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All of you have heard, in a more or less definite fotinat the theory of the Lorentz
group or- what amounts to the same thirgthe modern principle of relativity, is
associated with thgeneral study of projective metrjas it was developed in connection
with Cayley's ground-breaking work in 1859. After meeting wibr late friend
Minkowski, it came to pass that | explored this moosely in my lectures on projective
geometry in the last Winter semester, and indeed, er@ad as the ultimate result of my
lectures. The study of projective metrics, which isady the basis for so many pages of
work, takes on a new and surprising application here, easeron the other hand, the
modern developments of the physicists, which, to the omec, easily create the
impression of being paradoxes, prove to be corollareesy speak, to a long-established
way of thinking. It is inevitable that this confluence wbtcompletely separate schools
of thought in history must act as a tonic for both stf)do a large extent; | hope that the
individual results worked out here will present at lesshe interest on the part of both
the physicists and the geometers, and might prove thessd® be welcome tools in the
workshop of theoretical physics, moreover.

When | now undertake to carry out the statementssotsisential foundations, |
generally stand before a great obstacle: | would likessume that the conceptgrbup
is familiar, as well as certain fundamental notidrean projective geometry, such as
homogeneous point coordinates and plane coordingbascollineationscorrespond to
linear substitutions of these coordinates, and ultimatleat for each group composed of
collineations there is an associatadariant theory— this is always well-understood in
the domain of arbitrarily many dimensions, — but | nored®eknow perfectly well that
not only the numerous modern physicists, who | would@afhe like to welcome here as
guests, but also the multitude of young technical mathemmasi that belong to our
society, have only been concerned with these thpegdistans so to speak. Many of
them have undoubtedly been of the opinion up to nowglgéctive geometry, which
had stood in the foreground of mathematical progress feangp can only claim to be a
specialized mathematical disciple nowadays. It iseddeery useful in itself that my
present talk must express the opposite viewpoint, thécinprojective geometry, in the
context of the desired mathematical presentation, neustdarded as equivalent to other
fundamental studies, such as algebra or the theoryrmitibns. However, this ideal
situation can still create complexities that come fima’s actual lack of adequate prior
knowledge, not from the nature of the problem. | theeefding to the method that is the
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most likely to promise results under circumstancehisfsort:l shall thus present things

to you in their historical progressiorand must, by the way, request that you accept the
enthusiasm with which | speak of the importance of ptoje ideas as a substitute for
the missing thoroughness in the details.

Corresponding to my prior statements, | will thus bdyirsubmitting to yolCayley’s
original work of 1859,which was thesixth in a series of treatises in which Cayley
summarized his opinions and understanding in the realmeothéory of invariants of
linear substitutions (A sixth memoir upon Quantics, v. a4the Phil. Trans. of the Roy.
Soc. — v. 2 of his works, pp. 561, et seq.). Upon browsjngoi will first have no
particular impression, because, before everything détajls about quadratic forms will
be developed; it is, however, simple to single oatgloblem statement and its brilliant
response. The development of geometry in the firstdfalie previous century has led
to the splitting of the entire content of the studyspace into different domains: the
geometry of position (descriptive geometry), which tresatsh properties of figures that
remain unchanged under arbitrary projections, and the gjepof measure, whose basic
notions (distance, angle, etc.) in no way possess ithiariance. This separation
established itself in the consciousness of the mathaaraioof the time, although
Poncelet had already made the decisive remark that frgemeral standpoint the circles
in the plane and the spheres in space — thus, the ptinbjeats in the metric viewpoint
— could be regarded as conic sections (surfaces, of secgneedeesp.) that have a
certain imaginary structure in common with the infirbteadth of the plane (space, resp.)
— the so-callectircle point of the plane (thespherical circleof space, resp.) that is
given by an equation of second degree. Now, it was Cayleghievement to have
recognized that this statement of Poncelet give one tkansnto reverse the
aforementioned separation of geometry into two mutudistinct disciplines, or to
replace it with a fundamentally new concept, moreoveHis result is, like all
fundamental thoughts in the mathematical scienceseragty simple: All metrically-
related geometrical figures can, with no further assumptibe regarded as projective
relationsas long as one adds the figures of circle points (sphere circlep,) res
according to whether they are planar or spatial; me®ometry then seems to be that
piece of projective geometry that treats figures for witiee pair of circle points (sphere
circle, resp.) is involved.

This statement will become much clearer when | wiite/n some simple formulas.

First, only in the plane: Let y be ordinary rectangular point coordinates. To make
them homogeneous, we set:=x; / X3 , Y = X / X3 ; we further callu;, up, us the
homogeneous coordinates of the straight line that i@septed by the equationx; + u,

X2 + Uz X3 = 0. The circle point pair is then given in point cooatis by the combination
of the two equations:

(1) X3 =0, X +% =0,
but in line coordinates it is the envelope of all line fhlfill the singleequation:

(2) u’+u =0.

One now observes, in order to keep things simple, timeula for the distance between
two points:
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r=J(x=%)7+(y-)°.

