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Line geometry, according to the principles
of Grassmann'’s theory of extensions.

By E. Muller in Vienna.

Translated by D. H. Delphenich

AlthoughGrassmanrhad already expressed the idea of employing the stiaighas
a spatial element in hidusdehnungslehréTheory of Extensions) of 1844, and to that
end, exhibited systems of line coordinates, and also inclu@dedy things that showed
how simply line geometry could be formulated using hishae in the second edition of
his book in 1862, to the best of my knowledge, no one hae mach an attempt up to
now. The lines that follow contain a treatment oklgeometry that is based upon the
principles ofGrassmann’dine theory of extensions. | therefore hope to givexample
of the simple applicability olGrassmann’sgreat creation that has, unfortunately, still
found much too little circulation.

In order for me to be as brief as possible, it wiltn be necessary to refer to the two
editions ofAusdehnunglehréom 1844 () and 1862 in order to explain the concepts that
are used; as usual, they shall be denoted; andA; .

The linear ray complex.

1. If one letA, B, ..., X, ... denote line segments)(of unit magnitude — i.e., rays in
which segments of unit length and definite directionfaumd — then the line segments

A b B, ...,r X, whereq, b, ...,, ... are real or complex numbers, will represent those
rays, in which one must now think of the segments ampdengthsa, b, ..., ¢, ...,

however. Any algebraic suf@ of line segments can be reduced to the sum of two line
segments that have no point in common, and can thuespbesented in the formd{, no.
285):

C=aA+0bB. (1)

This expression is itself capable of no further reductma, has no immediate geometric
meaning, although it plays the main role in line geometry.

() A new edition of this version that was editedGnpssmanrappeared in 1878 that was printed by O.
Wigand in Leipzig. The 1862 version is out of print.

(") | prefer the expressions: line segment, surface seagmeace segment f. Hankel (Theorie der
complexen ZahlerLeipzig, 1867) taGrassmann’sxpressions: line part, surface part, body pés} ér
line quantity, plane quantity, body spaée)(
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Namely, if we ask what all rays (i.e., line segnsgitwould be that would give zero
when exterior multiplied b, which would then fulfill the equation:

[CX =0, (2)

then it would be easy to see that they would all defilrgear complex.
Then, since any rax that goes through a poiptis representable in the form:

X=r[pXA,

in whichx is any point oX andy means a well-defined number, one must have:

[CbX=[CpK=0

for the rays that go through or since C pl = a [A F + b [B p is equal to a plane
segmentrthat goes througp, one must have:

[77p] = O,

which says that every poirt and thus, also every r&y will lie in the planerz The rays
Xthat go through a pointand satisfy equation (2) will then define a pencil otray
One likewise shows that the raxyghat lie in the planerand satisfy equation (2) will
also define a pencil of rays.
In fact, since every rax that lies in a planercan be represented in the form:

X=r[md],

in which x means any plane (i.e., plane segment) throlghdy means a well-defined

number, one must have:
[COré=[Cm¥] =0

for the rays that lie inz which will then satisfy equation (2), or sinke ff =a[A 74 + b
[b 74 is equal to a multiple poimg that lies in7z one must have:

[p4] =0,

which says that every plaeand therefore, also every rgygoes through the poipt
With that, we have proved:

Any quantity G=a A + b B determines a unique linear ray complex by equg@dn

The fact that, conversely, any linear ray compleemeines a quantityC will be
derived later on (no. 2).
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If C reduces to a line segment then all rXyshat satisfy equation (2) will have the
property that they cut; i.e., C will then determine a special linear complex whose axi
will be represented b§.

By the considerations above, one can likewise findngple expression for the
relationship in the null system that the linear commieplies. Namely, any poirg will
correspond to the plan€[p] as the null plane. The fact that the points diha will
correspond to the planes of a pencil is deduced fromrtimédiately. Then, ip;, p. are
any two points then any poipton the line p; pz] will be representable in the forp= p1

p1 + p2 p2; one obtains the null plane pby exterior multiplying byC:

[CP=p1[Cp]+p2[Cp,

which is then derived from the null planespafandp,, and thus belongs to the pencil of
these planes. The ray[p;] is then said to bassociatedvith the ray fz 7z].

One infers the converse theorem analogously.

A andB are associated rays in the linear ray complexesatieatlefined by equations
(1) and (2); sinceA @ = 0, any pointa of A will then correspond to the plane:

[Ca=a[Ad+b[BO=b[Ba4,

which goes througB. Likewise any poinb of B will correspond to a plane through
If one represent€ in all possible ways as the sum of two line segminats one will
obtain all pairs of associated rays.
The fact that two pairs of such linasB; A’, B' will lie in a ruled family is deduced
immediately. The equation:
aA+bB=d A +b'B

will then follow from the facts that =a A+ b BandC=da' A’ +b' B'.

