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Introduction

1. The unification of gravitation and electromagnetism. One of the articles of
faith for many scientists (or at least the ones vdgard science as a natural philosophy)
is what one might call the principle of “maximal edge.” That is, if natural law is
truly worthy of reverence then that would be becaustsipurest form it must admit a
truly elegant statement. Whenever scientists areraatefd with a disorganized set of
natural phenomena, their natural instinct it to orgatiem, and ideally one hopes to
find some classification scheme that begins with thallest number of first principles.

For instance, consider the ongoing quest to understanththee of matter. One of
the earliest postulates about matter was the atomic tggietof Democritus, who felt
that the reduction of matter to smaller pieces hatktminate after a finite number of
steps. To him, the ultimate irreducible constituents ddad “atoms,” which would
then essentially “generate” the more complex staffesnatter by some process of
combination. Of course, this concept eventually led ® pleriodic table of the
elements, which once more initially appeared to be apmand disorganized set of
rules for atoms until quantum mechanics managed to fimbee fundamental first
principle that made things simple again.

Similarly, there was once a time when electricitg amagnetism seemed to be as
distinct as lightning and lodestones. However, betwherefforts of mostly Michael
Faraday and James Clerk Maxwell, not only was it shinanelectricity and magnetism
were only two facets of a more general concept — \he.,electromagnetic field — but
that one could also account for optical phenomena @ giocess by attributing
electromagnetic waves to light.

Since there are many other examples of how progressiénce has often been
associated with reducing the complexity of first prinegpby unifying disparate natural
phenomena, once Einstein had formulated his theory witgtian as a manifestation of
spacetime geometry, he became convinced that the stonpd&top there. His final —
albeit, unsuccessful quest in theoretical physics was to unify his theorgrakitation
with Maxwell's theory of electromagnetism by findisgme more general — most likely,
geometric — field on the spacetime manifold and a sk¢ldfequations for it that would
subsume both the Einstein equations for gravitation aadMbxwell equations for
electromagnetism in some limiting approximation. This grwbis what we are calling
the Einstein-Maxwell unification problem.

Here, one must clearly distinguish betweenuh#ication of two field theories and
their mereconcatenation In the latter case, all that one has really agdshed is to
construct essentially a Cartesian product of the tvemribs, and in particular, the
resulting field equations for the fields that are taub#ied say nothing new about either.
What one hopes for in a unification of field theoli®a general set of field equations for
the unified field that contains some sort of couplingMeein the two fields that was not
present in the individual field theories. The best exarof this situation is the fact that
in Maxwell's theory of electromagnetism, in additibm containing the equations of
electrostatics and magnetostatics as special c#sedull set of Maxwell equations
contains the far-reaching coupling of the electric and miagfields by electromagnetic
induction. Consequently, one hopes that if gravitationed@ctromagnetism are unified
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in a similar manner then perhaps there might be som@smduction process whereby
electromagnetism (under some unspecified circumstanagét induce a gravitational
field and vice versa. The fact that none of thengpte at solving the Einstein-Maxwell
unification problem contained such a mechanism was alwegarded as a symptom
that the unification was still just a glorified concatgon.

Of course, one must objectively accept that thermiking to say that a unification
of two field theories exists, or at least in the fdhat one is expecting. Thus, one must
treat the existence of unification as basically a adoje that one is testing, and as such,
a conjecture that might prove incorrect.

Einstein made many attempts to solve the Einstein-Mdvamélcation problem, but
one of the common features that they had was the blesiefirst one had to increase the
degrees of freedom in the unified field to something that eduatl least the sum of the
other two degrees of freedom. Now, the spacetime ntetigor fieldg has components
guv that are symmetric x4 real matrices, and therefore represents ten degrees of
freedom. By comparison, the electromagnetic fieldngth 2-formF has components
F. that are anti-symmetric X4 matrices, and therefore represent six degrees of
freedom. Thus, the unified field should probably includeeastl sixteen degrees of
freedom.

Since the vector spad&(4; R) of 4x4 real matrices is itself sixteen-dimensional, one
obvious first place to look for unification would be iretmost general elementsid{4;
R), or since the components gfare invertible, perhaps just the invertible elements,

which then defin&L(n). In fact, Einstein considered both possibilities, whbeelatter
case of matrices i®GL(n) amounted to his theory of teleparallelism and the éroase
of more general matrices came later with the Einsseiwddinger approach to
unification [1, 2. In the latter theory, which is also discussed ichberowicz 8], one
basically replaces the symmetric, covariant, segan tensor field that the metric
represents with one that has no specified symmetrycdnutthen be polarized into a
symmetric and an anti-symmetric part.

Some of the earlier attempts to unify electromagnetsith gravitation involved
increasing the dimension of the spacetime manifold. ptane has the theory of
Kaluza HM] and Klein B] (see also Lichnerowicz3], who referred to it as the Jordan-
Thiry theory), which looked at the Riemannian geometry fofexdimensional manifold
whose extra dimension was often ascribed a circolaology so the overall manifold
was either cylindrical, in the sense of a Cartesianyrbof a circle with spacetime, or
more generally, &J(1)-principal bundle over spacetime, which would not havéde
trivial.  The main defects of the Kaluza-Klein centeraround the problem of
interpreting the extra dimension and the absence of augling between the two fields
being unified. Thus, in a sense, the theory achieved dmycbncatenation of
gravitation and electromagnetism.

After Einstein and Mayer gave up on teleparallelismtheir 1931 theoryd] they
returned to the problem of interpreting the fifth dimensi CartanT] also commented
upon the geometric nature of their construction in a posthsiy-published note from
around 1934.
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Another noble attempt to resolve the question of therpnetation of the fifth
dimension took the form of projective relativit§]] which treated the extra dimension as
coming about in the same way that one introduces homogenemordinates for
projective spaces. This approach has the advantage tkamdre in line with Felix
Klein’'s Erlanger program, in which he proposed that geoesesiould be classified by
the group of transformations of space that preserve sm@sie property, and that the
ultimate geometry in that sense would be projective gggme&hose basic property is
the incidence of subspaces.

Yet another five-dimensional theory was defined the thebanholonomic spaces
[9-11], which took the form of treating the four-dimensionasgtime as something that
was defined by a non-integrable field of hyperplanes omneadimensional manifold.
Thus, the approximation that gets one back to general rgjatiould be that of
assuming the integrability of the differential systemtisat spacetime would constitute
an integral submanifold of that system.

For a historical discussion of the various attemptsodving the Einstein-Maxwell
unification problem, one might peruse Vizgih?]. However, one must note that he
does not devote much attention to teleparallelism indisatission.

To return to the case at hand of teleparallelismgesthe spacetime metric tensor
field has a fundamental geometric significance, Einsidso believed that, ideally, the
unified field should as well. In that sense, a glokain field seemed ideal, since it had
the right number of degrees of freedom, generated acnemd seemed to have a
fundamental geometric significance. Of course, in 1929 nwhest of the following
papers were published, Stiefel had yet to do his groundibgeaksearch on the
topological aspects of teleparallelism, since thasishevas published in 1935, so
Einstein and the others were not considering whetheretimight be something
topologically over-simplistic about postulating thestence of a global frame field, and
not just local ones.

Just as Einstein had the wisdom of Riemann, Christdféi-Civita, Bianchi, and
others upon which to base his general theory of relatiktyalso had a certain amount
of accumulated wisdom that was due to VitaB][ Bortolotti [14], Cartan and Schouten
[15], and others upon which to base his theory of telepésatie To what extent he was
aware of their work is debatable, since Einstein racéld references, even when he
was implicitly using them.

Therefore, all that one can do is to follow the segeeof papers that Einstein
published on his evolving theory and read the commentseohtiithematicians and
physicists that were following it in that era. Onessseme of the details of the
machinations of the theoretical mind in the successivea®ients that Einstein made in
response to the comments of the mathematicians arfdilines of various attempts to
formulate the unified field theory that he aspired to.

His first paper in 19281Jg] was purely geometric in character, and its primaryninte
was to introduce some of the fundamental tensor fi¢ldsrelated to the geometry of
parallelizable spaces and show how they related to thee rfamiliar context of
Riemannian differential geometry. In the second papar he then conjectures that the
geometry of teleparallelism might serve as the basis unified theory of gravitation
and electromagnetism.
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The first two papers provoked a spate of responses fratmematicians and
physicists, mostly throughout the year 1929. Still in 1928Atrstrian-Dutch geometer
Roland Weitzenbdckllg] summarized the mathematical work that had been donkeo
geometry of parallelizable manifolds and addressed the iskdimding differential
invariants on parallelizable manifolds that were invariander globally-constant
Lorentz transformations, which could then be used for dbwestruction of action
functionals that were invariant under such transformatias well. In 1929, the Italian
geometer Ettore Bortolotti then commented on the gewriasis for Einstein’s theory
[19], and the Bulgarian physicist Raschko Zaycoff publishisdfirst [20] in a series of
three successive papers (followed B@]] on the physics of the theory. The German
physicist and natural philosopher Hans Reichenbach thenhegkign with his
observations 41] on the place of teleparallel geometry as compacedRiemannian
geometry and the geometries of more general metric cbongc Einstein then took a
different approach??], by abandoning the Lagrangian formulation and concentyatn
differential identities that would restrict the fielduations. Zaycoff responded to that
attempt in P4] and also began examining the way that one might apipriec Dirac
equation in the context of teleparallelism &5][ Einstein returned with a Lagrangian
formulation 6] and summarized the current state of the theory paper that was
published in Mathematische Annale2v] and was immediately followed by a historical
outline of the geometry of teleparallelism by Cart@8].] Zaycoff pursued the
formulation of wave mechanics further iR89, while Einstein presented the theory to
the Institut Henri Poincaré, resulting in a pap&d] that largely duplicated the Math.
Ann. paper. Finally, Einstein returned Bi] to the solution of a problem regarding the
compatibility of the field equations, which were over-detieed.

This latter topic also defined the basis for an exgbaof letters between Einstein
and Cartan on absolute parallelism that was publishedraimslation 82). It is
interesting that apparently Einstein did not seem to utatetsCartan’s comments
regarding geometry, which is why the exchange driftedtimosubject of the degree of
determinism of the equations.

It was in 1930 that storm clouds began forming over teddiplism as a physical
theory. First, Einstein and Mayer computed some ssalittions to the field equations
[33] that suggested that the field equations admitted at @@stunphysical solution,
namely, a static configuration of uncharged, gravitatindid®o Despite that, Einstein
published one last note on teleparallelism3d][ This shadow of doubt was further
reinforced by the calculations of the Scottish physi€istC. McVittie B5 (%), who
showed that the axially-symmetric solution of the fietghations was inconsistent with
the solution that he had obtained from using the equatibrikeogeneral theory of
relativity and did not seem to contain an electromagriietid.

In 1931, Cartan made some further comments on the tlgamlleparallelism in
[36]. In 1932, the American mathematician and cosmoldgid®. Robertson published
a further paper 3J7] on teleparallel spaces that admitted groups of motiass
symmetries, but interest in the theory seems to haga btherwise largely disappearing
by then.

() Although the McVittie paper did not require translatioro English, it is included here for the sake
of conceptual completeness.
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After all these subsequent decades, the original é&mMaxwell unification
problem has been complicated by a number of advancdsysicp. Notably, quantum
physics evolved into something that introduced two neweoaf nature in the form of
the weak and strong interactions of nuclear and elemempticle physics. This
expanded the scope of the unification problem to somethatgmight include all four
fundamental interactions. Independently of the grawmati theorists, the particle
theorists began posing other partial unification probldahes,most successful of which
was the unification of electromagnetism and the weagdraction into the theory of the
electroweak interaction. There was also a Grandié¢hifheory that is still evolving,
and which proposed to include the strong interactiomgaieith the electroweak one,
but not gravitation. Many then feel that the only hopeufuifying gravitation with the
other fundamental forces must then come from a “Thedriverything” that would
unify all four. In any event, the success of gauge fie&bries in bringing about that
partial unification led many to suspect that any field uniiicashould probably be
defined by a gauge field theory.

Before quantum physics evolved into its obsession gatlge field theories, it first
had to make sense of wave mechanics. In particulafachéhat the Dirac equation was
regarded as a relativistic wave equation for the freetrn or positron added a new
aspect to the Einstein-Maxwell problem, since the Mdb@epiations were regarded as a
classicalset of wave equations for the photon. Interestinglyhis day, although many
researchers have observed that there is a clog®mslap between the Dirac equations
and the Maxwell equations, nonetheless, the problemndlinfy a quantum wave
equation for the photon is still regarded as open. Bégidhk photon wave function
seems to be easier to describe in momentum space tham configuration space. As a
result of the success of the Dirac equation, Einstemsdlif, along with others, such as
Zaycoff [25, 29, recognized that the Einstein-Maxwell unification problemas
probably already incomplete, compared to what one nugltthe Einstein-Maxwell-
Dirac unification problem. Indeed, at one point Einstgaculated that the unification
of gravitation and electromagnetism might have to &sell upon a more quantum-
theoretical conception of electromagnetism.

Something else that changed the nature of the Einstexawéllaunification problem
was the fairly recent experimental discovery of “gi@rmagnetism” by satellite-based
measurements. That is, just as a (relatively) movilegtric charge generates a
magnetic field, a moving mass generates a gravito-magiedtic Hence, the analogy
between Coulomb’s law of electrostatics and Newtda® of universal gravitation
becomes part of a more general analogy between elegnet@ fields and
gravitational fields. This has the effect of suggestivgg the Maxwell equations also
describe weak-field gravitational phenomena. Hencetlarewonders if it is proper to
unify them with a strong-field theory of gravitation, sashgeneral relativity, and if not,
then what would the corresponding “strong-field” equatidnsl@ctromagnetism be that
would properly replace Maxwell's. Again, one suspects tre would have to be
describing quantum-electromagnetic phenomena, sincestha realm in which strong
electric and magnetic fields seem to be unavoidable.

As far as that is concerned, a further obstacle tdyiogi gravitation and
electromagnetism is then the fact that Einsteineoti of gravitation is rooted in a
system of partial differential equations for a fundarakfield — viz., the spacetime
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metric — while at no point does quantum electrodynamies pose such a system of
field equations for the fundamental fields, such astmlas, positrons, and photons.
Indeed, since the time of Heisenberg and Pauli, it hag aspired to be a theory of
particle interactions and one that usually treats them in the scattering ajppaition,
which makes the initial and final times in the time lation problem go to minus and
plus infinity, respectively. Hence, in order to have aaope of unifying gravitation and
guantum electrodynamics, one must first either recastrgerelativity as a theory of
interactions that are treated in the scattering appwiam, which seems naive,
considering the successes of the field equations, orHentfield equations” of quantum
electrodynamics. By now, the latter problem seemisatee been abandoned by most
qguantum physicists, who generally trivialize the prob&smerely “classical” physics,
and therefore an inappropriate problem for modern physitkpuglh there is a
continuing interest in “effective” field theories, whickpresent quantum corrections to
the classical field theories, and thus give one a glyemorded hint as to the nature of
the quantum version of the theory.

The Einstein-Maxwell unification problem has also beemplicated by the fact that
mathematics now understands more about the topologatate of the parallelizability
of manifolds than it did in 1929. Thus, a final translabdistiefel’s 1935 thesis3B] on
the topological aspects of teleparallelism is includete o serve as a motivation to
revisit the physical theory from that more topolofiicaeadvanced standpoint. In
particular, one suspects that topology can serve athiee of non-vanishing curvature
for non-parallelizable manifolds, which suggests that perh@ps might consider
essentially “singular teleparallelism” as an extensibthe scope of the original theory.
We thus include some speculations in that regard in as@thion.

Finally, another hint that the Einstein-Maxwell urdgfion is the wrong problem to
be posing comes from the more modern theory of “pre-enetiectromagnetism.”
Actually, its roots go back almost as far as the esrligork on the relativistic
formulation of electromagnetism, with a paper by FigdKottler [39] in which he
observed, in effect, that the only place in Maxweltisi@ions where the presence of the
spacetime metric was necessary was in the Hodge * rpdson that relates to the
definition of the codifferential operator on differeitforms and that one could achieve
the same objective by composing the Poincaré isomorplhianhtbomes from a volume
element on spacetime with the electromagnetic caotistt law that relates the electric
and magnetic field strengths to the excitations they thduce in a polarizable medium.
Cartan made a similar comment (without the part atlmitonstitutive law) in40], and
David van Dantzig then expanded on the subject in a sefigmpers 41]. More
recently, that approach was taken to defining the foundatbrdectromagnetism by
Friedrich Hehl and Yurii Obukhowvp], as well as the autho#4§]. It has long been the
view of the latter that the unification of electromatigr@ and gravitation is already
present implicitly in the sequence of papers that Hmstaote on his theory of
relativity, since he started out examining electromagmetind ended up talking about
gravitation. The connecting link is the fact that théitligones that define the basis for
the existence of gravitation first arise in the conteiktthe dispersion law for the
propagation of electromagnetic waves. Thus, in a s@mnagity “emerges” from the
electromagnetic structure of spacetime when the rgereral quartic dispersion law
degenerates to the square of a quadratic one of Loretypian This might happen, for
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instance, as one goes from the cloud of vacuum polanz#t@at surrounds a “bare”
electron into the space outside of it, assuming thatvélmeium polarization is also
associated with vacuum birefringence.

Thus, when one considers the early papers on telepisralleowadays, one must
also consider the possibly inchoate nature of it H®eary. However, the issue of the
parallelizability of the spacetime is topologicallyawoidable (perhaps not necessarily in
the context of the Einstein-Maxwell unification problem®s) one suspects that the early
discussion of the physics issues would serve as sorde guitaking a more modern
approach to the same subject.

2. The geometry of parallelizable manifolds. Since the study of parallelizable
manifolds has both geometrical and topological aspectis section we will discuss
the purely geometric aspects, and then treat the topol@gacts in a later section. Of
course, except for the last translation in this cdtect none of the other papers
addressed the topology of teleparallelism, so one cgardetopology as perhaps
something that was conspicuous by its absence all al@mwe of the classic texts on
differential geometry that contains a discussiontluzg geometry of parallelizable
manifolds is Bishop and CrittendeA4], although the discussion takes the form of
numerous problem sets scattered throughout Chapter @ riore general reference on
the Cartan approach to differential geometry, the standHerence is Kobayashi and
Nomizu @45].

a. Parallelizable manifolds An n-dimensional differentiable manifoldl is said to
be parallelizableif one can define global frame fieldon it. This would be a se&{x), i
=1, ...,n} of nvector fields orM that are linearly independent at each point; thus, they
must also be globally non-zero. One can also regact a global frame field as a
global section of the principal fiber bundi. (M) — M whose fibers consist of all linear
frames at each point and whose structure gro@l{®). Thus, one can treat a global
frame field as a differentiable ma&p: M - GL(M), X — &(X) such thai(x) defines a
basis for the tangent vector spagM for everyx.

Yet another way of characterizing the frag(@) is to say that it represents a linear

isomorphisme : R" — T,M, V' =V g(x). This simply says that ¥ = V' g(x) is a tangent
vector atx then itscomponentsvith respect to the frame(X) would beV. The inverse

isomorphismé.: TM - R", v >V = 6.(v) then defines @oframeat x and a global
section of the principal fiber bund@®L (M) — M whose fibers consist of all coframes at
each point oM; that is, one has global coframe fieldon M. The fact that the two

linear isomorphisms are inverse to each other meansetieay frame fielde has a
uniquereciprocal coframe field?', which is defined by the property:

6'(e) = . (2.1)



8 Selected papers on teleparallelism

Every differentiable manifold will admit local franfields and local coframe fields;
i.e., the bundlessL(M) -~ M and GL' (M) -~ M are locally trivial. Indeed, every
coordinate chartly, x} will define anatural local frame field and coframe field:

e= i. 8' = dXx, resp. (2.2)
ox
These local frame and coframe fields are charaet@iy the property that they are
holonomic

[e,8] =0, dé' =0 for alli, j. (2.3)

This amounts to an integrability condition on thealoftame fields, since the fact
that U is diffeomorphic toR" means that it will be contractible a- fortiori, simply-

connected. Thus, the vanishing of mlL-formsd&' means that they are all exact, so
there aren functionsx on U such thatd' = dX. The fact that the mag U - R", p

Hxi(p) is a diffeomorphism follows from the fact that theforms @' are linearly
independent and the use of the inverse function theorem.

Conversely, though, when a local frame field or co&dield isanholonomic- viz.,
[e, 6] anddé' are non-vanishing for sonigj — they cannot be directly integrable into
the natural frame fields of any coordinate charts. Thus sense, there are “more”
local frame fields than coordinate charts.

However, one can say that the local frame fielddJoare “integrable” in a more
general sense of the word, namely, becausedaitdo; define a basis for each tangent
space, one can express the vectoes iofterms of the vectors; :

a(®) =0, (), (2.4)

in which h!(X) defines a smooth functidn: U - GL(n), x - h/(x) that one calls the

transition functionfrom d; to g , and the tilde over thie implies that we are using the
inverse matrix, as it will from now on.
This is essentially what the authors of the papetbigcollection were using as the
definition of the frame field itself.
Dually, one can say that:

6. = h (X dx, (2.5)

One can then get some idea regarding the nature ofl glakallelizability, since
certainly not every manifold admits a global coordinagstem (unless it is

diffeomorphic toR"), but just as there are more frame fields than coatélioharts, one

also finds that there are more parallelizable manifdldsn vector spaces. Some
examples of parallelizable manifolds are: every compa@ntable 3-manifold, every
Lie group, the products of parallelizable manifolds, and gshef dimension 0, 1, 3,
and 7, but none of the other ones. The last exampi@ssthat even homogeneous
spaces do not generally have enough “symmetry” to make pphaeatielizable. We shall
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return to the topological nature of parallelizabilitya later section, since for now we
are only concerned with geometry. Thus, the constmgtibat we shall make either
assume thatl is parallelizable or that they are only local constouns.

The first thing that one usually wants to know about &ifigrm is the nature of its
exterior derivative. Since the coframe fiéddalso defines a basis for the vector spaces
A’M of differential 2-forms by way of the sef{” &', i <j}, one can always express

its exterior derivatives in terms of that basjs (
dg'=-1c, (x 6'" O, (2.6)

in which the functions:‘jk(x) are called thstructure function®f the coframe field'.

The reason for the minus sign is that one also finalsite represents the reciprocal
frame field tod' then one has:

[e(x), (9] = ¢ (X) &x). (2.7)

Since this looks strongly suggestive of the way thatgete the structure constants
for any Lie group — or really, its Lie algebra — we pointtbat the reason for that is that
since Lie groups are always parallelizable, one can aldefyise a global frame field on
them. The way that one defines such a global fraeld fs to take a frame at the
identity and either left or right translate it to evether point, which then makes the
global frame field either left or right invariant,spectively. That invariance manifests
itself in the fact that the structure functions becamestant functions, and the structure
equations (2.6) then become taurer-Cartan equations.

One useful way of looking at parallelizable manifoldsoigegard them as “almost
Lie groups,” and indeed, according to Singer and Sternbdff [a compact
parallelizable manifold is a group manifold iff there exsisne global frame field on it
whose structure functions are constant, although oimdy allude to the existence of a
proof for that statement. As we shall see, whatdoes geometrically is to replace left
or right translation with parallel translation.

The way that one shows the equivalence of (2.6) and R.f0) use the intrinsic
formula for the exterior derivative of a 1-form namely, ifv andw are vector fields on
M then one has:

dra(v, w) =v a(w) —w a(v) —a([v, w]). (2.8)

~ One then applies this to the 1-fordsand the vector fields , keeping in mind that
6'(g) are constant functions:

d-6'(e, &) =~ 6'((g, &) = - ¢ . (2.9)

() Since we shall also have to consider the ordinafgreifitial of the coframe field, we shall use a
distinct notation for the exterior derivative.
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b. Parallel vector fields The way that one goes on to do geometry is tolsatya
vector fieldv on M is parallel (with respect tog) iff its components/ are constant
functions. More generally, one says that a veetthat is tangent ta is parallel to a
vectorv' that is tangent ty # x iff V =Vv'. Thus, a vector field is parallel iff all of its
vectors are parallel to each other pair-wise.

In particular, one can consider a vector fie{g(t)) along a curve(t) in M and say
that it is parallel iff its component functions are stamts. This then allows one to speak
of parallel displacement along a curve, although thetemce of a global frame field
means that the parallelism of tangent vectors at fyrgeparated points can be defined
in a path-independent manner. Namely, for any pair of pajngsone can define a
linear isomorphism of\M with T,M by taking any tangent vecte =V e(x) atx to the
tangent vectov, =V a(y).

Now that the notion of parallelism along curves bagn defined, one can then
definegeodesicgo be curvex(t) whose velocity vectorg(t) = dx/ dt are parallel for

every t; thus their components (t) with respect tog(t) = g(x(t)) will be constant

functions oft, which then implies vanishing acceleration, in @esse of the word,

namely:

dx

o (2.10)
Now, any two global frame fields — say,andf; — can be related to each other by a

unique transition function:

fi=gle . (2.11)

One might then ask under what conditions the tramé fields define the same
notion of parallelism; that i is parallel with respect to one frame field ifistparallel
with respect to the other. One immediately finlkst tsincev is parallel with respect to
either frame field iff its components are constlmictions, and the transformation of

components from one frame field to the other takd®rith respect tag) to g;v" , the

only way that the components can be constant ih tases is ifg, (and thereforeg))

is a constant function, as well. One thus defimesquivalence class of global frame
fields that all define the same notion of paradi@liby essentially the “orbit” of any one
of them under the global action of the matrice&itfn). In effect, the equivalence class
of frame fields, thus defined, becomes a coset@froup of constant functions frdvh

to GL(n) in the (infinite-dimensional) group of smooth @iens fromM to GL(n).
Note, that our definition of parallelism does nal ghat the components must all be
equalin both frames, only that they are edinstantin both frames.

c. The canonical connections defined by a globaié field Since we have
defined parallel translation, we naturally wistktmw what sort of connection facilitates
such a process. There are two basic ways to imted connection: One can use the
fact that parallel vector fields have constant congmts with respect to the global frame
field or one can use the fact that the frame fieslelif is assumed to be parallel. We shall
use the former approach, since that is what Emsk@iowed. First, we note that
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geometrically it makes a difference whether one righttiplies or left-multiplies the
frame field by the transition function.
We start with right-multiplication. Suppose we haveector field:

V=V =Ve, (2.12)
with:
v =hv, (2.13)

and we desire that it should be parallel by the aforeowedi definition. Now:
dv' = dh v + i dv=h OV, (2.14)
in which we have defined thevariant differentiabf the holonomic components:
OV =dV + ALV (2.15)

with the 1-form of the connection, which takes its valmethe Lie algebral(n), being
defined by

A = h* dif = AL dx¢ = ﬁﬂﬂ) (2.16)
j K VK VK A GXK ' '

It is useful to know that sinah™h) = dI = 0, one can also say that:
A, =- dh H. (2.17)

Note that if one subjects the frame figdto a globally-constant invertible linear
transformationL’; then hi would go to L hf, dh would go toL,dh, and ultimately

A‘j would be unaffected by the change of frame. This ispafse, consistent with the

notion that such a change of frame should not affectefinition of parallelism.
By contrast, if we had started witle then the 1-form that resulted from that would

have beenh, dif = - dh i , which takes its values in minus the transpose of the

previous matrix. When one makes the frame field odhmal, which we shall do later,
this amounts to the same thing, but, for now, we useothe {2.16).

To say thav is parallel iff V' is constant is to say that:
dav' =0 iff OV =0. (2.18)

If we define the covariant differential efin general as:

Ov=hD0OvVOo =0V Oe (2.19)
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then we see from (2.14) that we have effectively defimx%d: 0 relative to the

anholonomic frame fieldy . Thus, it becomes precise to say, as some autteyrthet
geometry as observed in that frame field is “anholoodsuiclidian.”
From the form of the connection 1-form, one cantkeeit is clearly analogous to

the Maurer-Cartan 1-form on a Lie group. In fact, sirh"te: M - GL(n), one finds that
A‘j is the pull-back of the Maurer-Cartan 1-form®h(n) by the transition functior’.
We shall then callA‘j the 1-form of theteleparallelism connection In Bishop and

Crittenden 44, one finds it referred to as tlrect connectiorthat is defined by .
Dually, if we start with a covector field = a;dX = @, &', @, = a,h)) then we get:

da, = da, i +a,dif = Oa, ', (2.20)
with:
Dai =dai - Ala;, (2.21)
in which we have used (2.17).
One can then define the covariant differential ef¢bvector fieldraccordingly:

Oa=da, 06 =0a O dX (2.22)
and get:
da =0 iff Oa = 0. (2.23)

We could also look at the differential of the cofeafield 8' = h}dx" :
d¢'=dh Odx=-A,06 =-A,6' 06 . (2.24)

Here, we Ieft-multipliedd% by h} to be consistent with the fact that we right-

multiplied 6, by hi. Now, let us see what happens when we right-myltigl by the
transition function. One gets:

dé'=dx' Ddj=- @' 04 =-A,6' 0. (2.25)

One then sees that the components of the connectbiistefined by right-translation
are obtained from the components that one gets fréinrdmslation by permuting the
lower indices. The connection that results from rigiottiplication is then thepposite
connectionto use the terminology od4], which one can then define by:

A\ = A, dx (A = Ay). (2.26)
As discussed in Cartan and Schout¥s|,[when the parallelizable manifold is a Lie

group, the direct and opposite connections correspondetaftirementioned fact that
one can define a global frame field on any Lie group theeileft-translating or right-
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translating a chosen frame at the identity to alhef other points. Furthermore, when
the manifold is three-dimensional, one is essentiaéfining the two kinds of
parallelism that Clifford had discussed previously indbietext of projective geometry.

