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We shall deal with variational problems that admitoatmuous group (in the Lie
sense); the results that this yields for the assettidifferential equations find their most
general expression in the theorems that are formtuleeS 1 and are proved in the
following paragraphs. One can make more precise stateraéout these differential
equations that arise from variational problems than @meabout arbitrary differential
equations that admit a group, which defines the contekied$ investigations. Thus,
what follows rests upon a coupling of the methods of tinendl calculus of variations
with those of the theory of Lie groups. For special graamms variational problems, this
coupling is not new; I mention Hamel and Herglotz for gddmite groups, and Lorentz
and his school (e.g., Fokker), Weyl, and Klein for spenfalite groups’). In particular,
Klein’s second note and the present efforts were mytu#luenced by each other, so |
will refer to the concluding remarks of Klein’s note.

8 1. Prefatory remarksand the formulation of the theorem.

All of the functions that enter into what followkadl be assumed to be analytic, or at
least continuous and continuously differentiable finitefien, and single-valued in the
domain in question.

As one knows, one understands the term “transfoomgtroup” to mean a system of
transformations such that to every transformationuthedl in the system there exists an
inverse, and the composition of any two transformatafribie systems again belongs to
the system. The group is callediaite, continuous group &, when its transformations

) The final version of the manuscript was first subeditat the end of September.

% Hamel: Math. Ann, Bd. 59 and Zeit. f. Math. u. Phys., Bal. Herglotz: Ann. d. Phys. (4) Bd. 36,
esp. 89, pp. 511. Fokker, Verslag d. Amsterdamer Akad., P917, For further literature, cf., the second
note of Klein: Géttinger Nachrichten, 19 July 1918.

In a recently-appearing paper of Kneser (Math. Zed., B, he treated the constructionof invariants by
similar methods.
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are included in the most general group that depends amdliytigpon o essential
parameters (i.e., thep parameters shall not be representable &snctions of fewer
parameters). Correspondingly, one understandsnfamte continuous group G, to

mean a group whose most general transformations dependicaiyl upon p essential,
arbitrary functionsp(x) and their derivatives, or at least, one that ardimeoous and
continuously differentiable finitely often. As aneniediate step between the two, one
finds the groups that depend upon infinitely many parametersndiubn arbitrary
functions. Finally, one refers to thaxed groups as the ones that depend upon arbitrary
functions, as well as parametéys

Let X1, ..., X» be independent variables, and gfx), ..., u/x) be functions that
depend upon them. If one subjects:ttandu to the transformations of a group then, due
to the assumed invertibility of the transformationsjoag the transformed quantities,
there must again be found preciselyndependent onesy;, ..., Yy ; let the remaining ones
that are independent of them be denotesh 0y, ..., v.(y). The derivatives of the with
respect to the — viz.,du / dx, 8°u/ 0X%, ... — can also enter into the transformatidnsA
function is called amvariant of the group when there exists a relation:

ou 9°u B ov 9°v
Pl XU—,—, | =P YW—\1— .|
0x 0x dy oy

In particular, an integrdlbecomes an invariant of the group when there existatore

ou 0°
(1) | = .[...'[f()(,u’a_i’a_xl;,...jdx
ov 92
:J.J.f(y,\/,a_;’a_y\zl,jdy 3)

when one integrates over an arbitrary sedbmain and the correspondipgiomain®).

Y In “Grundlagen fiir die Theorie der unendlichen kontirisleen Transformationsgruppen” (Ber. d.
K. Sachs. Ges. der Wiss. 1891) [cited as “Grundlagen”]defened the infinite, continuous groups to be
transformation groups whose transformations are givahdoynost general solutions of a system of partial
differential equations, as long as these solutions ddefend upon only a finite number of parameters. In
this way, one thus obtains one of the aforementityyes that are different from the finite groups, while,
conversely, the limiting case of infinitely many paraeng does not necessarily need to satisfy a system of
differential equations.

% To the greatest extent possible, | will omit indices,well as summations; hence, one might have
0%u/ 0x’ for 0°u, / 940X, etc.

%) To abbreviate, | writelx, dy for dxy, ..., d%,, dyi, ..., dy .

% All of the argumentx, u, & p(x) that enter into the transformations shall be assumdzk treal,
while the coefficients might be complex. However, sione deals with identities in the u parameters
and arbitrary functions in the final results, they al®o true for complex values, as long as all of the
functions that appear in them are assumed to be analjtigreater part of the results can be established
without integrals, moreover, such that the restrictmthe reals is not necessary for the proof hereeit
On the other hand, the considerations at the conclugi8n? and the beginning of § 5 do not seem to be
practicable without integrals.
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On the other hand, | define the first variatidinfor an arbitrary — not necessarily
invariant — integral, and convert it according to the rules of the calcafugariations by
partial integration. As is known, as long as one mssuthatdu, along with all of the
derivatives that appear, vanish at the boundary, but laeevate arbitrary, it becomes:

2) a= j..-jaf dx = j~--j[Zw{x,u,%,---jduinx,

where ¢ means thd_agrangian expressions, i.e., the left-hand sides of the Lagrange
equations for the associated variational probldm= 0. These integral relations
correspond to an integral-fredentity in du and its derivatives, which arises when one
writes down the boundary terms. As partial integrasbows, these boundary terms are
integrals ovedivergences— i.e., over expressions:

Div A= a_Al+...+ai
0% 0X,

whereA is linear indu and its derivatives. One thus comes to:

3) > W & =&+ DivA.