If one exterior multiplies these by a linethat cuts three of the linessay,A, B, A' —
then one will one will also hav@®[X] = 0 in the resulting equation:

afaX+b[BX=a[AX+b[BX]
[AX=[BX=[AX]=0;

i.e., X can also cuB'.

2. One can also represent the quarfitgs the sum of a line segment and a surface
space (i.e., an extended quantity of rank two, a line enpilane at infinity), and in
particular, as the sum of a line segment and a surfsm®e that is perpendicular to it. If
a denotes a point, a segment of definite length an direction (i.e., rdmitely-distant
point), andt | c is the extension of that segment — i.e., the surfpeees that is

perpendicular toc whose area is equal to the lengthcof andk is a number then
Grassmanr(A;, no. 346, 347) has proved tiatan always be put into the form:
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C=[ad+¢t|c (3

uniquely. p g is a line segment that is identical with the axishe linear complex, and
t is the number thallckercalled theparameterof the linear complex.
If one base& upon this form then it will follow from the defining equati(2) of the
linear complex:
[CX=[acDK]+E[|cDX]=0

or

__ [actK]

[| cX]

Since the exterior product of two line segments of ntadail will be equal to the
product of the shortest distance between them withitigecs the angle between them,

the numerator of this fraction will ke sinc’X, if i denotes the length of the segment

and |, the distance from the lin¥ to the axis. As one immediately recognizes, the
denominator will have the valieos ¢ X; one will then have:

£ =—]tanc X,
or, in words:

The product of the distance from a ray of a compdethe axis with the tangent of the
angle that the two lines define is constant, ardked, its absolute value is equal to the
parameter of the complex when the axis and theofajie complex are arranged in no
particular sense.

Since the latter equation can also be employedeadefining equation of every linear
complex, and one can deduc2 X] = 0 from it, whereC has the form of equation (3), it
is thus proved that any linear ray complex candpeasented by the equation (2).

The theorem above is a special case of a moreagem®. Namely, i€ is taken to
have the general form:

C=aA+0bB
then one will have:
[CX=a[AX+b[BX =0
for any complex ray, so:
_b_IAX
a [BX]

If, as usual, one calls the exterior product ob mays of unit magnitude — viz., the
product of the shortest distance between them théhsine of the angle between them —
their “moment” then this theorem will read:



Muller — Line geometry, according to Grassmann. 5

The moments of the rays of a linear complex relative to any twoiassblines in it
have a constant ratigQ).

One likewise easily arrives at another well-knowreottlem, as well as its
generalization. LeC assume the general form, as before, so one willirolbe null
point p of the planerz from no. 1, by exterior multiplication & with 7z

[CA=a[Ar+b[B7=p.

If one calls the simple points of intersection mfvith A andB, a andb, respectively,
whenris assumed to have magnitude 1 then:

A7d=a sinA:n,
B 74 =bsinB'7z
o)
p=aA la+b B 7lb,
from which it will follow that:
[ap __ bsinB'm
[bg  asinA'x’

or
[apsin A7 __ b

[b psin B a
In words, this reads:

If the null plane of a point p meets two associdiees A and B of the complex at the
points a and b, respectively, then the ratio of ghaducts of the distances from the point
p to the points a and b with the sine of the anigée the corresponding lines define with
the null plane of the point will have the same edlr all points of space.

If C has the special form (3) then the last equatidhewpress the known theorem:

The product of the distance from a point to thesafia linear ray complex with the
tangent of the angle that the null plane of thentimakes with the axis has the same
value for all points in space, and is, in fact, agto the parameter of the complex.

Remark. The definition of linear ray complex that was givenehis only the expression of a known
mechanical property of it. The quantly as the sum of line quantities, can, in fact, be consibtr be a
force system that acts upon a rigid body, @ 122), and€ X is its static moment relative to the aXis[C
X] = 0 then says that the force system possesse® atatic moment relative to all of the rays thaisfat
this equation. The remaining equations that appear absivbave immediate mechanical interpretations.

() Drach, Math. Ann., Bd. Il.
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Numerical relationships between linear ray complexes.
Exterior products of them.