In the case of geodesics, the defining condition foh sucurvex(t) is that its
velocity vector field:

v(t) =v(x®)) = V' (e =V® (V)= h(X))V (D) (2.27)

must be parallel along the curve. Thus, its componertts igspect toe must be
constant. Since the velocity vector field is defirmedy along the curve, the partial
derivatives that defin@lv' are undefined, and one must use differentiation with cespe
tot. One gets:

' dkon o dv
with
OV = Em(jk)v'\f , (2.29)

in which the parentheses on the lower indices&m imply that one has symmetrized

them. Thus, the curve is a geodesicVf{t) is constant for alt iff 0 V' vanishes,

which takes the form of the usual equations for geodedssa result, geodesics will
look like straight lines with respect to the anholonorfname field, as well as the
integral curves to parallel vector fields.

We emphasize that since only the symmetric part e)fcﬂmnectionA‘j will enter

into the geodesic equations, they will be indifferenth® torsion of that connection,
which arises from the anti-symmetric part. Thus, aighotorsion is a fundamental
aspect of teleparallelism connections, it is not a furet@al aspect of their geodesics.

In the case of a Lie group, there will be two-typegexidesics that correspond to the
left and right translation of a group element by a omespater subgroup, since every
one-parameter subgroup is defined by a tangent vector atehity and therefore, the
velocity vector field of any one-parameter subgroup wilthee left or right translate of
that tangent vector. Since the global frame fieldal® defined by translation, the
components of the velocity vector field with respectatright- (left-) invariant frame
field will be constant.

One can now use the Cartan structure equations to ce@utorsion and curvature
2-forms of the connection 1-for|zh‘j . First, one starts with their formulation on tbéal

spaceGL(M), namely:

N=d8'+A "8/, Q' =dA, +4, 04, (2.30)
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in which® ' is the canonical 1-form oBL(M) and A‘j is defined orGL(M), this time.

In order to relate these equations to the formsttigt take in the classical papers,
one pulls all of the differential forms involved downNbby way of a frame field. Of
course, it is simplest to use the (global) anholononaimée , since, as we pointed out
above, the canonical 1-form pulls down to the reciproofiame fieldd' to & and the
connection 1-forrm‘j pulls down to zero. The structure equations then become:

AN=d8', Q' =0. (2.31)

Thus, one can say that the componenta'of= 1 Al, &' » 6 with respect to the
anholonomic frame field are the structure functionthat frame field:

N, =¢. (2.32)

Hence, one can see that torsion in this context islypw manifestation of the
almost-Lie-group structure that one gets on a paraltdézaanifold. Indeed, whev is
a Lie group, and the global frame field is left or rigivariant, the torsion equation pulls

down to the Maurer-Cartan equations, in which the struchumetions c‘jk are the
structure constants, which implies that the connedtamconstant torsion.

The vanishing of curvature for the connection that we daWaed is to be expected,
since that is also the integrability condition thatke®it possible for parallel translation
to be path-independent or for parallel vector fields to exist

One also finds that th®rsion translation vector fieldn M that is associated with
any twoparallel vector fieldsv andw is:

T(v, w) =A' (v, w) & =— [v, w]. (2.33)

This also follows from the intrinsic formula fdd:

dB'(v, w) =vwW —wV — 8' [v, wi. (2.34)

If one uses (local) natural frame figdd then the canonical 1-form pulls downdd
and the connection form pulls down to (2.16). This makesdision take the form:

N = A Nd =30, -4 dd A dX (2.35)
Thus, the components of with respect to the natural frame field take the form:
/\ijk = A‘jk - A‘kj , (2.36)

which is what one finds in the classical papers, up tcef of 1/2 that depends upon
the author. One sees immediately that the torsfotmeo connection that comes from
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right-translation being used is minus the torsion efd¢bnnection that comes from left-
translation. This would tend to justify referring t@ tformer connection referred to as
the opposite connection to the latter; i.e.:

- (2.37)

One can derive the vanishing of the connection 1-fAfj"rrwith respect to the global

coframe field &' by applying the transformation formula for the 1-fomj1 from the
natural coframe field to that coframe field:

AN =hAh*+hdh*=h(h™"dh) h* +hdit=d(hh™) = 0.
As for the curvature 2-form:
Q) =d.A, +4, 04, (2.38)
one also gets, by direct computation:
Q = dhOdh+(dhh O( dhh= dhOdh+ dhd(‘hdhh= 0. (2.39)

The setGL(M) of all linear connections o8L(M) is not a vector space, since the

sum of two connections is not generally another camme but it is an affine space.
Thus, one can always define the difference of two eotions, which then becomes a 1-
form on GL(M) with values ingl(n), but not an actual connection. Hence, the vector

space thaG£(M) is modeled on ig\'(GL(M)) O gl(n), which is, of course, infinite-
dimensional.

There is a third canonical connection that is defined &éyrdme fieldg , in addition
to the direct and opposite connections. It is whah®p and Crittenden refer to as the
zero-torsion connectignsince that is its defining property. That is, oneirngef a

difference 1-formC} () that gives a connection 1-form:

0

A} =47+C =Cj, (2.40)
such that the resulting torsion 2-form vanishes:
0=dg'+C "o, (2.41)

which gives the defining equation fmj in the form:

() Our choice of the letterC” for the difference form is based upon the fact thiat often referred to
by the physicists who discuss spacetime torsion astrgdrtion” tensor field.
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Cing =-N. (2.42)

The equations (2.42) are easiest to soIveCIjor/vhen one introduces a metric, which

we will do shortly. In the even that one is dealinghva metric connection, the zero-
torsion connection would then become the Levi-Civitangztion. One also notes that
this implies that the zero-torsion connection wilhgeally have non-zero curvature:

0

Q' =d.C+GOC. (2.43)

From the form of the structure equations (2.31), one esrlgl dealing with a
situation that is complementary to Riemannian geometryhich one has zero torsion
and non-zero curvature, since one would see non-zesionaand zero curvature for the
teleparallelism connection.

Of course, in order to compare the geometry to Riemanoienmust also introduce
a metric on the tangent bundle, which we shall now do.

d. G-structures.A global frame field on a parallelizable manifdltlis an example
of a G-structure namely, a reduction of the bundB.(M) - M of linear frames oM
to a bundle whose fibers are submanifolds of the fibéGL(M), and whose structure
group is a subgroup @L(n). Examples oG-structures then include almost everything
that is geometrically important, namely:

1. G =GL"(n) = matrices with positive determinants.GA"(n) structure oM then
comes from an orientation oli(M) (if it admits one) and defines a bundle of oriented,
linear frames.

2. G = SLn) = matrices with unit determinants. A8i(n)-structure onM then
comes from a choice of (unit) volume element and defadmindle of unit-volume
frames.

3. G =0(p, 9, SAp, 9. An O(p, g)-structure then comes from a metric of
signature typep, q) — i.e.,p negative signs anglpositive ones- and defines a bundle of
orthonormal frames, while &Q(p, q)-structure then reduces it to oriented, orthonormal
frames.

4. G =e. Since there is only one elemeniGpthere is only one frame in each fiber
of ane-structure orM. This is then the case of a global frame field.

One can also describe symplectic structures, distinggiistector sub-bundles of
T(M) — i.e., differential systemsand almost-complex structures@structures, but we
will have no use for that knowledge in the present discnsskor more details on the
subject ofG-structures, one might confetq-49, as well as the author’s observations on
how they might apply to the spacetime manifd&d]]

Note that we pointed out the fact that such reductiom®t@always exist. Indeed, it
is topology that obstructs some of the reductions, vaadvill return to this in a later
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section, but for now, we shall focus on the geometsigects of admitting the various
reductions.

Furthermore, notice that in examples 1-4, we said “adle)’ instead of “the
bundle,” since, in fact, if one chooses any linear &anha point oM then the orbit of
that frame under the action & will define the fiber of a bundle that become&a
structure. For instance, sindgL(n) has two connected components according to
whether the determinant of a matrix is positive or tega there will be two
disconnected orbits to any linear frame, and a choicmefor the other is an orientation
at that point. Thus, there is something arbitrary alsalling a given frame oriented.
Similarly, one can call any linear frame orthonormatl dhereby define a metric by
means of the orbit of that frame under the actio®(@t q).

One should also note that some of the reductionssaceiated with dundamental
tensor fieldand the others are not. In particular, the reductoBL{n) is defined by a
choice of unit-volume element, and the reductionXp, ) is defined by a metric.
Generally, the fibers of &@-structure that are defined by a fundamental tensor irdld
be level submanifolds of the tensor field, when one reptesieas &-equivariant map
from GL(M) into a vector space that carries a representati@ of

Now, the further one goes down in a chain of subgroupS&lgh), the more
fundamental tensor fields one can define by starting thelfinal reduction in the chain.
When that final reduction is t6@ = e, as it is for parallelizable manifolds, one can then
define the fundamental tensor fields that were necessagduce that far in terms of the
global frame field or its reciprocal coframe field.

In particular, if 8' is a global coframe field then one can define botvolame
element:

v=g'nr...n@" (2.44)

and a metric (of any signature typ8): (
g=1; 6'6, n; = diagf1, ...,-1, +1, ..., +1]. (2.45)

What one has done in the former case is to arbytrapkcify that the frame or
coframe at each point has unit volume, while in thelatase, one arbitrarily specifies it
to be orthonormal of the desired signature type. dftlimks ofg as a map fronGL(M)
to §n) — viz., the symmetric, invertiblexn matrices — then a®(p, q)-structure is
defined by all of the level submanifolds of the matyjx Since the action d(p, g) on
linear frames preserves the memicthese level submanifolds are clearly orbits of that
action.

In the case of a®L(n)-structure, since the action of an invertible ma&ion any
frame will takeV to det@) V, one sees that defining a unit-volume elementVbrs
equivalent to defining a “determinant” function @b(M). An SL(n)-structure is then
the level submanifold of 1 under a choice of such atioinc The fact that there is more
than one possible choice of determinant function is bas#te fact that any frame can
potentially be described by any invertible matrix with respesome reference frame.

(%) We assume that the product of the two covector figltise symmetrized tensor product, here.
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When one starts with a linear connectionG{M), one can also speak of reducing
the connection to a connection oiGastructureG(M) — M in some cases. Of course,
there are conditions that must then be satisfiedderdor the reduction to be possible.

In order to be &-connection, the 1-form4 of a connection must take its values in the

Lie algebrag and be Ad-equivariant under the actiorGof When one has a fundamental

tensor field, an equivalent condition to the formee aos that the fundamental tensor
must be parallel under the connection.

In the case of a volume element, this means theection F‘j must take its values

in the Lie algebral(n) and be Ad-equivariant under the actiorbafn); hence, one must
have:
Tr(M) =T} =0. (2.46)

One sees that this is, in fact, equivalent to the req@nt thatlVv = 0, since:

oV =06'7..28"+..+6'~...~08"
=M@ A A"+ G AT = Tr(T)

In order for a connection to reduce@@, q), one must have that it takes its values
in so(p, ) and is Ad-equivariant under the action of that group amés. Thus, one

must have:
0= ,7ikrlj( + rik’7kj =0+ 1. (2.47)

This is equivalent to the requirement thigt must vanish, since:
Og=7(06'6'+6'06) = (g +Tng6'6’ = ([ +T;)6'6. (2.48)

If the coframe fieldd' is, by definition, parallel for the connection thadéfines
then one will havéld' = 0, and sincél is a derivation, any tensor field that is defined
by finite linear combinations with constant coefficieaf¢ensor products of thé' will
also vanish. In particular:

OV =0, Og=0 (2.49)

for the teleparallelism connection. Thus, it isparticular, a metric connection, and for
any choice of metric signature type. Of course, irefh@ications to physics, the metric
used is usually the Lorentzian metric of spacetime, thithglobally normal hyperbolic
signature type of Minkowski space, which will be (+11,-1, 1) for our purposes.
Since any parallelizable manifold can be given a matregan also be given a Levi-
Civita connection on its bundle of orthonormal framesSuch a connection is
characterized uniquely by being a metric connection withsténg torsion. That is, if

o . 0
the connection 1-form is denoted By, and its covariant derivative is denoted by

(0]
while its exterior covariant derivative is denotedby then one must have:
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(o]

Og=0, O, dX = A\ Odx = 0. (2.50)

However, the Levi-Civita connection for a paralleiltamanifold, when it is given a
metric, does not have to have vanishing curvature:

0! :DDA‘j:dDA‘j+ALDA"j, (2.51)

For instance, a 3-sphere is parallelizable, but the Cexta connection that comes from
its metric has constant non-zero sectional curvature.
If g is the metric that is defined by a global frame fieldagmarallelizable manifold,

o . .
as above, then the local componentgfwith respect talX are, as usual:

(o]

A =39"(0,9, +0,9 —9 g)- (2.52)

Note that this vanishes dlX is an orthonormal frame, and with it, the curvature.
However, the question of whether there exist orthoabritame fields that are also
natural is one of the “integrability” of th@-structure in question, which is non-trivial.
In particular, we now see that a necessary condibioimtegrability is that it must admit
a flat connection.

Since the Levi-Civita connection is unique, one can uses ian “origin” for the

affine spaceO(M) of all metric connections o®(M) and uniquely characterize any
other metric connectiof ‘J. by its difference 1-form:

Ci =A, - Al (2.53)

relative to the Levi-Civita connection.
If the torsion ofA' is given byA' = $A' 8’ 06, with ' orthonormal, andC; =

C, & then the defining equation (2.42) f@; can be solved by lowering the upper
indices to the left-most lower index usirpg which makes:

Cik — Cij = = Nik - (2.54)
since C} Is now an infinitesimal orthogonal matrix, one at&ss:

Cyji = — Cik - (2.55)
Equations (2.54) can then be solved by anti-symmetrizingdioéls, and one gets:

Cik = =3 (Nik = Nii + Niip)- (2.56)
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3. The field equations. Having settled upon a fundamental field, in the forna of
global frame field, the next challenge to the solutd the Einstein-Maxwell unification
problem was to find a set of field equations that the fundéahdeld would have to
obey that might behave in a manner that was analogdbs teay that the Einstein field
equations of gravitation related to the Lorentzian meéamsor field. Since there was
little physical intuition based in first principles goide the formulation of the equations,
except the ultimate goal that they should duplicateEihstein and Maxwell systems of
equations in some approximation, one gets a closer insighthe evolution of a field
theory by examining the papers in chronological order. c@irse, if one desires to
simply start with the final form of the field equatiotisen it is sufficient to read
Einstein’'s papers in Mathematische Annal@d] [or the Annales de [I'Institut Henri
Poincaré 30] in order to get an idea of what Einstein was defining.

One sees that some of the recurring themes in that geee:

1. The search for an appropriate field Lagrangian thatldvonake the field
equations take the form of the Euler-Lagrange equationsa fetandard variational
problem that would be based upon Hamilton’s principle.

2. The reduction of the possibilities by imposing symmetnystraints on the field.

3. The need to find identities that would ensure that rdsilting system of
equations was well-determined, when it tended to be overrdiet.

In Einstein’s first attempt at a unified field theody7], he proposed a variational
formulation that was based upon the field Lagrangian:

L1=hg“ AN (2.57)
if the volume element on spacetime is describedi¥y" ... * d% andh = det [h“].

Thus, if one uses the volume element that is defineddbyhen the factor oh
disappears.

He did not pause to specify the resulting field equatiorsli generality, but simply
went on to derive them in the “first approximation,”virhich the anholonomic frame

field e, = h), 0, differs from the holonomic ong, by only small quantities:
h, = J, +k, . (2.58)
The resulting field equations fde, took the form:

Ok, _ 0%, 0%k, 0%k,
ox;  0x0x% 0xdx% 0x0%

]

= 0. (2.59)

He then converted this system into separate systeons gfavitation and
electromagnetism by setting:

gyv:/7/1v+k/1v+k/1v, 2@1: avkz_aﬂkl,/. (2.60)
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The resulting field equations in the first approximatioen took the form:
Ro=@v* @u,  0h¢)=0, Og, =0. (2.61)

In the absence of an electromagnetic field, the $iestagrees with the vacuum Einstein
field equations for gravitation, while the second and thirtk s equations are
equivalent to the vacuum Maxwell equations, when theyeapeessed in terms of an
electromagnetic potential 1-forg= ¢, dx’ that is constrained by the Lorentz gauge.

Since Einstein concluded the paper by pointing out thatgohesimilar results by
starting with the field Lagrangian:

£2=hg,, & NN, (2.62)

he admitted that one already had a certain degreem§aity in the proper foundations
for the field theory.

As ,emtioned in the first section, the first two papey Einstein provoked a number
of responses from some of the dignitaries of mathemaind physics of the era. We
shall briefly discuss the gist of some of them in rdgt their mathematical and
physical details.

The paper by Reichenbac®l] can be basically summarized in the diagram that he
presented that shows how Riemannian geometry is coraptany to teleparallel
geometry, in that both of them are examples of theeng@neral geometries of metric
connections, in that the former geometry has vanishingiotorand non-vanishing
curvature, while the opposite is the case for the Iggemetry. In the current era it is
probably incorrect to identify the general case of imegjeometries with both non-
vanishing torsion and curvature as Weyl-Eddington geomesiase nowadays that
type of geometry is more commonly referred tdR&mann-Cartargeometry, while the
geometry of Weyl and Eddington refers to the even morergé case in which the
connection is not metric, either.

The paper by WeitzenbocKlg] addressed the fundamental issue of finding all
possible field Lagrangians that would have the desired symmatder globally-
constant Lorentz transformations of the frame figt® first came up with the reduction
theorem that in the absence of the specified symmietigrangians would have to be

functions ofd, d-¢, O, d-¢, ..., O, d:&', and since\" = d-&, one could also say
that they were functions o', A*, O, A%, O, , A Upon imposing the invariance

constraint, he then showed that acceptable Lagrangianklvmave to depend updn
Ou, N, Oa N9, O A*; in particular, they would not depend upon the framal fiel

except by way oh andg,,, and their dependence uplwvould usually be based upon
the factxtahat the volume elemevit could be expressed in the fo@i~ ... ~ 8% orh d¥
ALY,

He defined theorder of the Lagrangian to mean the highest power of the @ntar
derivatives ofé' that appeared, and asserted that the only zero-ordemigéamavould
be a constant, while there would be no Lagrangianssifdider in\” or g,, alone. As

for second-order Lagrangians, one would h8yvand.,, as defined above, along with:

ay-- Qg
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L3=hd“ A N2 =h " D, D,. (2.63)

pa® ‘vp

One could also define invariants that were based uporgjusn the form of the
Riemann curvature tensor, Ricci curvature tensor, an@rscalvature that would be

defined by its Levi-Civita connectioh/ = I'%,dx‘ in the usual way. The way that one

relates that connection back to the teleparallelisrmection; = AZ dx* is by way
of:
re =A%+ CH, (2.64)

in which C/ can be obtained from (2.56).
In particular, the usual Einstein-Hilbert Lagrangiaketathe form:

Li=hR (2.65)
Finally, one can consider Lagrangians of the form:
Ls=0,0" (2.66)

Zaycoff [20] then pointed out that the above five Lagrangians welsed by the
identity:
L1+20,—4L3—-8C4+ L5=0. (2.67)

He further suggested that one might consider, more ggndiraar combinations of the
five with constant coefficients, and indeed subsequeactdsion often looked for such a
combination that would be “optimal,” in some sense. Iie trest of his first
communication on Einstein’s theory, he examined theouarfield equations that one
would get from various Lagrangians in the first approxiomat

Einstein R2] temporarily abandoned the variational approach to rigdfield
equations and simply looked for identities that relatetthédbasic field and its covariant
derivatives that might look like physical conservatiaws. He then came up with an
over-determined system of equations — viz., 20 equations in Krfiowns — and thus
posed the compatibility problem that he would return to ntangs, namely finding the
four supplementary identities that would restore the détecy of the system. Zaycoff
[23] then expanded his own analysis accordingly and claimedate resolved the
compatibility issue, although Einstein made not mentiotinalf fact in later papers; then
again, Einstein was notorious for never referring to aay@se’s papers to begin with.

Einstein once more returned to the variational fortmrain [26], in which he used
the Lagrangian:

L=

N

L1+ 5 L= Ls, (2.68)

which had the property that it was the unique combinaticmtide:
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0L 0 | oL
G = - 2.69
ag,, Ox (6/\;} (2.69)

symmetric. The resulting field equations were then:

G*=0. (2.70)
He then tried:
L=C+&al +&L3 (L =1L1+1L)), (2.71)

in which & andeg, are treated as infinitesimal quantities.

In Einstein’s Mathematischen Annalen pagd&f][which is similar in content to the
one BQ] in the Annales de I'Institut Henri Poincaré, thddiequations that he settled
upon, which are the ones that are generally used to thisvéae ¢):

0=G* =N\’ , A% N,
ura } (2.72)

0=F* ="

uvias

Since this system is also over-determined, being 22 equatiditisunknowns, Einstein
returned to solve that problem ii81], upon advice from Cartan, by finding the
appropriate six identities.

However, it was when Einstein and May&B][ as well as McVittie 35], began
looking at explicit solutions to the field equations (2.#23t the theory was dealt an
essential death blow. Namely, in the Einstein and Mawper, they considered two
static field configurations:

1. Spatial isotropy, which was seen as modeling the @éla charged, spherical
mass.

2. Afinite set of isolated uncharged mass points.

Since the last possibility is unphysical when onduiies the mutual gravitational
attraction of the masses, which would make a statidiguration impossible in the
absence of compensating forces of repulsion, the fattthie field equations admitted
such a solution made them quite suspicious.

McVittie reached similar conclusions that were based upentreatment of the
static, axially-symmetric field. He found that the di€quations admitted only a unique
solution of that type, not a family of them, and itd dnot seem to have an
electromagnetic aspect to it, nor did it agree as a puylyitational field with the
solution that he had previously found in the context ost€in’s general theory. Since
he regarded the latter solution as more definitive, hehezhthe ultimate conclusion that
teleparallelism, as it was formulated at that poirtime, appeared to be unsatisfactory.

After that, interest in the theory waned predictabBy 1931, Einstein and Mayer
had moved on to a new unified field] [that revisited Kaluza-Klein concepts from a
different angle. In that same year, Cartan madeesturther observations3¢] on

() The underbar on an index means that it has been raised.
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absolute parallelism and unified field theory that wamngely unnoticed. In 1932, the
cosmologist H. P. Robertson made a stl8% pf parallelizable manifolds that admitted
groups of transformations as symmetries, which made ndioneof the fact that the
theory seemed unconvincing at the level of solutions, buhasmped that the study was
mostly independent of an actual choice of field equationH. the theory of
teleparallelism occasionally attracts attentiorhie tay then it is usually treated as more
a “toy model” with some interesting features, morentlsa definitive statement of
spacetime structure.

What we will now consider in the rest of this irduztion is the possibility that the
flurry of research that was mostly done in 1929 and condluteund 1930 was
mathematically “premature,” in the sense that the logpcal question of what sort of
differentiable manifolds would actually be parallelizamas not addressed by the
mathematicians until Stiefel's landmark thesis in 1988.[ The question then arises of
whether a topologically-enlightened approach to the proldémeleparallelism would
have produced a different set of field equations with nsatésfactory solutions. In
particular, might the singular points of singular frarnelds on non-parallelizable
manifolds serve as the sources of non-vanishing curvathieh would not exist for the
teleparallelism connection on a parallelizable manifold?

Thus, we shall first discuss the current understandingthef topology of
parallelizable manifolds and the topological obstructimnparallelizability, then briefly
discuss the nature of formulating the Dirac equatiora grarallelizable manifold, and
then pose some speculations on how singular framdsfien non-parallelizable
manifolds might change the basic problem.

4. The topology of parallelizability. As mentioned above, not every differentiable
manifold is parallelizable, although all of them arealbc parallelizable. In fact, one
begins to suspect that global parallelizability is usuadisd to come by, since even such
homogeneous spaces as 2-spheres will not have that propérsy, it seems reasonable
that one must be dealing with a manifold that is veogelly related to a group manifold
in order to expect global parallelizability.

a. A parallelizable covering manifoldust as non-orientable manifolds always have
an orientable covering manifold, one finds that non-paizdible manifolds also always
admit a parallelizable covering manifold, in a sensdis Is because the total space
GL(M) of the bundleGL(M) — M on anyM is itself always a parallelizable manifold.
Of course, the reason that one should probably not thirthisfas a true covering
manifold is that, whereas the dimension of the oaielet covering manifold is the same
as the non-orientable manifold, the dimensionGif(M) is much larger than the
dimension oM. That is, the fibers of most covering spaces aseretie, while the fibers
of GL(M) are continuous manifolds that behave like group marsifold

The global frame field on angL(M) can be defined by the set of all fundamental

vector fieldsE, that are associated with a basi&{A = 1, ...,n%} for the Lie algebra
gl(n) by way of the (right) action d&L(n) on frames and a set nfbasic vector fields
{Ei, 1 =1, ...,n} that frame the horizontal subspaddgGL(M)) of T(GL(M)) that are
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defined by some choice of linear connection. Thus, tletende of a global frame field
onGL(M) is equivalent to the existence of a linear connection

One can show (cf., e.g.44] or Sternberg 31]) that a linear connection always
exists, and, in fact, what one does is to start wically-finite covering oM by local
frame fields, give each of them its teleparallelisonnection, and piece the local
connections together into a global one by means of iparof unity. Of course, since a
partition of unity is not a canonically-defined construtcten a manifold, neither is the
resulting linear connection. Thus, its main usefulness @oving the existence of a
linear connection. One should notice that the prooégsiecing together the local
connections with vanishing curvature will generally produgdodal connection with
non-vanishing curvature.

Dually, one can define a global coframe field 6h(M) by combining then?

connection 1-formsdj with then canonical 1-form§i, i =1, ...,nthat are defined on

any frame bundle. These have the key property tleat Il — GL(M) is a local frame
field then the 1-forms ok that one gets by pulling down by way ofe define the
reciprocal coframe field te, . The tangent subspaces that are annihilated I8 ate
then the vertical subspaceégGL(M)), which are tangent to the fibers and thus project to

zero, and the ones that are annihilated by all ofavhare, by definition, the horizontal

subspacebl(GL(M)); one thus ha$ = H [ V, which is true for any connection.
One finds that the teleparallelism connectioh (¢, v =1, ...,n(n + 1)) - which is

referred to as &artan connectionn this case- that is defined by the global coframe
field {0, ch } actually contains all of the information that was ie td:onnectiomjj . In

particular, the curvature 2-form aﬂJ becomes only one component of the torsion 2-
form of '/, This follows from the fact that:

[Ex, Ed] = = N(Ex, E) E,—Q*E. E)) E,, (3.1)

so the structure functions of the global frame fielitl ,{ EA} already include both the

torsion and curvature of the original connection.

Thus, in a sense, teleparallelism connections cdh estibody non-vanishing
curvature- at least, for a specialized class of manifolds thak lde frame bundles.

To some extent, one can think of the horizontal sulsHeur(GL(M)) of T(GL(M))
as an “unfolding” of the tangent bundleNf in that its fiberdd, are all vector spaces of
the same dimension as those T§M) and they project isomorphically onto tangent
spaces under the bundle projection, but at each M the horizontal subspaces to
GL(M) represent a family that is parameterized by the padfitann®dimensional
manifold, namelyGLy(M).

b. Obstruction theory and Stiefel-Whitney classélhe last translation in this
collection is the doctoral dissertation of the Swisghamatician Eduard Stiefel on the
topological obstructions to the parallelizability of nfafds. Since his advisor at the
Swiss Federal Institute of Technology was Heinz Hopd, ot surprising that the stated
objective of that research was to extend the Poindap#-theorem, which said that a
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compact manifoldM admits a global non-zero vector field iff its Euloincaré
characteristic{M] vanishes, to the existence of a set of more than lmearly-
independent vector fields. One can call such a sdt lafearly-independent global
vector fields &, a=1, ...,k} on a differentiable manifoldM a k-frame fieldon M, and
the maximum value ofk for which such a field exists is then idegree of
parallelizability. Thus, what we are calling parallelizability amoutdssaying that the
degree of parallelizability is equal to the dimension ofrtiaaifold.

What Stiefel defined were a setZfhomology classes that must vanish in order for

a differentiable manifold to be parallelizable. Sinceythvere subsequently given a
more concise form by Hassler Whitney at Princetéd],[they — or rather, their

Poincaré-dualZ,-cohomology classes — are now referred to as Stiefel-Whitney

classef a manifold (really, of its bundle of linear frames

More generally, one now considers characteristiooutiogy classes that represent
“obstructions” to the triviality of a principal fiber bulegd and which are then called
obstruction cocylef53-59. Their vanishing is a necessary, but not generallycserfit,
condition for the triviality of the bundle in questiosince the triviality of a principal
fiber bundle is equivalent to the existence of a glskation of the bundle, one sees that
obstruction cocycles can also be regarded as obstrubBngxtension of local sections
to global ones.

The general picture for obstruction theory, as ated to parallelizability, starts by
triangulating a compact differentiable manifald; that is, by expressing it as a set
composed of a 0O-chain, a 1-chain, ..., andnachain in some way, such as ones
composed of polyhedral or singular simplexes. These chanthen referred to as the
k-skeleton®f M for each dimensiok and they are related by the fact that the simplexes
of thek-skeleton are the boundary simplexes of the simplekégeé+1-skeleton.

