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Quantum Theory in Hydrodynamical Form
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Translated by D.H. Delphenich

It is shown that the Schrddinger equation for efestron problems can be transformed into the farim
hydrodynamical equations.

According to E. Schrodingeh)( the quantum theory of one-electron problems follivas the
“amplitude equation”:
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Here,Wmeans the energy of the systéims the potential energy, as a function of thetmosof
the electron, anthis its mass. One seeks a solution that is evasawtontinuous and finite. This is
possible only for certain values Wf. These “eigenvalued/; shall be the energy that the system
possesses in its “quantum state.” They-aes you know- spectroscopically determined. The
correspondence between theory and experience spedkir the utility of the computational
method described in what follows.

To each eigenvalue there belongs an “eigensolttidnich is normalized, and shall be given the
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time factor e , and, according to Schrodinger, represents whapdms in the system.
Schrédinger gives Ansatze for an interpretatiorctyhin principle, corresponds to the one given in
what follows. | will pursue this interpretation darshow that far-reaching analogies with
hydrodynamics exist.

A second equation, also derived by Schrodingehtained when one eliminaté&rom (1) upon
including the time factor:
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He obtains as solutions those of the first equattong with all linear combinations of the latter
That is very essential. Namely, if one sgts ae”, then, by (1), only3 is considered linearly
dependent oty whereas, by (2), as well ag3, can be time varying.

With, ¢ = a€”, (2) becomes:
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Aa - a(gradd)’ - ——U + — a2 =0, 3
a(gradb) oz e (3)
and
al\B + 2(grady gradB)® — 477Tm%_c: = 0. (4)

LE SchOdinger, Ann. d. Phys79, 361, 48980, 437,81, 109, 1926.
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From (4), with¢ = - £h/2mm, it follows that:

=0. (49

(4) has the character of a hydrodynamical equatfi@ontinuity when one regardg as a density
and ¢ as the velocity potential of a flow= gradp.

(3) then gives:
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This equation also corresponds precisely to a ldyr@mical one, namely, that of an irrotational flow
moving under the action of conservative foré®s (
Since rotu = 0, taking the gradient gives:
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The term — grad{)/m corresponds to the quantitf/o (force density: mass density),
and(Aa / a)h? /8 mPcorresponds to the quantif;{ (dp/ o), which one can interpret as the force
function of an “internal” force of the continuum.

We therefore see that equation (2) is completgliagable in terms of hydrodynamics, and that a
peculiarity appears only in one term, which repneséhe internal mechanism of the continuum.

In the case of equation (1), we get/ ot = 0 andd¢@ /0ot =—W/m Despite the time factors, the
eigensolutions of (1) produce the picture of aatatry flow. In this interpretation, quantum state
are considered to be stationary flow states, attteitase where grgé= O they are actually static
structures.

The solutions of the general equation (2) are easy to obtain as linear combinations of the

eigensolutions. For example, let usget a €¥= ¢4 + b =cian €” + c,a, €%, wherey, andys are
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eigensolutions of (1), with the time factor h' suppressed, so we have:

& =cta’? + Ca’+ 20,cma; cosB - )
and
o grad3= clafgrads, + coa ;i gragB + 2., grad(3, + ) cos@: - 31,

jazdv = qzjafdv+ (fjazz dv,

2 Cf., e.g., Weber and Gans, Reportium d. Physik pp. 304.
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I.e, “density” as well as “flow strength.” One obtamternv = (W, —W5)/h that is periodic in time.
The “total set” remains, however, constant.
In the case of a stationary flow one finds from: (3')
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from which, one can also write, when one sefs: o, om = g, corresponding to the normalization

j odV = 1;
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This form for the energy as the volume integrakioktic and potential energy densities is
immediately intuitive.
There is no obvious reason why this form, whick oan also write as:
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is not obtained for the case of nonstationary flohMaat the conservation lagyV/dt= 0 is satisfied
can be easily observed from the orthogonality efdigensolutions.

It is interesting to ask the question: do equati®?), (4') and (5') already contain all the known
special cases? In particular, do they imply:

1. The existence of discrete stationary flow stateh amergwV.

W -W
2. The fact that all nonstationary states possesspamigdicities of the formy; :#.

Apparently, (2) follows uniquely from (3') and )(46r, on the other hand, (1) and (5'). The
hydrodynamical equations are thus identical witsehof Schrédinger and deliver everything when
they are given; i.e., they are sufficient in ortterepresent the essential elements of the quantum
theory of the atom that can be modeled.

Since the foregoing quantum problem seems to lmembed with the hydrodynamics of
continuously distributed electricity, with the cardensity proportional to the mass density, there
remains a series of difficulties. On the one hahe,mass density is not of the type that one would
expect in electrodynamics. On the other handsboeld expect that the interaction of the electrons

with each other, which is represented by the téomiA\/o h? /(877°m) depends not only on the

density at a point and its derivatives, but alsah@total distribution of the charge. | have dea
how to satisfy both of these expectations throughraly mathematical formulation.
How are we to treat the many-electron problemfr@&tnger gives no completely determined
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form. He claims only that the kinetic energy is tabenputed from a representation of the motion in
phase space, i.e., that one must defrneZm /2 to be the sum of the kinetic energies of the

individual electrons, as when they are all pairewrsdependent and do not, perhaps, constitute a
single flow field.
In fact, this is an obvious possibility. We hawechoose between the following alternatives:

a) Do more electrons assemble together into a bigiyacture?
b) Do they annihilate themselves and pass into et with a certain boundary condition?
¢) Do they penetrate without amalgamation?

To mec) seems the most likely. With these same solut@risads to the one-electron problem
— only with a different normalizationand this obviously leads to a false reshjtseems to be a bit
like “jumping off the deep end)(” but is still conceivable.

Fromc), more vectors must be defined at each pointadepas well as their associated velocity
potentials. The continuum then has the intuitivality of a swarm whose parts possess an infinite
free path length.

The form that the functiod is to be given, insofar as it represents theaatgn of the electrons
with each other, as well as the “quantum term” gdision (3'), can first be determined from a
successful calculation, at least in some particzdses.

There is thus a chance of erecting the quantuoryhaf the atom on this basis. The radiation
process becomes, however, only piecewise explaindbtleed, it appears to be clear that an atom
does not radiate in a quantum state, and alsordl@tion of the correct frequency is correctly
represented without “jumps,” moreover by slowly going into a non-stationary state; hoarev
other things- e.g., the fact of quantum absorptierremain completely unclear. | consider it
premature to speculate about their nature.

3 Ed. Note: The German idiom was “eintauchende Balin

4