In particular, iff contains only first derivatives afthen in the case of a simple integral
the identity (3) is identical with the one that Healed the “central Lagrange equation”:

(4) Sudi=a —i[ziauij (u; - du j |

dx| < du dx

while for an-fold integral, (3) goes to:

e 0 of 0| o
(5) LYd=4 x —aauiaui Y Zaaui&‘i
0x, ox,

For a simple integral anglderivatives with respect tq (3) is given by:

(6) 2= -

dx 1)ou® " (1)ou® 1)ou®
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d? 2\ of 3) of @ K\ of )
+ W{Z[(Zj aul(g) 5u| +(2j au|(3) 5UI +...4+ 5 maul + ...

(e

and a corresponding identity is true fefold integrals; in particularAh includesdu up to
its (k — 1)" derivative. The fact that the Lagrangian expmessi/ are, in fact, defined by
(4), (5), (6) follows from the fact that all highderivatives of thedu are eliminated by
way of the combinations on the right-hand side,leyton the other hand, relation (2) is
fulfilled, which leads to the partial integrationiquely.

One now deals with the two theorems in what fodow

sy &
X

d

[. If theintegral | isinvariant under a &, then there will be p linearly independent

couplings of the Lagrangian expressions with divergences; conversely, the invariance of |
under a &, follows from the latter. The theorem is also true in the limiting case of

infinitely many parameters.

[I. If theintegral | isinvariant under a .., in which the arbitrary functions appear

up to their o™ derivatives then there exist r identity relations between the Lagrangian
expressions and their derivatives up to o order; the converseisalso true here %).

The statement of both theorems is true for theethigroups, so dependent, as well as
independent divergence relations will appear.

If one goes from these identities to the assodiaégiational problem — so one sefs
= 0 ?) - then in the one-dimensional case, for which dhergence goes to a total
differential, Theorem | expresses the existenceodirst integrals, between which,
nonlinear dependencies can generally €)jsn the multi-dimensional case, one obtains
divergence equations that are often referred temnthc as “conservation theorems”;
Theorem Il expresses the idea tpatf the Lagrangian equations are consequence®of th
remaining ones.

The simplest example of Theorem Il — without tlewerse — is defined by the
Weierstrass parametric representation. For itjrttegral is known to be invariant due to
its homogeneity of first order when one replaces thdependent variable by an
arbitrary function ok that leaves unchangedy(= p(x); vi(y) = ui(x)). Thus, an arbitrary
function enters in, but without any of its derivats, and this corresponds to the well-
known linear relation between the Lagrangian exgoes themselvesZt/li%:

The “general theory of relativity” of the physia@suill serve as a further example. Here,
one deals with the group of all transformationshefx: y; = pi(x), while theu (which are

) With certain trivial exceptions; cf., § 2, remark 2.
% Somewhat more generally, one can alsa/setT, ; cf., § 3, first remark.
% cf., the conclusion of § 3.
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denoted byg,, and q) will be subjected to transformations that are indubgdthe
coefficients of a quadratic and linear differential famat includes the first derivatives of
the arbitrary functiong(x). They correspond to the well-knowrdependencies between
the Lagrangian expressions and their first derivatiyes

In particular, if one specializes the group by saying ¢in&t allows no derivatives of
the u(x) in the transformations, and, in addition, the tramsfat independent quantities
may depend upon only the but not theu, then that the relative invarian@eof Y A
follows (as will be shown in 8 5) from the invariance lpfand likewise for the
divergences that appear in Theorem |, as long as tlenpters are subjected to certain
transformations. From this, it follows that the @&mentioned first integrals also admit
the group. For Theorem II, one likewise deduces théivelavariance of the left-hand
sides of the dependencies that are composed by meansitcdrg functions, and as a
consequence of this, one has a function whose divergancghes identically and admits
the group that mediates the connection between depeadend the energy theorem in
the relativity theory of the physicisfs. Theorem Il ultimately gives a group-theoretic
proof of an assertion of Hilbert that is connected whil concerning the breakdown of
the proper energy theorems for “general relativity.”th¥hese extra remarks, Theorem |
includes all of the known theorems on first integrals échanics, etc., while Theorem Il
can be regarded as the greatest possible group-theoretialgenen of “general
relativity theory.”

§ 2. Divergencerelations and dependencies.

Let & be a finite or infinite group; one may then alwaysaage that the identity

transformation corresponds to the value zero for thampeters (the arbitrary functions
p(x), resp.)). The most general transformation then takes ttra:fo

ou
L= X, U— -+ | =X +AX + ...
Yi A( ™ j X + AX

) = B.(x,u,a—“,-.-j AL
1)

whereAx; , Au; mean the terms of lower dimensiondrfp(x), resp.) and its derivatives;
indeed, they shall be assumed to be linear in thAmwe will show later, this is no loss
of generality.