One starts the dimensional recursion by defining-fname field on the 0-skeleton
of M and looking at the obstruction to the extension efftame field to the 1-skeleton.
Now, as long as two O-simplexes — i.e., vertices —careected by a 1-simplex (i.e.,
they define its boundary) the extension of the framiel i the boundary to a frame
field on the simplex itself would represent a path inr@nifold GL(n), which is the
model space for linear frames bh Thus, all that would be necessary for this extension
to always be possible would be f&L(n) to be path-connected. Of course, it is not,
since it consists of two components that correspontiegdvto possible orientations for
any linear frame. Thus, one is already looking atlzstraction to the orientability dfl,
namely, whether one can always restrict the franmethe 0-skeleton to lie in the same
component o5L(n).

So far, what we have defined is the association aflament of the homotopy set

76(GL(n)) = Z, (which is not a group in dimension zero) with a 1-dexpn by way of
a map that is defined aluy. That is, it is a 1-cochawi[M] with values in7(GL(n)),
which is also isomorphic téd,, as a set; one can also prove thgM] is cocycle (see,

e.g., b3-59). The vanishing ofw[M] really amounts to saying that it takes a constant
value, in this case, which depends upon whethes orientable.
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When one goes to next step, one starts with tineeffeeld that is now defined on the
1-skeleton and examines the obstruction to extending @& frame field on the 2-
skeleton. Once again, if a 2-simplexis bounded by a 1-bounddpy on which a frame
field e(b,) is defined then the extension from the boundary toritegior is possible iff
the homotopy class of the map: 0 — GL(n) is trivial. Sinced o is homotopically
equivalent to a 1-sphere, the homotopy class of this defmes an element of
76(GL(n)), and thus, a 2-cocham,[M] with values in7(GL(n)), which can also be
shown to be a cocycle. The vanishingwefM] for every 2-simplex is necessary and
sufficient for the extension & to a frame field on the 2-skeleton.

One then proceeds analogously in each successive dimdnsiot defines &-
cocyclewM] that takes its values in the Abelian gromp,(GL(n)), which one calls the
obstruction cocyclen dimensionk. Its vanishing is necessary and sufficient for the
extension from dimensiok — 1 to dimensiork. The first dimension in which a non-
trivial obstruction occurs then defines @mary obstruction cocycle.

One sees that it is necessary to know the homotapypgrofGL(n), in this case, or
at least the first non-trivial one. By polar decomposj one finds that the homotopy
type ofGL(n) is carried by its maximal connected orthogonal subgroghmvould be
O(n). Of course, in order to reduce further &(n), one would have to have
orientability of T(M), and thus, the vanishing ofs[M]. Hence, we make that
assumption in order to look at higher obstructions.

Forn = 2,SQ(2) is S, up to homotopy. Thus, its first (and only) non-vanishing

homotopy group iga4(SQ2)) =Z. This gives a 2-cocyle with values #) and itsZ,

reduction is themw[M]. Frame fields on closed, orientable surfaces ae potentially
obstructed by an integer cohomology class in dimensian which is basically the
Euler class that also obstructs the existence of nanxaetor fields. This is related to
the fact that Stiefel pointed out that if one hasnafi-frame field on an orientable
manifold then one also has aiframe field.

Forn = 3, SQ3) is RP?, up to homotopy, which agrees wiffi up to homotopy,
except in dimension one, wherg(RP?) = Z,, due to the two-to-one covering BP® by
S. After that, the next non-trivial homotopy group 7i&(RP®) = Z. The former

homotopy group gives a 2-cocycle with value<Znthat is againw[M], and although
the latter one gives a 4-cocycle with values in thteger, for a three-dimensional
manifold, all 4-cocycles would vanish, to begin withyasild ws[M], since 7s(RP?) = 0.

For n = 4, SO4) has the homotopy type & x RP? so 7#SQ4)) O (S) O
7H(RP?). This makes the first two non-zero homotopy gromg(SQ4)) = Z, and
78(SA4)) =Z 0O Z. The former givesw,[M], and the latter gives a 4-cocycle with

values inZ [0 Z. Once againps[M] vanishes, and for the same reason as before.

Ultimately, the necessary, but not sufficient, cooditi for the complete
parallelizability of M is the vanishing of all of its Stiefel-Whitney classeseach
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dimension. As we saw, the first Stiefel-Whitneysslanust vanish in order fdf to be
orientable. The second one relates to the existenca epin structure for the
orthonormal frames (dQ(n), that is), and at the top dimensionone finds thatw,[M]

is always theZ, reduction of the Euler clasgM], which gives the Euler-Poincaré

characteristic oM when it is evaluated on the fundamemta&lycle. Thus, one sees that
the Stiefel-Whitney classes do, indeed, extend the sufthe Poincaré-Hopf theorem.
Actually, in order to duplicate that theorem in the eahbf obstructions, one must
consider the obstructions to the extension of a non-zector field — i.e., a 1-frame
field — from the O-skeleton d¥1 on up, not the extension of arframe field. The space
of non-zero tangent vectors at each poinMois homotopically equivalent to an-1-
sphere, so the homotopy group that one must consider lindé@ensiork is 7z(S™™).

The first non-vanishing dimensionks= n — 1, with 77-1(S™) OZ, which corresponds to

a n-cocycle with integer values. In fact, since one @&king at the degree of the map
from ann—1-sphere to an—-1-sphere, one is indeed duplicating the basic construdtion o
the Gauss map that gives one the Poincaré-Hopf theorem.

5. Teleparallelism and the Dirac equation. Although the inclusion of the Dirac
equation into the unification problem means that one iisggbeyond the scope of the
Einstein-Maxwell unification problem, nonetheless, \m&eseen that perhaps there was
something flawed in that problem to begin with. In paftic, one might wish to unify a
strong-field theory of electromagnetism, such as tilensn-existent field equations of
guantum electrodynamics, with the Einstein equationsadfitgition, since they describe
strong gravitational fields. Thus, we have included seamy papers of Zaycofp,

29 on the subject of how teleparallelism might relatéhe Dirac equation.

Actually, the usual way of introducing a spin structure meneral relativity already

makes use of the existence of 4-frames (i.e., vierbeifisat is because the most direct

way of going from Minkowski spac#t* = {R*, N} to the Clifford algebra that it

generates is by choosing a Lorentzian frame, {#= 0, 1, 2, 3} inM* to serve as a set

of generators for that algebra. That is, one foathformal products, e,, e, e, e, ...
of basis vectors and subjects them to the relation:

e, e t+te e = 2. (3.2)

This has the effect of making all products of more fban basis vectors vanish, and
one finds that only 16 independent products (including 1) surviMeus, the Clifford
algebra overn’, which is spanned by all linear combinations of the basigovs,
becomes a 16-dimensional real algeb(a, 77,,) with unity that is associative, but

neither commutative nor skew-commutative.
The four Diracymatrices {§,, = 0, 1, 2, 3} then define a way of representing the

algebraC(4, n,v) in a matrix algebra. Actually, they define a repnégon in a proper

linear sub-algebra of the algebk&(4; C) of complex 4«4 matrices, since the real
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dimension of that algebra is 32, which is twice as big aeded in order to represent
C(4, nu) isomorphically. The representation is defined simplyabgociating the four

generatorse, of C(4, 1) with the four rmatrices, so products of the former go to

products of the latter.
So far, all of this construction pertains to a singéagent space to a four-
dimensional Lorentzian manifold, such as, presumablycespae. In order to make it

global, one has to define &l(2; C)-principal bundleSpinM) - M whose fibers
consist of Lorentzian spin frames that map to the leuibM) of Lorentzian frames in
the same way thaL(2; C) maps toSQ3, 1). Here, one finds that there are further

topological obstructions to such a global Lorentziaim structure existing, and in fact,
the primary one is the second Stiefel-Whitney clagd1]. Interestingly, GerochSf]
showed that a non-compact, orientable, Lorentzian widnthat admits a Lorentzian
spin structure must be parallelizable. Thus, even thstigneof global Lorentzian spin
structures is closely related to questions of telepéisatie

6. Singular teleparallelism. Although one might easily take the position that
teleparallelism seems to have been eliminated fromuseonsideration by the less-
than-encouraging results of Einstein, Mayer, and M@&/itbtne can also say that their
work was historically premature, in the sense thadidt not take into account the
topological nature of the problem that only began terge some years after they gave
up. Similarly, one should admit that perhaps the Eindksirnwell unification problem
itself was premature or perhaps even poorly posed, in its mih rUltimately, one
must admit that, regardless of its role in the Einskgxwell unification problem, the
topological issue of whether the spacetime manifoldaisllelizable is as fundamental
as asking whether it is compact, orientable, simply-cctede or any of the other
topological issues that will bear upon the natureoddt®ons to systems of differential
equations on it.

In that light, if one addresses the problem in a @obistfel-Whitney way then one
first asserts that either the spacetime manifoldabally parallelizable or it is not, and
that since parallelizability is, apparently, hard to cdmge except locally, one should
consider the possible contribution that the topologatadtructions to parallelizability
might make. In the context of field equations, one mggieculate that they represent a
sort of “topological defect” that can serve as the sewf a field, just as the deleted
point at the origin can serve as the source of a Cduletd and dislocations in plastic
media can serve as the sources of stress fields.

A possible basis for this sort of study is given by tlo¢ion of “singular” frame
fields on non-parallelizable manifolds, which one sessussed briefly towards the end
of Stiefel's thesis. Aingular m-frame fieldn ann-dimensional differentiable manifold
M is defined by a sete(x), i = 1, ...,m} of m vector fields. Theankr(x) of g atx is
the dimension of the linear subspacd @ that is spanned bg(x). Thus,M has degree
of parallelizability m iff there is a singulam-frame field whose rank is a constant
function that equalsn, in which case, one could say that thdrame field isnon-
singular.
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One can imagine two possible ways that the rank afigukr frame field could be
less-than-maximal at a point: Either one or morehefitectors fields has a zero at that
point or some of the vectors coincide at that poititis easy to see that the former
scenario is “generic” up to homotopy, since one can sha@me of the coincident vector
fields arbitrarily and multiply the other ones by aosth function that is defined on a
neighborhood of the point and goes to zero at that pdihtis, one can treat the case in
which the singularities are defined by zeroes as beintypieal one.

Furthermore, the set of non-singular points, beingdhel set of the rank function
for the valuem, is open (when the set of non-negative integers isngikie discrete
topology), so its complement — viz., the set of siagpbints — is closed. One might ask
what the maximal such non-singular subsetMomight be; i.e., the minimal singular
subset. This is essentially what Stiefel did by imaginirframe fields for which the set

of singularities defined a homology complex, in the favfra Z,-cycle. Actually, it

becomes &.,-cycle of mixed rank that amounts to the total Staléilitney class oM,

or rather, its Poincaré-Veblen dual in homology.

One finds that in many examples the singularity comp#exbe as simple as a finite
set of isolated points. For instance, if one wishegefine a singular 2-frame field &
that would have a minimal singularity subset then omeus vector fields that have a
single zero at the North pole, although it is geomdtyicampler to use ones that have
zeroes at the North and South poles. For exampécam define a singular frame field
on & by using the fields of unit vectors that are tangent éolahgitude and latitude
circles everywhere except the poles. Topologicallye ¢hen represent§’ as the
suspensiomf a circle — say, its equator. That is, one fiostrfs the cylinder+47z +74 x
S, and then identifies each boundary circle — vizz{ S and {+73 x S' — with a
point, which then become the two poles. Now, thendgi Frz +74 x S is
parallelizable, so one can define the global framel fiel,, eq on it, where the vector
fields are unit vector fields that point in the direatiof increasingy and &, resp.,
assuming that the coordinate system for [+74 x S' takes the form§ 6.

When one deforms-jz +74 x S' continuously intaS’ (except at the last step, when
one identifies the boundary circles to points), adndd that the frame field cannot be
extended to the poles, since one has a situation at eithe like the one depicted in the
following figure:

Clearly, one cannot expect to extend the frame fisklfito the missing point, but
one can imagine extending tlennectionon the bundleSQS) - § of oriented,
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orthonormal 2-frames that it defines to one that is disfined on the fibeBOW(S) of
the poleN. This is because the manifd@S) is itself parallelizable, even thoughis
not.

One might describe such an extension most easily iynigpa@t the extension of the
parallel translation of frames along longitude cirddgscontinuity at the pole, where the
parallel translation is defined everywhere except thie py teleparallelism. One
immediately sees that when a loop intersects the pat possible for the parallel
translation of a frame around the loop to exhibit nonal holonomy at the pole;
indeed, this will happen as long as the final velocity mee(l) of the loopx(s) is not
coincident with the initial ong(0). If v(0) andv(1) form an angler then one sees that
the loop is associated with a non-zero rotation of itiigal frame to the final one
through the anglex. Thus, the extension of the teleparallelism connect® the
singular point has introduced non-trivial curvature atpibie.

Of course, the connection and curvature that we haveedkéire not continuous or
differentiable at the singularity, but behave like goshenction and a delta function
there, respectively. One can see how this is sbifisistent with the Gauss-Bonnet
theorem if one represents the connection 2-form as:

Q =i(dx, N) + A%, 9) Va, (4.2)

whereV; is the volume element on the (unit) sphere and the fieizions produce 1
when eitheN or S are contained in the domain of integration. When thatadgo is all
of & and one divides by, one gets:

2 [La=2=48] (4.2)
ar Is

where {¥] = 1 — 0 + 1 is the Euler-Poincaré characteristic ef 2ksphere. One can
think of the (closed) 2-form 1/ Q as representing the Euler cl&$’] of § in the de
Rham cohomology in dimension two. It also represeatfiist Chern class;[SQS)]

of the U(1)-principal bundleSQSY), and itsZ,-reduction is the second Stiefel-Whitney

classwo[S] of M, as well. Thus, we are clearly dealing with top@abobstructions as
the source of curvature, here.

However, although this example serves to illustrate lay that the topological
obstructions can be the sources of non-zero curvatuteeir neighborhoods, it lacks a
certain usefulness in geometric terms due to its noerdiftiability. Hence, one might
ponder the question of how to smooth out such a connectilhose neighborhoods in a
manner that has some basis in physical necessity.

One possibility is given by the example of topologicafedts in ordered media,
which can serve as the sources of stress fieldsndfthen adds the extra information to
the picture in the form of the mechanical constitutaxe for the material then the stress
field implies a corresponding infinitesimal strainIdie Since the Cauchy-Green
conception of strain involves essentially the deformatiba metric by a non-isometric
diffeomorphism, one sees that this would put one back enr¢lalm of differential
geometry. However, one of the complicating facterthat going from an infinitesimal
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strain field to a finite one is a non-trivial problem ¢ontinuum mechanics, and our
aforementioned process of suspension really amounts tinite strain, not an

infinitesimal one. One might also ponder Sakharog| [description of general

relativity as a type of “metric elasticity” as a jdisation for the introduction of singular

teleparallelism.

Nonetheless, one sees that it is entirely possitdé what were missing from
Einstein’s theory were terms in the Lagrangian thauldvoelate to curvature, since
curvature always vanishes for non-singular teleparalleli$itre question of whether the
inclusion of such additional terms might change the dbaraof the solutions to the

unified field equations into something that had more physissification is entirely
worth considering.
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Riemannian geometry, while maintaining
the notion of teleparallelism

By A. EINSTEIN

In general relativity, Riemannian geometry has led to aipalydescription of the
gravitational field; however, it has produced no notioat tban be attributed to the
electromagnetic field. For that reason, the effoftghe theoretician are directed towards
finding natural generalizations or extensions of RIEMAKNN geometry that are richer
in ideas that it is, in the hopes of arriving at a loggtalicture that unites all physical
field concepts within a single viewpoint. Such effortgehked me to a theory, which will
not be communicated along with any attempt to give it paysieaning, since it already
commands a certain interest due to the naturalityeo€timcepts that are introduced.

RIEMANNIAN geometry is characterized by the fact thidte infinitesimal
neighborhood of each poiR possesses a Euclidian metric, in such a way that the
magnitudes of two line elements that belong to the tefsmal neighborhoods of two
finitely-separated point® and Q are comparable. On the other hand, the notion of
parallelism of two such line elements breaks down; tmeept of direction does not exist
for finite distances. The theory that is put forthwihat follows is characterized by the
fact that along with the RIEMANNIAN metric, the natioof direction (equality of
directions, omarallelism resp.) is introduced for finite distances. Correspayigli new
invariants and tensors appear, in addition to the invariaanid tensors of
RIEMMANNIAN geometry.

1. n-bein fields and the metric

We imagine that an orthogonalbein that represents a local coordinate system is
contructed frorm unit vectors at the arbitrary poift of ann-dimensional continuum.
Let A; be the components of a line element — or another wectelative to this local
system (i.e.n-bein). Moreover, let the GAUSSIAN coordinate syste’ be introduced
for the description of a finite domain. Furthermore, He be then-components of the

units vectors that the-bein is comprised of. We then hav (

(2) A'=hA,.

() We denote coordinate indices by Greek characters andhbiges by Latin ones.
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By inverting (1), one gets, when one introduces the nazethbub-determinant of tha

by hy, :
(1a) As=hp A"

Due to the Euclidian character of the infinitesimalighborhood, we have the
following formula for the magnituda of the vectorA):

(2) A= A =haha AA.
The components of the metric tengpy can be represented in the form:
©)) Ouv = Nya hia,

in which, naturallya is to be summed over. For a fixedthe h! are the components of
a contravariant vector. Furthermore, we have tlaioas:

(4) hya h;: 5;
(5) h,ua hél = Ow,

in whicho=1 (0 = 0, resp.) whenever both indices are equal (diffene#p.). The
validity of (4) and (5) follows from the aforementi@he@efinition of theh, as the
normalized sub-determinant of thé’. The vector character of tlig, follows easily

from the fact that for each choice of vectd) the left-hand, as well as the right-hand,
side of (B) is invariant with respect to an arbitrary coordinataedfarmation.

Then-bein field is determined by thé functionsh”, while the RIEMANN metric is

determined by only thea(n + 1) quantitiesg,, . According to (3), the metric is
determined by tha-bein field, but not, conversely, the latter by the ferm

2. Teleparallelism and rotational invariance.

An expression for the existence of a RIEMANN metrid agleparallelism is given
simultaneously by the construction of thdield field. Namely, let &) and 8) be two
vectors at the point8 andQ that have equal corresponding local coordinates when they
are referred to the corresponding logddeins (i.e. As = B,), So they are to be regarded as
equal (because of (2)) amparallel. If we regard only the metric and teleparallelism as
essential — i.e., meaningful — then we must recognize ttlain-bein field is not
completely determined by these structures. The metdcpamnallelism remain intact
when one replaces timebeins at every point of the continuum by ones thabhtained
from the originaln-beins by the same rotation. We refer to this replaitgaof the n-
bein fields agotational invariance and establish that only those mathematical relations
that are rotationally invariant are truly meaningful.
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Thus, for a fixed coordinate system tife are not completely determined by a given

metric and parallel connection. The substitution efltfi that corresponds to rotational
invariance — i.e., the equation:

(6) AE = Oam Am ,

in which thed,, are chosen to be orthogonal and independent of thedinates, is
possible. A,) is an arbitrary vector that is referred to the loggstem and(A)) is
referred to the rotated local system. According 8),(it follows from (6) that:

he A = dam Ny AY,

or
(6a) hEa = dam h,um ’
in which:
(6b) Jan Gbn = Ama Omb = Sap
od
6C ——am =)
(60 ox’

The postulate of rotational invariance then says timatonly relations in which the
guantityh appear that are to be regarded as meaningful are thehate®main valid
when one passes over to the when one introduces the by way of equations (6), etc.
In other wordsn-bein fields that go to each other by point-wise umnifaotations are
equivalent.

The law of infinitesimal parallel translation ofvactor when one goes from a point
(x*) to a neighboring pointx( + dx") is obviously characterized by the equation:

(7) dA, = 0;
i.e., by the equation:

oh
0 =d(hua AX) = aT‘f‘Aﬂ dX + hya dA‘ = 0.

Upon multiplying this byh?" and taking (5) into account, this equation goes to:

dA"= - AV, AU dX,

in which ():
(7a) A =h My
po aXU )

() Trans. note: This equation was misprinted in the maigarticle.
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This law of parallel translation is rotationally-inieat and asymmetric with respect
to the lower indices of the quantitids,,. If one translates the vectok)(according to

this law of translation around a closed path then it gaek to itself (). This means that
the RIEMANN tensor that is constructed from the trammtacoefficientsA,, on the

basis of (@), namely:
- 0D, 0D i na  ni na
Riim=— 67:“|+6—>I((' L AVVA A VA Wp

vanishes identically, as one easily verifies.

However, in addition to this law of parallel tranglat there exists a (non-
inbtegrable) law of translation, which is symmetric tiiise, and which belongs to the
RIEMANNIAN metric that comes from (2) and (3). As y&oow, it is given by the
equations:

dA' =-T, A'dX,
8
( ) rv gva |:ag/m + agcm _ agﬂff }

ox?  ox* o¥X

The T, can be expressed in terms of thguantities of the-bein field by means of
(3). In this, one must observe that:

9) 9= W
By this construction, and because of (4) and (5), the equatio
gﬂA gl//‘ = 5Vﬂl
which defines the/"” in terms of they,, , is then satisfied. Moreover, this translation law
that is based upon only the metric is naturally rotatlgnalariant, in the
aforementioned sense.
3. Invariants and covariants.

There exist further tensors and invariants on the midnigonsidered by us, in
addition to the tensors and invariants of RIEMANNIAN gebry, which involve théh
guantities only in the combinations that are given by (8), e will fix our attention
upon only the simplest ones.

If one starts with a vectoA() at a point X") then, corresponding to the translatiohs
and d , we have the two vectors:

AY + dAY and A’+ dA,

resp., at the neighboring point’@ dx). Likewise, the difference:

() Trans. note: He seems to be ignoring the transltiat might come from non-vanishing torsion.
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dA” = dA = (I}, - A%,) A7 dX

has a vector character. Thus:
rzﬂ _Al;ﬂ

is also a tensor, and so is its anti-symmetric comgonen
(10) (B0 =Bp) = N -

The fundamental meaning of this tensor in the theoryishd¢veloped here comes from
the following fact: The continuum is Euclidian when tl@asor vanishes. That is, if:

oh,, 9N,
oxP  oxt

0=2A, = h”{

then, upon multiplying this bly,, it follows that:

0= ahaa _ ahﬂa

S xf ox
Thus, we may set:
ow,

ha = .
»® ox“

The field is therefore derivable from scalarsW,. We now choose the coordinates
according to the equation:
l-Pb = Xb

According to (&), all of the A, then vanish, and thb,, , as well as they,, , are

constant. Moreover, since the tensgf, is obviously the simplest one that our theory

allows, the simplest characterization of such a ocomtin is obtained from it, rather than
from the RIEMANN curvature tensor. The simplest dwues that come under
consideration here are the vector:

Nog s
as well as the invariants:

Quv /\Zﬂ/\fa and g g™ d" NopNor -
One can construct an integral invaridritom one of the latter invariants (from a linear
combination that is constructed from them, resp.) by iplyihg it by the invariant
volume element:
h dr,
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in whichh is the determinanth, » |, anddz means the produdyx; ... dx,. By setting:
a=0,

we obtain 16 differential equations for the 16 quanthjgs. Whether or not physically-
meaningful laws can be obtained in this way shall lzerexed later on.

It is enlightening to contrast WEYL’s modifications REMANN's theory with the
one that was developed here:

WEYL: Distant equality of neither vector magnitude dwéction
RIEMANN: Distant equality of vector magnitudes, but neediion
Present theory:  Distant equality of vector magnitudesdaedtions




A new possibility for a unified field theory of gravitation
and electromagnetism

By A. EINSTEIN

Some time ago, | published a brief treatise in thesecBten in which, by the use of an
n-bein field, a geometric theory was presented thatdegten the basic concepts of the
RIEMANN metric and teleparallelism. | then left op#re question of whether this
theory could serve to represent of physical conce$tsce then, | have discovered that
this theory yielded the field theories of gravitation afetteomagnetism quite simply
and naturally — at least, in the first approximation.is Itherefore conceivable that this
theory might supersede the original formulation of theegal theory of relativity.
In order for the introduction of teleparallelism i tlorm that is employed here to

be immediately applicable to field theory, one must @shablish that:

1. The number of dimensions is/l< 4).

2. The fourth local coordinai&, (a = 4) of a vector is pure imaginary, and likewise

for the components of the fourth leg of a vierbein; leetioe quantitie), andhy,
(). The coefficientg),w (= hua hva) will all be naturally real then. We therefore

choose the square of the magnitude of a time-like véztioe negative.
8 1. The basic field law.
The variation of a HAMILTON integral:

5{jﬁdr} =0, 1)
H=hg" A, A, ()

va '’

() Instead of this, one could also define the squareeofrihgnitude of the local vector to wé + Af +

Al = A’, and in place of the rotations of logabeins, one could introduce LORENTZ transformations.

All of the h would then be real, but the immediate connection vighformulation of the general theory
would be lost.
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must vanish for variations of the field potentidlg (h), resp.) that vanish on the
boundary of a region, where the quantiti€s |h.a |), g, N7, are defined by equations

(9), (10) ofloc. cit.
The h-field can simultaneously describe the electric and taawnal field. A “pure
gravitational field” is then present when, along witHilling equation (1), the quantities:

A= Ny 2)

also vanish, which implies a covariant and rotationialariant restriction?).

8 2. The field law in the first approximation.

If the manifold is the MINKOWSKI space of specialatlity then one can choose
the coordinate system in such a way that= hy, = hsz = 1, hus = j (= ¥-1), and the
remainingh,, vanish. This system of values for thg is somewhat inconvenient for the
calculations. For that reason, we prefer to chobs®g, coordinate to be pure imaginary
for the calculations of this section; one can thanfact, describe MINKOWSKI space
(with no fields present, for some suitable choiteamrdinates) by:

N = da. (3)
The case of infinitely weak fields can be convetljerepresented by:
ha=datKa, (4)

where thek,, are small quantities of first order. By neglegtie terms of third and
higher order, one then has to replaca),(ith consideration given to (10) andaj/of

loc. cit,, with:
ﬁzé(akﬂa_akﬂaj{akﬂﬂ_alg,ﬂ) (1)
4( 0x; 0%, )| 0%, 0%,

Upon performing the variation, one obtains thedfiefjuations that are valid in the first
approximation:
62kﬂa _ azkw, N aZKm _ azkﬂﬂ o
ox;  0x0% 0x0x% 0x0%

]

(5)

() Here, a certain indeterminacy of the interpretatiqrésent, since one can also characterize the pure
gravitational field by the vanishing of tlde, / 9x, —o@,/ 9x,,.
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These are sixteen equatiofsfor the sixteen quantitids,z . Our problem is now to
check whether this system of equations includes the kiews of the gravitational and
electromagnetic fields. To that end, we must intrediheg,s and ¢, into (5) instead of
Kap. We must set:

Oap = Nea h,&a = (Ona * Kaa) (5/9 + k/ﬁ)’

or, in quantities that are precise to first order:
Jap = Oup = gaﬂ =Kap + Kpa. (6)

From (2), one further obtains the quantities that areigedo first order:

ok,, 0k
2q = — - ()
ox, 0x,

By permutinga andgin (5) and adding the terms thus obtained to (5), omegss:

0" 9y _ 0kia _ 0%k,
ox;  ax,0% 0x0%

V]

=0.

If one adds both of the equations that follow frora)(&amely:

0%k, . 0%k, _ A

—_ + e ,
0x,0%x;, 0%,0% 0,

— azkﬂ# + azkﬂﬂ =-2 %
0x,0%x, 0%0% 0x,

to this equation then one obtains, with consideratigargto (6):

2 25 29 Zq
E{_a gaﬂ+ 0 gﬂa + 0 g/lﬂ _ g g/‘/‘ = aqo"+aqoﬁ. (7)

2| ox;  0x0% 0xdx% 0x0%) O0x, O0x,

Let the case in which an electromagnetic field issabbe characterized by the vanishing
of theg, . In this case, (7) agrees with the equation in-@rder quantities:

Ra=0

() Naturally, there exist four identities between tleédf equations that are due to general covariance.
In the first approximation that is used here, one expsabieby saying that the divergence of the left-hand
side of (5), when taken over the indgxvanishes identically.
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(Rgp = once-contracted RIEMANN tensor) that was previowesyablished in general
relativity. With that, we have provedur new theory yields the law of the pure
gravitational field that is correct to first order.

By differentiating (2) with respect tox, , one obtains, upon consideration of the
equation that results from (5) by contracting oareandS.

09
2 =0. 8
x (8)

a

In light of the fact that the left-hand side of (7Ififls the identity:

0
_(Laﬂ _%5aﬂ|‘aa) = 0’
0,
it follows from (7) that:

azqq,+ g, 0 (dg 0
ox; 0x,0x, 0x (0%
or
62
% -o. (©)
0Xj

Equations (8) and (9) collectively are equivalent the well-known MAXWELL
equations for empty space.Therefore, the new theory also delivers MAXWELL'’s
equations in the first approximation.

However, the separation into the gravitational alettromagnetic field in this theory
seems artificial. It is also clear that equati@issay more than equations (7), (8), and
(9) do together. It is further remarkable that e¢tectric field does not enter into the field
equations quadratically in this theory.