To make this homogeneous, we write:

X:%, y:%; y:%’ 7:%
3 3

and obtain:

) R I R A T b

%Ys

The numerator vanishes in this when the two givantp lie on a straight line with one
of the circle points, and the denominator, when ohghe given points lies on the
connecting line between the two circle points. IBof these things are projective
properties of the total figure that is defined bg two given points and the circle points!
Algebraically, however, it follows from this (aschn specify in painful detail) that the
expressiom changes only by a constant factor when one simegdtasly subjects our four
points to an arbitrary collineation. For that @asone callg aninvariant of our four
points under the totality of all collineations, @so a “simultaneous invariant” of the two
original points and the algebraic forms that waveg in the left-hand sides of (1) or (2),
resp. However, the content of the projective gaogmef the plane is, algebraically
speaking, nothing but the study of invariants tay plane figure possesses under the
totality of all plane collineations, in particulalso the relations that such invariants may
exhibit between themselves; it is therefore assediavith all theorems in projective
geometry that might exist between the distancesdwat arbitrary points in the plane.

In space, things are complicated only by the iaseel number of coordinates. Ixet
Yy, z be ordinary rectangular coordinates, and to mh&athomogeneous, we set x; /
X, Y=X/X,2=%3/ X4 . The “sphere circle” is then given in point cdioates by the
pair of equations:

4) X =0, X +x+x =0,
but in the associated plane coordinatgsl(, us, Us) it is given by thesingleequation:

© W+ =0

One again considers the expression for the distbetsgeen two points. When we give
the latter the homogeneous coordinates,: X3: Xs andya: ¥ : y3: ya, We obtain:

(6) r:\/(xiy4_ylx4)2+(xzy4_ yZ)QZ+()§M_ %&2
X4 Ya

and link this formula with a discussion that is ity similar to the one that was
connected with (3).
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The foregoing suggestions will suffice to make the gersenase of Cayley’s ground-
breaking work somewhat more understandable. | may noakdpe a moment of the
concepts that | developed in my Erlanger Antrittsprognamfi 1872%). For Cayley, one
only speaks of invariants under ttaality of collineations of the domain that actually
comes into consideration. By contrast, | thus empbldbkat one can just as well speak of
invariants under aubgroupof collineations. This cast new light on the essaricaetric
geometry and Cayley's way of looking at it. It is aiad remark that all statements of
metric geometry are independent of the position and afesalagnitude of the figures,
and can even be characterized by the statements abomdifidual volumes, as one
establishes in topography. One expresses this in a modénamadical way by saying
that one first introduces two closely-relatgtbups of collinear transformations: the
group ofmotions and transfers (Umlegungeand the more comprehensive group of
similarity transformationgthe group of “congruent” and “equiform” transformatioirs,
the nomenclature that Heffter and Koehler introduceit teat book? and now says:
The metric properties are characterized by the fattttiey are invariantlative to these
groups. We thus haveMetric geometry and projective geometry both emerge from the
study of an invariant theory, and their mutual relationship arises fronfattethat the
group of metric geometry is a subgroup of the group associated with prejgetmetry.

A pair of simple formulas will clarify this situatiomnd further organize things. We
may remain in the plane and, for the sake of simplicig ordinary (non-homogeneous)
rectangular coordinatesy. If we then write:

(7)

{X =apXtaLyta,
Y =0y X+a,y+a,,

and consider thens, ..., a3 here to be arbitrarily varying quantities then we hdnee t
six-parameter group of the so-calleffine transformations before us. Among them, one
finds the four-parameter group efjuiform transformations when one demands that

dx? + dy? agrees withdX® + dy? up to a factor. This is the case when and only when the
following conditions are fulfilled:

ai+al =al,+al, a1 012 + Q21 22 = 0,
SO the matrix:
all alZ
aZl a22

) “Vergeichende Betrachtungen iiber neuere geometrischehagen,” printed in Bd. 43 of the
Math. Annalen and elsewhere. [See Abh. XXVII of this abite.]
2 Lehrbuch der analytischen Geometrie, Bd. 1, Leipzig 1905.
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is, as one saygrthogonal ®). However, the three-parameter group of congruence

a,, a
nant 2
aZl a22

then havedx? + dy? = d¥ + dy?. Finally, we write down the most general collineation
of the plane as:

transformations arises when one sets the determ equal tox 1. One will

X' — allx + alZX+ al3
aSlx + a32X+ 033,

(8)

I — ale + aZZX+ aZ3
a3lx + a32X+ a33 .

One now effortlessly recognizes:

The group of affine transformatioi(g) consists of those collineations that transform
a certain straight line — namely, the infinitely distant line e im$elf.

The group of equiform transformations, however, consists of those cobimeatiat
leave a certain point pair on this line unchanged, which is preciselgifitle point pair.

