duringtit®n of the fluid.

However, from this the Helmholtz vortex theorem iethately comes into play,
where the vorticial velocitp, g, r is defined by the curl of the impulse here:

_03 8 _0X 03 20D _ox

ox ay

9y o0z 0z X

(121) p

8 12. Thekinetic potential of isotropic elastic bodiesfor small rest deformations

If one is dealing with an elastic body that is isotrapithe normal state then, other
than entropyQ2 can depend upon only three principal dilatations thatttakeest form of
a volume element to its normal form. However, itiplace one can introduce the three
invariantsJi, J,, Js of the rest deformation that are symmetrically tatded from them,
and are determined from the identityAin

e;tAd e, &s
(122) e, €,*A, &, |=A+INl+T1+];,

€ € Gyt A
by way of:
'Jl:ell+ %2+ %3
‘]2:(92363)3_ és)'*'( &; &~ ?§)+( & & 2%
J,=€,6,68+26,8,6 8¢ g8 £/
:‘qi"

(123)

and is connected with by:
(124) N =1+2;+4),+8ks

In particular, if the rest deformatioms are sufficiently small and the stresses vanish in
the normal state then one can assumeQhata quadratic function of the; hence, it has
the form:

(125) Q=-M-1AJ?+2BJ,

whereA, B, M can still depend upoa



PART TWO

I nertial r esstance and wave mechanics

81. Thesixinertial coefficients and the postulate of the
positive-definite character of theform .

If one chooses the special caset in the sequel then one has:
1) D =d(a;, U, Vv, W, £ i,j=1,2,3

and the impulse per unit normal volume is:

(2) X=d, D=d,, 3=,.

If one now varies the velocity components/, w by the addition of4dt, ys dt, )5 dt and
varies the impulse components by the additiofh,adt, > dt, [3dt, then—T4, =2, - T3
are called the inertial resistance per unit normal veltinat is aroused by the computed
components of the acceleration:

3) V., b, Y=V HVityE.

Obviously, from (2), if:

@ Tk =D WKy

ij=1
=FP for U=y, N=) W=}
then one will set:

_lor _
1_56_1/1—/1111/1'*',“121/2*',“1}/3
r2:16_r:/'121y1+/'122y2+/'123v3
(5) 20y,
r3 :Ea_r:/'l3lyl+/j32y2+/j33v3
20y,
Hy = Hj -
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The “inertial coefficients’z; represent the masses per unit normal volume or densttie
the body.) Sincea, U, v, w, s are the independent variables, they specify the adatabat
isochoric inertial coefficients precisely.

Hereafter there are always three mutually normactions of the acceleration — the
“principal inertial directions” — for which the inertia¢sistance possesses a direction that
is equal or opposite to the acceleration. They ar@tineipal axes of the second-degree
surfacel (x,y, 2 =C.

If one takes the components of the acceleration anthéntial resistance with respect
to these three principal axes then one has:

) C =)+ 1ys+ 1ys,

(5) 1= ta), 2= [b)s, 3= [B)s

Therefore, if one excludes the possibility that anebration provokes an inertial
resistance that is in the same direction then treethprincipal inertial coefficients, (&,
/s are positive and thus the quadratic fdr(w, )5, J4) is positive-definite.

Since:

(6) C(W, 6, 18) =l 1+ ol 2 + a3

one can also express this assumption as: The inersigtarece shall always define an
obtuse angle with the acceleration.

If the direction of the velocity and each of itgmals is a principal direction then one
obtains the well-known case of purely longitudinal anachsgversal inertial coefficients
andu; . One then has:

(4") C=lpe+ 1K
in which:
7 M=é(un+vyz+wy3), K=V -V

denote the longitudinal and transversal components addbeleration; i.e., the ones that
are parallel and normal to the velocity.