Supplementary remark: One obtains entirely simégults when one starts with the
HAMILTON function:

9 =hgug™d" Ny

Thus, for the time being, a certain indeterminaxgts that relates to the choicespf



Differential invariants in EINSTEIN’s theory of tel eparallelism

By Prof. Dr. R. WEITZENBOCK
in Laren (N. H.) Holland.

(Submitted by EINSTEIN on 18 October 1928 [slipra pp. 449].)

In two short notes to these proceedings (which aesresf as 13] and [14] in the
following bibliography), EINSTEIN gave an extension dERIANNIAN geometry that
allows us to compare the directions of two line eles¢hat emanate from two points
that are separated by a finite distance. This thedygiged upon knowing the differential
invariants that are obtained when one begins with lineadgpendent vectors and
considers only such differential invariants that exhibitparticular structure (viz.,
“rotational invariance”).

In what follows, | will develop the theory of thestructures, establish the simplest
invariants, and compute the associated field equationaiisatwhen these invariants are
taken to be action functions. In the last sectiowjlll finally give a short summary of
further results that can be used as the starting pariiefd physics.
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§1.

Let n linearly-independent vectors mvariables be given, such that #ivector has
the componentéhy, “ny, ..., “n, the determinartt = |°h, | # 0, and the formuldh, =

I:Iai is valid under a transformation- X.
ayﬂ
If ;h” are the algebraic complements of the eleméngs in h, divided by this
determinant, then thegh” represenn linearly-independent contravariant vectors that are
defined by théh, uniquely. If we sum over two equal (i.e., Latin or Gi)dadices — one

upper one, one lower one — then we get, in the usual way:
1) *hy Bh" =30, %h, O = 3.

A covariant differential is derived from the vectors®h, (or ;h") [1-4 whose
connection components are given by:

a°h, d°h
2 = HOo—a b L NS
@) 0x,, {axﬂ h ”ﬂj

so the covariant derivative of the vectgi(w’, resp.) is given by the tensor:

ov, e
3) Vol = GT_N N, Wie = a—+A” w', resp.)

The covariant derivatives of thi, vanish:®h;5 = 0, and likewise the curvature
tensor that is derived from trzegﬂ. The linear displacement that is defined byﬂj,g IS

examined in3, 4, 9, 10].



48 Selected papers on teleparallelism

The theory of differential invariants of the vectnsis developed ing]. We derive
the following fact from it: Then vectorsth, lead to just as many rotations:

02h 0°2h
4 MOy = A—__# =rot?h,.
“) Pau 1) 0X,

]

One gets the following tensor from tlmﬁ,ﬂ :
(5) Nop =5 (Dos= D),

which is alternating with respect tpandf. (Using the notation of EINSTEINLE]. In
[5], GRISS writesS; for 2A;, ) We then have theeduction Theorem 1([5], pp. 12):

The nf-order differential invariants that are determined from the linearly-
independent vectof, refer to the affine invariants that are constructed fitm, %p,, ,
and thecovariant derivativedp,, (4, ... of the®p,, , up to orderfm—1).

Now, it is easy to show, moreover, that thg, can be expressed in terms of thg;
and conversely §], pp. 10):

Au?
For that reason, Theorem 1 can also be formula&dpfp. 14) asTheorem 2:

The n{-order differential invariants that are determined from the vecibgsefer to

the affine invariants that are constructed from tfe, A;, and the covariant

derivatives/AY

oo -+ Of the tensor\l; up to order(m— 1).

§ 2.

The tensors and invariants that appeared in EINSTEBNere assumed to have
“rotational invariance.” This means the following: Ievthink of then vectors®h, as
emanating from a poirts, and takeO to be the origin of an orthogonal Cartesian frame t
which we refer then vectors®h, then the tensors and invariants that are used in what
follow must be absolutely invariant under the rotations:

7) *h, = ;D Ph,,

where tha'* constant€ D thus define a real-orthogonal matrix.
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From (7), it now follows thah = h and (h*)" = ’Dh; hence, from (2), the\,
are rotationally invariant. Thus, from (5), the sameghs true for theA ; and all of
the covariant derivativea, , , , ... of thesé\, ;.

It is now easy to give the general structure of theregsinvariantsW. From
Theorem 2, we have:

(8) W=W(h, Ay Ao )
W =W. Since theA;, N,g,, --- are to be regarded as constants under the rotations

(7), everything comes down to tfi®, . If we holdn fixed and regard thth,, *h,, ..., "h,
as the components of a contravariant vector thenhtain precisely such vectors for
=1, 2, ...,n, and they have no other invariants under (7) other tifmmher product:

9) g =Y. °h, Ch,.

a

Theseg,,, are the components of a tensor that can be uséldefonetric tensor at the
pointO. From (9), one gets:

(10) 9=lgu|=I"hF =1,

(11) g¥=2 . g,

and instead of (8), we get:

(12) W=F(h, g, 0% Aogy Nopys -0

If we further consider that the covariant derivativ@sthe g,, and g”” vanish
identically then this give$heorem 3:

All of the differential invariants of the vectdils, that also remain invariant under
rotations are constructed from h, the tensojg, @\, ,, and the covariant derivatives of

v
Ny

v
ap !

At this point, we remark that, just as in (3), everythstp be covariant differentiated

using theA;;, a process that we previously denoted Ay €.9., A, , etc. Thegy,
yield a second type of covariant derivative that is coegbiity means of the connection

components:
r;ﬂ: %gw agm +agTﬂ _agaﬂ :
ox, 0x, 0%

we denote this type of covariant derivative py. (
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ov
Vo = —=-T0v,.
a(o) aXp ap VA
From (9) and (10), one computes:

(13) Cop = Do =Nop 95,

in which @, is a tensor that is symmetric dnand 5.

(14) e;ﬂ = gV,D (gHJ/\Zﬂ + g/j’cr/\ga) .
With the help of (13), one now finds that:

(15) V,D(O) = VP[G] + /\;JVV _e;crvv *

We cite some additional formulas that will be usédrla

(16) o G =2hy g* th, = 0",
(17) oh_ h OAZ,.
axp

We further set14]:

(18) Ny == NG =®,=1(A%, A% ), g o, =",

§ 3.

We now pose the question of whether the action fancti
(29) 0 =h0W

can be used for the derivation of field equations. Wha (19) is an absolute invariant
and from Theorem 3 it can be constructed from:

1% 1%
Qs Nag o Nagrpy» -

The order oW is the highest order of differentiation of the arguteehat are present in
W. For the single action function of order zero,ha&e?J, = h.

EveryW, of first order is constructed from tigg, and theA ;. The determination of
all Wy thus leads (when we considgy, to be the metric tensor) to the hitherto-unsolved
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problem of tensor algebra: Determine the orthogonal invariaf the mixed tensoh,

(%), which is alternating with respect toand.
It is easy to prove (on the basis of the so-calledt“fundamental theorem for

rotational invariants”) that there is Mg, of first degree in the\/;, and those of second
degree are completely specified by:

A= g NNy, [13 14,
(20) B=g, ¢” "N\, [1314,
O =g"A N, =g D0, =D,

As you know, no first-order invarian®®; can be constructed from thg, alone; it is
only in second order that the curvature tensRjs,, Rum , and the invarianR appear.

and N\

an0 - N fact,

From Theorem 3, these must all be expressiblermgs®fg,, , A
after some computations that start with:

1%
ap !

= arikm_arikl +ri rr _ri rr
6)(, axn Ir' km

mr* Kkl

Rli<m, |

along with (13), (14), then one gets:

(21) Rli(m,I: - /\ikrr[l] +/\ik[nj +eikr‘n]l -0 Kl in +2/\[fn(\i o _/\pkré\i o +/\p»4\i m
+ 2N\ 0,, - AL O, +ANO L +N OF -N O +0 01 -0 07,

(22)  Run== Ay +2P 5 +O' i + AL N\ + 20 NP = 20 O°
B Ao B A2 _NA2 AP
+ N0 + O -0,

(23) R=4W -d)—2A-B,

in which we have set:

(24) W= o

o =9" Puaq =g™ A

vplal *

Y is the simplest second-order invariant.

() The determination of the affine invariants of suctemsor has still not been realized, either. The
furthest advance was far= 4: J. C. CHOUFOER, “Het bilineare Punt-Lijn Connexde driedimensionale
ruimte,” Dissertation, Amsterdam (1927).
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§ 4.

We shall now treat the field equations that the aduimctions that were found in the
previous paragraphs yield. We think of the variations:

(25) o °hy = w
as having been chosen in the usual way such that theyy aldah their derivatives,

vanish on the boundary of the integration domain.
From (25), one then computes:

(26) & h? =-,h"0Oh70Ov,,
(27) & =hoh"Ov,,
(28) & =, °h, Oy, +> *h [y,
(29) a” =-(@"oh+ ¢von) dv,
(30) &, =-n,ane iy + il Ve
6xﬂ
(31) e, =— A, O Oy, +3 17| LY 0V j
af af v 2 a aXﬂ GXH !
(32) ob == N Oh" By, +1 .1 aav"—aav”
a ap v 2a 6Xp 6)(0, .
If 20 = h DW s the action function then we set:
(33) S[hwdx= [s(hw)dx= [ [nW]' Ty dx,

so the contravariant vector densities:
(34) (201" =a[h W*

are the “variational derivatives” @J, and when we set them equal to zero they give the
field equations that are associated With
We begin with the second-order invarigit=W = &7 -

[a]
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filox
0x

a

th):mDP+hEI§P:hWEgh”D"VV+hD5[ +Aj’a¢”j.

We then treat the second term further, in which thévakiveso %, / dx, will be
removed by means of partial integration. One gets:

(35) h W= 2n(W-o)Oh" -7, [}

If one then choosed = ®2. to be the action function then thé field equations

[a]
amount to the determination of thevector component, :

(36) @ -®) Gh'- o}, Gh7=0.

If one multiplies this byh, then one geta(W —®) —W =0, soW¥ = n—nldD (n>1), and

instead of (36), we have:

1 1
37 DALY, Pyg = —— DY,
(37) 1B~ 1 or da= 7 [0,

The integrability conditions for these equatiome abtained from the generalized
RICCI equation (], pp. 14) for an arbitrary tensor, viz.:

Tog = Taa = =205 T

when one considers (37) and assumes®han, and they take the form:

(38) (- DAL= 0,8 -D 0 (N, ®, = 0).

L a
With the help of rofh, =%p,s, this can be written in a particularly simple way
(39) 00— 1)Pas=Pahg—Ppshy.

The integrability conditions for theskn(n — 1) first-order equations are satisfiéll (
due to (37).

0P
() From (3%), it further follows thatP, g5 — Pgq = 0, and from this, due to (38 rot d, = 3 a -
g
0P

~F . Thus, if these last equations are to be used t@atkaze the pure gravitational field (cf.,
ox,

EINSTEIN [14], remark pp. 225) theH is the action function that will accomplish this.
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The other invariantsb, A and B, when taken to be action functions yield the
following variational derivatives:

(40) J[h®]’=-hiw/, 0h7 .
(When?h, is contracted, this gives:R-\¥.)

(41) JhAY=hAGh -2hg"ah’ A2A2 +hg“ O A, —h gV Oh? A

A87 N o ABLH] ABLH]

-2h 'O ONY, + 00, O " A,
(when®h, is contracted this giveb{(n— 2)A + W — 2b}.)

(42) o[hB"=hBOh -4n g% g” g O AL A2, + 20 g% ™ T, AL,
+ hg'? g™ hy AGN, = 8h g™ Th, B7 AS, .
(when®h, is contracted this giveb{(n — 2)B + 2¥ — 4b}.)

alh R" is computable using this, with the help of (23), but one doesrrive at a
simpler expression.

§ 5.

For the sake of completeness, we shall briefly shat@ one obtains connection
components of a different sort from simpler tengors = 4.
According to RIEMANN, we have ten functiomg that are the coefficients of a

quadratic differential form, from which thg and ", are derived in a well-known way.
In the above, we employed 16 functiofis, instead of the temy , which are the
components of four independent vectors, and we then derhed\}, from these

[equation (2)]. In both cases, differential invarianerevused as action functions, and
from this the “field equations” were ascertained by varyimgteng (16°h,, resp.).

As we would like to explain shortly, one can now afsanage with less than 10,
namely, 8, 6, and 5 functions, and in doing so, to be sweerder of differentiation will
be higher (on this, cfg]).

1. Namely, if we first begin (fon = 4) with two covariant vectois anda; that have
the rotationsy = rota , ¢ = rot a; then we will get five first-order scalar densities:

(43) A= %Z f12 f34’ A1z = %Z f12¢3.4 ' A2z = %ZQ2¢3A '
By = Z f(a0,—ag)), B, = Zqz(a3a4—a4a3).

If 9’1 andR, are two arbitrary scalar densities then:
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_ 1 | _ 1 K
(44) bi—glz fikdali ﬁ—gz%f a

define two new covariant vectors that, togethehwjtand a; , constitute four linearly-
independent vectors wheit, B2 + 22, B 5 +2 ,B° # 0.
We can then use these four vectors in place ofptiesious®h, . The type of

covariant derivative that was given here, as wellhe simplest action function and field
equations, are examined in the dissertation obtteh chess master MAX EUWB||

2. Secondly, fon = 4, we can start with a second-rank alternatimgpgant tensor
pi , for which the invariarfR = %Z P, P, 2 0, and which has zero rotatiol?]. Here:

1 «0p
=y
%gﬂ

iS a contravariant vector; therefoig,= pix fisa (first-rank) covariant vector amg =
rot &, is a (second-rank) alternating covariant tengdws, one can easily derive a (third-
rank) covariant vectom from py, &, and7zg , namely

Z P12 Py ,
and we can proceed as we did in case 1 gyiimd/;; .

3. If we haver :%Z P, Ps, = O then we have five independent compongatl®r a

special alternating tensor. Moreoverpif is a rotation then it gives us no differential
invariant; on the other hand,pk is not a rotation then a third-rank scalar density be
recognized ([] and [12], pp. 18,et seq), and differential invariants of fourth and highe
rank can be computed with it, as in case 2.

Received on 28 November




Stars of congruences and absolute parallelism:
Geometric basis for a recent theory of Einstein

Note by E. BORTOLOTTI
presented’j to the Society by T. LEVI-CIVITA

1. In this last year, the literature of relativity hasheexpanded by, among other
things, numerous researches that attempt to construtirgreitliche Feldtheorie von
Gravitation und Elektrizitat(unified theory of gravitation and electricity). Einstems
led to make some very tentative and substantially divevséributions to this study in
1923 ¢), 1925 ), and, more recently, in 1928)( The last effort — whose physical
justification is perhaps not completely obvious, and whiclilllrefer to the author® —
has, however, an advantage over the preceding orteainit has a much simpler
mathematical formulation. It is precisely upon thergetic basis of this new theory that
I will now expound. Einstein has constructed this geambsasis b], and has recovered,
among other things, many results of the preceding rdsélaat he had not shown to be
known. It will therefore not be pointless to trehistresearch, which is, indeed, little
known, since (from a viewpoint that is a little more gra), as a result of new results
and observations, as well as the more noteworthytsesf the preceding papers, by its
exposition one more or less arrives at a link to Eingenew theory, and defines its
mathematical basis. | will then limit myself to résuthat relate to the theory of
Euclidian connection with absolute parallelism, in particulame anight confer another
recent note®j that was dedicated to the more general studsffirie connections with
absolute parallelism for all that remains (except fériaf hint that will do for now) as
regards this argument and for the bibliography on relativity

At the session on 17 March 1929.
1. “Zur allgemeinen Relativitatstheorie,” Sitz. Preuskad. der Wiss. (1923), 32-38.
2. “Bemerkung zu meiner Arbeit ‘Zur allgemeinen Relatitgtheorie,”ibid., pp. 76-77.
3. “Zur affinen Feldtheorie,ibid., pp. 137-140.
4. “Einheitliche Feldtheorie von Gravitation und Elekitér,” ibid. (1925), 414-419.
5. "Riemann-Geometrie mit Aufrechterhaltung des Begriffesfernparallelismusijbid. (1928),
217-222.
6. “Neue Moglichkeit fir eine einheitliche Feldtheorie v@ravitation und Elektizitat,ibid., pp.
224-2217.
() “It is therefore conceivable that this theory vélipersede the original conception of the general
theory of relativity.”
() 7. “Parallelismo assoluto nelle varieta a connessiafiime, e nuove vedute sulla relativita,”
presented on 27 January 1929 at the Academy of Scienceogriaol

—_
N
—
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2. In ann-dimensional manifoldX,), in which theu’ Ay v w=1,2, ..n) are
curvilinear coordinates, consideffields of (independent) contravariant vectc)(é @,j,

h k| =1, 2, ....n), namely,n® quantitiesX” such that 1 h = ‘ x” # 0, and which that

are functions of the points i, . Such am-tuple of vector fields, which one can also
suppose to subjectetb an arbitrary linear (affine) transformation with constant

coefficientsc‘Dj of then fields:

(1) >i<’” = ¢}y X’ ‘cimj ‘ £0,

determine araffine connection with zero curvatu(® in X,, namely, one with absolute
parallelism, that has the parameters:

A = A
2) r,=x'"2e,

i
where X, are the reciprocal elements " in ‘ XH#
I

, SO they aren fields of covariant

vectors that are uniquely determined by the fie#s. Then fields X# (or XI#) aren

parallel vector fieldsthat are alsequipollentfor such a connection. Otherd pave
called this connection th&/eitzenbdck-Vitali affine connectioim effect, the covariant
derivative that corresponds to it, namely:

on,
ou’

a A
©) 0,8=2% srien 0, 7, =

A
ou’ - r#V,h ’

was introduced (in relation to amtuple of vector fields) in 1921 by Weitzenbdd&q,
cit., in [7]) and then, independently, in 1924 by Vitd). (
In particular, when an-tuple X* is subjected t@n orthogonal substitutiothamely,

a rotation) with constant coefficients it also defines a symiodensora,, that can be
assumed to represent the fundamental tensor of a nreXi¢ which then makes it ¥,

():

() See the cited papeT]|
() Inthe papeB. “Reti di Cebiceff e sistemi conjugati nellg riemanniane,” Rend. Acc. dei Lincei,”
(6) 5(1927), 741-747 on pp. 745.
() 9. “Una derivazione covariante formata coll’ausiliordsistemi covarianti del®lordine,” Atti Soc.
Liguistica 2 (1924), 248-253.
() See 9], pp. 250. Thisis, in another form, the well-knowsuie of the research of Ricci antuples
of congruences (1895). In particular, cf.:
10. A. CARPANESE, “Parallelismo e curvature in unaiet@ qualunque,” Annali di Matem. (28
(1918), 147-168.
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(4) aw= X, X a, = X" X,, a = x" x*.

Then fields X” (or X, ) areunitary andorthogonalwith respect to this metric. One

obviously has:

PN VRN
(5) X' =a X, = X*;

hence, we will no longer distinguish indicesj, h, k, I, ... as upper or lower. The
Weitzenbdck-Vitali affine connection then becomesEaclidian connection(with
absolute parallelishin relation to this metric'). However, the tensa, is also given
another Euclidian connection, namely, the usual (torlges) or (following Cartan)evi-

A
Civita connection:lt has the parameter% H } (viz., the Christoffel symbols that are
v

constructed frona,,). The Weitzenbdck-Vitali Euclidian connection can epresented
by means of itselative components:

(6) T = Fﬁﬂ—{w}

14

with respect to those of Levi-Civit&)( If one indicates the elements that refer ts thi
latter connection with the indéxhen we havel[l]:

) T = X X,
(8) O, & = 00" +T,,/¢", Ov u= 05, =T,.7n, .

The Cartesian componentsf the tensoiT;,” with respect to the genenmetuple X,
are precisely (1], pp. 458) theotation coefficient®f then-tuple:

_ O
9) T =y X, X, X7, Wi =T XA XEX,

i
There, the author defined a metric by means®faffiansc = X, dx* by settingds’ = 3, (<) %
() ForWeitzenbéck-Vitali Euclidian connectigrsee my note:
11. “Parallelismi assoluti nellg, riemanniane,” Atti Istituto Venet®6 (1926/27), 455-465, and
12. “On metric connections with absolute parallelisfAroc. Kon. Akad. Amsterdar80 (1927),
216-218.

() The tensor'l;'/;” was introduced with its expressions (7) and (9) by méd],([12]) and then

rediscovered, from another viewpoint, by:
13. A. TONOLO, “Stelle di ennuple ortogonali di congruenzeuive in unav,,” Rend. Ist.
Lombardo (2)60 (1927), 253-263 on page 25b., and gy in that paper).
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3. We go on to the geometric interpretation of the efegmthat were introduced. As
in [7], we will call the totality of vector fields that Yaconstant Cartesian components

with respect to am-tuple X thestar & of vector fields that are derived frodd. We
say thatS¢ is anaffine star— orangular star respectively — (or simply star, as in the

more interesting case) when thetuple X is arbitrary or unitary orthogonal
respectively. Therefore, an (angular) star of vefiedds is constructed by starting with

ann-tuple X and then including all of the ones that are obtained &gns of arbitrary
rotations (with constant coefficients).

Just as am-tuple of vector fields determines amtuple of line congruences
similarly, a star of vector fields will determineatality of «" "™’ congruences that one
calls stars of congruencesMore precisely: Anangular)star of congruencewill be a
totality of line congruences such thatery line of any arbitrary one of them is the
isogonal trajectory to all of the remaining congruencse agree to say affine starof
congruences in the general case. rirer2, one has sheaf of congruencga notion that
was introduced by Ricci and applied by him systematicatigling in 1898, in higeoria
delle superficie(!). It was also studied recently by Delefy (vho referred to such
sheaves aséseau angulaire Given this, it is obvious that for the Weitzenbéck-Wita

Euclidian connection that is determined from thtuple X the lines of the starxSof
congruences are the geodetic (i.e., auto-parallel) lines of the coanedtione assigns a
metric toV, and, arbitrarily, astar of congruence®r, what amounts to the same thing,
ann-tuple of orthogonal congruences) then the corresporadingection is well-defined.
The absolute parallelisnthat corresponds to it consists of the invariancéhefangles
that the directions (which vary with the parallelismdk®a with the lines of the star of
congruences, or (more simply) of theeongruences of an (arbitrary) orthogondlple
that belongs to the stal) (

The curvature of the connection in question is zero: By contrast, tbesion is not
zero, as long ag, is not a EuclidiafR, ([11], pp. 459; B], pp. 220; []). More precisley,
the torsion tensor isl]:

jod
(10) Sy =3, T =30 =T =30 — 1) X, X, X7

() 14. “Lezioni sulla teoria delle superfigiePaduaDrucker, 1898, pp. 163-223. See also:
15. RICCI and LEVI-CIVTA, “Méthodes de calcul différentiabsolu et leurs applications,” Math.
Ann. 54 (1900), 125-201, esp. pp. 165-168.
() 16. P. C. DELENS,Méthodes et problémes des géométries différentielles enckdet conformé
Paris, Gauthier-Villars, 1927, pp. 79.
Two recent notes are dedicated to the general casen(arbitrary):
17. G. POATO, “Stelle di ennuple ortogonali in una variéta metrica qualunque,” Bolletino Un.
Matem. Italiangb (1926), 125-127 and A. TONOLQLJ] , cited above.
() This interpretation is the one that was given by VITA®S, pp. 253)in relation to an n-tuple
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Thetorsion vectorrelative to the planar face that is defined by thectivas (Xj

()J(j is ([8], pp. 746):

J

j [
ij i j 4O ¢V O Vv
(11) S =25y X' X = d X _d' X

ds ds

Wherej— = X* 09 is the cogredient derivative in the directiEJNj.
S

4. The vanishing of curvature iscaaracteristicproperty of the Weitzenbdck-Vitali
connection. In fact, it has been provet],(pp. 461; 2], pp. 217) thatany Euclidian
connection with zero curvature can always be ineigd as a Weitzenbdck-Vitali
connectiorwith respect too""™’? orthogonal n-tuples of congruenceEach of them is
determined in the direction of the line that emasdtom an initial point — namelwith
respect to an (angular) star of congruences.

We thus have thahe differential geometry of Euclidian connectiomigh absolute
parallelism coincides with the theory of differahtinvariants for an (angular) star of
vector fields; namely, of a Riemannian metric anstax of congruenceslt is precisely
this theory, in substance, upon which Einstein thabes ultimate formulation of

relativity, insofar as he introduced thé = 16 componentsX” in order to define the
geometry of the universe, while postulating]([pp. 218) Drehungsinvarianz(i.e.,
rotational invariance), namely, taking into consad®n only those elements that are

invariant under orthogonal substitution with consteoefficients of the vectorX .
Weitzenbdck has proved)(that the differential invariants of orderin the vectors

)I( of the orthogonal group (namely: of the (anguktgr of vector fields that the-

tupleX defines)are the algebraic invariants of the tensorg aS;;/, and the covariant
derivatives(for the derivatively) of S;;" up to order m- 1.

5. In particular, the invariants of first order ahe algebraic invariants @, S;; .
More simply, they are: The symmetric tensors:

h

i i |
(12) b/‘/l = Tr/la)TEum): al/rDj XV[[DZ XT = yijl yijh X/i X,u’

() 18. “Differentialinvarianten in der Einsteinschen Thieates Fernparallelismus,” Sitz. Preuss.
Akad. Berlin (1928), 466-474, on pp. 469.
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(13) g/l/j — SI/]T $V ,
the vector {):

J 1
(14) ®,=8;!=4T" =iy, X, = %Dﬂh,
and the (absolute invariant) scalars:
(15) D=, P =a,,d" =1 i K,
(16) B =Ty T =bya¥ =3 ()",

il
(17) C= T/l,uv T/MV = i Ui »
(18) S= S/]yv SW/I = Oay a/‘/f = 3C4_ B )
i _
(19) T =Sy S = (MmodSy :BTC .
i

The character of invariance under rotations of theuple by, (i.e.,
Drehungsinvarianghad been noticed by G. Poatd 4], pp. 127); that of the scal&was
noted by Ricci fom = 2 ([14], pp. 186; 5], pp. 167), and in the general case, by A.
Tonolo ([13], pp. 263). The invariant®,, S T were introduced by Einstein5{| pp.
221; [6], pp. 225), who expressed the hypothesis thavémeshing of the vecto®, can
characterize a “pure gravitational field,” and ttia¢ scalaiS can take on the role of a
universal functiorby which one deduces the field equations of tkeemy by a variational
process. Weitzenbdck also took into considerdti&the cases in which one choodes
to be a universal function, and thénand then the second-order scalar invariant:

(20) W=a%0,0,,
whose vanishing fon = 2 (cf., Ricci, 4], pp. 205) expresses the idea that the sheaf of

congruences isothermal

6. The preceding expressions (12) to (19) for thariant tensors and scalars of first
order (or at least some of them) can also exhilstngple geometric significance: The
vector®d, is the sum of the curvature vectar§the lines of an (arbitrary) orthogomnal

oh

() Whered, h= 6_” - szh is thecovariant derivativeof the relative (invariant) scalar (i.e., scalar
u

densityh=| X, |= Va (@a=|ai[). SeeTl.
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tuple of the star (at the point in question), In tasecon = 2, the fact that this vector is
the samefor all pairs of orthogonal congruences that intdrseayiven congruence
isogonally is contained implicitly in an observatiohRicci ([14], pp. 193) and stated
explicitly by C. G. Weatherburr)( Forn = 2, one has:

(21) Py

N

P,= 36w d”,

where the vectop, was introduced by Ricci1fl], pp. 110, 168-170;15], pp. 166 D),

and was called theeduced systewrf the systemX, - or covariant coordinate system

of the sheaf that is defined by the pair of congruemoé,s) (i1=1,2). One has (far =
2):

i lr 2|/ £rv
(22) ou= Vorij X, =T, X' X' = 7va ,
) , 1 2
(23) ¢p =& = T = Vo Xt Vin X, .

We then have, in any case:

i
(24) O X, [0 = 3 ¥ Yo X,
where forn = 2:

(25) 0°, X, [@* = 0.

Therefore: Fon = 2,the lines of the sheaf of congruences admit the litees of the
vector field®, as transversals for the Levi-Civita parallelisenproperty that is described
in an equivalent form and proved in another wapejens (L6, pp. 79).

If one desires (in the case= 4) that the vecto®, must represent thedectromagnetic
potential then it is suitable that it is not determined ctatgly by the geometry of the
universe, bubnly up to an additive gradientor this, it is enough/] to suppose that the

vectors X! are determined onlyp to a factorp, which is a function of the points W, ,
and also that the metric of, is definedup to a conformal transformation.If one
supposes this then one part of the new theoryrdt&in needs to be modified: One could
utilize the results of Weyl geometry, but that wbdiminish the simplicity of the present
formulation. The “pure gravitational field” wilhen be characterized (cf., Einste, [
pp. 225) by:

() 19. “Some new theorems in the geometry of a surfacé2 Nlathematical Gazetf (1926), 1-6,
on pp. 6.

(® The vectors (which are mutuakypplementalg, § are denoted by ; g in DELENS, ([L6], pp.
78).
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- o o] _ acD GCDV _
(26) rof (®,) = 0@, -0)®, = au”ﬂ “ou " 0

The significance of the tensd;, seems obvious if one observes thatifs an

arbitrary vector then:
2

d° x
ds

(27) by, & & = z mod

where d°/ds = &'09. ThereforeThe form b, & & is the sum of the squares of the

curvatures that are associated with the n direction the n-tupleX (any one from the
star &) in the direction($), and the invariant B is the sum of the values thmeg t
preceding form takes when one chooses the dire¢ifprio be along one of the n
directions of the n-tuple.