The definition of the group of congruent transformatiesiot geometrically as
simple. We satisfy ourselves here with the algebcdiaracterization: They are the
equiform transformations whose signed determinant islegua 1. Naturally, the
equiform transformations are affineg ipso

Shall | add that one can now define — as an intermebe&tween projective geometry
and metric geometry — aaffine geometry, which treats all of those properties of plane
figures that are invariant under the group (7)? We then kiane® geometries to
compare, of which projective and metric geometric aee ttho extreme cases. The
classification will be arrived at in this way, but ttepresentation becomes unnecessarily
tedious, because essentially the same things would hahe gaid several times. Thus,
we shall speak of the main points only in terms of ptsjecand metric geometry, while
affine geometry, which generally will emerge at theatesion of things, will only be
mentioned parenthetically.

In this sense, | therefore distinguish between dleenentary(direct) treatment of
metric relationships and therojective one that Cayley initiated. This distinction is
formulated by saying (in the sense of the Erlanger PragjafiThe projective (higher)
treatment seeks the invariant relations that the givgnmds possess under tio¢ality of
all collineationsafter adding the circle point The elementary treatment seeks the
invariant relations that the figures as such possess uhneenarrower group of those
(equiform and congruent) collineations that take theecipdint pair to itself.”

Now, | have come to the end of these general prelimioansiderations and | ask
only that you retain the following thoughts in particulanvariant theory is a relative
concept; one can speak of the invariant theory assdciatéh any group of
transformations. This idea is so self-explanatory thamerges spontaneously in the
most diverse realms of application, and also everyahertheoretical physics. The
terminology by which it comes to be expressed is, lierealms themselves, naturally
quite diverse. The various kinds of researchers, lamefore also physicists, then have

% The term is used here in such a way that similaritysformations are included (so the numerical
value of the determinant @y is not given any importance).
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neither the time nor the opportunity in the course efrtivork to find out whether any
conceptual Ansatze that they require are found to leadr completely constructed in
the storeroom of pure mathematics, so they proeemat it brings a certain freshness to
their train of thought with it — on the assumption ttieg mathematical instruments that
they require must be manufactured on a case-by-case @dwmseventual understanding
with proper mathematicians, which generally seems ta@rbemportant thing to me,
because they make the ideas precise and reveal all Kirndsioections, then achieves,
above all, a translation of the terminology thatised here and there from one language
into the other. Thus, | will anticipate the theoreene by saying:

“What the modern physicists cdlfie theory of relativitys the theory of invariants of
the four-dimensional spacetime regiary, z t (the Minkowski “world”) under a certain
group of collineations, namely, the “Lorentz group”; omren generally, and turned
around:

“One can, if one finds such things important, replaee ghrase ‘invariant theory
relative to a group of transformations’ quite well witike phrase ‘theory of relativity
relative to a group.”

| shall now treat some things concerning the purely emstical examination that is
connected with, e.g., Cayley’s treatise. That isfact, the historical place of this
eminent work, that it not only decisively answered ol problem of the relationship
between metric geometry and projective geometry, baetvige brought a new question
to the foreground that would prove momentous in followitg) Marious directions.
Metric geometry emerges from projective geometry whea mitroduces the circle

points, which are given by the equatiogh+ v = 0 (or, in space, the sphere circle, which
is given by the equation? +u> + u; = 0). What will happen when one bases itaoy

equation of second degrée » a,uu, = 0 in some meaningful way, instead of them?

We remain in the plane, where our new equation repieaagtcurve of second class.
For the projective geometer, these curves decompasdivet different types, which |
will enumerate here by starting with a certain tridageoordinate system for the time
being (whose “line coordinates” will likewise be called: u; : us : us) instead of the
rectangular parallel coordinate system used up to now.listhe the following one:

A. Proper conic sections:

1. u/+Uu’+Uu? =0, imaginary conic section,
2. u?+u:-u =0, real conic section,
B. Point-pairs:
3. u?+ul=0, imaginary point-pairs (corresponding to equation (2}He circle
point),
4. u?-u =0, real point-pair,
C. Isolated point, counted twice:
5 u’=0.
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The principle of this enumeration is so simple thayome can write down the
corresponding table fon variablesus, ..., u, by analogy: one first writes down the
equations witm squares, which will alternate + or — when joined togetiwen one with
(n— 1) squares, etc. The case of the first category shalled theyeneralone, the one
that follows it,simply specializedhat of the third categorgoubly specializecetc.

For each of these cases, we now construct an analdy formula (3) for the
distance between points and obtain what Cayley calkedgsbociatequasi-distance For
the case of imaginary point-pairs, we will simply preseformula (3) (except that now
X1 X2 Xz andyp : Y2 : y3 will not necessarily be rectangular parallel coordinalbes
generally speaking, the associated triangular coordinates}Yhe following two cases
(real point-pairs and double points) small changes withfygied that we shall likewise
return to later. What is more difficult, this yieldise suitable Ansatz for the quasi-
distance in the present two cases (proper conic sectiwasyould not like to go into it
further here, because it would take up too much space,saddtdils will not enter into
consideration in the present talk. In any event, ésalt is thisWe obtain five (and only
five) types of metric geometries on the plane, of which, onlgrteghat corresponds to
imaginary point-pairs is known to us from the example of elementtrycen However,
we call the archetype of all the theories that thiseathegeneral study of projective
metrics (first for the plane, then for space, and ultimatéy arbitrarily-extended
manifolds).

