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 We shall deal with variational problems that admit a continuous group (in the Lie 
sense); the results that this yields for the associated differential equations find their most 
general expression in the theorems that are formulated in § 1 and are proved in the 
following paragraphs.  One can make more precise statements about these differential 
equations that arise from variational problems than one can about arbitrary differential 
equations that admit a group, which defines the context of Lie’s investigations.  Thus, 
what follows rests upon a coupling of the methods of the formal calculus of variations 
with those of the theory of Lie groups.  For special groups and variational problems, this 
coupling is not new; I mention Hamel and Herglotz for special finite groups, and Lorentz 
and his school (e.g., Fokker), Weyl, and Klein for special infinite groups 2).  In particular, 
Klein’s second note and the present efforts were mutually influenced by each other, so I 
will refer to the concluding remarks of Klein’s note. 
 
 

§ 1.  Prefatory remarks and the formulation of the theorem. 
 

 All of the functions that enter into what follows shall be assumed to be analytic, or at 
least continuous and continuously differentiable finitely often, and single-valued in the 
domain in question. 
 As one knows, one understands the term “transformation group” to mean a system of 
transformations such that to every transformation included in the system there exists an 
inverse, and the composition of any two transformations of the systems again belongs to 
the system.  The group is called a finite, continuous group Gρ when its transformations 

                                                
 1) The final version of the manuscript was first submitted at the end of September.  
 2)  Hamel: Math. Ann, Bd. 59 and Zeit. f. Math. u. Phys., Bd. 50.  Herglotz: Ann. d. Phys. (4) Bd. 36, 
esp. § 9, pp. 511.  Fokker, Verslag d. Amsterdamer Akad., 27/1, 1917.  For further literature, cf., the second 
note of Klein: Göttinger Nachrichten, 19 July 1918. 
 In a recently-appearing paper of Kneser (Math. Zeit., Bd. 2), he treated the constructionof invariants by 
similar methods. 
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are included in the most general group that depends analytically upon ρ essential 
parameters s (i.e., the ρ parameters shall not be representable as ρ functions of fewer 
parameters).  Correspondingly, one understands an infinite continuous group G∞ρ to 

mean a group whose most general transformations depend analytically upon ρ essential, 
arbitrary functions p(x) and their derivatives, or at least, one that are continuous and 
continuously differentiable finitely often.  As an intermediate step between the two, one 
finds the groups that depend upon infinitely many parameters, but not on arbitrary 
functions.  Finally, one refers to the mixed groups as the ones that depend upon arbitrary 
functions, as well as parameters 1). 
 Let x1, …, xn be independent variables, and let u1(x), …, uµ(x) be functions that 
depend upon them.  If one subjects the x and u to the transformations of a group then, due 
to the assumed invertibility of the transformations, among the transformed quantities, 
there must again be found precisely n independent ones: y1, …, yn ; let the remaining ones 
that are independent of them be denoted by v1(y), …, vµ(y).  The derivatives of the u with 
respect to the x – viz., ∂u / ∂x, ∂2u / ∂x2, … − can also enter into the transformations 2).  A 
function is called an invariant of the group when there exists a relation: 
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In particular, an integral I becomes an invariant of the group when there exists a relation: 
 

(1)     I = 
2
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∫ ∫⋯ ⋯  

     = 
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∫ ∫⋯ ⋯  3) 

 
when one integrates over an arbitrary real x-domain and the corresponding y-domain 4). 

                                                
 1) In “Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen” (Ber. d. 
K. Sächs. Ges. der Wiss. 1891) [cited as “Grundlagen”], Lie defined the infinite, continuous groups to be 
transformation groups whose transformations are given by the most general solutions of a system of partial 
differential equations, as long as these solutions do not depend upon only a finite number of parameters.  In 
this way, one thus obtains one of the aforementioned types that are different from the finite groups, while, 
conversely, the limiting case of infinitely many parameters does not necessarily need to satisfy a system of 
differential equations. 
 2) To the greatest extent possible, I will omit indices, as well as summations; hence, one might have 
∂2u / ∂x2 for ∂2uα / ∂xβ ∂xγ , etc. 
 3) To abbreviate, I write dx, dy for dx1, …, dxn, dy1, …, dyn .  
 4) All of the arguments x, u, ε, p(x) that enter into the transformations shall be assumed to be real, 
while the coefficients might be complex.  However, since one deals with identities in the x, u parameters 
and arbitrary functions in the final results, they are also true for complex values, as long as all of the 
functions that appear in them are assumed to be analytic.  A greater part of the results can be established 
without integrals, moreover, such that the restriction to the reals is not necessary for the proof here either.  
On the other hand, the considerations at the conclusion of § 2 and the beginning of § 5 do not seem to be 
practicable without integrals. 
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 On the other hand, I define the first variation δI for an arbitrary – not necessarily 
invariant – integral I, and convert it according to the rules of the calculus of variations by 
partial integration.  As is known, as long as one assumes that δu, along with all of the 
derivatives that appear, vanish at the boundary, but are otherwise arbitrary, it becomes: 
 

(2)    δI = f dxδ∫ ∫⋯  = , , ,i i

u
x u u dx

x
ψ δ ∂  
  ∂  

∑∫ ∫⋯ ⋯ , 

 
where ψ means the Lagrangian expressions; i.e., the left-hand sides of the Lagrange 
equations for the associated variational problem δI = 0.  These integral relations 
correspond to an integral-free identity in du and its derivatives, which arises when one 
writes down the boundary terms.  As partial integration shows, these boundary terms are 
integrals over divergences – i.e., over expressions: 
 

Div A = 1
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where A is linear in δu and its derivatives.  One thus comes to: 
 

(3)     ∑ ψi δui = δf + Div A. 
 