A necessanycondition for there to exist a congruence of tvansals for Levi-Civita
parallelism of the lines of a star of congruenceshat the tensob,, have rank <.
There is a particular case in which this conditrcertainlynot satisfied:The case of
(Riemannian)group spacesaccording to Cartan’)( Such a space is characterized by
admitting two Euclidian connections with absolute parallelismh tfee first and second
kind), and correspondingly, two classedrahslations(of the first and second kind) such
that for a translation of the first (second, re&my any vector is moved by parallelism of
the second (first, resp.) kind (Cartan). Among th@e noteworthy properties of these
spaces, we emphasize the following ones:

1. The geodetics (i.e., auto-parallels) of the twonnections with absolute
parallelism coincide with the geodetics of the L€wita connection (namely, the,),
and therthe geodetic linefof a,,) form a star of congruencéd. In particular, they can
be distributed intee""™'? orthogonah-tuples.

2. The tenso8,,, is semi-symmetric, and thus coincides With,, andS=C=-B
=-T, while®, =0.

3. The tensora,, , 9 , by, differ from each other only by constant factayg; = —
by, = R,,"= R},= cay, , wherec / n = a™ R}, is the constantmean Riemannian

curvature. In particular, i > 2 thenb,, has rank nif one excludes the trivial case in
whichc = 0, for which the space is Euclidian.

4. One had)R}."= 0, 07S;." = 0, so the transport by Levi-Civita parallelismiiwi

Auv
preserve the Riemannian curvature and the torsidmns property shows how this space,
with its connection with absolute parallelism, mp#y a noteworthy role in the new
Einsteinian theory: It poses the interesting qoestif its physical interpretation, although
I will limit myself to only pointing that out.

() See my papef7], as well, for the bibliography.
() This property, which is quite expressive afwracteristic was pointed out by RICCI X#], pp.
192-193) in the case af= 2 (a case that gives only developable surfaces).



On the foundations of a new field theory of A. Ein®in

By Raschco Zaycoffin Sofia.

(Received on 13 January 1929)

The geometric foundations of Einstein’s new theory bd discussed briefly, and some related identities
will be derived. Various Ansatze for Hamilton’s piijple in the first, and for a simple special case, the
second, approximation will then be calculated, and threesponding fundamental equations will be
presented. The rigorous form of the fundamental equatidhde given for the aforementioned case.
Finally, it will be remarked that the theory has advanaeg far by now.

In all of the known speculations on world geometry, aseally prefers to exclude
the distant comparison of geometric concepiessenbergSchoutenet al., have shown
that one can construct very different local comparigeometries when one subjects the
various geometric quantities to specific functions of aesyof non-integrable equations.
Riemannhas already constructed a geometry in which directiperm#s upon the path.
A. Einsteinemployed this for the interpretation of the relatipstulate.H. WeylandA.

S. Eddingtorwent further. They extended this non-integrable path irldageometry to
the remaining notions, such as length, angle, and volufnethermore, geometries with
torsion (e.g.Cartan, L. Infeld, K. Hatto)i come under consideration, and finally, one
goes over to the non-integrability of the covariantriogthe pure 1 and 0), such that,
independently of the purely geometric structure, a furthéhnaetic structure was
introduced (e.g.Schouten, H. J. Gramatzki The five-dimensional theories (e.gh.
Kaluza, O. Klein, H. Mandel, E. Reichenbacher, the aythalso exclude distant
comparison.

In contrast to all of these conceptions, A. Einsteicently {) took a completely
unexpected position. He made the simplest possibletAfsathe world geometry: the
integrability of its fundamental notions. In this wayeoarrives at non-linear second-
order equations for the world geometry functions from white physical situation can
be computed.

In the first approximation, they yield:

a) Maxwell's equations.

b) The form of the gravitational laws that K. Lanczoosisidered, which was subject
to Mach’s principle.

() A. Einstein, Sitzungsber. d. Preuss. AKEf/18(1929).



Zaycoff — On the foundations of a new theory of A. Egirst 65

The analysis of the second approximation leads to anfiest deviations from the
superposition principle of the fields that are responddi¢he appearance of matter.

Part one. Geometric foundations.

8 1. We refer the points of space-time to a Gaussiandataie systent in a
continuous and one-to-one manner. The structural arramerhpoints will not change
when the coordinates are transformed according to:

X7 = X7 (x4 %, 3, XY, (1)

We can further postulate that a Euclidian tangent spianeekr is constructed at each
point. Now, letEr be rigidly coupled with a system of four unit vectadng)((viz., the
vierbein). h. is the projection oft(,) onto the imagined extensionadX®. LetA” be the
a" component of an arbitrary vectod)(that lies inEr, which are referred t& in a
similar way. We lefA,, denote the projection off onto the imagined extension d¥.j.

It is then obvious that:

A =h A, K=H"A, b H"=el h =]
1 x=y, (2)

whereg :{
0, X#y.

The h,m are coordinate functions. For the displacemelst that the pointP(x“)
undergoes in order to reach the neighboring @it + dx?), one has, from (2):
dsn = hom dX°. (3)

A Cartesian system will be representeéirby means of the vierbein. With that, one
has:

(A=Y A =gsp A A, (4)
with
Oap = ham hﬂm,
from which, one also has:
Rom = gav O™, | Ngm |2:|9a,8|:9-

If we setA, = gqy A” then it follows from (2) and (4) that:

Am = Ay h™ (5)
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One has the transformation rule)s (

ox* — ox" —
A% = A, hem=—h,.. 6
o =2 ()
8 2. One now has:
dAn = hgml1, A7 dX/, (7)
where
0A”
OuA”= —+A7 A
H axﬂ Au
and
,, oh,. .
Aa# =h™ GTA’
U
moreover:
oh™ 0A
h =- A7 | 0 =—4-A7A. 8
Am axﬂ A /IA/\ axﬂ ApAb' ( )

The quantitie\;, obey the transformation law:

250 —
, L O XL 0% 9 AN 5,

= , 9
Mox, 0%, 0% 9% 0% 0X 7 ©)
For a parallel infinitesimal displacement of thetee (A), one has:
dAn=0, 0,A“=0, 0,A:=0, (20)
and, in particular:

The vierbeins in the neighborhood of a point are tmeamged so as to be parallel to
each other. We set:

oh
N L A
0x, 0x,
After some calculation, one gets:
Azp = sz +I'I'[',;’, (13)

with

() All vierbeins ha“m = Jnr hyr that go to each other under proper, orthogonal sulbstisutvith constant
coefficientsdy,, are equivalent, so the metric connectiggg)(will not be influenced by them.
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Ff, :%9"” agp" +agaa_agﬂp
v ox, 0x, 0%

and
My = 3N + N, + N}

If we denote the Riemannian derivative of a quanffy’ with respect ta¢ by
9,A;” then it follows, in particular, that:

O hem = %h"m(/\a,,., + Navu + Nva). (14)
We further define:
(dl dz —dz dl) Sn= /\}; hvm dlxp dz x°. (15)

This formula defines the “torsion.” If we assume thathave:

(dido—ddi) spn=0 (16)
everywhere then one must have:
N,y =0. (17)

Conversely, when (17) is true, (16) would also follow, aedwould have:

h
My _ M =0. (18)
ox, 0%,

In that case, we could define four functions:

En = &n 0, 4, 3, XY (19)
in such a way that:
0¢,
= m 20
M oxa (20)
ox’

We make the coordinate transformation (19), so that= h,,. It then follows

a

from (7), (9), and (20) that:

Ny = E&m,  Top=Eap,  D,,=0. (21)

In a metrically-integrable world, one must then hadjedf —d, di) sn # 0. By means
of the non-integrable equations:

dx =k;7dx’, K7 (x X2, X, (22)
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we can extend the transformation law:

ham - K;V hvm, Aa: KI./.Aa Av , K..AVK..Ap - g.up, (23)

ag v ag

where Flum, A’ represent functions of thé, but not of thex{! If we choose (22) in

such a way thaflvm = &mthen it follows thahm = k;™, dx; = dsn. If there then exists

torsion as in (15) then the metric of the integrableldvoan be made to vanish only by a
transformation of the type (22). However, if (16) igsetithen one arrives at the usual
transformation (19).

§ 3. Since:

(dldz—dzdl)Am:AV{ 0 (ah’mj_ 0 (ah/mj}dlxpdzxp EO, (24)
ox,{ 0%, ) 0% | 0%

it then follows by an application of Stokes’s theoéat:

] (dd, - d,d) A = fdA,=o0. (25)

The distant comparison of direction is also pdssitine further has:

oy | 9 () 9 (o) L e s
o R A o

* G, M + NG MG —N NG =0,

with

P ax,  OX,

0

vo ' kp

The identities (26), which express the idea thatdurvature ratios that are described
by B, vanish identically, are invariant under not orlg transformations (19), but also

the transformations (22). In non-integrable geowethe dh,,, are not complete
differentials, and therefore one will ha®”# 0. We set:

Ne =Ny, (27)
from which it also follows that:
e =Ny
Furthermore:
Ry =Rap, Rapg”=R
One then has:
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P + Pt =Rap—3{ % As+ I A+ 30,{N 5+ N0

+ %{/\yka/\flfﬂ _AayK/\fl.IfB _/\,8;1/(/\%.12} +_g /\gw +/\Zé /\,u = 01 (28)
H P * Pid = 3{% As+ A} + 30N}
+ %{/\H;ﬂ(/\flfﬂ _/\,8;1/(/\%.12} +%/\a/}u/\,u = O’ (29)
P=R—J A +1Nuap N+ L N\ N = Ny N = 0, (30)
We set:

c? L .
E Oap = Wap = gravitational potentials,

gl\,, = ®, = electromagnetic potentials.

¢ = vacuum speed of light = constant with the dimensions of electric chargéie
fundamental equations from which thg, will be determined must include ttg., and
their derivatives of at most second order.
We can demand the derivability of the fundameseiglations from a variational
principle:
OJ H dxt dx o d¥ = 0. (31)

oh
Ny, 5( 3 “mj vanish on the boundary of the domain of integratio
0
Part two. Fundamental equations.
§ 1. The functionH can either include only the, and its first-order derivatives of
or also the second-order derivatives, but thesd briinear with coefficients that relate

to only theh,m .
Examples of the first kind:

Hi = Aag A g, H2=NAus N \Jg, H3=A N [g.
Examples of the second kind:
H5:5,u/\'u\/§, HGZR\/E.

From (30), all five of these Ansétze are connebtethe identity:

Hy + 2H, — 4H3; — 8H,4 + 4H5 = 0. (32)
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One can also examine a linear combination:
5
H=>C,H,, Cm = constants. (33)
=1

A. Einstein discussed only the Ans&tzin the first approximation, and added tkiat
would lead to similar results.

We would now like to assume that thg, deviate from the Euclidian valueg, only
slightly. We can then solve the fundamental equatimnsuccessive approximations if
we first solve them in the first approximation, and threthe second approximation, etc.

By restricting to the first and second approximation, gets:

ham:tgam'l' Kam"'lzam, hangam_Kam_Em+KmrKn, (34)

and if we set:
KH/J’ + K/J‘a = gaﬁ ! Kaﬂ + Kﬂa + Km( KﬂK = gaﬁ ) (35)
then it follows that:
O0p = €ap * Top * Gupr F° =€05— U~ Gp + U B }

S TR (36)
\/5:1+%g,up +_§ gpp +% 91;1 g(K __i gll( K "

One further has:

/\..ﬂ - aKﬂﬂ _ aKﬂﬂ + aKﬂﬂ _ aKnﬂ _ IZ ; {GKW alzm(j
oax,  ox, 0% 0x,

A _ 0K, 0K, oK, oK, {aKM oK j

(37)

a - + - _KK
ox, 0x, 0x, 0% :

]

A calculation also produces:

Raﬁ:ngﬁ-'-T%ﬁ’

F_{,[;:l _62§§ﬁ+ azgtwﬁ + azguﬁ _ az_guu
ox, 0x,0% 0x0% 0x%0X%

2
90°G, , 0°T

ox2  0x,0%,

0

ﬁaﬁ_l —62§§ﬁ+ 626"5 + 62@,5 - az:Q“”
ox, 0x,0% 0x0% 0d%0X%

R=-

2

_lg a agﬁff +agaa _ az@ﬂﬁ _ azgka (38)
“lox |\ 9%, 0% | 0x. 0%, 0%,0%
_ 1 0§aK + aGﬁK _ a§aﬁ aGﬂK + a_g;l,u
4 ox, 0%, 0X% 0%, 0%
_ 1 ag{][( + ag}(ﬂ' _ agm‘f agﬁf’ + a_gTK - agﬁ’(
4 ox, ox, 0% ) 0% 9% 9% )
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The Bianchi identitie®), [R,* -3 ¢&,“R = 0 deliver, in the first approximation:

o, (F_{a £,5R) =0. (39)
If we set:
_ 0N, oA
P0x, 0%,
then (29) yields:
X,=- 2R (40)

If follows from (30) that:

R=2—A,,. 41
ox, (41)
Finally, we get from (28):
— _1(0A; OA,) 1, | =
== +—2 ==\, t N\ : 42
Rg/] { GXH axﬂ j 2( aup ﬂpa) ( )

We consider the first approximation. One has:

_ aKﬂﬂ aIZ oK, oK,
L 6>g, 6)5,
l__|3: ﬂK a J[E j
_ 6 43
H4: j K +{_(K K[l) ( )
0x,
i _
_ Kﬂﬂ aKaa Ka +(1 Kpp) a a ,ua_aKaa
OX, 0X, 6)§, ox( 0% 0%
_ K _ oK K
(R, +K ) [aK _%K, j R ( "“—aK““J,
ox,\ 0x, 0% ox (0% 0%
_ 1—- 1- —
H5:_2H1_5H2+H3+2H4
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One recognizes that the foregoing fundamental equatpnssent linear functions of
9°K : - : N -
the ﬁ with constant coefficients. Any linear combination (3ds to similar
X, 0%,
0
equations.

§ 2. The fundamental equations féf, read:

K, 0K, o -

oY = - =—AN,,;=0. (44)
ap aup
ox;  ox,0x ox,
From this, it follows that:
9D
—~% =0 (45)
0x,
and
oA 9 —
£ =— & Ny = 0. (46)
0X,, ox, “
From (41) and (46), one then has:
R=0; (47)
finally, it follows from (42) and (44) that:
_ _1(0A, aA
==| —5+—2|. 48
Ros 2{6xa 0%, j (48)
It follows from (39), (46), (48) that:
-
g -+ =0. (49)
ox;,
For H,, we have:
PO = azKaﬂ _ azKﬂﬂ + azKﬂﬂ _ azKaﬂ
P, 0x,0% 0%,0% 0X%0X%
= % (R, +Am,) =0, (50)
ox,
from which:
02
—% =0. (51)
0,

From (40) and (50), one has:
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d - o
aT/\ﬂW— Xap (52)
v

from which, it follows that:

0 -
(/\a B
0X,, H

+A ) = Xy + X5 = 0. (53)

From (42), (48) then follows from (52) that:

on, __,
ox ””ax

u u

/\a,u/] == Salg Xﬂa: O,

and from this, (41) also yields (47). Moreove)(fbllows from (39), (46), and (48). In
fact, H, gives the same results .

For the Ansat,, one has:

(T)(S) — GZKW _ azKﬂﬂ +£aﬂ{azlzﬂﬂ azKﬂpj

@ 0,0, 0%, 0% 0% 0x%0%
_ oA
= i/\a -£,,—+=0. (54)
ox, 0X,
From this, it first follows that:
0%
—=~ =0, (55)
0x,
and then, from (54):
_ 0 - 0 -
X =—AN,—AN_=0. 56
aB aXH g axﬂ a ( )

H, then leads to paradoxical results.
We consider, in turn, the Anséatkg and H,. From (44) or (50), it follows that:

. _ _
00y _ 0 [y 0Ky ). (57)
ox;  ox,| ox,  0x

]

from (40), (57), one gets:
2= 2= 2= ava
E 0 gaﬂ_ 0 gaﬂ + 0 gﬂll _Xaﬂ — 0 Kllﬂ . (58)
2\ ox;  0x,0% 0x0% 0x,, 0x,

For the Ansat#;, it then follows from (44), (58) that:
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0°K 62 9°g 0°g _
Zg gaﬂ gap + gﬂp _ Xaﬂ ; (59)
0X ox;  0x,0% 0x,0%

]

for the AnsatH,, it follows from (50), (58) that:

0°K 62 9°g 0°g _
za gaﬂ gap gﬂp _ 3xaﬂ . (60)
0X 0x;,  0x,0% 6 X,0%

]

Now, formulas (59) and (60) show that the distidou of IZ,,[, can be calculated

completely from the distribution og,,,, A
We would also like to carry out the second appraion forH; . Itis:

Hi= H,+H,, (61)
with
= _ oK oK
H, —2(KW+KW)EE6K””‘ - ﬂijEaK ﬂ’“j
ox,  0x%, X 0%

iR (aRm _aKﬁmj [Eagm_alzﬂmj
Hlox,  ox, 0x, 0%
+2 aKﬂm_aKﬁm aEam_aKﬂm
ox,  0x, ox, 0% |

On the basis of the first approximation (44), vistam:

92K

[e— 2_
O = 0Ky _ 0Ky 9 g Ap)+ agm/\
ox;  0x,0x, 9% 0%,
1905, ~ .~ =~ 1
E I /\Hllﬂ+/\ﬂKll/\ﬂKll 48 /\Kpﬂ/\Kpﬂ 0, (62)
i
from which:
DD
9Py g, (63)
ox

8 3. We assume that thgn, are arbitrarily large. With the Ansatz:

Hi =h®h™* b b | hyg | ~ Mam |90y _ O
ax 0x, ox, 0%

the fundamental equations read, upon considerimguias (11), (14):
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O Nys +I AL (N Nz = Nyp) =7 908 N ko NP =0. (64)

HBK

One obtains from (64):
QN == 3 Nap N, (65)

According to (30), it follows from (65) that:

R=- %/\aﬂy/\aﬁy_ 7 Nuap N+ Ny N, (66)
according to (28), it follows from (64) that:

Rop=3(0Np + BN + H{( Auax = Nia) ONG* = NGH)

Finally, (29) gives:

d 0 K« «
Xaﬂ =—A __/\a = _{5;1/\;1; +%(/\am(/\.l.1ﬂ _AﬂﬂK/\-l-lﬂ) +/\-“’;/\/‘} ' (68)

B
0X, 0%,

All of these exact equations can be employed in thendtation of more precise

equations. The Bianchi identities and the calculation thie J,X;*,
ixﬂ +i X, +i X, yield new equations.
ox, " 0x, 0x,

Finally, | would like to remark that A. Einstein halseady advanced so far in his
development of the field theory that the arguments Wexre outlined here, which are
closely linked with his article in the Sitzungsberichtler Preussischen Akademie, can
only be of mathematical interest.

Sofia. Physikalisches Institut der Universitat, 20 Ddwami928.



On the classification of the new Einstein Ansatz
on gravitation and electricity

By Hans Reichenbachn Berlin

(Received on 22 January 1929)

§ 1. The Einstein spatial type with teleparallelisam be regarded as a specialization of the Weyl-
Eddington spaces, which is based upon the commutabilifyeafadizations; it is not a specialization of the
Riemannian spaces, but is logically complementary to it.

§ 2. The epistemological significance of a unifieddftheory is examined.

§ 1. The geometric foundations. The new attempt by Einstein) (to change
Riemannian geometry in such a way as to arrive at a kpgi@that could encompass
both gravitation and electromagnetism can arouse tlextidn that one is then dealing
with a concept that that is not included in the geoméeory that has been developed
up to now; in particular, one could object to the paradoxiddé that combines
Riemannian geometry and teleparallelism, since one istreating a hitherto-unknown
concept that is intermediate to Riemannian and Eucligggometry. In what follows, it
will be shown that this is not the case, and that &urtlore the new Einstein space
already occupies a logical place in the context ofM&eldington geometry that can be
understood precisely.

To that end, | would like to draw attention to a présgon (') in which | developed
an extended conception of space using Eddington’s approachl@gical structure. The
difference in the basic notions of Weyl in his extensgeems to me to be that he

recognized the independence of the displacement operasibis tgiven by from the

one that is given by the metrg,, ; the general treatment of space problems can be
constructed upon these ideas. Once the topologiciginassnt of all space points has
been established by a coordinate system, one imagines/$tems of functions),, and

[, as being given arbitrarily; the former shall define tetric by way of:

ds’ = g, d¥ d¥, (1)

while the latter shall define the displacement of aare&” by way of:

() A. Einstein, “Riemann-Geometrie mit Aufrechterhaltung Begriffes des Fernparallelismus,” Berl.
Ber., Phys.-Math. KI17 (1928); cited as E. I. A. Einstein, “Neue Mdglichkeit #ine einheitliche
Feldtheorie von Gravitation und Elektrizitat,” BereB Phys.-Math. Kl18 (1928); cited as E. Il

(") H. ReichenbactPhilosophie der Raum-Zeit-LehiBerlin, de Gruyter, 1928. Appendix; cited as Ph.
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dA"= 7 AX dX. ()

The two operations generally involve different situati@nsce, e.g., the metric is not
defined by the comparison of directions, while the displasgrhardly gives a measure
of the lengths of vectors. However, they can agvhen the lengths of two different
vectorsA” and A7 are compared at different locations. In fact, therimegives a
comparison of length by way of the relation:

12 = g A A, (3

|*—|:\/gpuAﬂA/_\/div'£u'&” (4)
while the displacement of such vectors is compareddansof the relation:
AT A = j e, Aldy (5)

(in which the latter integral depends upon the @xthin general, both operations will
contradict each other here; e.g., from (5), one cas Adv—- A’ = 0, even though, from
(4),1" =1 £ 0. If one would wish to obtain a “balanced spaeeisgeglichenen Rayrn
which such contradictions are excluded then one has tis pa choose from: Either
one makes the displacement the fundamental prin@ipléaking the metric to be a
function of the length comparison at different loeas and employs only the ratios of the
guv Or one makes the metric the fundamental principlersoprescribes the displacement
by the condition that it leaves the lengths of vectaishanged, independently of the
path. TI call the former type of spacal@placement spacand the latter one metric
space(').

Whereas in the previous Anséatze of Weyl, Eddington,Ensitein, the displacement
space was employed, or indeed given along with a suitadtdalanced type of space, the
new Einstein Ansatz employs the metric space, and taislmhshown in what follows.

The metric space is characterized by the condition:

d(* =o, (6)
which, according to Eddington, leads to the relation:

6gw
K,uv,a 267 +r,ua,w +r,uv,,u =0. (7)

It is quite significant that this condition still doaet lead to the Riemannian space; this
first comes about when one adds the far-reaching conditio

re, =ro,. (8)

v

(" Ph., §47.
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When that is true, in fact, from (7), one gets thd-kmebwn result:

FLV=—{”"}- )
T

The general metric space is, however, different from a Riemarspace. The
Riemannian space is the specialization of a metric space that istyiven().

Einstein’s idea in E. | now consists of the facttthaother specialization of the
general metric space can be used besides (8). Namalgntended that, along with the
relation (6) [(7), resp.], one should have integrabihifythe transfer of direction that is
given by (2). Ordinarily, one first employs this fagcling requirement when one goes

from a Riemannian space to a Euclidian space, and thks aepecialization of the],

that starts from (8) [(9), resp.By contrast, Einstein idea can be expressed by saying that
one can already pose this demand along \{&h[(7), resp.]without having to pose the
symmetry requiremei(8).

The mathematical formulation of this requirement d¢@n given with no further
discussion using the familiar tools. Should the transfielength and direction be
integrable then a vector that isRtdetermines one and only one “congruent” vector at
any other location without referring to a connecting patilne partial derivative of this
vector field with respect to the coordinates is, from ¢&)en by:

oA
ox’

=TT, AL (10)

The condition that the function’, can establish the partial derivative of a vector
field in this way is equivalent to the integrability cdmh of (10); it is known that this
leads to the condition (:

R..(MN=0, (11)

or.  or:
v T Mo L prpa _[fpa (12)

R (M) =
,uva( ) axg ax/ av' uo ac' uv

It is essential to understand that this, as the welilan condition for the vanishing of

the Riemann tensor, can be formulated as the solatiwonan thel™ ,, without anything

else being assumed about the connection betweer theand theg,, . It is also
important that the symmetry of tH€ , in (8) was not assumed for (11).

The Einsteinian space is therefore characterized byitemms (7) and (11); the latter
is a condition on thd™}, alone, while (7) represents a prescription for the cdirec

() Ph., pp. 346-351. The notation that | am using differs fEstdington’s notation by the sign and
sequence of lower indices in (2), as well as by the aonigd the numerical factor 2 in (7).
(") Cf., say, WeylRaum, Zeit, Materiel® ed, Berlin, 1918; pp. 108.
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between thel’;, and theg,, . It is a metric space with teleparallelism, whigh i

however, different from Euclidian space by the asymmetihe '’ ; it is the addition

of (8) to (7) and (11) that first leads to Euclidian spacThe logical classification of
Einsteinian spaces can be illustrated by the followiagm@im:

Metric space

di®» =0
Einsteinian space Riemannian space
R,,(MN =0 r, =T,
Euclidian space Euclidian space
F;V: Fﬁﬂ R;VJ(F) =0

The Einsteinian space is therefore not a speeis¢ ©f the Riemannian space, but
should be placed next to it; its possibility restpon the commutability of the
specializations that lead from the metric spacakeadzuclidian spaces.

A two-dimensional illustration might be given tperhaps, a sphere, upon which the
meridians and latitude circles are defined as awilies of parallel lines. Two vectors at
different locations are called parallel when thegkm equal angles with the crosses
through their locations that are defined by thediof the family. (One observes that the
angle measure is established by the magyic since it can be reduced to the length

measure from the angle measure.) For that reéiseffiinctionsl”), are simply equal to

zero for this coordinate system. This is not thenfnnian parallelism of the sphere,
since that would be characterized by t{w} which naturally do not vanish for the
T

sphere. If, say, a line element that lies in thkese is perpendicular to a meridian is
displaced in its proper length direction then gatées a latitude circle under Einsteinian
parallelism and a great circle under Riemanniaalfgism that is tangent to the latitude
circle at the starting point. In Einsteinian spaas in a general metric space, the
straightest lines and the shortest lines coincide.

(11) formulates the condition for the displacement operatiobe integrable in length and direction,
while (7) implies the requirement that the length thataisdported by the displacement is identical with the
distant comparison of the metric. Here, one can inegigeneralization in which these two lengths do not
coincide; it would then be less desirable to constroairgbalanced space of that kind in which the two
types of distant comparison were obtained from eaclr athgome contrived way. By contrast, another
generalization of the Einsteinian way of thinking canobdanterest that Einstein himself has already
thought of, as | learned from him. The displacement ¢peargan be integrable in regard to direction,
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while it is not integrable in regard to length. In plafe(11), one would then pose a less restrictive
condition. The balanced spatial type that this beloogahich one can call direction spacewould be a
displacement space in which thg are therefore established only up to their ratids.a result of this, one
can regard the Einsteinian space as a specializatitme metric spaces, as well as the direction spaces.
Once again, this is based upon a commutability of theidmations, namely, the integrability of the
length transfer and the integrability of the directi@nsfer.

8 2. Some applications of the space type constructe#tinstein then gave a certain

Ansatz for thel,, in which he represented both of the functiang, and g, as

functions of a parametern){

Ouv = Nya hia, (13a)
T T ah,ua
r, =—h PV (1)

One easily confirms by calculation that this AnsatizsBas our equations (7) and
(11). It would be interesting to know whether this Ansafrresents the only solution to
(7) and (11); as far as that is concerned, one shouldtmateyenerally (13 is not a
covariant equation.

On the physical interpretation of the Einsteinian Ansédt us make the following
remark, which is true for the more recently published tEinsAnsatz () just the same.
Indeed, the goal is to combine the basis laws of graitand electricity into one law.
Now, there are two ways of unifying separate physical theor The first way is to
combine the two theories into a new one in such a Watythe new theory says nothing
more than the two theories combined; for that reasact) a unification has only a formal
significance. It corresponds to the replacement sysaem of axiom®#\ with another
systemB that contains less theorems in such a way #g&llows from B just asB
follows fromA. The second way means embedding the older theoryhatoew one, in
the sense of a special case; this corresponds to thear@nt of a system of axiorAs
with a systenB in such a way thah can be derived frorB when a “specializing” axiom
b is added tdB, while, converselyB cannot be derived fromA (" ). This latter way
implies the proper process of inductive, physical reasonrinthen replaces existing
knowledge with a new, more assertive, knowledge. Fdrrémson, the second way
makes the judgment “true or false” in the sense of eoapiproof, while the first one
makes it only in the sense of the logical consistesfcthe derivation oB from A, and
conversely. An example of the first way is, perhaps,replacement of the Lagrangian
equations of motions with a variational principle, whileessample of the second way is
the replacement of the Keplerian laws with Newtorve ¢d gravitation.

() E. L, pp. 5: Equation & that was given there includes a printing error, and lig@whe previous
and following equations. Moreover, Einstein wretk’ for our " .

(") A. Einstein, “Zur einheitlichen Feldtheorie,” BeBer., Phys-Math. KI.1 (1929). Since this new
Ansatz does not differ from the other two in relatiorgeometry, everything that was done in § 1 is equally
true for it.