3. We have seen that any quant@@ydetermines a unique linear complex by the

equation € X] = 0, and that every linear ray complex can be detedriryean equation
of this form. The linear ray complex that is deterrdibg C shall be denoted by. For

any rayX that does not satisfy the equation above, one wileHa@vX] # 0 and C X
shall be called the “moment of compléxwith the rayX” or “the moment of the raX

relative to the compleg.”
We say oh complexe<f; that a numerical relationship:

arises if and only if the same relation exists betwhem moments witlanyrayX, so the
equation:

> o[G X] =0

will be fulfilled for every rayX. Due to the fact that:

Salc X = a6 | 09,

the assumption above will be fulfilled only wheredmas:

n

Zaicl =0,

i=1

so when the same numerical relationship exists d@&tvthe quantitieS; . Conversely, it

n
is easy to see that the numerical relationship; ¢, = 0 will also follow from the last
i=1
equation.
One then has the theorem:

A numerical relationship of the form:
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arises between n linear ray complex@sif and only if the same relationship exists
between the quantities C

4. If a numerical relationship:

arises between amyquantitiesA then:

= a

Ar:_&pl_&AZ_... A
ar ar

_%
ar ar c1]'

will be numerically derivable from any of the remaininges.

If one imagines a tetrahedron as being chosen in su@y dhat each point of space
can be derived from its vertices then any ray, aedefore, also any quantity, will be
numerically derivable from the edges of the that tewabn @,, no. 346,A;, 8 117). It
follows immediately from this that any quant®ycan be derived from any six quantities
Ci that satisfy no numerical relationshipy( no. 24). However (no. 3), any linear
complex is then numerically derivable from any six lineamplexes that satisfy no
numerical relationship, of what amounts to the same thing:

The linear ray complexes define a domain of rark si

All linear ray complexes that are derivable framn = 1, 2, 3, 4, 5) mutually-
independent linear ray complexes defineomplex domain of rank. nThe domains of
rank two, three, four, five shall also be callpeéncils, sheaves, bushes, webs
respectively.

5. From the discussion above, the concept of extgmoduct can be applied to
linear ray complexes immediately.
The exterior producte; ¢, ... €] (n= 2, ..., 6) ofn linear ray complexes represents

the domain that they determing&,( no. 70, rem.), up to a numerical value that is equal to
the determinant of the numbers by whi€h ... €, can be derived from complexes

whose exterior product can be assumed to be unity. Xtbear product oh complexes
is zero if and only then complexes define a domain of rank lower tmaror — what
amounts to the same thing — as long as a numericabredatp exists between them.
Since the complexes of a pencil have a linear congruanm@mmon, and any such
congruence determines a pencil of complexes that goaggiithem, one can also say
that the exterior product of two complexes represehe&r tcommon congruence.
Likewise, the exterior product of three linear ray ctarps represents their common
ruled family, and the exterior product of four linear raymplexes represents their
common pair of rays. However, any other exteriodpod will likewise determine just
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one numerical value, and two exterior products are equahvand only when they
represent the same geometric object, as well as alsorde¢ the same numerical value.

The concept of the regressive produst, (Chap. 3,A;, 8 5) can be applied here
immediately.

The inner product of linear ray complexes.

6. If a linear ray complex is given then the positive square root GffJC] shall be

called itsnumerical value (The basis for this term will be given later.)

A linear ray complex ispecialwhenevelC represents a line segment. This happens
if and only if [C C] = 0 (A2, no. 286,A1, 8§ 124). A special complex is then one with a
numerical value of zero. Since the linear comp#xdoes not change when one

multiplies its quantityC by an arbitrary number, one can always put into a ftwah has
the numerical value of 1; to that end, one needstontyultiply C by 1 /.,/[C C] .

Let ¢, €, be any two linear ray complexes, so each complex the pencil €; ¢;]
can be represented in the form:
C=a1 €1 +ax¢&y,;
since one then has:

C=a1C1 +a,Cy,

the condition fore to be a special complex will be:

0=[C J=[(a1C1+a2Cp) Qa1 Cy + a2 Cy)]
=a;[C1Ci] + 204102 [C1 Cj] + a5[C2 C],

which is an equation that will yield two values far/ a, . There are then two special
complexes in any pencil of complexes 2B are the special complexes of a pencil, and
¢1, & are any two complexes in it then one will have:

@1 :ulQ’[+Ul%l
Co = A +p8.

The double ratio of these four complexes is t#ang§ 165):

[AC] [AE] _[_o }.[_0 | _ 0.0,
[%Ql].[%QQJ iy . U, ulluzl

From the corresponding equations for the quastilie

C]_ :ulU +U1Vs
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C =wU +0oV,

it follows by multiplying by a planerthat:

[Ci7A=w[U 74 + 01 [V 7F,
[Co 7h=uz2[U 74 + 02[V 71,

or, when one has:

[Ci7d =p1, [Co7k =p2, [U7d=u, Vid=v,
that:

Pr=uru+oyy,
P2=uu+oyrVv.