Now, let the integral be an invariant unde®, so relation (1) is fulfilled. In

particular,l is then also invariant under the infinitesimahsfrmation:

Yy Cf., perhaps, Klein’s presentation.

)
3 1. e,X¢4 du takes on a factor under transformation.
) Cf., Klein’s second note.

% Cf., perhaps, Lie: “Grundlagen,” pp. 331. If one is awplvith an arbitrary function then the
special valuesa’ of the parameter must be replaced with fixed functips dpdx, ..., and
correspondingly the value$ + £ must be replaced withf + p(x), dp°/dx + dp/dx, etc.

W,
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Yi =X +Ax;, vi(y) = u + Ay

that is included ir®, and under it relation (1) goes to:

(7) 0 =Al = j...jf(y,v(y),g_\;,...jdy - J"'Jf(x’u(x)’%’”'jdx’

where the first integral is taken over thieAx-domain that corresponds to tkelomain.
However, this integration can be converted intoirgegration over thex-domain by
means of the conversion that is true for infiniesiAXx:

(8) j..-jf(y,v(y),g—‘;,..-jdy = jn-jf(x,v(x),%,mjdx+jmjDiv(f [A) [ .

If one then introduces the variation:

a

(9) ou =Vvi(x) —ui(x) = Aui — Ax,

X/l
in place of the infinitesimal transformatidx then (7) and (8) go to:
(10) 0= [--[{8f+Div( f @R} dx.

The right-hand side is the well-known formula tbe simultaneous variation of the
dependent and independent variables. Since tagorel10) is fulfilled under integration
over an arbitrary domain, the integrand must vanddntically; Lie’s differential
equations for the invariance bthen go to the relation:

(11) o f + Div(f (\x) = 0.
If one expressed f from (3) in this using the Lagrangian expressidmsitone gets:

(12) > oy =DivB  (B=A-f[AX),

and this relation thus represents an identity foy avariant integral in all of the
arguments that appear; this is the desired formitss differential equations far?).

1) (12) goes to 0 = 0 for the trivial case when DiMx) = 0, &u = 0 — which can come about only
whenAx, Au also depend upon the derivativesipthese infinitesimal transformations are therefireays
separate from the group, and only the number of thainémy parameters or arbitrary functions are to be
counted in the formulation of the theorems. Whethenat the remaining infinitesimal transformations
still define a group must remain undecided.
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Now let & be assumed to befmite, continuous group, to begin with. Since, by

assumptionAu andAx are linear in the parametess ..., &, from (9), the same thing is
true for du and its derivatives; therefor&,andB are linear in the. | therefore set:

B=BYa+..+B?¢,  du=duVe+--+ouPe,,

where thedu®, ... are thus functions of u, du / dx, ..., so the desired divergence
relations follow from (12):

(13) > wou® =DivBY, ..., Y w.ou = DivBY.

One thus has p linearly-independent couplings of the Lagrangian expressions with
divergences, the linear independence follows from the fact thatnf(9), it would follow

that du= 0, Au = 0, Ax = 0, so there would be a dependency between the infiniesim
transformations. However, by assumption, such a thingtigulfilled for any parameter
values, since otherwise tl®&, that further arises from the infinitesimal transfations

by integration would depend upon less thanessential parameters. The further

possibility that du= 0, Div(f Ax) = 0 was, however, excluded. These conclusions are
also still true in the limiting case of infinitely mapgrameters.

Now, let® be an infinite, continuous group; du and its derivatives, and therefore
also B, will be linear in the arbitrary functionp(x) and their derivatives). By
substituting the values a¥u, still independently of (12), let:

2 Wou =
ap(/‘) 0° p(/‘)
3 e T
A

One may now, analogously to the formula for partigg¢gnation, replace the derivatives
of p with p itself and divergences that are lineapiand its derivatives using the identity:

o(x U, ...) % = (—1)T|Zf;%[p(x) mod divergences.

One thus gets:

(14) D you =

@) _i (1) o4 (— ai ) D = i _
;{(a W) ax(h ) +---+(-1) o (c wi)}p Div(B —T).

) The fact that it is no restriction to assume thaptaee free of the, du/dx, ... shows the converse.
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| now construct then-fold integral of (15), taken over any domain, and choose(tk)
such that they vanish on the boundary®#(I"), along with all of the derivatives that
appear. Since the integral of a divergence reduced®dnirzdary integral, the integral of
the left-hand side of (15) thus also vanishes for arbitpéxy that only vanish on the
boundary, along with sufficiently many derivatives, arahfrthis, it follows, by a well-
known argument, that the integrands vanish for@#ry so one has therelations:

(16) Z{(&wlﬂi)—%(h“)wi)*-*(—l)”:%(C.“)lﬂi )} =0 @d=12..0.

These are the desired dependencies between the Lagrangian expressions and their
derivatives for the invariance of | under &.., ; the linear independence is clear, as above,

since the inverse leads back to (12), and since one cangmdrom the infinitesimal
transformations back to the finites ones, as will beedmore thoroughly in § 4. Thuyg,
arbitrary transformations already appear in the infanib@l transformations for &.,.