Now, it is in no way my purpose at the moment to go the details of this theory;
only its general meaning will be emphasized. Firstykeha refute a prejudice that many
people nurture: The layman will be initially disinclined &ttach any meaning to a
preoccupation with posing questions that arise from the cilge- so to speak, aesthetic
— desire for knowledge of the mathematicians. Howeter,history of science shows
that things are quite otherwise; | will say that eveing that is mathematically sound
takes on a far-reaching meaning outside its narrow domaims is the case with the
theory of conic sections, which was developed by the geosnetantiquity for its own
sake and suddenly took on a great importance in our undersgjaosidNature with the
discovery of Kepler's laws. Precisely the same thisgtrue of the door that is
immediately opened by the study of projective metrids i@dates to conic sections. The
first thing is that they take on a higher meaning inghesuit of knowledge for its own
sake by proving themselves to be the simplest basisdioEuclidian geometrywhich
arose from the examination of the independence of thallglaaxiom from the other
axioms, and then proved to be much more esoteric thaf)thavill then point out a few
details related to this. The second thing was that pheved to be a usefuhethodfor
the clarification of complex phenomena in the othelmsaf pure mathematics, such as
the theory of automorphic functions or number thedry Now, in latter years it has
emerged that they just as well yield a rational foundatior the most modern
speculations of physics; in particular, the differermdweenclassical and modern
mechanicdecomes simple.

%) Cf., my papers “Uber die sogenannte Nicht-Eucklidischen@trie” in volumes 4 and 6 of Math.
Annalen (1871 and 1873). [See Abh. XVI and XVIII of this collemct]

®) Cf., the general representation of Fricke-Kleirgrigsungen uber die Theorie der automorphen
Funktionen (Part I, Leipzig 1897), and furthermore, my gnatphed lectures on a particular chapter of
number theory (Leipzig 1897).
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The relationship between the theory of projectivericetand parallels that | vaguely
alluded to may be seen when we once more restrict vess& the plane, in order to
focus on its exceptional features, that in case 1efist presented on pp. 6 (thus, on the
basis of an imaginary conic section) we obtain the-Boclidian geometry of Riemann,
but in case 2) (i.e., based on a real conic sectionpan the non-Euclidian geometry
of Bolyai-Lobachevsky-Gauss. | would like to mentiopaaticular point that is obvious
as a result of the projective viewpoint with no furtbhesumptions, while it seems to be
surrounded by the aura of the mystics: The number of calloves by which a non-
decomposable conic section is transformed into itsetfis It goes up teo* as long as
the conic section degenerates to a point-pair. In #uf bne sees that the equiform
transformations (similarlity transformations) of thadidian metric that are so familiar
to us from the Elements become a special categongétatomitted from non-Euclidian
geometry; all that remain are thé congruent transformations (motions and transfers).
The conclusion is that there is an absolute standalkehgth in non-Euclidian geometry,
not just, as for Euclid, an absolute standard of anglasore. Moreover, the two groups
— theGs of one or the other non-Euclidian geometry andGhef Euclidian geometry —
have little in common as far as their internal dtites are concerned. That is why it is so
difficult to understand non-Euclidian geometry from thendpoint of Euclidian
geometry: A figure that moves in a non-Euclidian way egpees bizarre distortions
compared to Euclidian geometry. However, all of thi#icdities vanish when | avail
myself of general projective ideas. In fact, @eof projective geometry (i.e., the totality
of all collineations of the plane) includes not only &g of one or the other non-
Euclidian geometry, but also tl&, of Euclidian geometry. If | assume the projective
viewpoint then | have the same advantage as a wandecestahds on a mountaintop
and surveys different valleys at once, while if he stam@ssingle valley then he finds it
hard to describe the behavior of the other valleys.re He one last point that is not
unimportant! For all of the essential differences betweases 1), 2), and 3) it is as good
as self-explanatory for the projective geometer that@an define a continuous transition
between the three cases. For the fundamental equatie chooses the projective
metric:

9) Ui +uw+eu=0,

and lets the parameterin it range over positive values to negative ones whilaggo
through zero! Riemannian geometry will then turn into Eisth geometry and then into
the geometry of Bolyai, Lobachevsky, and Gauss. Oseclmspection, things appear to
be such that | can limit myself to an arbitrarily-exded region around the poia = 0
(large enough that, when it suits one’s purposes, iircdnde our entire solar system or
even the entire universe of fixed stars) and thergtéhich can be positive or negative,
can be made so small that inside of this region angrtist when measured in a non-
Euclidian way, deviates from its Euclidian value lessitbame sufficiently small given
amount

One may admit that | may carry these detailed coretides on the projective
metrics in the plane somewhat further; this seemgrakif | am to adequately prepare
for certain considerations that | will make use of laierwhen comparing the new and
classical mechanics. | further apply the aforementicd@ntinuity principle to the cases
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3), 4), and 5) of our list on pp. 6. Let the fundamentaistruction, relative to an
ordinary rectangular coordinate system, be:

(10) u’+e&u; =0,

and then first gives a very small positive value, then a very small negawalue, and
thirdly, a null value. Let the associated (ordinary,-homogeneous) coordinates of a
point be denoted by, y. As the distance from this point to the coordinateimyrigne
then obtains an analogous alteration of formula (3):

(11) r=,ext+vy,

and here one would now like to ponder how the systearrsnged aroun@® as the
center of the surrounding circle (i.e., the curwesconst.). Obviously, for positivewe
obtain elongated ellipses (whose major axis points endirection of theX-axis), for
negatives we obtain hyperbolas whose asymptgfes= +/—-¢ define a very small angle

with the X-axis, and when it vanishes, we obtain pairs of dttdigesy = ++/const. that
run parallel to the-axis. It is amusing to reflect upon how these pairgaséllel lines
define the transition from ellipses to hyperbolas m ¢hses of positive (negative, resp.)
&

We may further consider the equiform and congruent fyemations that are
associated with our metric first in the cases of nanishings. Since the two points that
are represented by (10) are different from each othies 00 andes > 0, they determine
their connecting line — namely, the infinitely distéine — uniquely. Our transformations
will thus beaffinetransformations, and can be presented in the form:

(12) {X: S0 Xta,ytag,
Y =0, X+ 0¥+ 0,

Here, the coefficients on the right-hand side arbeaneasured in the equiform case in
such a way that(ai1 x + a12y)* + (@21 X + az2y)® agrees withe¢ + y? up to an arbitrary
remaining factor. This gives two conditions for the @oits ax , whose number

. la,  «a .
increases to three when we set the determl%éjnt Yl equal tox 1 in order to go over

aZl a22

to the congruent transformations. We thus hae equiform and«® congruent

transformations, in precise, self-explanatory, agreémvéh what we learned in the case
&= 1 of the Euclidian metric.

We now go on to the doubly-specialized case0, when we would like to establish
the conditionthat here, as well, only affine transformatio(is2) shall come under
consideration(this is a free abbreviation here, because the infyndiestant line is only

one of the lines that include the poist = 0 - i.e., the infinitely distant point of th-
axis — although there is initially no necessity for it to guo itself under the
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transformations that we are considering). We thenmBiaiply as; = 0 for the equiform
transformations; any transformation:

(13) {XI SapXtaLyta,

y' = Y+ gy

will act as an equiform oneDespite our restricting assumptions, the equiform group still
includes five parameters hereAs “motions” — i.e., congruent transformations wiih n
transfer — one may then identify those elements (1&) ahe firstly unimodular, and
secondly, leave the distance between two poinysand X, y unchanged — i.e., in the

present case(y—Yy). This givesai; = 1, a»» = 1 andthe three-parameter group of
motions is given by the formula:

(14) {X’ =SapXtaLyta,

y' = Q,Yy+a,,

The equiform transformations thus include two patms more than the congruent ones.
We will say that we can now choose the units fer tieasures along thxaxis andy-
axis independently. In particular, we will have iamariant of motion for two arbitrary
point in the form ofy — y; however, if y- y = 0, in particular, then x- X is also an
invariant of motion.

It now seems clear that all of these, certainly\wmple, Ansétze can be carried over
to a larger number of variables. In particular,wauld like to go over to four variables
X, Y, z, t immediately (with Minkowski, we will refer to thetality of all values for these
variables as theorld, wherex, y, z are thespace coordinateandt is thetime). We thus
pass over the systematic enumeration of the asedciossible types of projective
metrics, since this will ultimately be simple. Maower, we restrict ourselves to showing
that here, in the four-dimensional world, thestem of mechanids subordinate to the
concept of projective metric, and indeed not ohly $ystem o€lassicalmechanics, but
also thenew mechanics of Lorentz, Poincaré, Einstein, and Mivd, where the
essence of these two systems, and, in partictiair, reciprocal position, may be brought
to its greatest clarity.

First, we would like to temporarily Set=X1 / X5 , Y =X2 /X5 ,Z2=X3 /X5 , t =Xa [ X5 .
The general linear equation betweep, z t will be written accordinglyu;x; + Uz X2 + U
X3 + Uy X4 + Us X5 = 0; in particularxs = O will be the only thing that we shall call the
“infinitely distant” points of the universe. We @ our old acquaintancethe sphere
circle — as before from the equation:

(15) W =0,
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however, since we have five coordinates it must nowefarded as doubly-specialized
construction. Along with it, we define tlsengly-specializedonstruction:

u2
(16) uf+u22+u32—c—4=0,

wherec shall denote the “velocity of light”, soct/(upon choosing a unit for it, as one
generally allowed to do in mechanics) is a very smalhtjiya In point coordinates, this
construction is given by the pair of equations:

(17) x5 = 0, X2+ 2+ - @R =0,

which then uniquely determines the “infinite distance’h&f tiniverse. If one allowsto
become infinite in order to arrive at the sphere eitben one will obtaithreeequations
for it in point coordinates:

(18) Xs =0, X4 =0, X+ X+ X =0.