The double ratio of these four points:

[up] .[up] _ v .0,

[Vpl].[vg] ulluz

then has the same value as the double ratio afdivesponding complex. In particular,
if this double ratio has the value — 1 then, acogydo F. Klein’s terminology, the two
complexeg; and¢, will lie in involution The condition for that is then:

v +us0g = 0.
However, from the above, it will follow that:
[C1Cy] = [(u2U +01V) QuaU + 02 V)] = (u102 +uz01) [U V],

since one hadJ U] = [V V] = 0 (by assumption). Therefore, if the two coexgse¢, ¢,

lie in involution then one must have:
[C1 Cz] =0.

Conversely, as long as this equation is validJiM] # O then one must hawg v, + 1z b3

= 0, so the two complexes must lie in involutiofy V] # 0 corresponds to just the
requirement that the axes of the two special coxagl®f the pencil should not intersect,
so the pencil of complexes will not be a pencispécial complexes, argl, &, will not

be special complexes. If we assume that for tlse aa which¢; and ¢, are special

complexes they will be said to lie in involutionaihd only if their axes intersect then one
can express the following theorem in full geneyalit

The necessary and sufficient condition for two demgs¢;, ¢, to lie in involution is
that[C, Cy] = 0.
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7. All complexes?) that lie in involution with a compleg will be determined by

the equation:
[CY]=0, (4)

if Y refers to the sum of line segments that belongd (0. If one derive®) from any

6
six mutually-independent complex®s — say,d) = Zt)i ). — then one will also have (no.
i=1

6
3) Y=Y, and the equation above will then read:
i=1

> nlCY] =0,

which then expresses a linear relation betweenl¢h®ing numbers); . However, as is
easy to see, each of the compleXpshat satisfy equation (4) can be derived from five

mutually-independent complexes, or belong to a domarank five. Furthermore, any
complex®) that belongs to this domain of rank five will lreinvolution with€. Thus, if

D1, Va2, ..., YPs are any five mutually-independent complexes tieainlinvolution withe
then?) will be numerically derivable from them; perhaps:

and therefore:

Upon multiplying byC, one will obtain:
5
[YQ=>nlY d=0
i=1

since all productsY C] are zero, by assumption. Therefore, any comflekes in
involution with €&, and one can state the theorem:

All linear ray complexes that lie in involution it linear ray complex define a
domain of rank five.

It follows from this immediately4;, § 126) that:

() It follows from this equation that the axes of all specomplexes that lie in involution with will
define the rays of the complex
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The linear complexes that lie in involution with n linear ray compléxesl, 2, ...,
5) define a domain of ran&—n .

One can then also choose six linear ray compleaayg, two of which lie in
involution.

8. If we choose six linear ray complexés, ¢, ..., & with numerical values of

unity, any two of which lie in involution, to be the ongl units and set their exterior
product equal to one, so:
[Cl Cz ¢3 @4 @5 ¢6] = 1,

then the necessary and sufficient conditions fordégnition of the inner product are
met, and one can all immediately apply all of thetbens thatGGrassmanrderived inA,,
Chap. 4 here. However, one must establish the mearhagsancepts like “normal,
numerical value, value” that were presented there fotrary linear manifolds in general
might have for the geometry of linear ray complexes.

We would first like to prove that two complexes thatin involution are identical
with two normal complexes.

We will have that proof when we have shown that:

Any six complexes with numerical values of unity, any two of wieich involution,
can be derived from the complexes that were chosen to be the origitsabyimepeated
circular alteration.

Then, since the original units are six quantities thatnarmal to each otheA4, no.
162) and, in turn, only mutually-normal quantities will emeogecircular alterationsAg,
no. 155), any six complexes that are reciprocally in um@h must also be six mutually-
normal quantities.

In order to prove the theorem we need the lemma that:

Two complexes with numerical values of unity that lie in involudaeath other will
go to two such complexes under circular alteration.

If €1, €; go to;, €, under circular alteration then, if the complexesassumed to
have numerical values of unity and +a= 1, one will have (frond,, no. 154):

md; =a; ¢ +ax¢s,
nd,=a-al,

SO
mC| =a;1C1 +a2Cy, )

n C;=a102—a201. (V)
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In order to find the value afi, one exterior multiplies each side of equatiph lfy
itself. One will then get:

m? [C/C] = a2[C1 C1] + 2 aua2 [C1 Co] + a?[C, Cy),
and since, by assumption, one will have:

[C/C] =[CiC]=[C.Cl=1,  [C1C=0,
one will then have:
m?=a? +a=1,

One will similarly obtain from equation/) the fact that:

n?=1.
The complexes that emerge framand¢, by circular alteration will then possess the
numerical value of unity, and equatiopg and ) will then read:

C=mCi+aCy,
C; :alcz—azcl.