For a rest element the inertial coefficiept$are given immediately. From | (77), it
immediately follows that:

(8) A =ORT TE]
42 =T+ AR,
hence:
_ 3
9) Co(y + )6 +18) = € (R +ys+ YD)+ Ry .

ij=1

1) In general, equations | (54) are linear in the seconidadizes of the functions, y, z, t with respect
to & n, {, 1. If one now chooses in particuldr= 7 then theg; are the coefficients by which the three
derivatives of second order xfy, z, with respect td are multiplied, hence, the accelerations enter o t
first three of equations | (54).
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The principal inertial directions are thus simply thenpipal stress directions for a rest
element.
For the case of pure longitudinal and transversal massmist obviously set:

(10) Fi].O: 0, i Zj, FiiO: P,
hence, one has:
(11) M == €+ pA.

8§ 2. First representation of theform I

In order to compute the inertial coefficients for auing element one must now only
define the forni (4, )5, )5), hence, the second variatiot of:

(12) ® =Q(g;, §)V1-5
for:
(13) A=}, A= p, A= .

One next has:

(14) FP =1-52 FQ + 20 dJ1-* + QFV1-S°,

3, 0Q
&:z_ q]'a
i,j=laql'
(15) 3 aZQ 3 GQ
520 = oede +) =~ )5%e.
ij;laq]'a%k 9% i;16§ ¥

For the definition of thel;, &e; , one starts by assuming thiit= d7 = 0, so:

(16) AP = o + dyf + g2 + (Udx+ vdyr wdy'
1-¢°

when expressed in termsayf, ds, d{, reads:

(16) dd® = d& +dr? +d + 2,

(17) de = iqj dé df; .

ij=1

Thus, if one lets the, v, win dd® go tou + 4, v + )5, W + J5 and then develops it in
powers of thes, J5, 5 thendd® will become:

(18) do? =dd® +25d€ + Fde& + ...
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5de2:23:5q05(1ﬁ,

(19) .
dde=> d%e o o .

ij=1

The directly produced developmentdd in the y from (16) will thus be furnished by
its linear terms in theée;, and its quadratic terms i#e; .

In order to carry out any truncated development, ase iemarks that the, 4, )4,
expressed in terms of the components of the “resteretin:”

(20) Voo V2, B P =N+ (D) 2+ (1) 2

by means of the rest transformation, are:

B2 =y +au(uy, + W, + W),
(21) BEys =y, +av(uy, + W, + W),
BYS =y +aw(uy, + Wy, + W),

and especially for the longitudinal and transvecsahponents one has:

(22) wW=Fy, W=Fx.
Second, one replaces:
(23) { dv=udx+ vdy wdz
dv’ = udX + vdy+ wdZ,
(24) { dy = ydx+ y, dy+ y, dz
dy’ =y dX +y dy’+y, dZ,

and establishes, on the basis of the equationsthatle thedx, dy, dzwith thedyX’, dy’,
dZ fordt=0 (I. § 1), that:

dv=g"dV,
25
(25) {dy: B2 (dy° - 54’ dV).

Having made this assumption, one now has, withuribhér assumptions:

2
da_*z — d)g + df'*’ d£+1_((zj\i+2dy)_ 5

=daz+§d\ﬁdy°+Flz[( %) ’+2 ¢°dV ¢+ () df -



Mechanics of deformable bodies

hence:

5 =L dv §°,
(27) /’;
Fae= L1427 00 "4 (/)T 09

and ultimately one finds that:

N1~ =By, =-f7 %,
(28)
SNI=8* ==y~ BSy*=-B Sy )

Substituting everything in (14) finally yields thesult:

3. 9%Q 0Q .
29 r= EE & -QW ),
( ) ﬁ’s “;laq] % ij “hk “21 ? (V))

in which g and are; defined by:

Aoy =Y 6, o o

ij=1

(dY)?+ (") (V)= Y £ dE ok,

ij=1

(30)

Thus, if one sets:

(31) {d"°=)ﬁd5+){2d7+)(30¥
dy’ = mdé + m,dp + m, 7,

in which obviously:

X =autdive g w
(32) — 10,0 0,0 0,,0
TEaY 8t Ay

then one obtains:

(33) {a,- =3(mx +mx), 1,j=123

Thus,I" has the form:
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(34) BT = P(.ys.Vs UV, W+ QY .ys vs),
where:
3. 9%Q 3,0Q
35 P= —cE, t — XX
( ) ijth:laqja%k ij “hk (VO)“Z:la ? )(|X]

is a quadratic form ig?, y2, ys, as well as i, v, w, while:
3
(36) Q= > —7m - Q)

is a quadratic form ip, )7, ySalone. The coefficients of both forms depend upon only
thea’ (i,j =1, 2, 3) anc:
For a rest element=v =w= 0, one has:
(37) Mo = QM J2 1),
and a comparison with (9) shows that in general, @se h

(38) Q=E(/)*+a% Ry’

ij=1
8 3. Second representation of theform I
and the character of theformsP and Q

The assumption that was made in § 1 relative tandagial resistance yields:

(39) P+Q=0forall)y?,)? ys andi®+ v’ < 1
Q=0forally,ys ys.

The character of the forila alone gives us information about a second reptasen of
P andQ in which, by means of | (16} is thought of as a function of t@) ,j=1, 2,

3) ande.
Namely, also due to eq. Il (14), one has:

(40) do” = (dxX)* + [@dy))* +(d2)’,

and thus, if — under the assumption that3 (i = 1, 2, 3) are arbitrary numbers and one
sets:
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(41) {da =g, dX +a,dy +a,d?,

dp°=BdX +B,dy’ + B, d2,
the &’ are given the variations:
(42) 0a)= a(ay B+ ay B+ a3 B
in which one likewise sets:

(43) od¥ = a1 df, ody’ = & df, 0d? = oz df,

then it follows from the same argument as above that

(44) { ode’ = da’ 5"

5°de’ = (a7 +ai+a?)(dB9)*

A comparison of (35) and (36) immediately shows thataamealso write:

(35) P= Zsl _oa_ VVaX X,
ijhk:]_aaj?aaﬁ( i 7hA jAk
3, 0Q
(36) Q= Zla—a:) - Q)
ij= ij

such thaP is simply the second variation Of
(35" P=JQ for 5a1.‘].): Vio)(,- , i,j=1, 2, 3.

However, for the stability of equilibrium it is necasg®) that #Q must be negative-
definite for all variations of theg; of the form da’= A B;. Therefore, if this stability

condition is satisfied then one will have:

(39) P<0 forall y, )3, V2, u,v,w.

1) J. Hadamard, Propagation des Ondes, Paris 1903, art. 270.
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8 4. Thediscontinuous solutions of the equations of motion
and theform W.

The examination of the possible waves in a body neglysssses some issues from
the theory®) of discontinuous solutions of differential equatiomsittarise from a
variational problem.

We will then direct our attention to the generahidr(54) of the equations of motion,
in which ¢ is assumed to be continuous, along with its firffiedgntial quotients; i.e.,
restrict ourselves the consideration of adiabatic waves

Now, should the second differential quotientxoy, z, t with respect on the “wave

surface:”
(45) { #$(.n,{,1)=0

dg =g df+¢,d7+ g, +¢,ar

be discontinuous then, by the aid of four quantitigsi,, A3, A4, the resulting variations
of the values of these differential quotients when awsses the wave surface can be
represented in the form:

0%%
0&,0¢,

(46) { }: Ai dn @, i,h k=1, 2, 3,4,

which culminate in the requirement of the so-called gatibility conditions.
If one further defines for:

(47) @ij :/]i ¢j, i,j =1, 2, 3, 4

the second variation of the kinetic potential

(48) w=do=3 9 1144

i1 08,08,
then/;, ¢ must satisfy the conditions:

OW _ OW _OW _ oW _
oA 0N, 0N, 04,

(49) 0.