From (15) and (16), it then follows that DB/&T") = 0.

If one correspondingly assumes a “mixed groupMAofindAu that are linear in the
and thep(x) then one sees, when one setspx® equal to zero and then tlethat the
divergence relations (13) exist, as well as the depende(ite.

8§ 3. Conversein the case of thefinite group.

In order to show the converse, one must essenfialiyw through the foregoing
argument in the opposite sequence. The validity of @®ws from the validity of (13)
upon multiplication bys and addition, and by means of the identity (3), this egph
relation: & f + Div(A —B) = 0. If one then seté&x = 1f (A —B) then one arrives at (11)

as a result of this. From this, (7) finally follows byegration:Al = 0, and thus the
invariance of under the infinitesimal transformation that is determhibgAx, Au, where
the Au is to be determined fromix and Ju by means of (9), anflx and Au become
linear in the parameters. HowevAt, = 0 implies, in a well-known way, the invariance
of | under the finite transformations that arise by integgahe simultaneous system:

a7 %:Axi, %:Aui )g:yfort:O :
dt dt u =V

These finite transformations inclugeparametersy, ..., a, namely, the couplings
ta, ..., t& . From the assumption that there shoulglaad onlyp linearly independent
divergence relations (13), it follows moreover tha¢ timite transformations always
define a group, as long as they do not include the dershiv/ 0x. In the opposite case
— namely, at least one infinitesimal transformatioises from the Lie bracket process
there would be no linear coupling of tjperemaining divergence relations, and sihce
also admits this transformation, there would be mdwanto linearly independent
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divergence relations, or else this infinitesimal transftion would be of the special
form in which du = 0, Div({f (\x) = 0, but them\x or Au would depend upon derivatives,
contrary to assumption. Whether or not this caseocanr when derivatives appear in
Ax or Au must remain undecided. One then adds all functloarfer which Divf [AX) =

0 to theAx that was determined above in order to once more peeflee group property.
By convention, the parameters that are thus added shalhomogver, be counted. The
converse is thus proved.

From this converse, it then follows that, in faik and Au can be assumed to be
linear in the parameters. NamelyAii andAx were of higher degree mthen, due to the
linear independence of the products of powers, @ntirely analogous relations to (18)
would follow, only in a greater number, from which, by @nverse, one infers the
invariance ofl under a group whose infinitesimal transformations incthhdeparameters
linearly. Should this group contain precisgiparameters, then there would have to exist
linear dependencies between the original divergence medatioe to the terms of higher
order iné&.

Let it be remarked that in the case whiaxeandAu also contain derivatives of the
the finite transformations can depend upon infinitely mdesivatives of thel. In this

2 2
AT
dt> * dt? ox,

case, the integration of (17) then leads from the detatian of

_ aAu_Z ou 0Au,
0X 0x, OX

K K K

each step. Perhaps the following will serve as an pleam

, such that the number of derivativesw®fenerally increases at

f=3u?,  g=-u, g (u-uR, du=xlk
X
Ax:%zﬂug, Au:(x—z—fjj&.
u u

Since the Lagrangian expression of a divergenceskias identically, the converse
ultimately shows the following: If admits a®, then any integral that differs frohonly

by a boundary integral — i.e., an integral of eedgjence — will likewise admit &, with
the samedu, whose infinitesimal transformation will generadigntain derivatives of the

2
u. Thus, perhaps referring to the example abéve; %{u’z—%(%j} admits the

infinitesimal transformatio\u = xg&, Ax = 0, while derivatives of the appear in the
infinitesimal transformations that correspond.to
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If one goes on to the variational problenie., if one setgs = 0%) - then (18) goes
to the equations: DiBY = 0, ..., Div B® = 0, which are often referred to as
“conservation laws.” In the one-dimensional caségliows from this thaB®) = const.,
..., B®? = const., and therefore tBecontain at most (2— 1)" derivatives of the: (from
(6)), as long adu andAx include no higher derivatives thadl that appear ifi. Since
2" derivatives appear i, in generaf), one thus has the existenceafirst integrals.
Thef above once more shows that nonlinear dependencies crbetween them. The
linearly independemu = &, Ax = & correspond to the linearly independent relatiaris:
= %u’, u'du = %%(u’)z, while a nonlinear dependency exists between the first
integralsu’ = const.u’® = const. Thus, one is dealing with the elementarg @asvhich
Au, Ax contain no derivatives of the®).

84. Conversein the case of infinite groups.

First, let us show that the assumption of the libgasf Ax and Au presents no
restriction, which one deduces here without the conviense the fact that.,, formally
depends upow and onlyp arbitrary functions. Namely, it shows that in theninoear

case the number of arbitrary functions would increasdemurthe composition of
transformations in which the terms of lowest order wauld together. In fact, let, say:

y:A(X,u’@’..-;pj:X-an(X, u’ )pv+b(xlul)pv_l@
0x 0x
opY’ 6pj” ’
+ept =S|+ d | |+ V= (pM)%4, ..., (p*)7),
p (axj (ax (p"= (p¥)%, ... (p))
and analogouslyv = B(x,u,%,m;pj, so under composition withz =

A(y,v,? ;qj, one gets, for the terms of lowest order:
y

Y =0, or, more generallyy = T; ¢, whereT, are new functions that are to be added to the others,
are referred to as “field equations” in physics. le tasey = T;, the identities (13) go to identities: Div
BY = ¥ TAu™ , which are also referred to as conservation lavghirsics.