If one exterior multiplies them with each otherrthewill follow that:
[C.C)] = (af —a3) [CLC —am a2 ([CL Ci] - [C2 CY),
so, since€; C;] = 0 and 1 C4] = ([C, Cy] = 1, one will have:
[C,Cl =0;

i.e., the complexeg’, &, lie in involution.

The main theorem — viz., that any six complexgs ¢, ..., €, with numerical
values of unity, any two of which lie in involution, cba derived from six complexes,
&, ..., Cs that are chosen to be the original units by repeatedlar alteration — can now
be proved in the following way: Froly,, no. 160, the system of original units can be
changed circularly in such a way that one of themy;-&a— coincides with an arbitrary
quantity of rank one — say;;. Since, from the lemma that was just proved, any two

complexes with numerical values of unity that arenfibto be in involution will again go
to other such complexes under any circular alteratian,otiginal units will go to six
complexes that mutually lie in involution, so the oridifiae will lie in involution with
¢:. From no. 7, these five complexes then belongdaltmain £, ¢;... ¢;], and, from

Az, no. 160, they can therefore be once more circuladyeal in such a way that one of
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them will coincide with — say-,,, whereby the four remaining ones will lie in the
domain [, €, €. €, ]. If one repeats this argument then one will ultehagrrive at the
realization that the original unit&, ..., € can actually go t@’, ..., €, under circular

alteration. Since the numerical values of the dergs remain unchanged by that — so
they will remain equal to one — we can say:

Any six ray complexes with numerical values of unity that mutually involution
define a complete, simple, normal system (in Grassmann’s termijology

Since any two complexes with numerical values of uthi&y lie in involution can be
regarded as a part of a complete, simple, normal systewy will define two mutually-
normal quantities of rank one, and conversely, any two abguentities in the domain
that we spoke of will define two complexes that lienaalution with each other, since
(A2, no. 161) they can be derived from the original units byiEaralteration.

The concept of normal, linear ray complexes thus overlaps with thadingblexes
that lie in involution.

In the sequel, we would ordinarily like to speakiofmal linear complexes.
It follows from the foregoing that:

The inner product of two normal complexes is zero, and conversely.

9. The general definition of numerical value that was given by Grassmanmapserl
with the one in no. 6 for linear ray complexes.

If one lets C C] = 1, first of all, then (from no. 8) the compl€xwill emerge from
the original units by circular alteration, so, froma&smannA, no. 155), it will likewise
have the numerical value of unity:; i.e., one will thevee? = 1 (). If, moreover, € C]

# 1 then one can set:
c=.,[C(C C,

where one now hasC[ C'] = 1, and then, from no. 3, the complextsand ¢’ that
correspond to the quantiti€&andC' will then have the relationship:

¢=.,[Cq ¢,
SO

¢?=[cge?=[C, since ¢'?%=1,
or

() We apply the simple square sign without a prime asiginec$ the inner square, since no confusion
is possible here.
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NCENICICE

i.e., the numerical value o€, according to Grassmann’s definition, agrees with the
definition in no. 6.

Since a special complex has a numerical value of, zere can also call it aull
complex.

Since it follows fromA,, no. 168 that all theorems that are true for the maiguinits
will also remain valid for the quantities of a completseample, normal system, the
numerical value of an exterior productrofn = 2, 3, ..., 6) complexes of numerical value
unity that are normal to each other will by unity, in aage.

10. Another important concept is that of “extensiont®i, ..., & are the complexes
of a simple, normal system — 3B, [.. ¢g] = 1 — then thextensiorof a productA of a of

these complexes is equal to the proddictf the remaining (6 @) complexes, endowed
with a sign that will makeA Bl = + 1 (A2, no. 167). In order to obtain the extension of
any other quantityh\’ of rank @, one assumes that one has a complete, simple, normal
system such thatr of its units come to lie in the domain Af. If A is their exterior
product, and’ is the numerical value & then one will have:

A =a A
SO
|A'=a |A (A, no. 91),

in which |A denotes the extension Af so, from the above, it will be the product of (6 —
@) complexes that are normal to each other and to alplex@s ofA, and therefore also
A'. If one calls the domain of rank (6 & that is defined by all complexes that are
normal to all complexes of a domaihof rank a the extended domain of #hen one can
say:

The extension of a quantity ik a quantity that belongs to the extended domain of A
whose numerical value is equal to that af A