However, sinceW is a quadratic form in thd;, as well as in thep;, these are linear,
homogeneous equations in theand thus their determinant — i.e., the discriminanhef
form W relative to thel; — must vanish:

1) J. Hadamard, loc. cit., Chap. VII.
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oW
9204,

(50)

an equation that represents a relation between jasp;th viz., the partial differential
equation of the wave surface.

In order to better comprehend its meaning, one considersdquation (45) for the
wave surface when expressed in terms, gf z, t:

(51)

f(X’ y1 Z‘l t): Ol
df = fdx+ f,dy+ fdz f dt

in which thef; will be connected with the;:
4 -

(52) 6=>4af, j=1,2,3 4
i=1

If one then denotes the direction cosines of the waaenal byn;, n;, ng and
© denotes the normal velocity of the wave then one has:

fof,ifif,=n;n,in,: -0,
f4

(53) . |
\/le + f22 + f32

o

and it therefore equation (50), which is homogesdow;, represents a relation between
Ny, Ny, Nz ando.

For a given wave normai;, ny, nz, the first things that follow from (50) are the
possible values of the wave veloci§ and then (49) gives the associated possible
directions of the “wave vectordly, A, A3, Aa.

Without proof, because the fact will not be useavhat follows, let us finally remark
that that the direction cosines of the gys,, s3 and the reciprocal ray velocity will be
given by:
oW oW oW oW
of, of, of, of,

(49) SIS M=

8 5. Representation of the form W and its connection with theform I'.

The formW(Ai, ¢), which thus completely delivers the laws of warepagation,
shall now be constructed for a rest element ini@dér, since one may in fact arrive at
the laws that are valid for a moving element frdrose of a rest element by a Lorentz
transformation.
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Moreover, corresponding to the arbitrariness otithe parameter, which will always
be assumed, it can happen that at the spacetime pgnestion, one has indeed:

an=ap=ai3=0, as=1

such that one must therefore define the second variafidn for da; = A ¢ with the
initial values:

a =4, ,j=123,
(54) By =8y = Ay = Q= Ay= Qygm 0,
a,, =1.

One then has:

(55) Fo = [-A,0°Q+2X3,[-A, + Q% [- A,
n=3%
= ae,
i,j=1 j
(56) 2 s 920 2
0°Q= oe, + —5
k=1 06,0 §, %598 |lz:1 oe

However, in order to define thi;, 52e.,- one must — using an argument that is analogous
to the one in § 2 — start with the fact that when:

do? = d@ + dy + dZ-—— df,
(57) A,

dv=a,dx+ g,dy g,dz g «
is expressed in terms d€, dz, d¢, dr, it looks like:
(57) dd® =d& +dr? + dZ + 20¢€.

In order to once more carry out the truncated @®raknt of the forndg?, in which the
a; in do” are replaced bg; + A ¢, one sets:

(58) =N+ A+ A7
dA = A,dx+ A, dx+ A, dx

dg =¢,d +¢,d7+9,d]

59
(59) = f,dx+ f,dy+ gdz:% dn

dn=ndx+ pdy- pdz
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If one then remarks that generatly falls out ofdd® — hence, from now on we will ser
= 0 — then, considering the special nature of the iniahles (54) of they, when theg;

are replaced with; + A ¢ thedx, dy, dz, dt, dv, As4 go to:

(60) {de: dx+ A dg, dy= dy-A, @,
dZ’=dz+ A, @, dt=2A, @,

(61) {d\F:¢4d)l A, 0B+ (A=), o,
AXD4 :_(1'*'/]4¢4)2 +/]2¢i-

However, it then follows, with no further assumptiotist:

(62) do? =dd® + 2dA dg + [A° dgf” — 2a, dA dgp + ¢2dA%] + ...;
hence:
(63) { ode’ = di dp,

o’de? = A%dp?-2),4, N dp+g 2 ?,

which finally givesA,, from:

(64) { ON-Au =P,

& -A,, =27z

When everything is substituted in (55), one ultimately @srihe result:

] 3 0%Q 3, 0Q
(65) O*f2W= Y —" g, +> — & -0%QA?,
) ijth:laq]'a%k o i;16§ ]

in which theg;, £ are defined by:

d)ldn:i‘sijd{idfj

ij=1

3
At +02dA2= Y &dE .

ij=1

(66)

A comparison with the representation (29) gjives:

(67) f,203W = P(A1, A2, A3, Ny, My, Ng) + ©°Q(A1, Az, A3).
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The quantityA, drops out ofW — as would correspond to the arbitrariness of the time
parameter — and therefore one may drop the fourth of egsa{49), and use the
discriminant oMW with respect tol, A2, Az in (50).

8 6. The adiabatic waves

Each of the wave normais, n,, n3 are then associated with the three possible wave
velocities through the third order equatior€if

|62P o |

(68) 104,04, 64 6)! B

which then correspond to the three possible directionkeotvave vectord;, A, A 3 by
way of:

(69) P2 =123
A oA

In particular, from (69), there exists the relationasnn;, A;, ©%
(70) P(A1, A2, A3, Ny, Ny, Ng) + ©°Q(A1, Ao, A3) = 0

Now, if the assumption that was stated in § 1 relaivéhe inertial resistance is made
and the stability condition that was stated in 8 3 tssfad then one may assert the
following about the root®? of (68):

Since the forn@ in the pencil of linear formP + ©°Q is definite the three rood?
are certainly real and finite, and since one alwayha®, Q > 0, because (70) is never
negative, the value @ itself is always real.

Furthermore, from (39), for §s <1 one always has:

(71) SP+Q=0.

Hence, by means of (70):

(72) (1-509Q=0,

and thus, sinc® > 0:

(73) 1-20720 or 9258—12, ie. o<1

Each wave normal is thus always associated with ghossible wave velocities, which
never exceed unity — i.e., the speed of light — and theesmond to the three possible
directions of the wave vectors.

These three directions may be defined geometricalljthascommon triple of
mutually conjugate intersectors of the two ellipsoids:
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(74) {P(X y.zn 19 9)=-1

Q(x y, 2 =+1.

If 14, I2, I3 denote the components of the wave veclarsl,, As in these three directions
and®;, ©,, O3 those of the corresponding wave velocities thenhase

-P(A,n) = mO; ¥+ mejk+ maiL
(75) Q. n)=mf+mE+ mE,
m >0.

Therefore, if}, )2, ysare the components of the rest acceleration relatithe velocity

direction in the same way that the wave normalesponds to the three directions of the
wave vectors theh assumes the form:

(76) BT = m(1-502)(),)*+ md- 02)¥)*+ mil- DI,

§ 7. Connections between the longitudinal and transver sal waveswith
the longitudinal and transversal inertia

If the body has simply a transversal and longitatlinertial coefficienys andz4 and
Mo is their common rest value that depends only uheq? @i,j =1, 2, 3) then one has:

(77) C= wyf + )= uB°0)  + B (102
and from this:

(78) {Q: Co =02+ 1°(K) %

P=BT T, =B~ 1)+ B 1K) >

Now, sinceP is a quadratic form in the,)?,)? as well as in thay, v, w, with
coefficients that depend only upon tq%(i,j =1, 2, 3), due to the fact that:

(79) SY'= Uy, Vg + W, )+ *=01) 2+ (1) 2+ (v3) %,

one must have:

(80) {ﬂ./)’j—ﬂz =—a,UZSj, o M =ﬂ0(1—a82)ﬁ ,
WP~ =—bu’s, H =1 (L=bs%)B,

wherea, b, as well as ag’, merely depend upon thﬁ(i,j =1, 2, 3), from which, one
has:
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{—P =8 () + 1)),
(81)

Q=1((V)*+(1)?)-

Hence, ifA; and A; are taken to be the longitudinal and transversal compsrdrthe
wave vector, A, A3 — i.e., parallel and normal to the wave normal — thenhas:

—P(A.n)= 1S 2 2).
@) {P(.n)u (a4?+ 0?)