%) Aslong ad is nonlinear in the™ derivatives.

%  Otherwise, one would haw&' = const. for anyl, corresponding to:

I ! - 1 d T
u Oqury? l=7&(u)”.
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2 2
z=x+Xap +q) +b{p”‘l@+q”‘1a—q} +c p”‘z(@j +q”‘2(%j + .
0X 0X 0X 0X

If a coefficient that is different from andb here is different from zero then a term

p’? (?j + q7° (g—qj actually appears for > 1, so one cannot write this as the
X X

differential quotient of a single function or productfspowers of them; the number of
arbitrary functions thus has increased, contrary tonaggan. If all of the coefficients
that are different frona andb vanish then each of the values of the exponents., v,
will be the second term of the differential quotientlad first one (as is always the case
for, e.g., a®.1), such that linearity actually enters in, or else nhenber of arbitrary
functions would also increase here. Due to the linearftyhe p(x), the infinitesimal
transformations thus satisfy a system of linear padifédrential equations, and since the
group property is fulfiled, they define an “infinite groupf anfinitesimal
transformations,” by Lie’s definition (Grundlagen, 8§ 10).

One deduces the converse now in a manner that isasitoithe one in the case of
finite groups. The existence of the dependencies (16) legas) multiplication by
p”(x) and addition, using the identity conversion (14)Xay,du, = Div I, and from

this, as in 8§ 3, one infers the determinatiol\rfand Au and the invariance dfunder
these infinitesimal transformations, which, in factpelad linearly upono arbitrary
functions and their derivatives up to order The fact that these infinitesimal
transformations, when they include no derivativad 0x, ..., certainly define a group
follows, as in § 3, from the fact that otherwise matateary functions would appear by
composition, while, by assumption, there shall be gniyependencies (16); they thus
define an “infinite group of infinitesimal transformations.However, such a thing
consists (Grundlagen, Theorem VII, pp. 391) of the mostergéninfinitesimal
transformations of a certain “infinite grow of finite transformations,” in Lie’s sense.
Every finite transformation will then be generated bynitésimal ones (Grundlagen, 8
7)1, and thus arise from the integration of the simeltars system:

%zAxi, %z Ui, [j :)//' fortzoj,

in which, it can, however, be necessary to choosarthitraryp(x) to be independent of
& thus depends, in fact, on p arbitrary functions; in particular, if it suffices to choose

p(X) to be free of then this dependency will be analytic in the arbitrary fions q(x) =t

Y From this, it follows, in particular, that the grow that is generated by the infinitesimal
transformationsAx, Au of a ., again leads back t®., . 6., then includes no infinitesimal

transformations that are different frafx, Au that depend upon arbitrary functions, and can also contain
none that are independent of them that depend upon paransgteesit would then be a mixed group.
However, from the above, the finite transformatioresdatermined by means of the infinitesimal ones.
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[p(x) Y). If derivativesdu / dx, ... appear then it can be necessary to add infinitesimal
transformationsdu = 0, Div(f \X) = 0 before one can reach the same conclusion.

In connection with an example of Lie (Grundlagen, 8eét)a somewhat more general
case be given, where one can advance to expliciiuias that likewise show that the
derivatives of the arbitrary functions up to ordeappear, from which the converse is
then complete. It is the example of those groupsfaiitesimal transformations that
correspond to the group of all transformations ofxfand the transformations of the
that are “induced” by them; i.e., those transformatiohghe u for which Au, and
consequently, depend upon only the arbitrary functions that appedx.invhereby let it
be assumed that the derivatives/ 0x, ... do not appear iAu. One thus has:

n

i (1) o ()
Ax =pP(x),  Au= Y da® (x,u)p®” RO O Al i
=1 ox ox’

Since the infinitesimal transformatidx = p(x) generates any transformatios y + g(y)
with arbitraryg(y), in particular,p(x) can be determined to be independertt stich that
the following one-parameter group will be generated:

(18) X =i+t DY),

which goes to the identity fdr= 0 and to the desired=y + g(y) fort = 1. In fact, it
follows by differentiation of (18) that:

(19) % = g(y) = p"(x, 1),

wherep(x, t) is determined frong(y) by inversion, and conversely, (18) arises from (19)
by means of the auxiliary condition that=y; for t = 0, by which, the integral is
established uniquely. By means of (18),xhe Au can be replaced with the “integration
constants”y andt; thus, theg(y) appear up to precisely thd" derivatives when one

expresses thay / dx in terms ofox / dy in %P = za_gayK , and, in general, replaces
0X oy, ox
g f with its values in terms o%g ) eees ? g [),( For the determination of the
y y

one then gets the system of equations:

u, dg 079
— =F — e, Ut u=vifort=0
a .(g(y) PYRE Y u j ( )