In particular, if f contains only first derivatives of u then in the case of a simple integral 
the identity (3) is identical with the one that Heun called the “central Lagrange equation”: 
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while for a n-fold integral, (3) goes to: 
 

(5)   ∑ ψi δui = δf −
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For a simple integral and κ derivatives with respect to u, (3) is given by: 
 

(6)     ∑ ψi δui = δf − 
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and a corresponding identity is true for n-fold integrals; in particular, A includes δu up to 
its (k – 1)th derivative.  The fact that the Lagrangian expressions ψi are, in fact, defined by 
(4), (5), (6) follows from the fact that all higher derivatives of the δu are eliminated by 
way of the combinations on the right-hand side, while, on the other hand, relation (2) is 
fulfilled, which leads to the partial integration uniquely. 
 One now deals with the two theorems in what follows: 
 
 I. If the integral I is invariant under a Gρ then there will be ρ linearly independent 

couplings of the Lagrangian expressions with divergences; conversely, the invariance of I 
under a Gρ follows from the latter.  The theorem is also true in the limiting case of 

infinitely many parameters. 
 
 II.  If the integral I is invariant under a G∞ρ , in which the arbitrary functions appear 

up to their σ th derivatives then there exist r identity relations between the Lagrangian 
expressions and their derivatives up to σ th order; the converse is also true here 1). 
 
 The statement of both theorems is true for the mixed groups, so dependent, as well as 
independent divergence relations will appear. 
 If one goes from these identities to the associated variational problem – so one sets ψ 
= 0 2) – then in the one-dimensional case, for which the divergence goes to a total 
differential, Theorem I expresses the existence of ρ first integrals, between which, 
nonlinear dependencies can generally exist 3); in the multi-dimensional case, one obtains 
divergence equations that are often referred to recently as “conservation theorems”; 
Theorem II expresses the idea that ρ of the Lagrangian equations are consequences of the 
remaining ones. 
 The simplest example of Theorem II – without the converse – is defined by the 
Weierstrass parametric representation.  For it, the integral is known to be invariant due to 
its homogeneity of first order when one replaces the independent variable x by an 
arbitrary function of x that leaves u unchanged (y = p(x); vi(y) = ui(x)).  Thus, an arbitrary 
function enters in, but without any of its derivatives, and this corresponds to the well-

known linear relation between the Lagrangian expressions themselves: i
i

du

dx
ψ∑ = 0.  

The “general theory of relativity” of the physicists will serve as a further example.  Here, 
one deals with the group of all transformations of the x: yi = pi(x), while the u (which are 
                                                
 1) With certain trivial exceptions; cf., § 2, remark 2.  
 2) Somewhat more generally, one can also set ψi = Ti ; cf., § 3, first remark. 
 3) Cf., the conclusion of § 3.  
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denoted by gµν and q) will be subjected to transformations that are induced by the 
coefficients of a quadratic and linear differential form that includes the first derivatives of 
the arbitrary functions p(x).  They correspond to the well-known n dependencies between 
the Lagrangian expressions and their first derivatives 1). 
 In particular, if one specializes the group by saying that one allows no derivatives of 
the u(x) in the transformations, and, in addition, the transformed independent quantities 
may depend upon only the x, but not the u, then that the relative invariance 2) of ∑ψi δui 
follows (as will be shown in § 5) from the invariance of I, and likewise for the 
divergences that appear in Theorem I, as long as the parameters are subjected to certain 
transformations.  From this, it follows that the aforementioned first integrals also admit 
the group.  For Theorem II, one likewise deduces the relative invariance of the left-hand 
sides of the dependencies that are composed by means of arbitrary functions, and as a 
consequence of this, one has a function whose divergence vanishes identically and admits 
the group that mediates the connection between dependencies and the energy theorem in 
the relativity theory of the physicists 3).  Theorem II ultimately gives a group-theoretic 
proof of an assertion of Hilbert that is connected with this concerning the breakdown of 
the proper energy theorems for “general relativity.”  With these extra remarks, Theorem I 
includes all of the known theorems on first integrals in mechanics, etc., while Theorem II 
can be regarded as the greatest possible group-theoretic generalization of “general 
relativity theory.” 
 
 

§ 2.  Divergence relations and dependencies. 
 

 Let G be a finite or infinite group; one may then always arrange that the identity 

transformation corresponds to the value zero for the parameter s (the arbitrary functions 
p(x), resp.) 4).  The most general transformation then takes the form: 
 

 yi = , , ,i

u
A x u

x

∂ 
 ∂ 

⋯  = xi + ∆xi + … 

 

 vi(y) = , , ,i

u
B x u

x

∂ 
 ∂ 

⋯  = ui + ∆ui + …, 

 
where ∆xi , ∆ui mean the terms of lower dimension in ε (p(x), resp.) and its derivatives; 
indeed, they shall be assumed to be linear in them.  As we will show later, this is no loss 
of generality. 
 Now, let the integral I be an invariant under G, so relation (1) is fulfilled.  In 

particular, I is then also invariant under the infinitesimal transformation: 
                                                
 1) Cf., perhaps, Klein’s presentation. 
 2) I. e, ∑ψi δui takes on a factor under transformation. 
 3) Cf., Klein’s second note.  
 4) Cf., perhaps, Lie: “Grundlagen,”  pp. 331.  If one is dealing with an arbitrary function then the 
special values aσ of the parameter must be replaced with fixed functions pσ, ∂pσ/∂x, …, and 
correspondingly the values aσ + ε must be replaced with pσ + p(x), ∂pσ/∂x + ∂p/∂x, etc. 
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yi = xi + ∆xi,  vi(y) = ui + ∆ui 
 

that is included in G, and under it relation (1) goes to: 

 

(7)   0 = ∆I = , ( ), ,
v

f y v y dy
y

 ∂
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∫ ∫⋯ ⋯  − , ( ), ,
u

f x u x dx
x

∂ 
 ∂ 

∫ ∫⋯ ⋯ , 

 
where the first integral is taken over the x+∆x-domain that corresponds to the x-domain.  
However, this integration can be converted into an integration over the x-domain by 
means of the conversion that is true for infinitesimal ∆x: 
 

(8)  , ( ), ,
v

f y v y dy
y

 ∂
 ∂ 

∫ ∫⋯ ⋯  = , ( ), , Div( )
v

f x v x dx f x dx
x

∂  + ⋅∆ ⋅ ∂ 
∫ ∫ ∫ ∫⋯ ⋯ ⋯ . 