() On this, cf., H. Reichenbach, “Ziele und Wege der @iajischen Erkenntnis,” Hand. d. Phys. 1V,
Berlin, Springer, 1929, pp. 38.
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The fact that the first way is practicable, in thasgeof a combination of gravitation
and electricity into one field that determines geometign extended Riemannian space,
was shown by the author)y it is remarkable that one can thus find an immediate
geometric interpretation for the displacement openatimmely, in the law of motion for
electrically-charged mass points. There, the stragjhine is identified with the path of
the electrically-charged mass point, while the shofitestremains that of the uncharged
mass point. In this, one achieves a certain parallél Bilhstein’s equivalence principle
(7). Moreover, a space that is related to the Einsteigjzace will be defined there,

namely, a metric space with asymmetrig,. The fact that the first way was used in this

comes about from an epistemological motive: Nameih the intention of showing that
the geometric interpretation of electricity in its@liplies no physical epistemological
significance. By contrast, the Einstein Ansatz ndiyueamploys the latter way, since he
is indeed concerned with an expansion of physical knowjadgethe goal of Einstein’s
new theory to find a concatenation of gravitation andccta@ty that in the first
approximation it would lead to a decomposition into the sg¢paequations of the
previous theory, while in a higher approximation it would lead teciprocal interaction
of the two fields, that might possibly lead to an un@eding of previously-unsolved
guestion, such as the riddle of the quantum. However,gthad seems to me to be
achievable only at the expense of its immediate physitapretation, if not, in turn, that
of the actual field quantities. For that reason, ftbengeometric standpoint, such a path
appears to be quite unsatisfying; its sole justificatisngiven by the fact that it
encompasses more physical facts in the aforementicovechtenation than were put into
its definition.

() Ph., §49.
(") Ph., pp. 367.



On unified field theory

By A. EINSTEIN

In two recently-appearing papery, (I sought to show that one could succeed in
obtaining a unified theory of gravitation and electromagnety attributing the property
of “teleparallelism” to a four-dimensional continuum,addition to a RIEMANN metric.

In fact, one also succeeds in giving a unified meanindpeéogtavitational field and the
electromagnetic field. On the other hand, the deowabf the field equation from
HAMILTON'’s principle does not proceed in a simple and clatgly unique way. This
difficulty grows stronger under more detailed consideratioddowever, | have since then
succeeded in finding a satisfying way of deriving the field equstidat | shall
communicate in what follows.

1. Formal preparations.

| shall use the notation that WEITZENBOCK recenitpposed in his paper on the
subject f). Then-component of the leg of ann-bein will thus be denoted k", and the
corresponding normalized sub-determinant®hy . Local n-beins are assumed to be
“parallel.” Vectors are parallel and equal when they heyeal coordinates relative to
their respective locail-beins. The parallel translation of a vector is gilsgrihe formula:

P == MOAT & = hg g A7 S,

where the comma in th, s shall suggest differentiation with respectxtain the usual
sense. The “RIEMANN curvature tensor” that is candigd from theA}, (which is

asymmetric ina andf) vanishes identically.

As for the “covariant derivative,” we shall use omlhe one that is constructed by
means of theA. Let it be denoted by a semi-colon, in the style lué {ttalian
mathematicians, so:

Av; o= Av, U—Aa A

uo

A=A o+ AT A

() These Berichte, VIII.28 and XVI1.28.
() These Berichte XXVI.28.
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Since the®h, , as well as they,, (= *h, *h,) and theg”’, have vanishing covariant
derivatives, these quantities can be exchanged arlyitras factors under the
differentiation sign.

I will now deviate from my previous notation, in thawvill now define the tensof\
(now omitting the factor 1/2) by the equation:

a = ANO _AQ
N, =D, -4,

The principal difference between this and the familiarmidas of the absolute
differential calculus lies in the construction of ttieergence, which comes from the

introduction of an asymmetric translation law. et be an arbitrary tensor with an
upper indexo. Its covariant derivative reads, when we include ohbsé¢ additional

terms that relate to the index

oT.”
ox’

g
T

+ AT OA7 .

If one multiplies this equation by the determin&nin which one has contracted
andr, then by introducing the tensor densityn the right-hand side one obtains:
0% "

ox’

hT:7= + TN,

The last term on the right-hand side is missing whenrémslation law is symmetric.
It is itself a tensor density, as well as the renmgnierms on the right-hand side
collectively, which we will refer to as the divergenof the tensor densit§, in

agreement with the usual notation, and write:

T
One then gets:
hT 7= T2+ ..+ T A7 . (1)

Finally, we would like to introduce that a notationtthat seems to me — improves
the clarity of the presentation. | will often suggdst raising (lowering, resp.) of an
index in such a way that the index in question is underlined. efdrer | will — e.g. —

denote the purely contravariant tensor that is agsaciaith (A7) by (A7), and the

purely covariant tensor that is associated Wiifj,) by (A7).

2. The derivation of some identities.

The vanishing of “curvature is expressed by tlemtiy:
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0=-A,+4

kl,m

+Aia|Aim_Aia iy 2)

km |

We will use this identity in order to derive anotheedhat is true for the tensév.
One constructs both of the equations that are obtained (2) by the cyclic permutation
of the indicekim and then adds the three equations. By an appropriataation, one
then immediately gets the identity:

O = (/\I +/\i|m, k + /\imk I) + (/\ia l/\clrm+ /\ia /\Jmk+/\ia ré\gk) .

kl,m

We form these equations in such a way that we introdhecedvariant derivatives of
A\, instead of the usual ones. By a suitable summatios,then effortlessly obtains the
identity:
O = (/\ikl;m +/\ilm; k + /\imk I) + (/\I Ia/\clrm+ /\I .iT/\Jmk-+_/\i m/\gk) ' (3)

In fact, this is the requirement for theto be expressed in the stated way in terms of the
h.

By contracting (3) once, in which one repladel, with the abbreviated symbgj, ,
one gets the identity:
0= AYy + @k — da + A, (3)

which will important in what follows. We transfornmi$ by introducing the tensor
density (which is anti-symmetric kandl):

By =h(A\q+9d’ -a.9). (4)

Equation (&) is then converted into the simple form:

(B4),. =0. ®)

The tensor densitys,, satisfies a second identity that will be significamtwhat

follows. For its derivation, we lean upon the followiegmmutation law for the
construction of the divergence of a tensor densigroitrary rank:

A=A == (AAL),, (5)

The ellipses wit®l mean any arbitrary indices that are the same fahr@e terms of the

equation, namely, the ones that were not related Eogalkmdivergence.
The proof of (5) relies upon the defining formulga (

AT = AT +ATIAG —ATIAT ©)

r..0i

() Translator’s note: The last term on the right-haiaé was misprinted in the original.
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and particularly upon the identity (2). Equation (5) isselg connected with the
commutation laws for covariant differentiation, whichill likewise state, for the sake of
completeness. L&t be an arbitrary tensor whose indices | will disrélgar the sake of
brevity. We then have:

Tik—Tx;i =T, 5 Ay. (7)

From the identity (5), we now make use of the tensositles;, whose lower

indices we presume to be raised. We thus find for tlggesnon-trivial identity:

‘Bgn/a _‘Bﬁ/an =- (%Z/\f})m,

which, in light of (3), one can put into the form:

(%ZII - sB|L<Tr/\c07{1)/or

0. (8)

3. The field equations.

When | discovered the identityl{ it was clear to me that the tensor densif
must play an important role for a naturally-restriatedracterization of a manifold of the
type under scrutiny. Since its diverger8g,, vanishes identically, the next thing that
came to mind was that in order to express the requirtsniea., field equations), the

other divergenceBy,, should also vanish. In fact, one arrives at equatisaisproduce

the vacuum field equations in the first approximation #natwell-known from the earlier
general theory of relativity.

On the other hand, one obtains no vector relatioth®g, in such a way that ay,
that have vanishing would be compatible with those field mpg This is based upon
the fact that, in the first approximation (due to themmutability of ordinary
differentiation), there is the identity:

a - a
%&/I/a = %mm/l .

However, due to (&, the quantity on the right-hand side vanishes idenyicalh this
way, in fact, four equations drop out of the systsf}), = 0.

However, | recognize that this deficiency can be gasinedied by postulating the
equation:

%ﬁ]/l = 0’

instead of the vanishing @By, , in which B¢ refers to the tensor that differs frof,
by an arbitrarily small amount)(

() This is certainly the method that was always usedderaio remove the degeneracies that arose in
the singular case.
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By =B —ch(@d -q ). 9)

One then indeed obtains the MAXWELL equations (all m finst approximation) when
one takes the divergence of the field equations (foirtthex @). Moreover, when one
passes to the limi& = 0, one obtains the equatiof%;,, = 0, as before, which likewise
give the correct gravitational laws in the first appnoaiion.
The field equations of electricity and gravitation wileh be produced correctly in
the first approximation by the Ansatz:
%ZII = 0’

with the associated restriction that one must pasketdimit = 0. This brings with it,
the identity (which is valid in the first approximation)

Bina =0, (®

which brings about a division of the field equations ie finst approximation into the
laws of gravitation, on the one hand, and electriaity, the other, a separation that
certainly represents a characteristic feature of nature

We must now make those considerations that werenglotam the first approximation
just as useful in the more rigorous case. It is cleat we also have to arrive at an
identity here that corresponds t@)8 This is obviously the identity (8), especially since
both identities, except for (3, are based upon a permutation of the differential
operations.

We must therefore propose:

%gn _%ETAZT =0 (10)

as the field equations, with the prescription that we sjuss#ly (i.e., after performing
the operation ‘@) pass toe = 0. When one denotes the left-hand side of (10B%y

one then obtain the field equations:
Bk =0, (1@)
189,=0. (10)

Considering (8) and (9), (bpnext gives:
{{Nad —ad)l, ~ad -d) Ng .= 0.
For the sake of brevity, we now introduce the tensosite

Wi =h@d -gd’).
According to (5), we have:
wﬁ/l/a = wﬁ/a/l _(QUJ/\fT )/a’

a
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such that the equation that we are deriving can also idenvin form:
(wﬁn _anj{/\fa - WA, )/a 0,

kr* ‘ot

in which the last two terms have been raised. Bygttlmrward computations, we get:
W = Mg = B -

The transformed equations @Qhen read:

[h(%;g _%;K)]/a = 0! (11)
an equation that, together with:
%Zm _%ETAZT =0, (1@)

defines the complete system of field equations.

Had we started from (&), instead of (10), then we would have obtained the
“electromagnetic” equation (11). We would also have he ¢hat systems (11) and
(10a) are compatible with each other. Thus, it seemsicethat these equations are
consistent with each other, since the original equati®f) are sixteen relations between
the sixteen quantitieh, . There necessarily exist four identities betweesesxteen
equations (10) due to the covariance of these equatiomsrefdre, there exist a total of
eight relations between the twenty field equations ({11)), of which only four of them
are stated explicitly in the text.

The facts that equations @O include the gravitational equations in the first
approximation and equations (11) (in conjunction with thetemie of a vector potential)
include the MAXWELL equations for the vacuum has alrebegn asserted. | can also
show that, conversely, for every solution of these &g there exists an-field that
satisfies equations (&) By contracting equations (&0 one obtains a divergence
relation for the electromagnetic potential:

f/l l%”Ak _O

kr’ ‘or

(12)
(2f' =87 =2hg).

A deeper examination of the consequences of the fieldiegedil), (1@) will have
to show whether the RIEMANN metric, in conjunctionthviteleparallelism, actually
delivers an adequate description of the character of sgpaaer. to such an examination,
this is not improbable.

It is a pleasant task for me to thank Dr. H. MUNT& the difficult rigorous
computation of the centrally-symmetric problem on th@saf HAMILTON's principle;
it was by the results of that research that | wasidnt closer to the findings of the path
that was taken here. Likewise, at this time, | wolie ko thank the “physical fund,”
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which made it possible for me to employ a researcistass, in the person of Dr.
GROMMER, during the last year.

Supplementary correction: The field equations that weoposed in this paper are
formally the opposite of the ones that are usually emable. By leaning upon the
identity (8), we found that the sixteen quantitths could be subject to, not merely
sixteen, but twenty autonomous differential equatior@ne should understand term
“autonomous” to mean that none of these equationsatemvffrom the remaining ones
when there also exist eight (differential) ident#yations between them.

Received on 30 January.




On the foundations of a new field theory of A. Ein®in
(Second part)
By Raschco Zaycoffin Sofia.

(Received on 4 March 1929)

In a recently-appearing article),( A. Einstein abandoned the variational method of degivthe
fundamental equations, since it led to no unique resujitsKinstein then subjected the metric of his world
to natural restrictions that would imply the corramdidamental equations. In the present publication, in
conjunction with my first publication (), | will show that the new method gives the naturaislajuite
well. From it, one gets a summary of Einstein’s stigations.

8 1. The identities (28), (29), I, can also be writterhia form:

Rop = 3(0aNg+UpNa) + 50, (NG5 +Noy)

+ 1 {(Aaux + Naw) D(/\/EPK +/\/Ekﬂ) NN =5 (Nog ¥ Np) N, =0, (D)
OaAg=OpNa+ O,NE+NGN, =0, (2)
We would now like to give these identities a usefuahfo We then set:
Y — A v ¥
Vo = NY e+ N E] ©)
from which, it follows that:
V' ==2N,. (4)
Moreover, one has:
DA = Ou=Ng) NF, (5)
where A~ represents any tensor, and:
Y — W _ Wy
W' =N, = Nge,, (6)

() A. Einstein, Sitzungsber. d. Preuss. Akad. (1929), no. 1.
(") The samebid. (1928), no. 17/18; R. Weitzenbddkid., no. 26.
(") R. Zaycoff, Zeit. Phys53 (1929), 719; referred to as | in what follows.
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from which, if follows from (3) that:
Ny =V + W,
With this notation, from (1) and (2), one gets:
Raﬂ + %{ D/IVO{IW +VHQIK/\/IKﬂ + D/IV;E’ + \/ﬂg”(/\ - gaﬂ { D/I /\/I - V/IKU/\/IUK}

,u/m}

+ VM (Vaue = Vigd) + V™" (Vaue = Viaka)} = ${V,u V"5 =5 W,e W

pka Y.

— 3 9ap{ Viuox V7 + ZWy0e W} = 0,

D V;I

uap

0.
§ 2. For any sort of tensof -, one has the identity:
(Uad0p=040a) A =Ny 0u A
From (26), 1, (2) and (10), one gets the identity:
(DaDp—DpDa) A7 =Dy (A7 A7)
It follows from (9) and (11) that:

Dy {D, V## + V¥ A} = 0.

(7)

(8)
(9)

(10)

(11)

(12)

In order to avoid the degeneracy in fhg operation, we would like to repladé;;”

with:
Vi =V +eW, lime=0.
We now choose the restriction in question in suclawp that:
L“:r;lj { Dp*vapﬂ + *VUK,D /\Kpﬂ }: 0,
or, due to (13):
Dpvap/l+vaKp /\,u — 0
Ko '

which represent the 16 equations of the first grofujpndamental equations.
It follows from (4) and (15) that:

Now, the equation:

(13)

(14)

(15)

(16)
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1
s Dy {Dg V™ + W™ NJY=0

next gives, when one considers (12) and (13):
Dy {Dp W" + W™ A4} =0,

and then, from (11) and (18):
D,D, W™ =0.
We set:
FaﬂE Da/\ﬂ_ Dﬂ/\a .
It follows from (2) that:
F#=-D, N,
so, from ((7), (9), and (21):

F%=-D, W" .
(19) then assumes the form:
D,F¥=0.

Equations (23) define four more fundamental equations (lz.sécond group).

§ 3. It follows from (8), (15), and (16) that:

Raﬂ + %{ VHGIK (Vﬂ/[}( - V/jKﬂ) + Vﬂaﬂ( (Va/”( - V/IKH)}
= HVua V5 "S5 Wi W =3 G { Vo V7 + § W W3 = 0.

HKa T HKa
These are the equations of gravity.
Now, one also has:
Faﬂ = Da/\ﬂ— Dﬂ/\a ,
from this and (23), it follows that:
D, D’ Ag=D, Dy N

From (7), (9), (11), and (12), one has:

DyDP Aa=Da Dy +Fap N +Apgy Dy N+ Ny N I,

or, upon considering (15) and (16):

DyDuA°=FopN°+ Sy,
in which:
Sy :% D, (V/IKU /\,ua/() + /\pa,u DUAPU/I _% Ag V/IKU/\/IO'K

+ VTN o+ Aoy N NP,

91

(17)

(18)

(19)
(20)
(21)
(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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It then follows from (26) and (28) that:

Ihese equations exhibit a strong analogy with the wguate®ns of quantum mechanics
()

8 4. We consider the case of infinitely weak fields. Qhen arrives at the first
approximation (). From the identity (9), one will have:

2V =o, (31)

which agrees with (40), since the following identity exists

Vs, = Nopy = Nos + N4, (32)
Equation (16) reads:
oA
£ =0. (33)
ox,
Equations (15) become:
0 —
—V,, =0, (34)
aXp oU
or, upon consideration of (33):
O R -2 A,=0 (35)
X, 0X,

Equations (23) assume the form:

9 Ifaﬂ =0, (36)

ox,

and equations (24) assume the form:

F_Qaﬂz 0. (37)

Finally, equation (30) becomes:

0°A
a=0. 38
0x2 (38)

0

() Cf., R. Zaycoff, “Zur neuen Quantentheorie,” Zeit. £I4 (1929), 588-589.
(") Cf, L.
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One can also calculate equations (15), (16), (24), (30)eirs¢kaond approximation
with the use of formulas (34), (35), (36), (37), (38) imd ahe equations (33), (35), (37),
(38) for the first approximation.

Sofia, Physical Institute of the University, 25 February 1929.



On the foundations of a new field theory of A. Ein®in
(Third part)
By Raschco Zaycoffin Sofia.

(Received on 11 March 1929)

The question that was posed by A. Einstein on the comiigtiii the 20 fundamental equations with the
fundamental identities is resolved.

In my second part, | followed the methods of A. Einstein preciselyn His most
recent paper (), Einstein still did not confirm that the chosen mesbns on the world
metric were permissible. A little investigation shraolve this question.

8 1. We have used the identities:
(DaDp—DpDo) A =Du(N A7), (1)

whereA is an arbitrary tensor, and:

DﬂV[;[;“ =0, (2)
Dy (D, V# + V% N1 = 0, (3)
Fos=-D ﬂW,;[,;“ , (4)

in which we have used:

() R. Zaycoff, “Zur Begriindung einer neuen Feldtheorie o Einstein (Zweite Mitteilung.),” Zeit.
Phys.54 (1929), 590.
(") A. Einstein, “Zur einheitlichen Feldtheorie,” Ber.Rteuss. Akad. (1929), no. 1.
(the same) “Riemann-Geometrie mit Aufrechterhalturgy Blegriffes des Fernparallelismus,” Ber.
d. Preuss. Akad. (1928), no. 17.
(the same) “Neue Mdglichkeit fur eine einheitliched#etorie von Gravitation und Elektrizitat,”
ibid.. (1928), no. 18.
R. Weitzenbock, “Differentialinvarianten in der Biainschen Theorie des Fernparallelismiksd.
(1928), no. 26.
R. Zaycoff, “Zur Begrindung einer neuen Feldtheorie voRiAstein,” Zeit. Phys53 (1929), 719.
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VY = NV ANV
V" =N, —W,5,

W,/ =N\,e) =N z€r, (5)
Fos =0, A; =00,
Instead of setting the expression:

D,V + VTP N1

equal to zero, we would like to assume that it is equatto(by definition), from which,
due to (3), it emerges in any event that:

D,S*=0. (6)
It then follows naturally from (6) that:
D.D,S* =0. (7)
The identities (1) and (7) give, moreover:

D (D, S™ + A\f S¥)=0. (8)

Let X% be any tensor that is anti-symmetriciimndS. From (1), one then has:

(Da Dp=DpDa) X¥+ =Dy (A X%, 9
or, since:
— DDy X% =D, Dy X%, (10)
one also has:
Djs Dy X% = $ Dy (A X7, (11)

When (11) is applied to the identity:

D, V# + VPN — S =0, (12)
that yields the relation)
Da (3 N VP + VT N - SH) = 0. (13)
After manipulating this formula, with the use of (5)follows that:

Da [Ax (N“H =A%) + A# (AN~ N\*99)] D, S¥ = 0. (14)

Thus, should the restriction:

() The tensoW“* is indeed anti-symmetric i@ andp!
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S =0 (15)

be in force; the identity (8) would be fulfilled, but tigentity (14) gives the further
restrictions ():

Dy [Ax (N — N9 + NoH (3 NPT \F9P)] = 0, (16)

0
which are indeed of second order in magnitude, in such atheafirst approximation
would not be influenced by them.

However, it is conceivable that one might avoid thifiadilty in Einstein’s theory by
postulating some restrictions of the form:

S £0 (17)

instead of the restrictions (15), such that the ident{ti&} or (14) would then give no
further conditions on the\ 7 quantities, and only the identities (6) and (8) accomplish

this.
However, a choice of the form (15) is free of codithons, in itself, since (16) must
then be fulfilled on the basis of (14).
§ 2 If we apply the identity (11) to the quantitie® then it follows that:
Da (D F* =1 A F¥) = 0. (18)

If — as is, in fact, the case in the theory of A. Eimstethe further restrictions must
be true:
D,F* =0 (29)
then, from (18), the additional restriction must bélfad that:
Da (A F%) =0. (20)
This is also of second order in magnitude. Should we despestulate the restrictions:
D, F* 4 N F*=9,F¥ =0, (22)
in place of (19) then (18) would indeed be fulfilled, butenére theory would then lose
its elegance and potential for success. However, dff,itde choice (19) is free of

contradictions, since (20) must then necessarily exasthe basis of (18).

Sofia, Physical Institute of the University, 6 March 1929.

() Which are four in number.



On the most recent formulation of Einstein’s
unified field theory

By Raschco Zaycoffin Sofia.

(Received on 6 June 1929)

A. Einstein () succeeded in basing his theory on Hamilton’s priecipThe following report extends and
completes Einstein’s investigations relating to thay is closely linked with them. Many of the objection
to the geometric foundations of Einstein’s theory il briefly refuted. My previous three paper il
serve as a starting point.

8 1. The difficulties regarding the admissibility of ttveenty unified field equations
to which | referred in 11l [Formulas (16), (20)] become mepncrete upon more precise
consideration. It does not allow one to exhibit tharfalentity relations for these
equations that follow from the demand of covariance.

In I, pp. 723, we have given all possible Ansatze foHamilton function. They are,
in fact, of the form():

H = ZS‘,CmHm, (@)
m=1
where
Hi = Aag A Jg, H2=NusN\[g, Hz=A,Ng,
Hs= 3A*\Jg =D, g.

Hs =R /g, andC, are arbitrary constants.
Now, A. Einstein considered solely homogeneous quadratittifuns of theA;, .
These are all of the form ( ):

*

() A Einstein, Sitzungsber. d. Preuss. Akad., supplemerdltime 17/18 (1928), 1, and (1929), 10.

(") R. Zaycoff, Zeit. Phys53 (1929), 71954 (1929), 590, 738. In the sequel, referred to as I, II, IIL.
See alsdr. Weitzenbdc¢lkSitzungsber. d. Preuss. Akad. (1929), supplement to va26niE928), as well as
the papers of. Levi-Civitg ibid. (1929) andH. ReichenbachZeit. Phys53 (1929), 683. The papers of
MintzandC. Lanczosre still unknown to me.

(") Cf, |, pp.723.

(™) From I, pp. 723, the equations that determinehthenust include only those quantities and their
derivatives up to second order, which is possible onlgnathe Hamilton function has the form (1). On the

other hand, from | (32), one has:
Hs=2H,+Hs— 1H - 1 Hy.

Now, H4, when used as the chosen Hamilton function, gives eqgattat are fulfilled identically. One
convinces oneself of that from | (43) in the first ap@mation. It follows that we can employ only the
linear combination (2) for the Hamilton function, in wiithe choice of constan®;, C,, C; remains free.
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3

H=>C,H,. (2)
m=1
One must have:
O/ H dw=0 dw=dx; dx dxs dxs) (3)

for all variations of l,] that vanish on the boundary.
These sixteen equations follow from (3) after multipdybyh” :

oH 0 | oH
- W5 =0, 4
oh,, 0x,| Oh, @
axp
If we set:
O _ e H__yar, (5)
09,5 N,

which are quantities that represent tensor densities, ithfollows from | (2), (4), (12)
that:

0 oN
By By g Do = (g0 g PN My
ahas ahas g ah;s a
aH - HY a/\#Vg — apK (6)
E-H_._U o =2H%*h__.
X, 0X,

Substituting (6) in (4) produces equations thamfl (7), (8), (12), Il (5), can also be
written:
G¥=H¥-D,H™ =0, (7)

After performing an infinitesimal coordinate trémsnation:

U
thos= W gy 07 (8)
0x, 0x,
it follows from:
[ G" hes I dw= 0, (9)
in which the& vanish on the boundary, that:
[ ,|6*,& dw =0. (10)

From the cited formulas in | and Il, this yields:
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pl G*=D, G +G™ AT, =0, (11)
which are four identities that can be applied to any Hamfunction of the form (2).
A. Einstein built his new theory upon equations (7) anddéstities (11).
It follows from (7), (11), Il (21), and III (11) that:
o| G7 = 5| HP + 2Fxo H*PT — %/\;&f‘ 0,H e — bH ”“"/\gyk =0, (12)
where, from Il (20), (25):
Fop=UaNg—UgNa=DaNg—DgN\g . (13)
We present the condition f&’ to be symmetric im, 2 i.e.:
G¥-G7=0. (14)
It follows from (7) and (14) that, from (5), one has:
H% - H =0, (15)
D, (H™F - H#%) = 0. (16)
A calculation that uses (1) and (2) now yielgs (
H = {2C; A + Cy (NP + N9 + C3 (N ¢ =N g)} \[g. (17)
From formulas Il (6), (7), and identities Il (9), d@lbws from (16) and (17) that:
D, {(2C1 —Cyp) (A™ - N + (2C, + C3) W} = 0. (18)
This identity is possible only when one also has:
2C;-C, =0, as well as @ +C;=0. (19

Since one of the constants can be chosen freelyyoudd like to seCs = 1, from which,

(19) yields:
C = —%, C,=-%.

N

It is thus proved that the special Hamilton function:
H= H3—%H2—%H1

is the only one that produces equatiods (

() Onehas: H¥ = 19" H+{C (A;"N"" =2A\% N*) - CN% N

2" "ulk

(20)

(21)

- CA'N} g .

99
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G¥=0 (22)

that are symmetric ior, 5. These are the gravitational equations.
From | (32), one has:
HEH5—2H4. (23)

In the earlier theory of relativity, it was post@dtthat:H = Hs, and due to the
assumption thaf), A* = 0, also thaH, = 0.
We then see that in (23) we have arrived at a connewtibrthe earlier theory.

8 2. In order to obtain the missing six equations, we woikd to replace the
constantC;, C,, Cs in (18), using (20), with constants that differ from therhinitely
little:

_ _ _ limeg =0
C, =-1(1- &), C, =—-i1(1 +&), C,=(1- &), (24
1 4( 1) 2 2( 1) 3 ( 2) {Iim £, -0. (24)
We thus have, in place of (18):
D,{(2C, - C)(A™ - A#7) +(2C,+ C) WA} = 0. (25)
If we set:
Supy = Napy+ Npya + Nyop (26)
then it follows from (25) and Il (7), (9), (22) that:
D, S" + gF* =0, (27)
in which:
o= 2C+C+GC _ &, (28)

C_:2_261 & .

If we would like to replace the constar@s in o; not with the values (24), but with

the values (20), then we would gzt 0 / 0, which is meaningless.
Einstein obtained the six equations (27) when he repldeedunhctionH with the
function:

(29)

which differs from it infinitely little.
Equations (22) and (27) are the sixteen fundamental equdbiotise determination
of the sixteen quantiti€s;s .

() Which are ten in number.
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One also has:
H'=%S,5"/g (30)
If we set:

N =x LA,
9

in which *A®” means the tensor that is dual/tg and is anti-symmetric in all indices,

and one choosesaccording to whethem3)0) represents an even or odd permutation of
the numbers 1, 2, 3, A (then it follows that:

*F% = DA (31)
From (27), one has, moreover:
F% =D, (1 s"ﬂﬂj : (32)
o

8§ 3. We would like to consider the case in which:

a > &, (33)
and thus limo= 0.
It follows from (27) that:
-D«D,S™ + oD, F*=0. (34)
From Il (11):
-3D, (A, S™) + gD, F¥ =0, (35)
and again, from Il (11):
K} U Ki
~3D,D,(N;'S")+= DN F¥) =0, (36)
or
D, {D,(A,'S"*) +aN; ¥ F¥} = 0. (37)
From Il (21), one has:
D {-F*S* +A,'0, 8" +a A\;)} ¥} =0, (38)
or
D{-FS;/-oN,) +A;'0,8% =0, (39)

From (27) and 1l (21), one gets:

-0,F?(S* -aN,})-F?(oF,+0F,))
+0,A;'0,8" + A} D,(D, 8% + $“A,)=0. (40)

(") Cf., the papers of the author on Whittaker's thedsit. Phys.54 (1929), 588, formula (6)55
(1929), 278, formula (6).