) The question of whether this latter case always scaas posed by Lie in a different formulation
(Grundlagen, 8§ 7 and § 13, conclusion).
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in which onlyt andu are variable, but thg(y), ... belong to the coefficient domain, such
that the integration yields:

u=Vv+ BI (V,g(y),a_g’... ,a_g ’tj ,
oy oy -

and therefore transformations thagpend upon precisely o derivatives of the arbitrary
functions. From (18), the identity is included in this fg(y) = 0, and the group property
follows from the fact that the chosen process produngdransformatiorx =y + g(y),
from which the one that is induced on thés established uniquely, so the gratipwill

be exhausted.
Incidentally, it then follows from the converse tilitais no restriction to choose the

arbitrary functions to depend upon only thebut not on thes, du / dx, ... In the latter

) )
case, in fact,ag : %FL)I enter into the identity transformation (14), as vesllinto

u

9 ...
0x

(15), in addition to the"™. If one now chooses ¥ to be successively of degree zero,
one, ... inu, du / 9%, ..., with arbitrary functions ok as coefficients, then the

dependencies (16) emerge again, but in greater numbers, \woseyver, from the
converse above, lead back to previous case under compaositlo arbitrary functions
that depend upon only. One likewise shows that the simultaneous appearahce o
depensciencies and divergence relations that are indepefdbat corresponds to mixed
groups).

%) Asin § 3, it also follows from the converse herattlalong withl, also any integrdl that differs by

a divergence likewise admits an infinite group with theesdu , in which, howeverAx and Au will
generally include derivatives of the Einstein has introduced such an integral into the getteraty of
relativity in order to obtain a simpler statement loé tenergy theorem; | shall give the infinitesimal
transformations that this admits, for which | preserve the notation of Klgisecond note precisely. The

integrall = .../ K dw = [...] & dS admits the group of all transformations of theand the one that it
induces org,,; they correspond to the dependencies ((30), in Klein):
09" R, _

18,0 +25=, 5 =0.

Now, one hast” =/...] & dS wheref” = & + Div, and consequently, one will havet, = &, , where
RU

8w mean the Lagrangian expressions in each caseeféhe the dependencies that were given are
a H - T H H
also true for ,, and after multiplying bp" and adding, one gets by the reverse conversion of tiieiqt

differentiation:
28w PY+2DivEg7R. p) =0,

R + Div (z 29" R, pr-24 p’”] =0.

9g;”

Comparing this with Lie’s differential equatiod&” + Div(] Aw) = 0, it then follows that:



Noether — Invariant variational problems 14

8 5. Invariance of the individual components of the relations.

If one specializes the grou® to the simplest case that is ordinarily considered by
specifying that one allows no derivatives of then the transformations and that the
transformed independent variables depend upon only,tbhat not theu then one can
deduce the invariance of the individual components in thedtas. First of all, this
yields, from known reasons, the invariance[ofl (C¢ Au) dx; thus, one infers the
relative invariance oE ¢ dui 1), where we understandito mean any variation. In fact,
one has, on the one hand:

a=|- jéf(xug jdx_j jéf(yvgy jdy,

and, on the other hand, fdu, J%, ... that vanish on the boundary, due to the linear,
X
. ou ov
homogeneous nature of the transformation ofdh]eéa—, ..., the ov, 5a—y, ... also
X

vanish on the boundary, so one has, correspondingly

jjéf(xug jdx—j sz//(u )du, ) dx,

oot [ yudt oy = [ [ (Sun..e)ay

and it follows that foru, J%, ... that vanish on the boundary:
X

[+ [Xw,..)eu)d = [ [(Xew....)dv)dy
= j...j(zwi(v,...)avi)gldx

If one expresseg, v, ov in the third integral in terms of u, au and one sets it equal to
the first one then one has a relation:

AW = (z 29" R, p'- ] AG” = p + 3 g W

0

are infinitesimal transformations thiatadmits. These infinitesimal transformations thus depgrmh the
first and second derivatives of th#, and include the arbitragyup to the first derivatives.

Y le., under transformationL¢4 di takes on a factor, which is always referred to aativel
invariance in the algebraic theory of invariants.



Noether — Invariant variational problems 15

[ [(Xx..)ou)d=0

for adu that vanishes on the boundary, but is otherwise anpiteand, as is known, the
vanishing of the integrands for arbitrady follows from this;one thus has the following
relation identically in au:

Sy ) d = ‘g—i’ S W ..)dn),

which expresses the relative invariance of X ¢ du;, and consequently, the invariance of
[LJCwan?d.

In order to apply this to the derived divergence relatiand the dependencies, one
must first confirm that thedu that is derived from théu, Ax actually satisfies the
transformation laws for the variatiodu, as long as only the parameter (arbitrary
functions, resp.) iV are determined in a way that corresponds to the wayttegtare
determined for the similar group of infinitesimal transfations iny, v. Let T, denote

the transformation that tak&su toy, v; sincey is an infinitesimal irx, u, the one that is
similar to it iny, v is given byt = %%, T, ', where the parameters (arbitrary functions
resp.) are therefore determined frprandg. One expresses this in formulas as:

Ty E=X+ XX ), u =u+Aux u, p),
Tq:  Y=AKX 0, v =B(X, u, g),
TaZp: N =AX+AX(X p), 9), V' = B(x + Ax(p), u + Au(p), q).