 
If one then introduces the variation: 
 

(9)     iuδ  = vi(x) – ui(x) = ∆ui − iu
x

x λ
λ

∂ ∆
∂∑  

 
in place of the infinitesimal transformation ∆x then (7) and (8) go to: 
 

(10)    0 = { + Div( )}f f x dxδ ⋅ ∆∫ ∫⋯ . 

 
 The right-hand side is the well-known formula for the simultaneous variation of the 
dependent and independent variables.  Since the relation (10) is fulfilled under integration 
over an arbitrary domain, the integrand must vanish identically; Lie’s differential 
equations for the invariance of I then go to the relation: 
 
(11)     fδ + Div(f ⋅⋅⋅⋅ ∆x) = 0. 
 
If one expresses fδ from (3) in this using the Lagrangian expressions then one gets: 
 
(12)   i iuψ δ∑  = Div B (B = A – f ⋅ ∆x), 

 
and this relation thus represents an identity for any invariant integral I in all of the 
arguments that appear; this is the desired form for Lie’s differential equations for I 1). 

                                                
 1) (12) goes to 0 = 0 for the trivial case when Div(f ⋅ ∆x) = 0, δu = 0 – which can come about only 
when ∆x, ∆u also depend upon the derivatives of u; these infinitesimal transformations are therefore always 
separate from the group, and only the number of the remaining parameters or arbitrary functions are to be 
counted in the formulation of the theorems.  Whether or not the remaining infinitesimal transformations 
still define a group must remain undecided. 



Noether – Invariant variational problems                                                    7 

 Now let G be assumed to be a finite, continuous group, to begin with.  Since, by 

assumption, ∆u and ∆x are linear in the parameters ε1, …, ερ , from (9), the same thing is 
true for uδ  and its derivatives; therefore, A and B are linear in the ε.  I therefore set: 
 

B = B(1) ε1 + … + B(ρ) ερ , uδ = (1) ( )
1u u ρ

ρδ ε δ ε+ +⋯ , 

 
where the (1)uδ , … are thus functions of x, u, ∂u / ∂x, …, so the desired divergence 
relations follow from (12): 
 
(13)   (1)

i iuψ δ∑  = Div B(1), …, ( )
i iu ρψ δ∑  = Div B(ρ). 

 
 One thus has ρ linearly-independent couplings of the Lagrangian expressions with 
divergences; the linear independence follows from the fact that, from (9), it would follow 
that uδ = 0, ∆u = 0, ∆x = 0, so there would be a dependency between the infinitesimal 
transformations.  However, by assumption, such a thing is not fulfilled for any parameter 
values, since otherwise the Gρ that further arises from the infinitesimal transformations 

by integration would depend upon less than ρ essential parameters.  The further 
possibility that uδ = 0, Div(f ∆x) = 0 was, however, excluded.  These conclusions are 
also still true in the limiting case of infinitely many parameters. 
 Now, let G be an infinite, continuous group; uδ  and its derivatives, and therefore 

also B, will be linear in the arbitrary functions p(x) and their derivatives 1).  By 
substituting the values of uδ , still independently of (12), let: 
 

i iuψ δ∑ = 
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One may now, analogously to the formula for partial integration, replace the derivatives 
of p with p itself and divergences that are linear in p and its derivatives using the identity: 
 

ϕ(x, u, …) 
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∂
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∂
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One thus gets: 
(14)     i iuψ δ∑ = 
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∑ ⋯  = Div(B – Γ). 

 

                                                
 1) The fact that it is no restriction to assume that the p are free of the u, ∂u / ∂x, … shows the converse.  
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I now construct the n-fold integral of (15), taken over any domain, and choose the p(x) 
such that they vanish on the boundary of (B – Γ), along with all of the derivatives that 
appear.  Since the integral of a divergence reduces to a boundary integral, the integral of 
the left-hand side of (15) thus also vanishes for arbitrary p(x) that only vanish on the 
boundary, along with sufficiently many derivatives, and from this, it follows, by a well-
known argument, that the integrands vanish for any p(x), so one has the ρ relations: 
 

(16) ( ) ( ) ( )( ) ( ) ( 1) ( )i i i i i ia b c
x x

σ
λ λ σ λ

σψ ψ ψ ∂ ∂− + + − ∂ ∂ 
∑ ⋯  = 0 (λ = 1, 2, …, ρ). 

 
 These are the desired dependencies between the Lagrangian expressions and their 
derivatives for the invariance of I under G∞ρ ; the linear independence is clear, as above, 

since the inverse leads back to (12), and since one can again go from the infinitesimal 
transformations back to the finites ones, as will be done more thoroughly in § 4.  Thus, ρ 
arbitrary transformations already appear in the infinitesimal transformations for a G∞ρ .  

From (15) and (16), it then follows that Div(B – Γ) = 0. 
 If one correspondingly assumes a “mixed group” of ∆x and ∆u that are linear in the ε 
and the p(x) then one sees, when one sets the p(x) equal to zero and then the ε, that the 
divergence relations (13) exist, as well as the dependencies (16). 
 
 

§ 3.  Converse in the case of the finite group. 
 

 In order to show the converse, one must essentially follow through the foregoing 
argument in the opposite sequence.  The validity of (12) follows from the validity of (13) 
upon multiplication by ε and addition, and by means of the identity (3), this implies a 
relation: fδ + Div(A – B) = 0.  If one then sets: ∆x = 1/f ⋅⋅⋅⋅ (A – B) then one arrives at (11) 

as a result of this.  From this, (7) finally follows by integration: ∆I = 0, and thus the 
invariance of I under the infinitesimal transformation that is determined by ∆x, ∆u, where 
the ∆u is to be determined from ∆x and uδ  by means of (9), and ∆x and ∆u become 
linear in the parameters.  However, ∆I = 0 implies, in a well-known way, the invariance 
of I under the finite transformations that arise by integrating the simultaneous system: 
 

(17)   idx

dt
 = ∆xi, idu

dt
 = ∆ui for 0i

i i

x y
t

u v

= 
= = 

. 