Here, we have;/ xs =t = 0/0; the sphere circle can be thought of as binelessin a
manner of speaking. The infinite distance of the warldow one of the linear manifolds
that include the sphere circle. It then appears torékerred among the linear manifolds
when we let the sphere circle emerge from (16) ((17p.yéy going to the limit. We
would now like to analogously carry over all cores@ktions regarding these
constructiong16, 17) ((15, 18), resp.which we just now linked to the equatid®),i.e.,
u?+uw=0.

I will begin with the sphere circle immediately, lagopting the principle that,
corresponding to the conceptual distinction of the limeanifold xs = 0, we shall seek
the associated equiform and congruent transformatibmiseoworld only amongst the
affine world transformations. Accordingly, there 3 longer any point in maintaining
the homogeneous notation. Moreover, we will immedtijaterite down the general
schema for the transformations that come under ceraidn corresponding to equations
(13) in the following form:

X =0 X+a,y+a,zva ,tra g
Y S0y Xt oYt 02t 0, 4
(19) : |

Z =0y Xt A Y+ Qg2 05, B 0 o

t’ = a4lx + a42y+ a43Z+ a44t+ a 43

We will call these transformations equiform when thake the system of equations (18)
into itself. The only condition for this is that thetrix:
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(20) a, a, a,

be orthogonal This delivers five equations for the nine coefficieats ..., as3 in a
well-known way; in all, 12 of the 17 coefficients thapaar in (19) thus remain arbitrary.
— Among the equiform transformations thus determined, Wldéhein, according to (14),
refer to those transformations for which the deterniwhthe matrix (20) is equal to 1,
while one also hasus = 0, ascongruent transformations The group of congruent
transformations thus defined still includes ten parametdfsx, y, z t and X, Y, Z,

t are the coordinates of two world-points then, generallglspg, only the difference-

t remains unchanged by the group of congruent transformattiagn®nly whert -t , in
particular, is equal to zero thgk—X)*+(y-y)*>+(z-"2? is also an invariant. Two
world-points thus have a “purely geometrical” invant only when their time-differences
vanish.

That we, in fact, come to the foundations of classicechanics with these
assumptions on the equiform and congruent world-tramsfbons associated with the
sphere-circle is demanded by things that have often bephasized recently by other
authors, rather than working through the problem. In, the foundations of classical
mechanics remain unchanged when we:

1. Replace the arbitrarily-chosen rectangular spacedow@de systenx, y, z with

any other similarly-oriented one.

2. Think of the rectangular system as allowing any unifoemslation.

3. Let the origin from which we measure the tinvary arbitrarily.

This is precisely what finds its expression in the groupuo congruent transformations.
In particular, the uniform translations 2 correspond &ténms in our formula witkr 4t,
ast, azat. However, the situation that our equiform transforomtontains two more
parameters than the congruent ones corresponds to thidam classical mechanics the
unit of time and the unit of length can be chosen indepelydehteach other (upon
which, the study of “similarity” in classical mechanisdased).

Secondly, we consider the case of a basic congirutitat is only simply-specialized
(17) (which still has no particular name, although itaiaty deserves one):

Xs =0, X+X+X - % =0.

The equiform transformations are necessarily affere hwhich is all the more reason for
us to go back to the non-homogeneous notation. The ¢geswrama for an affine
transformation is then:
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X’ = a11X+ alZ y+ a132+ a14t+ a 13

y’:a' NG T U +a.,.,
(21) - 21 25
VAo (90'C FERTTRTERTERTRPETES + Qs
t S X +a,

We have an equiform transformation, as long as the genemus substitution of they,
z, t that is given by the matrix:

takes the quadratic formf + y?* + 7 — ¢ into a multiple of itself. This reduces the 20
coefficientsai to nine;the group of equiform transformations thus now includes eleven
parameters Among them, the group of congruent transformationsw@shave been
defining them) emerges when we demand that the determinant:

has one of the valugsl. We thus have a group of ten parametdfsx, y, z, t and X, Y,
Z, t are the coordinates of two world-points then the squatieeafquasi-distance:

(X=X +(y=-P+(z=2°- ¢ £)*

proves to be unchanged.
We now have yet a finer point to address that wasadyreorought up in the

discussion of the point-paiu’+cu> = 0 as the fundamental construction of a plane

metric. In order to single out the congruent transédioms with no transfer from the
totality of equiform transformations, one can restooeself to the ones for which one
sets the determina+ctrll e
aZl a22
Euclidian metric, which is based on the fundamentaltcoction of animaginary point-
pair. However, this leads to motions only for theecakimaginary point-pairs (for the
case of a positive). If the point-pair is realg negative) then closer geometric scrutiny
shows that the unimodular, equiform transformationdomger define a continuum, as
one would justifiably expect of the totality of all nats. Their totality decomposes,
moreover, into four continua.Only those transformations that leave the signhaf t