From this, one has, howeveT, =TT, T.*, so:

) This conclusion breaks down whgnalso depends upon the since thendf (yvgvj also

includes terms like® g—fay, so the divergence conversion does not lead to thenhgigin expressions, just
y

ou
as when one allows derivatives of tinghen, in fact, thev will lead to linear combinations @u, d—,

0X
..., so after a further divergence conversion this #ld to an identity...] (X x (u, ...) &) dx = 0, such
that the Lagrangian expressions once again do not apptes nght-hand side.

The question of whether one can also already conchalexistence of divergence relations from the
invariance ofl...] (X ¢ du) dx is, from the converse, equivalent to the question léther one can
conclude that from the invariancelofinder a group that does not necessarily lead to the Aande, but
still leads to the saméu . In the special case of simple integrals and on$y fierivatives irf, one can
deduce the existence of first integrals from the invagaof the Lagrangian expressions for finite groups
(cf., e.g., Engel, Gott. Nachr. (1916), pp. 270.).
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AX(p),

n=y+8y(r) =y + ZaAg(’q)

aB(x u,q) aB(x u,q)

V SVHAV() =v+ Y SR AX(p) + Y L Au(p)

One replacex = x + Ax in this with {—-A¢, from which, x again goes tx, so Ax
vanishes; thus, from the first formula in (2@)also again goes tp= 77— An. If Au(p)
goes todu(p) thenAv(r) also goes t@dVv(r), and the second formula in (20) gives:

v+ OV(Y,V,...,r) =v+ ngu(p),

OV(Y,V,...,r)= ZSTBEUK(X,U, ),

such that the transformation formulas for variations are, in fact, therefore fulfilled, as
long as JV isassumed to depend only on the parameters (arbitrary functionsr, resp.) %).
In particular, the relative invariance oZz,llia_'ui then follows; thus, the relative

invariance of DivB also follows, since the divergence relations dse &lfilled invy, v,
and furthermore, from (14) and (13), one also Imesrelative invariance of DiV and
that of the left-hand side of the dependencies,nd@mposed with the®’, where the
arbitraryp(x) (the parameters, resp.) are always replacedtivth in the transformation
formulas. This then yields the relative invariaméeDiv(B — I'), and therefore that of a
divergence of a non-vanishing system of functi@ns ' whose divergence vanishes
identically.

From the relative invariance of DB, one may, in the one-dimensional case and for
finite groups, draw a conclusion about the invar@af the first integrals. The parameter
transformation that corresponds to the infinitesitnansformation will, from (20), be
linear and homogeneous, and due to the invertitwfitall transformations, thewill also
be linear and homogeneous in the transformed paess#e. This invertibility certainly
remains preserved when one sgts 0, since no derivatives of tiieenter into (20). By
equating the coefficients of thin:

Div B(x, u, ..., & :% Div B(y, v, ..., £),
X

) This again shows thgtmust be assumed to independent,aétc., in order for the conclusion to be
valid. As an example, let us, perhaps, mentiordtffeanddy, that were given by Klein, which satisfy the
transformations for variations, as longpas subject to a vector transformation.
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the din“)(y, v, ...) will then be linear, homogeneous functions of %%d.%“)(x, u, ...),
X

such that fromdi BY(x, u, ...) = 0 orBY(x, u) = const. it also follows that(:ji BY(y, v,
X y

...) = 0 orB¥(y, v) = const. Thefirst pintegrals that correspond to a & , thus admit the

group in any case, such that the further integration is also simplifie@ihe simplest
example of this is the one in whi¢his free ofx or oneu, which corresponds to the

transformatiom\x = & Au =0 (Ax = 0,Au = &, resp.). One hadu= —5% (& resp.), and
X

sinceB can be derived frorhand du by differentiation and rational couplings, it is then
also free ok (u, resp.) and admits the corresponding grdiips

8 6. An assertion of Hilbert.

From the foregoing, one ultimately finds the proof m&asertion of Hilbert about the
connection between the break-down of the proper en¢éhgprem and “general
relativity” (Klein’s first note, Gottinger Nachr. (1917),saver, first passage), and indeed,
in a generalized group-theoretic context.

Let the integrall admit a®., , and let&, be any finite group that arises from
specializing the arbitrary functions, so it is a subgrotip.,. The infinite groupBe,
then corresponds to dependencies (16), and the finitebgndo divergence relations
(13), and conversely, it follows from the existencerof aort of divergence relations that
| is invariant under a finite group that is identicaltg when and only when théu are
linear combinations of the ones obtained frém. The invariance unde$, can thus
lead to no divergence relations that differ from (1Bowever, since the invariance lof
under the infinitesimal transformationsi, Ax of B, for arbitraryp(x) follows from the
validity of (16), it already follows from this, in pagtilar, that it is invariant under the
infinitesimal transformations a®, that arise by specialization, and consequently, under
®,. The divergence relationsy ¢ "du®= Div B” must then must then be
consequences of the dependencies (16), which can alsoittenw)_¢.a® = Div X,

where they”” are linear couplings of the Lagrangian expressions ariddbevatives.
Since they enter into (13), as well as (16), linearly, the divergemdations must then be
linear combinations of the dependencies (16), in particafad, theB” themselves are