 
 These finite transformations include ρ parameters a1, …, aρ, namely, the couplings 
tε1, …, tερ .  From the assumption that there should be ρ and only ρ linearly independent 
divergence relations (13), it follows moreover that the finite transformations always 
define a group, as long as they do not include the derivatives ∂u / ∂x.  In the opposite case 
− namely, at least one infinitesimal transformation arises from the Lie bracket process − 
there would be no linear coupling of the ρ remaining divergence relations, and since I 
also admits this transformation, there would be more than ρ linearly independent 
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divergence relations, or else this infinitesimal transformation would be of the special 
form in which uδ  = 0, Div(f ⋅⋅⋅⋅ ∆x) = 0, but then ∆x or ∆u would depend upon derivatives, 
contrary to assumption.  Whether or not this case can occur when derivatives appear in 
∆x or ∆u must remain undecided.  One then adds all functions ∆x for which Div(f ⋅⋅⋅⋅ ∆x) = 
0 to the ∆x that was determined above in order to once more preserve the group property.  
By convention, the parameters that are thus added shall not, however, be counted.  The 
converse is thus proved. 
 From this converse, it then follows that, in fact, ∆x and ∆u can be assumed to be 
linear in the parameters.  Namely, if ∆u and ∆x were of higher degree in ε then, due to the 
linear independence of the products of powers of ε, entirely analogous relations to (18) 
would follow, only in a greater number, from which, by the converse, one infers the 
invariance of I under a group whose infinitesimal transformations include the parameters 
linearly.  Should this group contain precisely ρ parameters, then there would have to exist 
linear dependencies between the original divergence relations due to the terms of higher 
order in ε. 
 Let it be remarked that in the case where ∆x and ∆u also contain derivatives of the u 
the finite transformations can depend upon infinitely many derivatives of the u.  In this 

case, the integration of (17) then leads from the determination of 
2

2
id x

dt
, 

2

2
id u

dt
 to 

u

xκ

 ∂∆ ∂ 
 

= 
uu u

x x x
λ

κκ λ κ

∂∆∂∆ ∂−
∂ ∂ ∂∑ , such that the number of derivatives of u generally increases at 

each step.  Perhaps the following will serve as an example: 
 

f = 21
2 u′ , ψ = − u″, ψ ⋅⋅⋅⋅ x = 

d

dx
(u − u′x), uδ  = x ⋅⋅⋅⋅ ε, 

 

∆x = 
2u

u λ ε−
′

,  ∆u = 
2u

x
u

ε − ⋅ ′ 
. 

 
 Since the Lagrangian expression of a divergence vanishes identically, the converse 
ultimately shows the following: If I admits a Gρ then any integral that differs from I only 

by a boundary integral – i.e., an integral of a divergence – will likewise admit a Gρ  with 

the same uδ , whose infinitesimal transformation will generally contain derivatives of the 

u.  Thus, perhaps referring to the example above, f* = 
2

21
2

d u
u

dx x

   ′ −  
   

 admits the 

infinitesimal transformation ∆u = xε, ∆x = 0, while derivatives of the u appear in the 
infinitesimal transformations that correspond to f. 
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 If one goes on to the variational problem − i.e., if one sets ψi = 0 1) − then (18) goes 
to the equations: Div B(λ) = 0, …, Div B(ρ) = 0, which are often referred to as 
“conservation laws.”  In the one-dimensional case, it follows from this that B(1) = const., 
…, B(ρ) = const., and therefore the B contain at most (2κ – 1)th derivatives of the u (from 
(6)), as long as ∆u and ∆x include no higher derivatives than κth that appear in f.  Since 
2κth derivatives appear in ψ, in general 2), one thus has the existence of ρ first integrals.  
The f above once more shows that nonlinear dependencies can exist between them.  The 
linearly independent ∆u = ε1, ∆x = ε2 correspond to the linearly independent relations: u″ 

= 
d

u
dx

′ , u″⋅⋅⋅⋅ u′ = 21
( )

2

d
u

dx
′ , while a nonlinear dependency exists between the first 

integrals u′ = const., u′2 = const.  Thus, one is dealing with the elementary case in which 
∆u, ∆x contain no derivatives of the u 3). 
 
 

§ 4.  Converse in the case of infinite groups. 
 

 First, let us show that the assumption of the linearity of ∆x and ∆u presents no 
restriction, which one deduces here without the converse from the fact that G∞ρ formally 

depends upon ρ and only ρ arbitrary functions.  Namely, it shows that in the nonlinear 
case the number of arbitrary functions would increase under the composition of 
transformations in which the terms of lowest order would add together.  In fact, let, say: 
 

  y = , , , ;
u

A x u p
x

∂ 
 ∂ 

⋯  = x + ∑ a(x, u, …) pν + b(x, u, …) pν−1 p

x

∂
∂

 

 

   + cpν−1 
2

p

x

∂ 
 ∂ 

+ … + d 
p

x

ν∂ 
 ∂ 

+ …  (pν = 1(1)( )p ν , …, ( )( )p ρνρ ), 

 

and analogously v = , , , ;
u

B x u p
x

∂ 
 ∂ 

⋯ , so under composition with z = 

, , , ;
v

A y v q
y

 ∂
 ∂ 

⋯ , one gets, for the terms of lowest order: 

 

                                                
 1) ψi = 0, or, more generally, ψi = Ti ψi , where Ti are new functions that are to be added to the others, 
are referred to as “field equations” in physics.  In the case ψi = Ti , the identities (13) go to identities: Div 
B(λ) = ( )

i iT u λδ∑ , which are also referred to as conservation laws in physics. 