= 1 in the substitutions (12). One thus defines, in fact,
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differential expressiord¥’ + dy? unchanged and have., positive, moreover, will be
referred to as motions in the strict sense, because they alonerareuously connected
to the “identity” transformation X=x, y' =y. In order to eliminate motions for negative
€ from the previously-given definition of congruent s&rmations one must therefore
still worry about the two stated demands. This hasnflaence on the number of
parameters that was given at that time. Moreovehdariiniting cases = 0, when we set
22 = 1 we have already treated the new arrangementdiegty. — Something similar is
now going on with the case of the construction (17)ddrbated now, as well (which,

due to the negative sign on the teadx’ in its equation, is comparable, to a certain

degree, to the case of a real point-pair in the plad)w, a more precise geometric
argument — which is not especially difficult, but it wbuhke up more space here than
we would like to give to it — shows that the group of caegt transformations, as we
will next define them, still encompasses two contirarathat for the group of motions
of these two continua we can use only those motions that are characteriagubsiyive
(0/V R

We may thus expressly add the requirement pdstive a,4 to the definition of our
ten-parameter group. We then have preciselytrentz groupof the “new” mechanics
before us. Generally, one says most commonly thatdhentz group has six (not ten)
parameters. This is, however, only a consequence ofattiethat in mathematical
physics one ordinarily does not consider the transfooms (21) of the coordinatesy,

z, t, but only the corresponding transformations of the diffdals dx, dy, dz dt, by
which the additive constantgs, azs, ass, 45 are omitted from formulas (21) for self-
explanatory reasons. However, the situation thatgtloup of equiform transformations
now contains only one more parameter than that of cbegruent ones finds its
counterpart in the fact when one is giwe(the speed of light) in the new mechanics the
unit of space and the unit of time are linked together (dwthoinly of them is arbitrary).

Thus, the old mechanics and the new mechanics are consistently incorpotated
the schema of projective metrics for four variablasie goal that | brought into my view
at the beginning of this talk has thus been achieved. twegythat | said at the outset
on the relationship of metric geometry to projectiveometry has been carried over
analogously. | confine myself to adding two brief remarks:

First: According to the terminology that | occasidyabuched upon above, we may
say that classical mechanics, like the new mechaisiesitheory of relativity” relative to
a group of ten parameters. One may ask: Why then tetime“theory of relativity” used
exclusively as an attribute of the new mechanics irpthysical literature? This seems to
be the answer: Because historically the new mechanig;mated in the context of
electrodynamics. In order to clarify matters, it g6 to set down the Maxwell
equations- for the pure ether, sayin the Hertzian notation:

1oL _oz_ov 19X _ oM _oN
c ot o9y 0z’ c ot 0z o0y’
1M _ox oz 10v _oN_oL
c ot 0z O0x c ot ox 0z’
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10N _aY _oX 1.02 _oL_om

c ot ox ady’ c ot ady ox’
oL oM . oN 0X 0Y 0Z
—+—+—=0, —+—+— =0,
ox 0y 0z ox dy 0z

These equations obviously remain unchanged when one repi&@oesg/, z-system with
any other (similarly-oriented) rectangular coordinatstesy, or when one displaces the
origin of time arbitrarily; together, that defines a gpmf seven parameters. However,
they no longer remain unchanged when one subjects thdicai@ system to a uniform
translation, and thus sets:

X =X+ at, y’:y+az4t, Z =7+ aaat.

In this, lies the reason for one who is subject to Wkks equations for the
electrodynamic ether to regard them as residing in spaecs) that the concept of
absolutespace again finds a position of honor. What remainseisséven-parameter
group of changes that correspond to the purely externaditicanfrom a coordinate
systemx, y, z t to another one that is just as valid. — Then camelig@very that this
seven-parameter group is contained in a ten-parametethahekeeps the Maxwell
equation themselves unchanged, namely, the Lorentz grAgpin, absolute space (or
perhaps it is better to say: the absolute world) disappedhe world again becomes a
relative concept, as it was before — and one imagwigsout thinking, that one recovers
only the prior state of affainqiutatis mutandiswhile the phrase “theory of relativity” is a
new term that relates exclusively to the Lorentz group.

However, as concluding remarks, | will choose theserak suggested above that the
difficulties that anyone perceives when one begins bggrio adapt Euclidian geometry
fall away when using the non-Euclidian doctrines withfurther assumptions when one
takes the more general standpoint of projective thinkingestarting point. Analogous
statements are true for the study of the new phenothah@merge in the mechanics that
is based upon the Lorentz group. It seems inappropriakveys begin this study with
ideas that are true in classical mechanics and theggonder how one may cleverly
deform them in order to pass over to the new mechanicereder, it seems more
proper to first rise from the standpoint of old mechatocan enveloping one, which then
includes the old and new mechanics together as special cAsesrdingly, what was
suggested above is not necessary for-thig., to think in terms oprojectiveconcepts-
when it would suffice to think in terms affineones. It would come down to a question
of writing down a systematic invariant theory of ttadfihe” world, in which generally
all of the elements of the many-dimensional invesbgat of the mathematicians are
already present, and in which the two types of mechanald and new — can be treated
together. The manner by which the old mechanics can bedeghas a limiting case of
the new one, to the extent that it can be regarded ap@oximation to the latter, then
emerges in its own right. Who will bring this progréonits realization?