Since any quantity in one of two extended domains is abtonany quantity of the
other one, (from no. 7, remark) all complexes of twteeded complex domains must go
through the axes of the special complexes in the otier

The extension of an exterior product of two linear caynplexes, which from no. 5,
will be a linear congruence, represents the complex ohoofaank four that is normal to
it, so, from no. 5, it will be a line pair. Since, fnovhat we just said, all complexes in
this domain of rank four will go through the two directsiag that congruence, the pair
of directrices will then be represented by the extguimduct of any four complexes of
the domain, and one can say:
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The extension of a linear ray congruence is its pair of directrices.
One likewise finds that:
The extension of a ruled family is its guiding line.
These two theorems can also be expressed in thevilogjdorm:
The axes of the special complexes of a complex bush defineagayence,

and
The axes of the special complex of a sheaf of complexes defied gamily.(")

11.We ask what the number would be that the inner produttv@fcomplexest’,
¢, determines.

If ¢;, €, are two complexes with numerical values of unityt tielong to the pencil
[C, C}] then one will have the relations:

¢ =a11C1 + a2,

¢, =an €+ apds,
so if one interior multipliesAz, no. 143) the two equations then one will get:

[€] | €] =a11 a1+ a2 az,

since¢? =¢2 =1andC; |C;] =0.
However, one finds the equations:

C, =111 Cy + 112 Cy,

C,=aaCi+anC

between the quantiti€s, in any case. If one exterior multiplies them t@e will obtain
[C. |C,] = a1z az1 + a12 azz,

since C1 C1] =[C, Cy] =1 and £, Cy] = 0. Therefore:

(¢} 1&;] =[C |G,
or

() Five complexes determine a web of complexes and a corialeis normal to them that is defined
by the axes of the special complexes of that web.
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The inner product of two linear ray complexes is equal to the extaooiuct of their
guantities C.

If ¢4, €, are any two linear ray complexes thén €,] shall be called thenoment of
the two complexes relative to each otfier. One can then also say:

The inner product of two linear ray complexes is equal to their more&itve to
each other.

Two complexes are therefore normal as long as thement relative to each other is
zero.

12.The angle between two linear ray complexe&srassmann(A;, no. 195)
understood theangle 0 AB between two quantitied and B of equal rank, whose
numerical values wera and b, to mean the angle between 0 amevhose cosine was
equal to the inner product of those quantities, divided bytingerical values; i.e., he set:

cos] AB= LAl B] .
ab

Therefore, for two linear ray complexésg ¢, one will have:

B (T R ([N I
Jezez  JIGICIC C)

cos¢; ¢,

This expression for the angle between two linear coxaglegrees with the other
definitions that are given for it. In particular, oren prove that arc cag” ¢, is equal to

the logarithm of the double ratio, multiplied by 2, that the two complexes define with
the special complexes in their pencil. The proof of ih&chieved in the following way:
If ¢, &, are two complexes with unity numerical values thatngefhe angle/with each

other them;¢; + a,¢, will represent a special complex as long as onedids ¢ a.¢>)?
= 0. This gives the equation:

a; €7 +2a,0,[C |C J+a’€? =0,
or, since:

¢2=¢2=1 and ;1| =cos¢; ¢, =cosy

a’+2aa,cosy+a’ =0.

(") SeeF. Klein, Math. Ann., Bd. Il, page 368.
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This equation gives the two values. —e™” for a, / a1 ; the two null complexe¥,
B of the pencil can thus be represented in the form:

A=¢, —e‘”’@z,
B = ¢1—e”’¢2,
from which, it will follow that:

[Q:li)l] :ely, [Q:l%] :e—iy, SO

[Q:li)l] [Q:l%] :eZy
[€, ] (€, 8] [¢, 2] " [¢,D]

If Jis the value of the double ratio, §& €*”, then {):

L

log o.
2i g

y:
One also arrives very easily at the expressiordse; ¢, thatF. Klein found.
If we assume that the two complexts¢, are given by:

CL=a AL+ alAi,
C =a A+ GZAZ,

in which (see no. 2}, A; should denote the axes of the two complexes wagmtude
unity and A/, A, should denote the surface spaces that are nowmdiem, which

likewise have magnitude 1, sQ/a, = ¢1, a,/a, = £ will be the parameters of the two
complexes, then, due to the fact thatA] = 0, one will obtain:

[C1]| ] =[CiC=a a2 [Ar Al + 1 a'z [A1 A;] + ap ai [A2 A{] .

If the angle between the two axes is denote¢ baynd the shortest distance between
them byA then one will have:

[A1 Al =Asing, [A1 A;] = [A2 A{] = COSg,
SO
[C1]| €] =ara2Asing + (u1 a'z + ap ai ) cos¢g .