) In the case where the existence of first integratsadly follows from the invariance b{X ¢ )
dx, they do not admit the complete graéip ; e.g.] (u" du) dx admits the infinitesimal transformatiofix
=& ,Au= g + x& , while thefirst integralu — u'x = const., which correspondsAa = 0, Au = x&, does
not admit the other two infinitesimal transformatiosigice it includes), as well ax, explicitly. This first
integral corresponds simply to infinitesimal transfations off that include derivatives. One then sees
that, in any case, the invariancelof] (X ¢ &) dx is achieved less often than the invariance @fhich
responds to a question that was posed in a previous remark.
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thus composed linearly from the — i.e., from the Lagrangian expressions and their
derivatives, and from functions whose divergences vadesftically, like perhaps thB
— T that appeared in the conclusion to § 2, for which Biv-(") = 0 and the divergence
likewise has the invariant property. | will refer to diyence relations for whicB" of
the given kind can be composed from the Lagrangian expnssand their derivatives as
“unreal,” and all others as “real.”

Conversely, if the divergence relations are linear cogplof the dependencies (16) —
hence, “unreal’ — then the invariance undgyfollows from the invariance und&.., ;

&, becomes a subgroup &.,. The divergence relations that correspond to a finite
group &, will then be unreal when and only when & is a subgroup of an infinite group

that | isinvariant under.
The original Hilbert assertion is obtained from thisspgcializing the group. Let the
term “translation group” mean the finite group:

Yi=xi+&, Vi(y)=u(X,
SO
AX = &, Au =0, ou=- CLY
70X,

£, .

As is known, invariance under the translation group espethe idea that thedo not

enter intol = j---jf(x,u,g—u,...jdxexplicitly. Let the associateth divergence
X

relations:

Zwig% = Div BY 1=1,2,..n)
A

be referred to as “energy relations,” since thentevation law” DivBY = 0 that
corresponds to the variational problem correspdadhe “energy law,” while th&"
correspond to the “energy components.” One thenlh& admits the trandation group
then the energy relations become unreal when and only when | is invariant under an
infinite group that includes the translation group as a subgroup %).

An example of such an infinite group is given bg group of all transformations of
the x, along with those induced transformations of wi¥§ in which only derivatives of
the arbitrary functionp(x) appear; the translation group then arises byiafing p®(x)
= & . Therefore, it must remain undecided whetherntiost general of these groups is
therefore already given — along with the groups$ #nge from alterind by a boundary
integral. Induced transformations of the givert soise perhaps when one subjectsiuthe
to the coefficient transformations of a “total @iféntial form;” i.e., a fornt ad'x + > b
d"*x dx, + ... that includes higher differentials, in additimnthedx. Special induced
transformations for which the(x) only appear in the first derivatives are giventbg

%) The energy law in classical mechanics, and likewisthe older “relativity theory” (wher& dx?
goes to itself), are “unreal,” since no infinite groappear there.
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coefficient transformations of ordinary differettfarms > ¢ dx_...dx , and ordinarily

one has considered only these.
Another group of the given kind that cannot be a coefficieansformation, due to
the appearance of logarithmic terms, is perhaps thenolipone:

y=x+px), Vvi=ui+In(L+p(x))=u+In %’

X
Ax=p(),  Au=pK) Y, U =p() - up(x).

Here, the dependencies (16) become:

Z(wiui’ +%J =0,

while the unreal energy relations become:

, d(y, +const.)) _
5y S eons)

The simplest invariant integral for the group is:

g

dx.

| =
jq—%
The most generdlis determined by integrating Lie’s differentialuadgion (11):

of +i(f [Ax) =0,
dx
which goes to:

of of of of
— + — U+ fip(X)+ —p' =0
5 PO { T }p(x) {2‘, au,,,}p(x)

(identically inp(X), p'(xX), p"(xX)) by substituting the values ak and du, as long as one
assumes thdt depends upon only first derivatives of tlne This system of equations
already possesses solutions that actually inclbdederivatives for two functiong(x),
namely:

f= (ui—u;)cb[ul—uz,,e—j,

ul_u'2

) One computes the finite transformations from thafieifesimal ones backwards from the method
that was given in the conclusion of § 4.
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where® means an arbitrary function of the given arguments.

Hilbert expressed his assertion in such a way thatbteek-down of the proper
energy law was a characteristic feature of the “gdrteeory of relativity.” In order for
this assertion to be literally true, the term “genesdativity” must then be further
regarded as it usually is, and also extended to the previoupgytbat depend upam
arbitrary functions).

) With this, the validity is again confirmed of a relaf Klein that the usual terminology “relativity”
in physics should be replaced with “invariance under a grgtipber die geometrischen Grundlagen der
Lorentzgruppe,” Jber. d. deutsch. Math. Ver&ih(1910), pp. 287; printed in Phys. Zeit.)