 2) As long as f is nonlinear in the κth derivatives.  
 3) Otherwise, one would have u′λ = const. for any λ, corresponding to: 
 

u″ ⋅⋅⋅⋅ (u′)λ−1 = 
1

( )
d

u
dx

λ

λ
′ . 
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z = x + ∑ a(pν + qν) + b 1 1p q
p q

x x
ν ν− −∂ ∂ + ∂ ∂ 

 + c 
2 2

2 2p q
p q

x x
ν ν− −

 ∂ ∂    +    ∂ ∂     
 + … 

 
If a coefficient that is different from a and b here is different from zero then a term 

p
p

x

σ
ν σ− ∂ 

 ∂ 
+ 

q
q

x

σ
ν σ− ∂ 

 ∂ 
actually appears for σ > 1, so one cannot write this as the 

differential quotient of a single function or products of powers of them; the number of 
arbitrary functions thus has increased, contrary to assumption.  If all of the coefficients 
that are different from a and b vanish then each of the values of the exponents v1, …, vρ 
will be the second term of the differential quotient of the first one (as is always the case 
for, e.g., a G∞1), such that linearity actually enters in, or else the number of arbitrary 

functions would also increase here. Due to the linearity of the p(x), the infinitesimal 
transformations thus satisfy a system of linear partial differential equations, and since the 
group property is fulfilled, they define an “infinite group of infinitesimal 
transformations,” by Lie’s definition (Grundlagen, § 10). 
 One deduces the converse now in a manner that is similar to the one in the case of 
finite groups.  The existence of the dependencies (16) leads, upon multiplication by 
p(λ)(x) and addition, using the identity conversion (14), to i iuψ δ∑  = Div Γ, and from 

this, as in § 3, one infers the determination of ∆x and ∆u and the invariance of I under 
these infinitesimal transformations, which, in fact, depend linearly upon ρ arbitrary 
functions and their derivatives up to order σ.  The fact that these infinitesimal 
transformations, when they include no derivatives ∂u / ∂x, …, certainly define a group 
follows, as in § 3, from the fact that otherwise more arbitrary functions would appear by 
composition, while, by assumption, there shall be only ρ dependencies (16); they thus 
define an “infinite group of infinitesimal transformations.”  However, such a thing 
consists (Grundlagen, Theorem VII, pp. 391) of the most general infinitesimal 
transformations of a certain “infinite group G of finite transformations,” in Lie’s sense.  

Every finite transformation will then be generated by infinitesimal ones (Grundlagen, § 
7) 1), and thus arise from the integration of the simultaneous system: 
 

idx

dt
= ∆xi, idu

dt
= ∆ui, for 0i i

i

x y
t

u v

= 
= = 

, 

 
in which, it can, however, be necessary to choose the arbitrary p(x) to be independent of t.  
G thus depends, in fact, on ρ  arbitrary functions; in particular, if it suffices to choose 

p(x) to be free of t then this dependency will be analytic in the arbitrary functions q(x) = t 

                                                
 1) From this, it follows, in particular, that the group G that is generated by the infinitesimal 

transformations ∆x, ∆u of a G∞ρ again leads back to G∞ρ .  G∞ρ then includes no infinitesimal 

transformations that are different from ∆x, ∆u that depend upon arbitrary functions, and can also contain 
none that are independent of them that depend upon parameters, since it would then be a mixed group.  
However, from the above, the finite transformations are determined by means of the infinitesimal ones. 
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⋅⋅⋅⋅ p(x) 1).  If derivatives ∂u / ∂x, … appear then it can be necessary to add infinitesimal 
transformations uδ  = 0, Div(f ⋅⋅⋅⋅ ∆x) = 0 before one can reach the same conclusion. 
 In connection with an example of Lie (Grundlagen, § 7), let a somewhat more general 
case be given, where one can advance to explicit formulas that likewise show that the 
derivatives of the arbitrary functions up to order σ appear, from which the converse is 
then complete.  It is the example of those groups of infinitesimal transformations that 
correspond to the group of all transformations of the x and the transformations of the u 
that are “induced” by them; i.e., those transformations of the u for which ∆u, and 
consequently u, depend upon only the arbitrary functions that appear in ∆x, whereby let it 
be assumed that the derivatives ∂u / ∂x, … do not appear in ∆u.  One thus has: 
 

∆xi = p(i)(x), ∆ui = 
( ) ( )

( ) ( ) ( ) ( )

1

( , )
n p p

a x u p b c
x x

λ σ λ
λ λ λ λ

σ
λ=

 ∂ ∂+ + + ∂ ∂ 
∑ ⋯ . 

 
Since the infinitesimal transformation ∆x = p(x) generates any transformation x = y + g(y) 
with arbitrary g(y), in particular, p(x) can be determined to be independent of t, such that 
the following one-parameter group will be generated: 
 
(18)     xi = yi + t ⋅⋅⋅⋅ gi(y), 
 
which goes to the identity for t = 0 and to the desired x = y + g(y) for t = 1.  In fact, it 
follows by differentiation of (18) that: 
 

(19)     idx

dt
 = gi(y) = p(i)(x, t), 

 
where p(x, t) is determined from g(y) by inversion, and conversely, (18) arises from (19) 
by means of the auxiliary condition that xi = yi for t = 0, by which, the integral is 
established uniquely.  By means of (18), the x in ∆u can be replaced with the “integration 
constants” y and t; thus, the g(y) appear up to precisely the σth derivatives when one 

expresses the ∂y / ∂x in terms of ∂x / ∂y in 
p

x

∂
∂

 = 
yg

y x
κ

κ

∂∂
∂ ∂∑ , and, in general, replaces 

p

x

σ

σ
∂
∂

 with its values in terms of 
g

y

∂
∂

, …, 
x

y

∂
∂

, …, 
x

y

σ

σ
∂
∂

.  For the determination of the u, 

one then gets the system of equations: 
 

idu

dt
 = ( ), , , , ,i

g g
F g y u t

y y

σ

σ

 ∂ ∂
 ∂ ∂ 

⋯   (ui = vi for t = 0) 

 

                                                
 1) The question of whether this latter case always occurs was posed by Lie in a different formulation 
(Grundlagen, § 7 and § 13, conclusion). 
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in which only t and u are variable, but the g(y), … belong to the coefficient domain, such 
that the integration yields: 

ui = vi + 
1

, ( ), , , ,i

t

g g
B v g y t

y y

σ

σ
=

 ∂ ∂
 ∂ ∂ 

⋯ , 

 
and therefore transformations that depend upon precisely σ derivatives of the arbitrary 
functions.  From (18), the identity is included in this for g(y) = 0, and the group property 
follows from the fact that the chosen process produces any transformation x = y + g(y), 
from which the one that is induced on the u is established uniquely, so the group G will 

be exhausted. 
 Incidentally, it then follows from the converse that it is no restriction to choose the 
arbitrary functions to depend upon only the x, but not on the u, ∂u / ∂x, …  In the latter 

case, in fact, 
( )p

u

λ∂
∂

, 
( )

,

p
u

x

λ∂
∂∂
∂
⋯

 enter into the identity transformation (14), as well as into 

(15), in addition to the p(λ).  If one now chooses the p(λ) to be successively of degree zero, 
one, … in u, ∂u / ∂x, …, with arbitrary functions of x as coefficients, then the 
dependencies (16) emerge again, but in greater numbers, which, however, from the 
converse above, lead back to previous case under composition with arbitrary functions 
that depend upon only x.  One likewise shows that the simultaneous appearance of 
dependencies and divergence relations that are independent of them corresponds to mixed 
groups 1). 