Since one further has:
¢12 = [Cl Cl] =2 alai,
C; = [Cz Cz] =2 aza'z,
one will have ():

() Cf., LindemannMath. Ann., VII, pp. 66.
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- [€,]E,] - a,0,Asing + (@a’, +ag'))cosp

cos¢; ¢,
\/ ¢re? 2\/ a,a,a.0,

Asing + %24% |eo _
a, a, _ Asing + (¢, +¢,) cosp

5 af;af’z 2,/ b,
a, a,

13.1f one chooses six mutually-normal complexgs ..., € with unity numerical
values to be the original units then any comgiecan be derived from them numerically.
Letzs, ..., xe be the deriving numbers, so one has:

6
C=n1nC+.. .+ €= zxiQi .
i=1

The numbers; are nothing butF. Klein’'s complex coordinates. If one then inner

multiplies the equation above ky then, sinced; | €] =0 ( <K) and¢? = 1, one will
have:
[€|&] =1i;

i.e., the numbers; will be equal to the moments of the compléxelative to the six
fundamental complexes.
By squaring the equation above, it follows that:

@2: xf++x§ .

¢?is therefore identical with the invariant of a lineay complex.
By inner multiplying the two complexes:

¢ = i?i ¢,
i1

¢ = i?i’ <,
i=1

it follows that:

[€I¢Z]=inx{-

(") Cf., Segre Borch. J., Bd. IC.
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The quantity € | €'] is then identical with the simultaneous invariantha two linear ray
complexes.

Metric relations between linear ray complexes

Every complex in the pencil that is determined by the ¢amplexest; , €, can be
represented in the form €1+ a2 €,. The two special complexes of the pencil will then
be determined by the equation:

(a1C1+ a282)° = a?C2+2a,a,[¢C,|¢ J+a2¢2=0.
11 1*2 1 2 2% 2

They will coincide whenthe equation above d@r a, gives two equal roots, so when one
has:
[¢1] €)% - ¢?¢2=0.

Since, fromA,, no. 177, one has:
[€1 €))7 = €2 €] — [€1]| )%

one can also write the condition equation for thecggc; ¢,] to possess two coincident

special complexes as:
[¢1¢]%=0,

which, from no. 9, says that the numerical value ofghaduct £ &;], or the linear
congruenced; ¢,], is zero. Since the congruence possesses two deiialirectrices in
this case- so it is a special congruencene can say:

A linear congruence is a special one if and only if its numerical valagual to zero.

If ¢; and¢; are themselves special then, due to the fact@hat ¢? = 0, one will

have:
[€1¢] % =—[¢1]|€]] %

In this case, the congruence will be special &r|[¢;] = O; i.e., when the axes df and
¢, cut each other. All complexes of the pencil wiél §pecial then, and their axes will
define a pencil of rays; the common congruence will be@mposable one .

() See:F. Klein, “Uber gewisse in der Liniengeometrie auftretende Difféaégieichungen,” Math.
Ann., Bd. V.
(") Seeloc. cit.
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Every complex in the sheaf of complexes that isrdeteed by the three complexes
¢1, €, €3 can be represented in the foand; + a, €, + a3 3. The special complexes of

the sheaf, whose axes define a ruled family, from noarBEddetermined by the equation:

(01€1 + a2 ¢ + a3 C3)?

= af@f +a§€§+a§¢§+ 2a10a; [Cl |¢2] + 2a1a3 [Cl |¢3] + 2a003 [Cz |¢3] =0.

The polynomial in this equation can be represented asdagirof two linear factors as
long as the determinant satisfies:

¢ [gle][e)e]
[€,1¢] & [€,]¢]|=0
[C1¢][¢s]¢] &

Since, fromA,, no. 175, this determinant is identical with {»¢3]% and thus represents
the square of the numerical value 6f{.¢5], one can also say that the polynomial in the

equation above can be decomposed into two linedoraas long as the numerical value
of [€1€,¢&4] is zero. The equation can then be written inftnen:

(army + azmp + azms) (amng + aznz + asna) = 0,
and the values afi, az, az will the satisfy one of the two equations:

aimy + apmy + agmz = 0, )]

aing +axny +aznz = 0. (V)

All deriving numbersu, ap, az that satisfy () determine special complexegl; + a,¢, +
as&3 with the property that any of them is numericaérivable from two of them, and is
then a pencil of complexes that consists of onbcgd complexes whose axes therefore
define a pencil of rays.