102 Selected papers on teleparallelism

From (27), Il (11), (21), one gets:

= oD F’+ F} S +N\,,’0,8%, (41)

and from (27):
Dy (SUK’D/\,]) =gF*N\, +3% HPYAVIE (42)

From this, it follows that we can express (40) as:

A+0B=0, (43)
where:
A=-S0,F +Dﬂ/\;ﬁ‘fDA ke

—/\;; (F&S,”-N;70,8% -0,A, 89), (44)
—_ K K LA K K
B=0,FYA; =2F F”+NA; (D,F? +F?A,).

The quantitiesS,z, and their first derivatives enter into linearly and homogeneously.
The quantitiesS,s, and their derivatives are missing fr@n SinceF.z, A, , Ao, and

apB !
their derivatives are finite, it then follows thaé can set:

lim Sag = 0. (45)

Moreover, it indeed emerges from (43) and (44) tha quantitiesS,s, tend to zero
like the constant. This is the theorem that was conjectured by iAst&in.
From (7), one has:

G#=H¥_D,H ¥ (46)
and from (29):

H #F = 1™, (47)
such that:

G#=H%¥_1p,S*" (48)

Therefore, thed % cannot be homogeneous, quadratic functions oSipe Now,
from (11), one must have:
p|GP=0. (49)
After converting this, using (12) and (47), andhwabnsideration to (27), it follows that:
pH P+ 1F,, SP—iN¥0,S™ +10 F*AY, =0. (50)
It follows from (48), using (27), that:

G*aﬁ_ H*aﬁ: UFaﬁ, (51)
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and from (49) that:
2,|H™ + oD, F* + g F* N7, = 0. (52)

By subtracting this from (50), one gets:

oD, F*+ IN/0,S* -30F, S =0. (53)
It follows from (27) that:
lim D S™ =, (54)

which then consists of six equations, from the tbsothat was proved above, that are
true only when one likewise has the validity of ther equations:

lim SH =0, (55)

Equations (53) can also be derived from (35) &rf@1). Equations (52) can also be
represented as follows:

Coa
p{ZH +F””} =0. (56)
o

We set:

. 2H™

!Tlm)p 5 =J" (57)
from which, it follows that:

lim {,| F*7} + 37 = 0. (58)

The eight equations for the passage to the limitlzen (55) and (58).
Due to (30), it follows from (55) that:

lim H =0, (59)

or
H]_ = 2"2 , (60)

from (29). From (21), one then has:

|In'(l) H=Hs;—-H,. (61)

8 4. As a result of (14), the gravitational equations:

G#=H?_D,H™ =0 (62)
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can also be writterl)
3(G7+G*) =H" =4 Dy (H™ +H¥") +gos D, N = O, (63)
or, after some calculation:

L Hos—2(DaMs+DsAg) + 1D, (AL, +A%,) =0. (64)

Jo

Now, the identities Il (1) can also be written:

Rap=4(Da Ap+ Dpa) = NaNs+3D, (N + Ny )

+{(Napx + Napn) (/\/E;W +/\3‘”) NN} =0, (65)
or, from (64):
H
Rog—39ap (E+2Dﬂ/\ﬂj =0. (66)

One then has:

H yop,a=R (67)

Jo
From (66) and (67), one then has:
Rap= 0. (68)

We have thus brought the gravitational equatiotw the usual form, and indeed they
are true for any arbitrarily large value of the samto (*).

8 5. From | (4), (12), and (26), one has:

oh 0 oh oh
Susy=hem ( o ——ij + hgn {—ym ——ah”mj +hym (ahﬂ_ﬂj' (69)
ox, 0x%; ox, 0x ox,  0x,
(") One has: Hap= 2 QopH+ (3(A LA = 3N AP AN -AA NG

(") Onealsohas:  R=0andD,A*=-

1
2Jg
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In the first approximation, it follows from | (34) tha

h, =&+ K,
m e (70)
Oup = K K
We also set:
Kas = Kas = Uy (71)

Now, from (73), (74), and (75), in the first appiraation:

= 0 0 0
Iim Sy, = g%{@Tdﬂy+ax dm+ada} 0. (72)
It follows from this that:
od
limd -5 _ ad (73)

oo B 0x, 0%,

where thed, define the components of a four-vector.

8 6. We have seen that the unified theory is freeogfchl objections and actually
includes the two groups of phenomena — viz., gatigih and electromagnetism. The
geometric foundations of the unified theory are@ensince the integrable connection
arises from an entirely elementary group (

| cannot presently understand what A. S. Eddingtgrmeant when he said that the
new theory offered no advantage over the theorigd. dVeyl, A. S. Eddington, et al.
Indeed, one already knows that these latter thediawe complicated the problem of the
unity of the field laws more than they have leciy reasonable result.

The objection of J. A. Schouten | is also unfounded.

In fact, theh,m define an orthogonal, anholonomic net; i.e., asRdichenbacher
eloquently remarked: There are parallels, but mallgdograms. The Einstein world is
flat, because the curvature ratios vanish idergichlut it is also not Euclidian in the
usual sense, but so-to-speak “anholonomic Euclitlidme to its non-vanishing torsion

K*kkk

)

The Riemannian curvature will be compensated fgr the torsion curvature
everywhere. One can perhaps say that A. Einstsicbnstructed a flat world that is no
longer barren, like the Euclidian space-time of Minkowski, but, on the contrary,
includes everything that we care to call physieality.

Theh define an orthogonal system of vectors at evemtpbut they do not define
an orthogonal system in the large. For that reag@arguments of Schouten do not

0) Namely, orthogonal substitutions.

(") A.S.Eddington, Natur&23(1929), no. 3095.
(") J. A. Schouten, C. R88(1929), no. 14.

(") Cf, |, pp. 722.
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relate to the Einsteinian world. If we demand thay thiso define an orthogonal system
in the large then either the torsion must vanish, in wk&se, the world would also be
Euclidian in the usual sense, or the connection would besemesymmetric. From the
theorems of Cartan and Schouten, the latter posgilslxcluded for a world with more
than two dimensions that is based upon an integrable coomdhat comes from a
simple group. As one says, the,y’ do not then define an orthogonal system in the
large. Schouten forgot that A. Einstein allowed onlyuh#orm (i.e., equal everywhere)
rotations of the vierbeins)( It is clear that a non-uniform rotation would hate
annihilation of torsion as a consequence.

The single objection that the can be made to theednifeld theory is the following
one:

It neglects the existence of wave-mechanical phenomewaave mechanics is
entering into a self-sufficient phase by the work ofabj and the single successful
attempt to connect this new group of phenomena withethiaining ones is the theory of
J. M. Whittaker ().

Indeed, he based it upon the old gravitation theory of AstBin and the Maxwell-
Lorentz electrodynamics, and then extended these Witeries by wave fields and
included the Dirac wave equations, as well as the etfi@ery of spin transformations,
but this sort of unification is very contrived. Manyfaifilties that | referred to in my
papers () can be lifted by means of the ideas of W. Anderson)( On the basis of the
Fermi statistics that are based in quantum theory, amnesbow that both types of
electrical quanta and light quanta define different “psiasd a ground state. The
difference becomes smaller and smaller with incregsiagsure and temperature.

Muntz has already given solutions to the field equatiornke first approximation for
the spherically-symmetric case on the basis of tlggnali formulation of the unified field
theory. Solutions of the new formulation are compyelkecking, and should perhaps be
expected in the future. If one no longer separates grawtliom electromagnetism then
one certainly gets more, but it can be very questionabéther the Dirac wave equation
can be replaced with solutions of the new theory.hd&es the current theory will admit
yet another complete re-formulation, but ultimatebmpletely different conceptions of
the world are also imaginable.

Sofia, Physical Institute of the University, 1 June 1929.

Addendum added in proofreading: It follows from (70) and (71)tha first
approximation that:

- 1 B _ a
!T“J 0' haﬁ =&t 30apt (_6/(0, _a/(ﬂ j . (74)

A generalization of the theory can be made indinection where we do not carry out
the passage to the limit of lim= 0, and thus regards* as a finite quantity, from which,

() Cf., |, footnote, pp. 721.
(") J. M. Whittaker, Proc. Roy. Soc. (A1(1928), 543.
(") Zeit. Phys55 (1929), 273.

HhkK

(™) Ibidem54 (1929), 433.
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it follows thatS,z can also be remain finite. In fact, the passagbddimit of lim o= 0
is employed in order to be able to obtain the equaﬂihxng$p| F*?} = 0, when one would

like to conclude from (30) thaH “? is constructed fron8% homogeneously and
guadratically. However, a calculation refutes titigection. We have obtained equations
(58) with non-zera)” as the electromagnetic equations.

We can replace (74) with:

hap= ap+ $Qap+ 30,5, (75)

in which Jaﬂ is not determined by (73) now.

In a following communication: “Herleitung der DadVhittakerschen
apfu

Wellengleichungen aus der Einsteinschen einhegthdkeldtheorie,” | have sda'trz)
90 g

apfu
= *K% | but one can also, in the sense of the statenadmee, simply write=— =
o

*K for a finite value of & such that all of the reasoning in the cited comination
remains in force. However, it seems to me thattwace (29) of Hamilton function with
infinitely small constants; andg, — a choice that leads to the gravitational equations
vacuoRys = 0 — is not the appropriate one, since these equationsot have the form
that K. Lanczos considered that is consistent Midith’s principle.

Furthermore, equations (58) are not the symmdiricanstructed electromagnetic
field equations. | hope to come back to all of tuestions that | have raised in a later
publication that takes the most general viewpoagsible.

Sofia, Physical Institute of the University, 13yJui929.




Derivation of the Dirac-Whittaker wave equations
from Einstein’s unified field theory

By Raschko Zaycoffin Sofia.

(Received on 21 June 1929)

It is asserted, in connection with the author’s treafis “Zu der neuen Formulierung der Einsteinschen
einheitlichen Feldtheorie” and with the use of all tt¢ations in that treatise, that the Dirac-Whittaker
form of quantum theory{) does not contradict the unified theory.

If we set:
then it follows from IV and | (19) that:
Sugy = ham Ngym + han hyam + ym hagn ()

or, from dual relations that were mentioned in * (6):
-h""*hgm=*S,. (3)
We have an analogy with the formula that followanirl (12), (27), and (1)'{):
W™ *Ngm = *Ng .

afy

Since the quantitie$,s, have the same order a@s Iirrz) has a well-defined

limiting value, which we might denote bK#?, from which, IV (27) yields:

F = D/, *Kaﬁll’ (4)

(Y R. Zaycoff, Zeit. Phys56 (1929), 717. Referred to as IV in what follows.

("M See the same authdrid. 55 (1929), 273. Referred to by * in what follows.

("™ One also has— (Nan *Ngm + Nan *Nyem + Mym *hgan) = *Aggs, . The four-vectors S, andA, are
then dually similar.
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On the other hand, from IV:
*FP =Dy N, (5)

The dual components of formulas (4) and (5) are:

*F,5 =D,K, =D,K, 6)
F.s =D, Az =DA,.
If we set:
A" +K =7,
/\H _ KU —_ LIJH } (7)
and
2(F% +*F %) = X, 8
2(F7 —*F%) =Y% ®)
then it follows from (4), (5), (6), (7), (8) that:
X% = D@’ - DO + D, * 0,
Y% = D"YF — DPY? — D * P ©
7]
and
X% = 2D *®% =2(D®F - D7),
e (10)
Y =-2 D,* W = (DTYE - DPY),
It now follows from the identity Il (11) and froif10) that:
D,D*®“ - (D,D®" -DD,®“)-DD,®* +5 D, (A)'* @) =0, (11)
D, D*¥? - (D, DWW -D’D,¥*)-DD,W* -3 D, (A} * W) =0.
We set:
D, ®" =, (12)
D W =W.
Furthermore, from IV and (7), one ha (
®=9,0 =N +5,K"=-1H +5 K", (13)
Y=5W =N -5K"=-1H -7 K".

Then, from the identity 1l (11), one has:

(') Here, one hastl = AyA* =3 NupNP =% Nop A, [Translator's note: This is the way it
appeared in the original.]
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D, D®“ -D“D, 0" = Dﬂ(/\K””“CD”),
a\k a K Lo, K (14)
D, DW*-D“D W=D, (A V).
It follows from Il (21) and * (20) that:
-D NP =B
lu )
3F, ¥ @ =*F"0, (15)

3F,* W = FT Y
such that from (12), (14), (15), equations (11)doee:

D D“®? —(F™ +*F™)®, —-D®d-A D7"’D#CDK +3 N\, 00,* @ =0,
K K K K (16)
D,D“W7 —(F™ —*F™) W, —D“W - A0 W* —1 A0 * W* =0,

Now, from | (12) and (1), with consideration givienl (11) and * (20):

AP0 0 =h O (W™D, ),
/\Km/’Dﬂl.]JK — hrEKD#(hpquK) } (17)
AV U _hm ;1( K)
and
_/\#D *q)aKp —% HKD h,umq) '
/\.I.(Ap;lljﬂ* LIJaKp —% LIKlj!x h/’ml.]JK) } (18)
T U - hm ;X K)'

From (16), (17), and (18), it then follows that:

D, D®7 = (F™ +*F ) &, =D @ +(h{ +* 1) 0 ( H™®,) =0, (19)
D,D*W ~(F™ —*F) W, =D W+(h7" +* ) O ( H™W) =0.

We now consider equations * (26).

If we set:
— =0
pa % a } (20)
P, +0 =Y,
then it follows from those equations that:
Do -R™®, +a(F™ +*F™) @, =0, 21)
DY’ -R™Y _+a(F™ -*F™) WY, =0,

from which, using * (21), one has:
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D=(+ag) A +ag)+5. (22)
If we set:
agp=-1Np (23)

then it follows that the quantiti¢s,s, *Fazin (21) can be replaced by the quantities:

f,=—a F,,
. ap ap (24)
fop =—0* Fpp

and if we again writ& .5, *Fg, in place of s, *f4s, then it follows from (21) that:

D,D“®? —-R™®, —(F™ +* F™) ®, + B*®” =0, (25)
D, DWY —R™W —(F™ —*F™ )Y _+B°Y =0,
whereby Einstein’sd,’ will now be used in place of Riemann’'g,".
We now compare equations (19) with (25).
Obviously the terms:
(hrzK +* hZK) D#( humq)K), (26)
(hy" =*h) O, (")
in equations (19) play the same role as the terms:
-R™o®
“ 27
Ry, } (27)
do in equations (25).
Likewise, the terms:
-D®
’ 28
-DY } (28)
in (19) correspond to the terms:
2T
po. (29)
B

in (25).
The analogy is therefore far-reaching.
As is known, equations (25) can be linked withadis theory.

Sofia, Physical Institute of the University, 1518uL929.



Unified field theory and HAMILTON's principle

By A. EINSTEIN

In a recently-appearing paper (these Berichte, 1929sé}, dlown field equations for
a unified field without establishing a variational principl&he justification for these
equations rested upon the assumption that the 16 field easigt0) ofloc. cit were
compatible. Since it was not possible to produce foumtigerelations between these
equations LANCZOS and MUNTZ expressed doubts concerningdiingssibility of the
field equations that were given there, without presergirdear decision on what had
been done. Meanwhile, | found that it is possible toestie problem in a completely
satisfactory way on the basis of a HAMILTON prineipin which the compatibility of
the equations is certain from the outset. The idestttat were derived in the earlier
work, as well as the notation that was used theleba/used (assumed, resp.) here.

8 1. Generalities on HAMILTON's principle,
applied to a continuum with a RIEMANN metric and telepaallelism.

Let $ be a scalar density that can be expressed algebyaitaérms of theg,, and
the A7, . HAMILTON's principle:

o{[ sdr} =0, (1)
in which the’h, are varied, is associated with the field equations:
& =9t~ (%), =0, (2)

in which the quantitie$*“ and 9, are defined by the equations:

G =20

09,

aﬂ ©))
ﬁ/HIV —_ '57)

o7,
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This follows immediately from (1), if one considere tthefining equation:
/\ZV = Sha (Sh/j’V - Shvuu), (4)

in which the comma means ordinary differentiation.

The fact that (1) is, in itself, satisfied for anyig#ions (that vanish on the boundary)
of the*h, that can be generated by mere infinitesimal coordimatesformations leads to
a four-identity:

Du(6"%) = 9", + 5N, =0. (5)

as it does in the previous theory of relativity. In tH¥, is the divergence-like
differential operator that is given by (5). An identaf type (5) is always true for a
tensor densityy*? that is the HAMILTON derivative of a scalar densifythat depends

upon only*h, and their derivatives.

8 2. A special choice of HAMILTON function.

The simplest choice of HAMILTON function is charaized by the property thaj
is of second degree in thAa? . From this, we derive the fact that is a linear
combination of the quantities:

a pB
hAZA

jl pa?
3, =hALAD, (6)
3, =hA% A

pa” Bt

Amongst all possible linear combinations, only one ofrthe distinguished by the
fact that the associat@!” is symmetric, namely:

5{):

N

31+%32—33. (7)

The proof of this is based upon the symmetrytf, as well as on the identity that
was derived in the earlier paper:

B0 = [N, +@0, -9.9))],,=0. (8)
By variation, this yields ten equations:
&H =0, 9)

which agree with the gravitational field equations tha based in RIEMANNIAN
geometry in the first approximation.
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One obtains the desired field equations when one ch@okeear combinatio of
the J that differs from it by infinitely small quantitiesnstead of the HAMILTON
function in (7). For the sake of clarity, we chodsa such a way that:

H=H+an +a9h , (10)
in which:
9 =131-17,, (12)
9 =7;. (12)
By computation, we get:
* 1
H = 1—2hSZ./ S (1B)
in which we have set:
S = N+ N + NG, (13)

which is a quantity that is anti-symmetric in all thrieelices. By performing the
variation of$) and splitting the tensor equation that is thus obtainedsymmetric and

anti-symmetric components, one gets, besides (9) gntiens:
(BH B M+ g(& - M =0, (14)

in which g means the ratio of the infinitely small quantitesands, . These equations
can also be written in the form:

(9™ -~ 5™) +a (9™, - 5™,) =0. (14)

By computation, one gets:

9t -9, =-hs, =-6,, (15)
H -9, =h (¢ g7~ F ¢, (16)
and by performing the operationdn (14), one gets:
S = SN, ~ %, =0, (17)
or, after introducing the contravariant tensor dgrjé” :
S~ 7 =0, (13)

One sees immediately that these equations inch&l&AXWELL theory in the first
approximation. We then first find that the depexdeof the “field strengths” on the

“potentials” ¢, is the same as it is for MAXWELL in the first apprmation. Secondly —
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in the first approximation — the symbolv /means ordinary differentiation so
differentiation bya yields the vanishing gf*“,, , due to the anti-symmetry 6.

However, in order for the existence of electricarge to be justified, it is necessary
to pass to the limiting case of= 0.

§ 3. The limiting case ofo= 0.

In order to carry out the passage to the limit in qaastive first require a lemma:
®"#? can be written in the form:

BT =169+ [, (18)

Hlv

It is apparent from (3) and (&)Lthat $y ““ depends upon th&;, in a quadratic and

homogeneous fashion. Furthermate” satisfies the identity:
D&% = 0. (2)
Now, according to (18), passing to the limio= 0 immediately gives the relations:

a =0, (19)

wiv =

These six equations have — aside from some special-calses/anishing of the four
quantities&}, as a result. | shall assume in what follows th@in passing tar= 0, the

quantitiestw, which are proportional t@;, go to zero, a statement for which | cannot

produce a proof up to now.

When one eliminate&?

i from (18) and (1&), one then obtains the equation:

2 [&H - &1 — gt =0,
or, after performing the operati@), , due to (8):

Dﬂ(fw +2£‘”"j -0 (20)
g

The second term vanishes upon passing to the &mitO, since its numerator, like
(GZV)2 - i.e., from our assumption above — goes to zerodfksuch that one gets:

D) = 0, (21)

an equation that, along with:
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s, =0, (22)

defines the result of the passage to the limit.

The combined system of equations (9), (21), and (22) is thée regarded as the
final result of this investigation, in which the derivatiof of (21) is not completely
rigorous.

It must be remarked that equation (22) brings with itfdoe that the HAMILTON
function:

$H=T1-T3 ()

can be used just as well in equations (9), in place di&MILTON function (7).




On the unified field theory that is based upon
the Riemann metric and absolute parallelism

By

A. Einstein in Berlin

In the following paper, the theory that | have been ldgu#eg for some years now
will be presented in such a way that anyone who is kexgdable in general theory of
relativity will understand it comfortably. The follomg presentation is necessary,
because the readers of the previous papers were requiredadte their time
unnecessarily when further connections and improvemeeits f@und since that time.
Here, the situation is presented in a way that seeass preferable to me if one is to
advance into it comfortably. In particular, | learnednfr Weitzenbéck and Cartan that
the treatment of continua of the type in question tsneov in itself. Cartan was friendly
enough to compose a treatise on the history of theemttical situation that comes
under consideration, by which he extended the scope of mgrpa¢ien; it is published
in this journal immediately after my own. At this pgihtwould like to extend my
deepest thanks to Cartan for his worthwhile contributibhe most important, or at least
new, aspect of the present treatise is the discovetheo simplest field laws that a
Riemannian manifold with teleparallelism can be subject will go into the question of
the physical interpretation of the theory only briefly.

8§ 1. The structure of the continuum.

Since dimension plays no role in the following argutsgwe shall base it upon an
dimensional continuum. In order for the facts abdwt metric and gravitation to be
valid, we assume the existence of a Riemann metiaature, however, electromagnetic
fields also exist, which cannot be represented by the Riemaetric. The question
arises: How can we ascribe yet another structure tdR@mannian space in a logically
natural way so that the totality has a unified char&cter

The continuum is (pseudo-) Euclidian in the neighborhood pbintP. A local
Cartesian coordinate system (orthogomdiein, resp.) exists at every point, relative to
which the Pythagorean Theorem is valid. The oriemtagiahisn-bein plays no role in a
Riemannian manifold. We would now like to assume thatecton relationship also
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prevails between these elementary Euclidian spaces.wdVld like to assume that it is
meaningful to speak of a parallel orientation of alaloebeins (which is meaningless in
a space witlonly a metric structure) by means of spatial structure, ssiit Euclidian
geometry. In the sequel, we shall imagine that orthalgeeins are always oriented
parallel to each other. The, in itself, arbitraryentation of the locah-beins aone point
P then determines the orientation of the londleins at all points of the continuum
uniquely. Our first problem now consists in describing suchcamtinuum
mathematically, and then to present the simpledfricesg laws in it that such a
continuum can be subject to. We do this in the hope ovidg the general laws of
nature, as the earlier general theory of relativayght to do for gravitation when one
starts with only a metric space structure as a foundatio

§ 2. Mathematical description of the structure of the space

The localn-bein consists of mutually perpendicular unit vectors, whose components
with respect to an arbitrary Gaussian coordinate systehs”. Here, as always, a lower
Latin index shall imply the association with a certb@&in of then-bein, while a Greek
index, whether in the upper or lower position, shall exptiessontravariant (covariant,
resp.) transformation character of the quantity in questmlative to a change of
Gaussian coordinate system.

The general transformation property of théis the following one: If one rotates all
local systemsr-beins, resp.) in the same way (which is permitted), aedtloen likewise
introduces a new Gaussian coordinate system therattgfdrmation law:

ox”

) h = a pwz

h?,

exist between the new and the digd, where the constant coefficients; define an
orthogonal system:

1, whena=b

(2) Qsa Osp = s Qbs é\b {O, whena#b‘

The transformation law (1) can be generalized, withfurdher assumptions, to
structures whose components have arbitrarily many lagdl coordinate indices. We
shall call such structuregensors. The algebraic laws of tensors (e.g., addition,
multiplication, contraction of Latin and Greek indsgdollow from that immediately.

We call thehs” the components of theundamental tensor. If a vector has the
componentd\s in a local system relative to the Gaussian systegoofdinateA, then,
from the meaning of this", one has:

(3) AV = hSV AS )
or — when this is solved for tifg :
4) As=hg, A"
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The tensor character of the normalized sub-determimaof thehs” is clear from (4).
hs, are the covariant components of the fundamental teridoe following relations exist
between théx, and thens”:

(5) he, hs”=9," = {

(6) hs,u ht'u =0y

1, whenu=v
0, whenu #v

Due to the orthogonality of the local system, one has:
(6) A2 = A =hgy, hey A A =g A A,

for the magnitude of the vector, so:
(7) Ouv = hsu Py
are the coefficients of the metric.

The fundamental tensor [cf. (3) and (4)] allows localices to be converted into
coordinate indices, and conversely (by multiplicatiomd aontraction), such that the
qguestion of which index character one will operate oreressdr with implies only a
guestion of form.

It is clear that one also has the relations:

(3a) A, =hg As,

(4a) As=h’A, .
Moreover, one has the determinant relation:

(8) 9=190r| = |hao [’ = 1?,

such that the invariant volume elemgfg dr assumes the forimdr.

In our 4-dimensional continuum of space and time, theiapgtaracter of time will
appear most conveniently by arranging thatdheoordinate (local, as well as general) is
taken to be pure imaginary, and likewise all tensor comgsneith an odd number of 4
indices.

§ 3. Differential relations.

We let 0 denote the increase that the components of a vectmneor experience
under a “parallel displacement,” in the Levi-Civita sgnander the transition to an
infinitely close point of the continuum, so, from thigove, one has:

9) 0 =AAs = dhsy A% =d(hs” Ay).
Performing the operation on the parentheses yields:

hsa &\a + Aa hsa’ ﬁ d(ﬁ = 0,
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he? A+ Az h s XF =0,

where the comma in the second term means ordinagyetiffiation with respect td’.
By solving these equations, one gets:

(10) A= - AT NS5 N

(11) Ao= AgDS 5

in which we have set:

(12) Aaaﬂ =hg” hsa, B=" hsy hsa, B -

[The last conversion is based upon (5).]
In contrast to Riemann geometry, this law of parallsplacement is generally not
symmetric. If it is symmetric then one has Euclidg@ometry; one then has:

Aaaﬂ - Aﬁaa =0,
or
hsa”g - hsﬂ, o— 0.
However, one then has:
oY,
hsy = :

f0)4

a

If one chooses the to be the new variableg then one has:

(13) hso = &so s
which proves the assertion.

Covariant differentiation.The local component; of a vector are invariant under an
arbitrary coordinate transformation. The tensor attaraof the differential quotients:

(14) As o
follows from this. If one replaces this with:
(hs” Ad), a
based upon @, then this yields the tensor character of:
h? As o+ Ashs® 4,
and therefore (after multiplying by, also that of:
A o +AshS shs;

and
Ar,a _Aahsahsr,a )
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or, according to (16), of:
Ar, a ~ AaArUa .

We refer to this as theovariant derivativgA;. ;) of A, .
We have thus arrived at:
(15) Ag’; T :Ag" T - Aa’ Ag’ar

as the law of covariant differentiation. Analogoushe formula:

(16) A%, =A%  + AN,
also follows from (3).

We now have the analogous law for the covariant réiffeation of arbitrary tensors.
We describe it by the example:

(17) Aaar;p :Aaar,p + A, Aaap _AaUaArap .

Since local (i.e., Latin) indices can be converted tdordinate (i.e., Greek) indices
by means of the fundamental tenkgf, one can freely choose whether one prefers either
type of tensor index in the formulation of any tensoatrehs. The former approach
would be preferred by the Italian school (e.g., Levi-@ivRalatini), while | prefer to use
the coordinate indices.

Divergence. One gets the divergence by contracting the differeqtiatients, as one
does in the absolute differential calculus that isedaupon the metric alone. For
example, by contracting the indicesndp in (17), one gets the tensor:

Aar:AaUr;a-

In previous papers, | have introduced other divergence opasatout | have deviated
from them here in order to ascribe a special meanitigetoperations.

Covariant differential quotients of the fundamental tensOmne easily finds that the

covariant derivatives and divergences of the fundamesmabr vanish from the formulas
that we derived. For instance, one has:

(18) hs':r =hs’ s +hs"Ag"r = dw (0 r + 0’ Do)
=hs" (ha s +A4") =hs" (- As"r +A47) =0.

One also proves analogously that:
(189) hsv; r = g’w; r=0w;r=0.

Differentiation of tensor products.As in the familiar differential calculus, the
covariant differential quotient of a tensor produch d#e expressed in terms of the
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differential quotients of the factors. 15 and T are tensors of arbitrary index
character then one has:
(19) (S T )a=S, T +S T,

It follows from this and the vanishing of the covariantfedé#ntial quotients of the
fundamental tensor that one can exchange them witthffeeentiation sign (;) at will.

“Curvature”. The hypothesis of “teleparallelism” [equation (9),prgs/ields the
integrability of the displacement law (10) [(11), resg=fom this, it follows that:

(20) 0=- A/(IA; u == AKIA, U + AKI/I, ATt AUIA Aka,u - Aal,u AKUA .

The A must satisfy this condition in order for them to bgressed in terms of the
guantities according to (12). One sees from (20) tlatrtndated characterization of a
manifold of the type that is considered here must Iog ddferent from the one that the
previous theory obeyed. Indeed, according to the newythalbitensors of the previous
theory still exist, and in particular, the Riemannianvature tensor that is defined by the
Christoffel symbols. However, according to the newotly, simpler and more intrinsic
tensorial constructions also exist that can be usdteiformulation of the field laws.

The tensor\. If we covariant differentiate a scalartwice then, from (15), we get
the tensor:

¢,0’,T - ¢,aAaa/l .