                                                
 1) As in § 3, it also follows from the converse here that, along with I, also any integral I* that differs by 
a divergence likewise admits an infinite group with the same uδ , in which, however, ∆x and ∆u will 
generally include derivatives of the u.  Einstein has introduced such an integral into the general theory of 
relativity in order to obtain a simpler statement of the energy theorem; I shall give the infinitesimal 
transformations that this I* admits, for which I preserve the notation of Klein’s second note precisely.  The 
integral I = ∫…∫ K dw = ∫…∫ K dS admits the group of all transformations of the w and the one that it 

induces on gµν ; they correspond to the dependencies ((30), in Klein): 
 

2
w

g
g

µτ
µν µτ

µν στ

∂
∑ ∑

∂
+ K

K  = 0. 

 

Now, one has: I* = ∫…∫ K* dS, where K* = K + Div, and consequently, one will have:  µν
∗
K = Kµν , where 

µν
∗
K , Kµν  mean the Lagrangian expressions in each case.  Therefore, the dependencies that were given are 

also true for µν
∗
K , and after multiplying by pτ and adding, one gets by the reverse conversion of the product 

differentiation: 
∑ Kµν  p

µν + 2 Div (∑ gµσ Kµν  p
τ) = 0, 

δK* + 2Div g
g

p pµσ τ µν
µτ µν

σ

∗ ∂
 ∑ ∂ 

− K
K  = 0. 

 
Comparing this with Lie’s differential equation: δK* + Div(K* ∆w) = 0, it then follows that: 
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§ 5.  Invariance of the individual components of the relations. 
 

 If one specializes the group G to the simplest case that is ordinarily considered by 

specifying that one allows no derivatives of the u in the transformations and that the 
transformed independent variables depend upon only the x, but not the u then one can 
deduce the invariance of the individual components in the formulas.  First of all, this 
yields, from known reasons, the invariance of ∫…∫ (∑ψi δui) dx; thus, one infers the 
relative invariance of ∑ψi δui 

1), where we understand δ to mean any variation.  In fact, 
one has, on the one hand: 
 

δI = , , ,
u

f x u dx
x

δ ∂ 
 ∂ 

∫ ∫⋯ …  = , , ,
v

f y v dy
y

δ  ∂
 ∂ 

∫ ∫⋯ … , 

 

and, on the other hand, for δu, 
u

x
δ ∂

∂
, … that vanish on the boundary, due to the linear, 

homogeneous nature of the transformation of the δu, 
u

x
δ ∂

∂
, …, the δv, 

v

y
δ ∂

∂
, … also 

vanish on the boundary, so one has, correspondingly: 
 

   , , ,
u

f x u dx
x

δ ∂ 
 ∂ 

∫ ∫⋯ …  = ( )( , )i iu u dxψ δ∑∫ ∫⋯ … , 

 

   , , ,
v

f y v dy
y

δ  ∂
 ∂ 

∫ ∫⋯ …  = ( )( , )i iv v dyψ δ∑∫ ∫⋯ … , 

 

and it follows that for δu, 
u

x
δ ∂

∂
, … that vanish on the boundary: 

 

( )( , )i iu u dxψ δ∑∫ ∫⋯ …  = ( )( , )i iv v dyψ δ∑∫ ∫⋯ …  

 

= ( )( , ) i
i i

n

y
v v dx

x
ψ δ ∂

∂∑∫ ∫⋯ … . 

 
If one expresses y, v, δv in the third integral in terms of x, u, δu and one sets it equal to 
the first one then one has a relation: 
                                                                                                                                            

∆wσ =
1

2g
g

p pµσ τ µν
µτ µν

σ

∗

∗

 ∂
 ∑ ∂ 

− K

K
K , ∆gµν  = pµν + g wµν σ

σ∑ ∆  

 
are infinitesimal transformations that I* admits.  These infinitesimal transformations thus depend upon the 
first and second derivatives of the gµν, and include the arbitrary p up to the first derivatives. 
 1) I.e., under transformation, ∑ψi δui takes on a factor, which is always referred to as relative 
invariance in the algebraic theory of invariants. 
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( )( , )i iu u dxχ δ∑∫ ∫⋯ …  = 0 

 
for a du that vanishes on the boundary, but is otherwise arbitrary, and, as is known, the 
vanishing of the integrands for arbitrary δu follows from this; one thus has the following 
relation identically in δu: 

∑ ψi (u, …) δui = iy

xκ

∂
∂

(∑ ψi (v, …) δvi ), 

 
which expresses the relative invariance of ∑ ψi δui , and consequently, the invariance of 
∫…∫ (∑ ψi δui) 

1). 
 In order to apply this to the derived divergence relations and the dependencies, one 
must first confirm that the uδ  that is derived from the ∆u, ∆x actually satisfies the 
transformation laws for the variation δu, as long as only the parameter (arbitrary 
functions, resp.) in vδ  are determined in a way that corresponds to the way that they are 
determined for the similar group of infinitesimal transformations in y, v.  Let Tq denote 

the transformation that takes x, u to y, v; since Tq is an infinitesimal in x, u, the one that is 

similar to it in y, v is given by T = TqTp 
1

q
−
T , where the parameters (arbitrary functions r, 

resp.) are therefore determined from p and q.  One expresses this in formulas as: 
 
  Tp : ξ = x + ∆x(x, p),  u* = u + ∆u(x, u, p), 

 
  Tq : y = A(x, q),   v = B(x, u, q), 

 
  TqTp : η = A(x + ∆x(x, p), q),  v* = B(x + ∆x(p), u + ∆u(p), q). 