Equation ¢) will also determine such a pencil of rays. Siecgiations £) and ()
have a pair of solutionsg; / as, az / az in common, the two pencils of rays must possess a
common ray. The axes of the special complexeh@fpencil £1¢,¢3] then define a

ruled family that decomposes into two pencils ofsra Since its guiding line then
decomposes into two pencils of rays, in any case,can say:

The necessary and sufficient condition for three compléxeg,, €5 that do not

belong to the same pencil to have a ruled family in common that deconmosaso
pencils of rays i§¢1¢,¢3]? = 0.
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F. Klein called such a ruled famipecial
If one is given four complexe®;, ¢,, €3, &4 whose exterior product is not equal to

zero, but whose numerical values are equal to zerothleesguation:
[Cl ¢ ¢3 @4]2 =0

will be true for them, so it will follow immediatelfrom the concept of inner product
that:
[|¢1¢2¢3¢4]2: 0.

The extended congruence of the pair of r&/se, €3 ¢4] is therefore a special one,
so, from no. 10, the ray-pair that is representedeqyc} €3 ¢4] will consist of two

coincident rays, or apecialray-pair.
If &, €, €3, €4 are special complexes then:

[Cl Cz ¢3 @4]2 =0

will be the condition for there to be just one linettbats its axes.
For five complexes®;, ..., & whose exterior product is not equal to zero, the

equation:
[Cl Cz ¢3 @4 @5]2 =0

likewise represents the condition for one to have®{ | ¢, , ... ¢5]° = 0; i.e., for the

complex that is normal to all five complexes to bepeecial one, or, since the five
complexes must go through its axis, for the five congddar have a common ray.
All complexes of the web of complexes that theyedaine then likewise contain this
ray; such a web shall be callspecial
If the five complexes are all special theh [.. ¢s] 2 = 0 will represent the condition
for its axis to be cut by that ray. If one writes t@ipression, fromf\;, no. 175, as the
determinant:
¢f [¢1|€2] [¢1|€9] [¢]J¢J
[¢2|¢1] Ci [¢2|€3] "'[¢2|€E]

[¢5|¢1] [€3|¢2] [¢5I C:] ¢25

and remarks tha¢’= 0 and £ | € = [€k | ¢ = mi is the moment of the axes of the

special complexes relative to each other then onleoltlin the condition equation for
the five rays to determine a special complex in thenfor
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0 m, Mg - Mg
m,, 0 My -+ My

mg, m, mg--- 0

The exterior product of six arbitrary complexes ..., € represents a number
while the equation:
[€1...C]°=0
then means nothing byt = 0, or:
r=[¢1...¢] =0;

i.e., the six complexes belong to the same bush.
If the complexes are all special thefy [... €g] = 0 will give the condition for their

axes to belong to those linear complexes; if one wthés equation, as above, in the
form:

0 m, Mg Mg
m,, 0 My -+ Mg

Mg, My, My - 0

then it will represent the condition for the six rag$elong to a linear complex.
Since the exterior product of seven compleXgs.., &; is always zero, one will also
always have the equation:
[Qt]_ @7]2 =0.

If the complexes are special then one will obthgnéquation that exists between the
moments of any seven rays in space in the form:

0 m, --- my
My O -my| o
m, my, - 0

Only one of the other easily-obtained equations sleafldsived in order to represent
the method. From no. 10, any five linear ray complexaeraigne a complex that is
normal to them.

Now, let two groups of any five linear ray complexgs..., €s, €, ..., €. be given,
so one seeks the condition for the normal compléat are determined by the two
groups to be normal to each other.
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Since the two normal complexes are given I& |.[.¢s] and | [€; ...¢], from no. 8,
the desired condition equation will read:

| [Cl Cz ¢3 ¢4 ¢5] | [¢'1¢'2¢'3¢'4¢'J =0= [@1 Cz ...¢5 | ¢’1 C;] ,

or in determinant form:
[¢1|¢’1] [€1| €’2] [¢1| C’5]
[¢2|¢’1] [¢2| €’2] [¢2I Ql.ﬂ] -0

[¢5|€’1] [¢5| €’2] [¢5I C’5]

If one assumes that all complexes are special asd&dgte, ] = my here then the
equation:

m, m, - Mg
m, m, - My -0
m, m, - Mg

will give the condition for the linear complexes tlaae determined by those two groups
of five rays to be normal to each other (i.e., todi@volution).

These, and similar, equations are analogous to the kaquations between spheres
and points that were found Barboux for the most part.

This analogy is a complete one, in that it alloms ¢o treat sphere geometry by the
same principles that were applied here to ray geomatiyevery formula in the theory
of extensions can then be interpreted immediatelyenar the other realm.