Minkowski has undoubtedly gone into the matters demahdegl quite precisely in
their own right. However, since he was writing for tim@ader circle of physically-
interest readers, in the interests of understandahégitgxpounded upon his developments
more conveniently, not in terms of his own personal efainking, but only after it was
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crystallized into the form of an algorithm that led hito the case of the Lorentz group.
That was Minkowski’'s four-dimensional vector calculus, whiahithe absence of a more
rigorous basis, placed his electrodynamic developmentbeapinnacle of a certain
system of rigidly-defined algebraic proces®es

P.S. of August 1910. In my paper on 10 May, | also spokehefelegant
representation of the coefficients of the Lorentzugron terms of ten independent
parameters on the basis of a famous quaternion formatawhs first presented by
Cayley.

The ultimate formula is the following one: | understanto mean the ordinary
imaginary unit, and;, i, i3 to mean the units specific to the quaternion calculLes. A,
A, ...,D, D' be eight parameters that shall be linked by the biliagaation:

AA+BB+CC+ DD =0,
along with the inequality:

Likewise, letxo, Yo, 2o, to be four parameters. The substitutions of the Lorgramp are
then given by the following formula:

(i]_X' +i2Y +i37 +in) - (I]_Xo + izyo +i37 +iCto)

(i,(A+iA) +i,(B+iB") +i,(C+iC")+(D +iD’)
[{x +iy +iz+ict)
(i, (A-iA")+i,(B-iB") +i,(C -iC") +(D -iD")
(A*+B*+C?*+ D) -(A+ B+ C+ D)

Since the multiplication oA, A, ..., D, D' by an arbitrary common factor does not
change the formula, but, on the other handAth#, ... are subject to the aforementioned
bilinear relation, we have, in fact, a ten-foldimitude of substitutions before us.

For the finer details and literary reference, @aa confer, say, the “Zusatze und
Erganzungen” that Fritz NoOther appended to the mtée@ppearing final volume of
Sommerfeld and my own “Theorie des Kreisels” (L&pa eubner 1910).

® [These remarks on the manner of representation shiogeMinkowski relate definitively to his
publications in 1910 and also to Minkowski’'s collected wotleigzig, 1911). In the meantime, in 1915
his estate found the manuscripts of some publicationgby mamely, ones that appeared on 5 Nov. 1907
in the Gottinger Mathematischen Gesellschafin which he presented his undisguised mathematical
thoughts. This paper was printed shortly thereafter undertitleeof “Das Relativitatsprinzip” by
Sommerfeld in v. 47 of the"series of Annalen der Physik and is also found, by the imathe 24'
volume of the Jahresberichte of the Deutschen MatharhatisVereinigung (1916). | would like to make
some entirely distinct remarks on this subject shoktly
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[Cunningham and Bateman have already remarked in 1909 that dkevel equations remain
invariant under not only the linear transformationshef Lorentz group, but also under the exten@ed,
which arises from the Lorentz group when one adds @spraumber of transformations of the following
type (which correspond to a conversion of the worldugho‘reciprocal radii”y):

X = o x
X2+ y2+ 72— 1P

| <
1N
—_

N
1

y’:

Bateman made an interesting application to the theoiyaxwell’s equations in the Proceedings of the
London Mathematical Society (2) 8 (1910).

Bateman]oc. cit, went further than this by interpreting the value system z t in terms of a sphere
in three-dimensional space with midpoint coordinateg, z and a radiust (this is the same idea that
Timerding developed independently in v. 21 of the Jahresiterider Deutschen Mathematiker-
Vereinigung, 1912). The transformations of the four-dinwerad “world” that we just mentioned then
behave, as Bateman says, like “spherical wave wemations.” These are precisely the transformations
of Lie’s sphere geometrydmong them G, single out the Lorentz transformations that contretplanes
into planes.

Obviously, these developments are intimately linked #ithones that Lie and | carried out in 1871,
and which | must refer one, in particular, to no. \dlithe present collection (“Uber Liniengeometrie und
metrische Geometrie”).

For physics, thi§;s generally does not have the same meaning as its subdrea, Lorentz group.
This is based upon the fact that the latter is onlyreigaization of thé&,, of classical mechanics (which it
turns into when one lets the speed of light go infinlbe},a generalization of physics must encompass both
mechanics and electrodynamics. Einstein expressedsifuation to me casually as follows: The
transformation through reciprocal radii indeed presetivesform of the Maxwell equations, but not the
connection between coordinates and the results of miegyardsticks and clocks. K.]

" The individual transformations of this type would atte Maxwell equations like a change of sign of
t, or, what amounts to the same thing, the transftimm a left-handed coordinate systery, z, as Hertz
used, to a right-handed coordinate system.