 
From this, one has, however, Tr = TqTp 

1
q
−
T , so: 

 

                                                

 1) This conclusion breaks down when y also depends upon the u, since then , , ,
v

y v
y

fδ
 ∂
 

∂ 
…  also 

includes terms like f
y

y
δ∂

∑
∂

, so the divergence conversion does not lead to the Lagrangian expressions, just 

as when one allows derivatives of the u; then, in fact, the δv will lead to linear combinations of δu, 
u

x
δ

∂
∂

, 

…, so after a further divergence conversion this will lead to an identity ∫…∫ (∑ χi (u, …) δui) dx = 0, such 
that the Lagrangian expressions once again do not appear on the right-hand side. 
 The question of whether one can also already conclude the existence of divergence relations from the 
invariance of ∫…∫ (∑ ψi δui) dx is, from the converse, equivalent to the question of whether one can 
conclude that from the invariance of I under a group that does not necessarily lead to the same ∆u, ∆x, but 
still leads to the same uδ .  In the special case of simple integrals and only first derivatives in f, one can 
deduce the existence of first integrals from the invariance of the Lagrangian expressions for finite groups 
(cf., e.g., Engel, Gött. Nachr. (1916), pp. 270.). 
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η = y + ∆y(r) = y + 
( , )A x q

x

∂
∂∑ ∆x(p), 

 

v* = v + ∆v(r) = v + 
( , , ) ( , , )

( ) ( )
B x u q B x u q

x p u p
x u

∂ ∂∆ + ∆
∂ ∂∑ ∑ . 

 
One replaces x = x + ∆x in this with ξ − ∆ξ, from which, x again goes to x, so ∆x 
vanishes; thus, from the first formula in (20), η also again goes to y = η − ∆η.  If ∆u(p) 
goes to ( )u pδ  then ∆v(r) also goes to ( )v rδ , and the second formula in (20) gives: 
 

v + ( , , , )v y v rδ …  = v + 
( , , )

( )
B x u q

u p
u

δ∂
∂∑ , 

 

( , , , )v y v rδ … = ( , , )
B

u x u p
u κ

κ

δ∂
∂∑ , 

 
such that the transformation formulas for variations are, in fact, therefore fulfilled, as 
long as vδ  is assumed to depend only on the parameters (arbitrary functions r, resp.) 1). 
 In particular, the relative invariance of i iuψ δ∑  then follows; thus, the relative 

invariance of Div B also follows, since the divergence relations are also fulfilled in y, v, 
and furthermore, from (14) and (13), one also has the relative invariance of Div Γ and 
that of the left-hand side of the dependencies, when composed with the p(λ), where the 
arbitrary p(x) (the parameters, resp.) are always replaced with the r in the transformation 
formulas.  This then yields the relative invariance of Div(B − Γ), and therefore that of a 
divergence of a non-vanishing system of functions B – Γ whose divergence vanishes 
identically. 
 From the relative invariance of Div B, one may, in the one-dimensional case and for 
finite groups, draw a conclusion about the invariance of the first integrals.  The parameter 
transformation that corresponds to the infinitesimal transformation will, from (20), be 
linear and homogeneous, and due to the invertibility of all transformations, the ε will also 
be linear and homogeneous in the transformed parameters ε*.  This invertibility certainly 
remains preserved when one sets ψ = 0, since no derivatives of the u enter into (20).  By 
equating the coefficients of the ε* in: 
 

Div B(x, u, …, ε) = 
dy

dx
 ⋅⋅⋅⋅ Div B(y, v, …, ε*), 

 

                                                
 1) This again shows that y must be assumed to independent of u, etc., in order for the conclusion to be 
valid.  As an example, let us, perhaps, mention the δgµν and δqρ  that were given by Klein, which satisfy the 
transformations for variations, as long as p is subject to a vector transformation. 
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the 
d

dy
B(λ)(y, v, …) will then be linear, homogeneous functions of the 

d

dx
B(λ)(x, u, …), 

such that from 
d

dx
B(λ)(x, u, …) = 0 or B(λ)(x, u) = const. it also follows that: 

d

dy
B(λ)(y, v, 

…) = 0 or B(λ)(y, v) = const.  The first ρ integrals that correspond to a Gρ thus admit the 

group in any case, such that the further integration is also simplified.  The simplest 
example of this is the one in which f is free of x or one u, which corresponds to the 

transformation ∆x = ε, ∆u = 0 (∆x = 0, ∆u = ε, resp.).  One has uδ = − du

dx
ε  (ε, resp.), and 

since B can be derived from f and uδ  by differentiation and rational couplings, it is then 
also free of x (u, resp.) and admits the corresponding groups 1). 
 
 

§ 6.  An assertion of Hilbert. 
 

 From the foregoing, one ultimately finds the proof of an assertion of Hilbert about the 
connection between the break-down of the proper energy theorem and “general 
relativity” (Klein’s first note, Göttinger Nachr. (1917), answer, first passage), and indeed, 
in a generalized group-theoretic context. 
 Let the integral I admit a G∞ρ , and let Gσ be any finite group that arises from 

specializing the arbitrary functions, so it is a subgroup of G∞ρ .  The infinite group G∞ρ  

then corresponds to dependencies (16), and the finite one Gσ , to divergence relations 

(13), and conversely, it follows from the existence of any sort of divergence relations that 
I is invariant under a finite group that is identical to Gσ when and only when the uδ  are 

linear combinations of the ones obtained from Gσ .  The invariance under Gσ can thus 

lead to no divergence relations that differ from (13).  However, since the invariance of I 
under the infinitesimal transformations ∆u, ∆x of G∞ρ for arbitrary p(x) follows from the 

validity of (16), it already follows from this, in particular, that it is invariant under the 
infinitesimal transformations of Gσ  that arise by specialization, and consequently, under 

Gσ .  The divergence relations ( )
i iu λψ δ∗∑ = Div B(λ) must then must then be 

consequences of the dependencies (16), which can also be written: ( )
i ia λψ∑ = Div χ(λ), 

where the χ(λ) are linear couplings of the Lagrangian expressions and their derivatives.  
Since the ψ enter into (13), as well as (16), linearly, the divergence relations must then be 
linear combinations of the dependencies (16), in particular, and the B(λ) themselves are 