QW) = (1) +(K9)?).
Comparing this with (75) shows that the wave vector megitiner parallel (longitudinal

waves) or normal (transversal waves) to the wavenabh and that the propagation
velocities of both types of waves are:

(83) O=+va, ©=+b.
Conversely, if one assumes the possibility of pureitodinal and pure transversal

waves of velocitie®, and®; then any two mutually normal directions will be conjugate
intersectors of the second ellipsoid (74), which is thephere:

(84) QUA) = 1 (A2 + A2+ A7),

The common triple of conjugate intersectors will Inddid with the wave normal and any
two directions that are normal to it and each other;frem (75):

(85) - P&, n) =1° (0747 +@747).
Hence:

(86) Br = 1° (1-5702) () 2+ u°(1- s8.) (19,
(87) M= 128 (1-5°02) (1) *+ 1 B(1- 8 (1Y

and the body therefore possesses only a longituaintha transversal inertial coefficient:
(88) =4 (1-5°07) B, =4 (1-5°07) B

Transversal and longitudinal waves, on the one hand transversal and longitudinal
inertia, on the other, thus cause each other, hadirtertial coefficients are always
coupled with the wave velocities by (88).
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§ 8. Adiabatic gaswaves

That a fluid possesses merely a longitudinal and aveasal inertial coefficient was
established already in I, 8 10, and we found that:

(89) {"' =(0Q, -Q+5Q,,)A"
M =(8Q, —Q)B.

Also, there are thus merely longitudinal and translergaves in them with the
velocities:

N°Q,,

90 O = |~
(%0) '"Va-aq,

i.e., only longitudinal waves are possible.
By the introduction of pressure and rest energy:

91 =Qa, ¢0=-
(91) p A A

one simply has:

_ | dp
(90) G = 40

8 9. Adiabatic, elastic waves with vanishing rest deformations

In the case of elastic, isotropic bodies (cf., | \kERh:
(92) Q=-M-1A)Y+2BJ}

the forml" may be computed merely for vanishing rest deformatioasgj = 0. In its
representation (29), one must set:

3
(93) Q=-M, ZQQE:Q

i,j:laq]' !

whereas, sincd;, J, are quadratic forms in the, one has:

(94) 23:()2_988 =- AJ2+4BJ
ijhk:laqja%k ij “hk 1 21

if J;,J, mean the expressions | (123) far J, defined with; instead of;. The values
(33) for theg; make them equal to:
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jl STLX, T TLXY, T TT X,
(95) 143, = (MXa = X, + (X =TT P+ (T ~ 1T x ),
=(B+m+m) XL+ xi+x)-J7

However, since fog; = 0, one has:
(@X)? + (@A) + (d2)* =d& + drf* + dZ,

hence, thq? @i,j =1, 2, 3) are then the coefficients of an orth@ddransformation, the
substitution of the values (33) far, x; further yields:

J=uy)+wh+we= 9

o5 _
(55) {—zuz =S - S = D)

Thus, one finally has:

(96) BT =My’ -AS()*- BS(1)?,

(97) Fr=M-AS)F - (M-BS)B ).

The body thus possesses just a transversal ineogdficient and a longitudinal one:
(98) u=M=-AS)F,  w=M-BSB  w= =M,

and purely longitudinal and purely transversal véapeopagate in it with the velocities:

- |A - 1B
(99) e._\/;, o \/;

The elasticity coefficientd, B are linked by the condition:
(100) O<A<M, 0<B=sM.

Leipzig, July 1911.
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