                                                
 1) In the case where the existence of first integrals already follows from the invariance of ∫ (∑ ψi δui) 
dx, they do not admit the complete group Gρ ; e.g., ∫ (u″ δu) dx admits the infinitesimal transformation: ∆x 

= ε2 , ∆u = ε1 + xε2 , while the first integral u − u′x = const., which corresponds to ∆x = 0, ∆u = xε3 , does 
not admit the other two infinitesimal transformations, since it includes u, as well as x, explicitly.  This first 
integral corresponds simply to infinitesimal transformations of f that include derivatives.  One then sees 
that, in any case, the invariance of ∫…∫ (∑ ψi δui) dx is achieved less often than the invariance of I, which 
responds to a question that was posed in a previous remark. 
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thus composed linearly from the χ – i.e., from the Lagrangian expressions and their 
derivatives, and from functions whose divergences vanish identically, like perhaps the B 
– Γ that appeared in the conclusion to § 2, for which Div (B – Γ) = 0 and the divergence 
likewise has the invariant property.  I will refer to divergence relations for which B() of 
the given kind can be composed from the Lagrangian expressions and their derivatives as 
“unreal,” and all others as “real.” 
 Conversely, if the divergence relations are linear couplings of the dependencies (16) – 
hence, “unreal” – then the invariance under Gσ follows from the invariance under G∞ρ ; 

Gσ becomes a subgroup of G∞ρ .  The divergence relations that correspond to a finite 

group Gσ will then be unreal when and only when Gσ is a subgroup of an infinite group 

that I is invariant under. 
 The original Hilbert assertion is obtained from this by specializing the group.  Let the 
term “translation group” mean the finite group: 
 

yi = xi + εi , vi(y) = ui(x), 
so 

∆xi = εi, ∆ui = 0, iuδ = − iu

x λ
λ λ

ε∂
∂∑ . 

 
As is known, invariance under the translation group expresses the idea that the x do not 

enter into I = , , ,
u

f x u dx
x

∂ 
 ∂ 

∫ ∫⋯ … explicitly.  Let the associated n divergence 

relations: 

i
i

u

xλ

ψ ∂
∂∑  = Div B(λ)  (λ = 1, 2, …, n) 

 
be referred to as “energy relations,” since the “conservation law” Div B(λ) = 0 that 
corresponds to the variational problem corresponds to the “energy law,” while the B(λ) 
correspond to the “energy components.”  One then has: If I admits the translation group 
then the energy relations become unreal when and only when I is invariant under an 
infinite group that includes the translation group as a subgroup 1). 
 An example of such an infinite group is given by the group of all transformations of 
the x, along with those induced transformations of the u(x) in which only derivatives of 
the arbitrary functions p(x) appear; the translation group then arises by specializing p(i)(x) 
= εi .  Therefore, it must remain undecided whether the most general of these groups is 
therefore already given – along with the groups that arise from altering I by a boundary 
integral.  Induced transformations of the given sort arise perhaps when one subjects the u 
to the coefficient transformations of a “total differential form;” i.e., a form ∑ a dλxi + ∑ b 
dλ−1xi dxκ + … that includes higher differentials, in addition to the dx.  Special induced 
transformations for which the p(x) only appear in the first derivatives are given by the 

                                                
 1) The energy law in classical mechanics, and likewise in the older “relativity theory” (where ∑ dx2 
goes to itself), are “unreal,” since no infinite groups appear there. 
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coefficient transformations of ordinary differential forms ∑ c 
1i

dx … idx
λ
, and ordinarily 

one has considered only these. 
 Another group of the given kind that cannot be a coefficient transformation, due to 
the appearance of logarithmic terms, is perhaps the following one: 
 

y = x+ p(x), vi = ui + ln(1 + p′(x)) = ui + ln 
dy

dx
, 

 
∆x = p(x), ∆ui = p′(x) 1), iuδ  = p′(x) − ( )iu p x′ . 

 
Here, the dependencies (16) become: 
 

i
i i

i

d
u

dx

ψψ ′ + 
 

∑  = 0, 

 
while the unreal energy relations become: 
 

( const.)i
i i

d
u

dx

ψψ + ′ + 
 

∑  = 0. 

 
The simplest invariant integral for the group is: 
 

I = 
12

1 2

ue
dx

u u

−

′ ′−∫ . 

 
The most general I is determined by integrating Lie’s differential equation (11): 
 

( )
d

f f x
dx

δ + ⋅ ∆  = 0, 

which goes to: 

( ) ( ) ( )i
i i i

f f f f
p x u f p x p x

x u u u

   ∂ ∂ ∂ ∂′ ′ ′′+ − + +   ′ ′′∂ ∂ ∂ ∂   
∑ ∑  = 0 

 
(identically in p(x), p′(x), p″(x)) by substituting the values of ∆x and uδ , as long as one 
assumes that f depends upon only first derivatives of the u.  This system of equations 
already possesses solutions that actually include the derivatives for two functions u(x), 
namely: 

f = 
1

1 2 1 2
1 2

( ) ,
ue

u u u u
u u

− ′ ′− Φ − ′ ′− 
, 

                                                
 1) One computes the finite transformations from these infinitesimal ones backwards from the method 
that was given in the conclusion of § 4. 
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where Φ means an arbitrary function of the given arguments. 
 Hilbert expressed his assertion in such a way that the break-down of the proper 
energy law was a characteristic feature of the “general theory of relativity.”  In order for 
this assertion to be literally true, the term “general relativity” must then be further 
regarded as it usually is, and also extended to the previous groups that depend upon n 
arbitrary functions 1). 
 
 
 
 
 

                                                
 1) With this, the validity is again confirmed of a remark of Klein that the usual terminology “relativity” 
in physics should be replaced with “invariance under a group.” (“Über die geometrischen Grundlagen der 
Lorentzgruppe,” Jber. d. deutsch. Math. Verein. 19 (1910), pp. 287; printed in Phys. Zeit.) 