A new tensor arises by switchirmgand 7, and by subtracting both expressions, one
gets the tensor:

9 p2-n2).
1)

The tensor character of:
(21) /\Ual' = AUHT _ATaLT

follows from that immediately. Therefore, a tensaists in this theory that includes only
the componenths, of the fundamental tensor and its first differahtjuotients. The fact
that its vanishing has the validity of Euclidianogeetry as a consequence was already
proved earlier [cf., (13)]. A natural way of detening such a continuum will then exist
in the form of conditions on this tensor.

By contracting the tensay, one gets the vector:

(22) Po=N}

oa’

which | had previously assumed would play the fléhe electromagnetic potential in
this theory. However, | have recently deviateadfithis assumption.



Einstein — On the unified field theory that is based uperRiemann metric and teleparallelism. 123

Commutation rule for differentiation If one covariant differentiates an arbitrary
tensorT - twice then one gets the important commutation rule:

(23) T..-:;Acr;r _T..-:;Ar;a =- T..-:;Aa/\aa; *

Proof. If T is a scalar (i.e., a tensor with no Greek inditksh the theorem follows
effortlessly from (15). We would like to base the gaheroof of the theorem upon this
special case.

We first remark about that statement that accordindpeatheory that is treated here
there are parallel vector fields. They are vecteldé that have the same components in
all local systems. Ifa€) [(ay), resp.] is such a vector field then it fulfills tbendition:

a%,=0 @« o= 0, resp.),
as is easily proved.

The commutation rule effortlessly leads back to the for a scalar with the use of
such parallel vector fields. For ease of notation,caey out the proof for a tensdf
with only one index. 1# is a scalar then it follows from the defining equati@i®) and
(21) that:

P.or =10 == .40,

If we replace the scalag with a;, T' in this equation, whera, is a parallel vector
field then a; can be commuted with differentiation sign under any adant
differentiation, such that, appears as a factor in all terms. One then obtains:

[T/‘;O';T _T/‘;r;a + TA;aAaar] a/lEO-

Since this identity must exist for any choiceayfin the position that we consider, the
vanishing of the square brackets must follow, with whidah phoof is complete. The
generalization to tensors with arbitrarily many Greekdes is immediate.

Identities for the tensof\. If one adds the three identities that emerge from i§20)
cyclic permutation ok, A, i then, by a suitable way of regarding the terms, acallneg
(21), it follows that:

0= (/\KIA N + /\/ll,u, «t /\/IIK, /1) + (AO'IK /\/la,u + AUIA /\/IUK + Aal,u /\KU/])-

We convert this identity in such a way that we introdilngecovariant derivatives of the
tensor A (according to (17)), instead of ordinary differentiatiome then obtain the
identity:

(24) 0= (/\KIA ] + /\/ll,u; «t /\/IIK; /1) + (AO'IK /\/la,u + Aal/l /\/IUK + Aal,u /\KU/])-

This is the condition for thA to be expressible in terms of then the given way.
By contracting this equation over the indieesd, one further obtains the identity:
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OE/\Ka/l;a+¢/l;K _¢K;A _¢a/\KaA1
or

(25) /\Ka/l;a5¢/(,/l_¢/l,/(,

where theg, is the abbreviation foh,“, [cf., (22)].

8 4. The field equations.

The simplest field equations that we seek will be dé@ that the tensok,”, is
subject to. Since the number bfcomponents isi® and n of them must remain
undetermined due to general covariance, the number of nyinddpendent field
equations must be? —n. On the other hand, it is clear that a theory bescatiehe more
satisfying the more that it restricts the possibilitffesthout coming into contradiction
with experiment). The numb@rof field equations shall be as large as possibleZ §
the number of identities that exist between them ther? must equah? —n.

According to the commutation rule for differentiatjone has:

(26) A2 =N -ANZ AN =0.

vivia via;v ra’‘or
H H H

Here, the underline below an index means the “raisingw@ékring,” resp.) of an index,
so, e.g.:

= /\ﬂ”ygﬂﬂ gVy,

= B
uv T /\llVgUﬂ'

> >
Q
I[

We now write the identity (26) in the form:

(26a) G g —F" v+ N F, =0,
in which we have set:

27) G = /\H‘L;V ‘/\f;/\fr’
(28) FH9= HHZ?H

(29) G =0,

(29) FA=Q,
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These equations seem to contain an inadmissible maiegecy. The number of them

is 12 + n(n-1)

, while, for the time being, all that is known abougrthis that they must

satisfyn identities, namely, (29.
However, from the identity (25), in conjunction with (3@)merges that thg, must
be derivable from a potential. We accordingly set:

amwzo

(31) Fo= @i - "

(31) is completely equivalent to (30). Equations (29), (3%¥) @llectivelyn® + n
equations for the? + 1 functionshs, and (. However, in addition to (28, yet another
system of identities exists between these equationshwie would now like to derive.

If one denotes the anti-symmetric part @ by G** then one obtains from
straightforward calculations that start with (27):
(32) zcjﬂaE_Sﬂva;V_l_%SilAa_% ”/\Jﬂr'*'l:'ua,

ar'tor

where, to abbreviate, the tensor:

(33) Sy = Ny H gy NS
which is anti-symmetric in all indices, has been introducBy calculating the first term
of (32), this yields:

(34) 26" =-8/a;v+ Sy~ §NS, + F

a’‘ov

However, if one recalls the definition Bf — viz., (31)— then one now has:

Dy =D s =Sy = fo=Fo+ N
ox°?
or
(35) py,=0ndh
ox’
(34) then assumes the form:
a ag —_— a ag
(34b) hy(G"-F“+S/, 5)=—a7(h¢185g)-

The desired system of identity equations follows ftbim due to anti-symmetry:

ua o

(36) 6%”1 YRGH-F“+S? E)=0.
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These aren identities, of which, however, only— 1 are mutually independent, and in
which, due to anti-symmetry, one has [5], = 0, independently of whatever one
introduces foiIG*? andF, .

In the identities (28) and (36),F““ is to be regarded as being expressed in terms of
F, according to the following relation, which follows fro@il{:

(31&) F/ja = F/I, a — Fa’ /1 .

We are now in a position to prove the compatibilitytre field equations (29), (30) [(29),
(31), resp.].

We first show that the number of field equations, mimgsriumber of (independent)
identities isn less than the number of field variables. We have:

Number of equations (29), (30): n?+n,
Number of (independent) identitiest+n — 1,
Number of field variables: n’+ 1,
and
(PP+n —(n+n-1)=0*+1) -n.

The number of identities is thus precisely the cormest. However, we do not
content ourselves with this, but prove the following:

Theorem. If all differential equations are fulfilled in a sectioA % const. and, in
addition, (" + 1) —n of them (suitably chosen) are fulfilled everywhere thenZi n
equations are satisfied everywhere.

Proof. Let all of the equations be fulfilled in the sectidr= const., and in addition,
the equations that correspond to setting:

F]_ e Fn—l Fn
Gll . Gl n-1

equal to zero. It next follows from (&1Lthat theF*? then vanish everywhere. Now,
from (36), it follows that the anti-symmetriG*’ must also vanish foor = n in the
neighboring sectiow” = a + da'). Furthermore, it then follows analogously fromdp6
that, in addition, the symmetr'@‘”’ must vanish forr = n for the neighboring sectiox

=a+da The assertion follows by repeating this argument.

Y The dG*" /ax" vanish forx" = a.
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8 5. First approximation.

We now consider a field that differs only infinitelitle from a Euclidian one with
the usual teleparallelism. We can then set:

(37) hey = dy + hy,,

in which theﬁs, are infinitely small of first order and small quanstief higher order
have been neglected. According to (5) [(6), resp.],tbee sets:

(38) hs'=a&, - h,,.

In the first approximation, the field equations (29), (@

(39) ha,u,v,v _Ea/,v,,u = 0'

(40) Ny =Ny oy =0
We replace equation (40) with:

(40a) h,a=Xv.

We now assert that there is an infinitesimal coagiriransformatior” = x’ — & that
makes all of the quantitiels,, and h,, , vanish.

Proof. One first proves that:

(41) h,=h, +&,.
From this, one has:
hE'xV,V = hav,v + éﬁ’ vV, Vs
HE'xv,a = Hav,a + qzﬁ’a’ v

The right-hand sides vanish because o&j4then the following equations are fulfilled:

(42) éa,v,v:_ﬁ;,,y,,,
éa,a ==X

Thesen + 1 equations for then quantities & are, however, compatible, because,
according to (48):

(= ﬁav,v),a_(_)(),v,v =0.

With the new choice of coordinates, the field equati@ad:
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We now split theﬁaﬂ according to the equations:

ﬁaﬂ+hﬂa = gﬁll’
ha,u_h,ua = aa,u’

in which &, + @,, (= gw) determines the metric in the first approximation, arfigid
equations assume the neat form:

(44) Qoo = 0,
(45) Oory =0,
(46) day,00 =0,
(47) Aay, =0.

This suggests that thg,, represent the gravitational field and tag represent the

electromagnetic field, in the first approximation. (4@5) correspond to Poisson’s
equation, while (46), (47) correspond to Maxwell's equationempty space. It is
interesting that the field laws of gravitation seem separate from those of the
electromagnetic field, which corresponds to the indepmaeof the two fields in
experiments. However, in full rigor, neither of théisdds takes on a separate existence
in this theory.

As far as the covariance of equations (44) to (47) iscexmed, we have the
following: The transformation law:

.o ox
hsﬂ = a'stﬁ ho

is generally true for thég, . If one chooses the coordinate transformation tdinear
and orthogonal, as well as conforming to the rotatiah@iocal system, so:

(48) X' =, %,
then this yields the transformation law:

(49) h;u = Qst Quo ho,

which is thus precisely the same as for tensors irspleeial theory of relativity. Since
the same transformation law is true for thg , due to (48), it is also true for the
quantities h,,, @,,, and a,, . Equations (44) to (47) are covariant under such

transformations.
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Concluding remarks.

For me, the great allure of the theory that wasde@tn here stems from its unified
character and the fact that is has the highest (abtey indeterminacy in the field
variables. | have also been able to show that th&l fequations, in the first
approximation, lead to equations that correspond to thetdweRoisson theory of
gravitation, as well as Maxwell’'s theory of the eteatagnetic field. Nevertheless, | am
still far from being able to assert the physical vajidit the equations thus derived. The
basis for that lies in the fact that | have stilt morived at the derivation of the laws of
motion for corpuscles from them.

(Received on 19.8.1929)



Historical survey of the notion of absolute parallésm

By

E. Cartan in Paris

Einstein, whom | have apprised of some of my papersdbtiain the notion of a
Riemannian manifold with absolute parallelism, has kindiguested that | write a
historical survey of that notion, as described from thenggric viewpoint. | do this all
the more willingly because, aside from some questiomsiofity (which are, after all, of
interest to only a small number of people), there esastral problems that | will thus
have occasion to point out, and whose solution igylte@be of interest to physicists. As
a matter of preference, | will address the geometaispéct of the problem, while leaving
the corresponding analytical developments in the background.

1. The notion of absolute parallelism (&fernparallelismuy in a Riemannian
manifold can be defined independently of any metric idé&agpose that the manifold is
n-dimensional. Two infinitely small vectors with fifent origins will be callegarallel
(or ratherequipollenj if n linearly-independent Pfaff forms:

'L ="hy dxc (=12 ..n)

are numerically equal to each other for these two vect@ne naturally gets the same
absolute parallelism if one substitutes linear combinatwitis constantcoefficients of
then forms'L for those forms.

In 1923 (B] (M), pp. 320), Weitzenbdck, and myself in 1921],([pp- 51) defined a
certain covariant derivative with respect to a systmm linearly-independent Pfaff
forms. However, one cannot see the first appearante aiotion of absolute parallelism
in that purely formal operation. Ricci, in his method fbe calculus oh-tuples of
orthogonal congruences that was published in 1895, utilized tensysf n Pfaff
expressions as the basis for his study of Riemanniarfatd®ithis is also what one does
in differential geometry whenever one appealddral systems of moving reference

() The numbers in boldface refer to the articles thatcited in the bibliography that is placed at the
end of this survey.
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frames. There is a general method in it that is cetefyl foreign to the notion of
absolute parallelisnty.

2. On the contrary, that notion was introduced expliagithit 923 in a papei5p] that
was dedicated to the development of a general theatylthad sketched out in the
previous year in two notes @omptes renduf2] and [3]), and which | then presented in
its various geometrical aspects in several artiabescanferences ], [9], [19).

That theory makes every space with a fundamental grauhei sense of F. Klein
(e.g., Euclidian space, affine space, projective space), etarrespond to aion-
holonomic spacdhat likewise has a fundamental group (e.g., a spade Evitlidian,
affine, projective connection, etc.). The Riemann spabat one envisions in the
classical theory belong to the most general claspates with Euclidian connection
whose fundamental group is the group of Euclidian dispiacgs.

A general space with Euclidian connection can be imdge® composed of an
infinitude of infinitely small pieces of a Euclidian s@a with a law of agreement that
permits one to integrate two contiguous pieces into adelege same Euclidian space. In
a more precise manner, here is the nature of thatolagreement: Consider two
infinitely close pointsA andA’, as well as two local rectangular reference syst@xs
and Ra) that are attached to those points. An observer ithglaced atA can be
imagined to be in a Euclidian space, and once the laagdement is known, he will
have localized the poiA' and the frameRy) in that space. In other words, he will
know the rectangular coordinatesAsfwith respect toRa), which amounts to knowing
the ds’ of the space and the angles that the axeRgf fiake with those ofRx), which
amounts to knowing the law of parallel transport. H& witurn, know the angle that an
arbitrary vector that issues frof makes with an arbitrary vector that issues friamif
one imagines that a continuous series of observarsaaged along an aAB of a curve
then the observer that is placedlawill thus be capable of localizing, step-by-step, the
various points ofAB and the various vectors that issue from these pointsainsame
Euclidian space (viz., the Euclidian space that is taingeA). One can say that he has
developedhe lineAB and the portion of space that is immediately neighfathat line
onto his Euclidian space.

The observelA will be aware that it is not in a true Euclidian spahbat he is
experimenting by following two different patB&B andACB for localizing the poinB
and the vectors that issue frdrnnto his Euclidian space. Depending upon the path that
is followed, he will not attribute the same positionthe pointB in his Euclidian space
any more than he will attribute the same orientatwothé vectors that issue fraéa The
rotation that he perceives the vectors to be subjechesh wne passes from one path to
the other constitutes theurvature that is associated with the cycRCACB. The
translation that brings the two different positionst thee attributed to the poif into
coincidence constitutes thersionthat is associated with the same cycle; the vethaits
represents that translation is thesion vectorof the cycle. If the cycle is infinitely small
then the curvature translates analytically into thd-krewn tensor with four indices,

() This is not to say that the research of Weitzekbims no geometric importance, because it is
immediately utilizable in the analytic theory of ahgel parallelism, once that geometric notion is
introduced. See the paped, [10], [11], [12], [15], [2]1], [23], which contain analytical developments of
Weitzenbéck’s theory. Cf., notgof [7].
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and the torsion into the tensaj‘rﬁ with three indices that was used by Einstein. The

necessary and sufficient condition for the torsiensbr to be zero is that the parallel
transport be the one that was defined by Levi-Civita in 19¥, (ihe geodatische
Ubertragungof Schouten).

All of the preceding extendsjutatis mutandigo spaces with affine connection.

3. We now return to absolute parallelism. | have praygd]|, pp. 368)- and this is
not entirely obvious- that if the curvature that is associated with arfinitely small
cycle is zero (i.e., a space without curvature) thendpace is endowed with absolute
parallelism; in other words, a vector that issues feopointA, when transported parallel
to itself step-by-step fromh to B, will always give the same final vector (provided,
however, that the intermediate paths followed are ribtuto each other by continuous
deformations). If one chooses a reference system @bint A that is defined byn
independent vectors and one takes the reference systam atbitrary point that is
defined byn vectors that are parallel to the first ones thenaffine connection of the
space is defined completely5§], pp. 368; bc], pp. 20) by then Pfaff forms & that
represent the projections of an infinitely small veaoto the local coordinate axes that
are attached to the origin of the vectdr (

The proof, which is given in the general case of a spaiteaffine connection, is
naturally valid in the particular case of a space Wétltlidian connection. One then
obtains Einstein’s Riemannian spaces with absolute pésalle | have, moreover,
pointed out, still in the same papéebd], pp. 404-409; cf.,q], pp. 301-302), the simplest
example of such a space: For 2, it is that of the terrestrial surface, which sswamed
to be spherical, when one regards two directions aslglaxdlen the form the same angle
with the compass needle; there, the torsion vectangent to the meridian circles.

It is interesting to remark that Einstein’s first theof relativity rests upon the notion
of a Riemannian space without torsion, while the presesdryhrests upon that of
Riemannian space without curvature.

4. Here, we make the obvious remark that one can pass frgmace with affine
connection without curvature to a Riemannian space atffolute parallelism by taking
the fundamental quadratic differential form to be the ©f the squares of the Pfaff
expressionsw — so then coordinate vectors become unitary and rectangular — or
furthermore, a quadratic form with arbitrazgnstantcoefficients that is constructed from
the «J), so that then coordinate vectors form a figure that is invariant ire sind form.
Conversely, one can arrive at the most general absolutglgiam in a given
Riemannian space by decomposingdisinto a sum oh squares.

() The torsion vector that is associated with a cyele be defined with precision only if one chooses
the origin of the cycle, unless the cycle is infinitemall. This is not the case when there is absolute
parallelism (1], pp. 37). With the notations of]} the torsion vector that is associated with atdimycle

is the one that has components with respect to theecheference that are thentegrals | ihkd%‘ that

are taken over the cycle. Here, the general theofdéheaonservation of curvature and torsidsa]] pp.
373-375), which comprises the Bianchi identities, in particidanpunts to a classical theorem of H.
Poincaré [Acta Math9 (1887), 321]; geometrically, it implies that the geomettim of the torsion vectors
that are associated with a closed surface is zero.
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5. In the case of a space witlffine connection, the torsion tensdy; decomposes

([5¢], pp. 30-33) into twarreducible tensors. One of them is Einstein’s vectdy = ¢,

which has a purely affine significance. The other omebzainterpreted geometrically: It

is zero in the case — and only in that case — whergéoth®n vector that is associated
with an elementary cycle is situated in the planameint of that cycle; the corresponding
spaces are J. A. Schouten’s spaces sdthi-symmetriconnection ).

If the space has Buclidian connection then the second torsion tensor ceases to b
irreducible (pc], pp. 50-52); in particular, in the case wherés equal to 4, which is
important to relativity, one of the two irreducible terssmto which it is decomposed is a
vector ¢ that therefore has an essentially metric significa(jée], pp. 69-71). With the
usual notations, one has:

1 a a a
W= ﬁ(gja/\kh + gka/\hj + g\ jh) ,

in which the indices, j, k, h define arevenpermutation of the indices 1, 2, 3, 4.

6. According to Weitzenbdck, the covariant derivativith respect to a system of
Pfaff expressions was discovered recently by GalMi7] and [8]) in 1924. However,
that author attached a geometrical significancet @nd recognized the possibility of
deducing an affine connection that proved to behaut curvature. The converse
theorem that | proved in 1923 was proved more tdcéry E. Bortolotti in 1927 in the
case of a Euclidian connectioh7]. Since then, absolute parallelism has been densil
by various authors, and one will find a (probabhcamplete) list of them in the
bibliography.

7. 1 would now like to give a rapid outline of theimripal problems that one poses
in relation to absolute parallelism.

We first take the stricthaffine point of view. In 1926, Schouten and1i3] showed
that there exist two remarkable absolute paraffedisn the representative space of the
transformations of a finite, continuous group. dfe lets Ty denote the general
transformation of the group whose parametersxarg, ..., X, then the expressions
that define the first absolute parallelism are th@ameters of the infinitesimal

transformationT,*T,, . ; the ones that define the second parallelismiaearameters of
the infinitesimal transformatiof,, , T.* (). The torsion vectors that correspond to these

x+dx ' x

() The affine connections that | have introduced go bagken more general connections that are due
to Schouten [Math. Zeitl3 (1922), 56-81]; however, Schouten’s viewpoint is differentf mine. For
him, parallel transportifieare Ubertragun}is the essential geometric notion; for me, itigya means of
grasping some particular properties of affine space, andhwtao no longer be utilized in order to
establish the notion of a space with projective (ofaonal, etc.) connection.

(®) The Pfaff expressions play an important role in my theory of the structureantinuous groups, a
theory that goes back to a general method of differeggiainetry by the utilization of a system of moving
reference frames. On the other hand, | have [AnnNBom. 25 (1908), 60-88] converted the search for
differential invariants of an arbitrary differential st undera group of continuous transformations —
whether finite or infinite- into the search for invariants of a systemn ofdependent Pfaff expressionsnin
variables under the general group of theseariables. The only analytic operations that thktfon
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two parallelisms are equal and opposite, and the quarargesist thestructure constants
cij of S. Lie, up to sign.

8. These group spaces are physically interesting. Indedtl, Evnstein’s new
theory, it is natural to call a univeré®mogeneousvhen the torsion vectors that are
associated with tweparallel surface elements are themselpasallel; i.e., when parallel
transport preserves torsion. Nowd], pp. 813; L6], pp. 50-51), the only spaces with
absolute parallelism that enjoy that property are theesgitative spaces of groups.

One can further characterize them in another wa]. [ Call a point-like
transformation in a space with absolute parallelismwhich the various points of the
spaces describe infinitely small, equipollent vectorg@initesimal translation One can
associate the affine connection without curvature thatefined by the given absolute
parallelism with a second affine connection that caugsature and torsion, in general;
it suffices ([LG], pp. 52-53) to agree that two vectors whose infinitebselorigins are
parallel (in the second sense) can be deduced from each thihe infinitesimal
translation that brings their two origins into coinciden The torsion of that new
connection is always equal and opposite to that offilse In order for the new
connection to be without curvature, as well, it isessary and sufficient that the given
space be a group spacéfq], pp. 53). The two absolute parallelisms on that space are
then deduced from each other by the process that we glishtied.

9. No matter what thes that one attributes to a group space in order to make it a
homogeneoufiemannian space with absolute parallelism, the vegtis always the
same, and one finds that its rotation is always zero, which therefore excludes
electromagnetism from any homogeneous univef@as conclusion will break down if
one can define the electromagnetic potential by meansexdtar ¢ (no. 5); however, we
would then leave the domain of geometry. We simply rknthat, in principle,
mechanical phenomena are of a purely affine nature, whaltromagnetic phenomena
are of an essentially metric nature. It can thushsgeite natural to seek to represent the
electromagnetic potential by a vector that is not guaéine.

10. Another problem that Schouten and | were likewisaupiez in 1926 14] relates
exclusively to Riemannian spaces with absolute paratieliss it possible to define an
absolute parallelism in a Riemannian space that is givéts by in such a way that the
geodesics of that parallelism coincide with the Riemanmjandesics? One can
formulate this problem in many other ways. For exampie can, by appealing to a
general theorem that | proved in 19234 pp. 408), demand that it is possible to find an
absolute parallelism such that the torsion vector thaassociated with an arbitrary
surface element is normal to that element. One gahelr specify in which cases the
affine connection that is associated with the absop#rllelism by following the
procedure that was defined in no. 8 will preserve the leofgtfectors. Finally, one can
attach the question to a problem of classical mechaBmisg given a material system
with n degrees of freedom, is it possible to choosevéhecity characteristics;jsuch that

demands are the covariant derivative of a scalar wipect to the given system of Pfaff expressions and
the formation of théilinear covariant(i.e., rotation) of a Pfaff expression.
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the spontaneous motions of the system are given bggietionsdp / dt = 0 ()? This
problem presents itself, for example, when one corsideolid body that moves around
a fixed pointO, where the ellipsoid of inertia that relatesQas a sphere, and one takes
the velocity characteristics to be the compongntg, r of the instantaneous rotation
aroundO.

11.We have succeeded in resolving the problem completeligaat in the case
where the givenls is definite If one limits oneself tarreducible solutions, since all of
the other ones are easily deduced from them, then e fi

1. The representative spaces of closed, simple groupsréh@ndowed with ds’
that is intrinsically linked with the structure of the growhere the absolute parallelism
is either of the two absolute parallelisms that ai@ched to the group.

2. The 7-dimensional elliptic space, which admits teantinuous families of
absolute parallelism that satisfy the desired conditiarstudy of these parallelism was
made by VaneyZq].

In particular, the three-dimensional elliptic space gpherical space) belongs in the
first category: The two absolute parallelisms that waerguestion above were pointed
out a long time ago by Clifford. That space is the repredive space of the group of
rotations of ordinary space. From the mechanicaldgt@int, its various points represent
the various positions of a solid body that moves arouniikeal point. The two
parallelisms then admit a remarkable kinematical ineggpion (p], pp. 305-308). One
sees that the Clifford parallelisms, which define a pletely isolated chapter in
geometry, are now attached to a very general theoty deapite the apparent conflict
between the two notions, subsumes both the paralleb$nievi-Civita and the
parallelism of Clifford.

12. The Riemannian spaces that were just now in questiomdg&toa more general
category, that of spaces in which the parallel transpaserves curvature and torsion;
they then admit a transitive group of rigid displacemehat likewise leaves curvature
and torsion invariant. Conversely, if a Riemannian spaten envisioned from the
classical viewpoint, admits a transitive group of rigidpthcements — i.e., it leaves the
d<’ invariant — then one can always (at least, if deeis definite) define a Euclidian
connection in that space such that the correspondingllgdatransport preserves
curvature and torsion. Once again, the vegt@ways has a zero rotation. It is true that
theds’ is indefinite in the possible applications to the tleafrrelativity; however, fon
= 4, the conclusion persists, even in this case. spaees without torsion in which the
parallel transport preserves the curvature play an imgortda in geometry, but that
would leave the scope of this survey complet8ly (

() This problem of mechanics has been the objectssarch for Georg Hamel [Zeit. f. Math. u. Phys.
50 (1904), 1-53], who has found a subset of the solutionswra described above (no. 11).

(%) For some other problems of geometry that one dachato absolute parallelism, one can consult a
quite recent note of E. Bortolot2%].
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By Raschko Zaycoffin Sofia
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After a brief discussion of an attempt to modify Eiirsteunified field theory (), a cylindrical five-
dimensional geometry will be constructed on the basiteleparallelism that can be regarded as the
foundation for a unified field theory. Then, a guiding pagrior matter will be introduced in a suitable
way that differs notably from the previous attemptshis direction. The notations are taken from my
earlier publications ().

The essential information in Einstein’s geometry esabsumption of a rigid coupling
of the vierbeins at the various space-time points. bhdée metric, which is described
by means of the quantities:

and their ordinary derivatives, is bein-invariant, but tbesion is expressed by the

quantities:

/\aﬂy = [ahﬂ_ahﬂjh ,

axf  oax )"

which is preserved only under everywhere equal rotatiortheotvierbeins. Only the
components of the curvature tensor of the torsion, waiehequal and opposite § to
the components of the metric curvature tensor)( define the unique bein-invariant
functions of the quantitieA and their first derivatives. Therefore, the vierbelafine a
rigid, but globally rotatable, framework in space-time.this, and only in this, case are
the bein-componentshy,” well-defined coordinate functions. Should, as H. Weyl
intended, the vierbeins at each space-time point be fretdyable, so an arbitrariness
would exist in their orientations, then thahy,” would obviously not represent complete
differentials, and then teleparallelism would be imjmes(’). It also seems to me that
the interpretation of Einstein’'s geometry in relatiorthiat of H. Mandel as the geometry

()  Which is treated in the papers: Levi-Civita, SitzPdeuss. Akad., supplement to volume 9, 1929;
H. Weyl, Zeit. Phys56 (1929), 330; H. Mandelbid., 56 (1929), 838; V. Fock, D. lwanenko, C. F88
pp. 1470, 3 June 1929.

(") R. Zaycoff, Zeit. Phys53, 719;54, 588, 590, 73855, 273;56, 717, 86258, 143, 280, (1929).

Hokk

() The total curvature tensor vanishes identically.

FohkK

(") Inthe case considered (viz., Riemannian curvature).
() As, e.g., in the geometry of Cartan.
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of a pseudo-projection of a cylindrical Riemannian univergk five dimensions would
be unjustified since the choice of components for thebtins is very unnatural. A
phenomenological unity, in the sense of Levi-Civitad #ius a direct replacement for the
classical field laws, is just as improbable, on thdowhg grounds: a) One cannot
present the four identities (viz., the covariance requa), simply because Hamilton’s
principle is lacking. b) The ten gravitational fielguations are of second order in the
“ham’, while the remaining six (here, there are eight Maklerentz equations, between
which two identities exist) are of third order in the.,’, and additionally: ¢) Quantities
of the form:

al, (AS™H NPy + D NP,

appear as the components of the electromagnetic #isot, which have no direct
relationship with experience. However, the unity of sin’s attempts '\ with
components of electromagnetic potentials that weniited with the /A” have a certain
drawback, since the aforementioned electromagnetic eqaatihibit only an apparent
similarity with the Maxwell-Lorentz theory™(. In addition to theh, H. Weyl
introduced four more componeritsof a quantity that he set equal to the electromagnetic
potential. Since he affected a rotational freedom efuierbeins ("), he believed he
could manage with the quantitieggz, fo,” but when it came to explaining spin
phenomena, he also appealed to the sixteen compoihgqts ‘1 believe that, in fact, the
restriction to only the metric quantitieg,z’ and the quantitiesfs” cannot lead to an
explanation for wave-mechanical phenomena, and ticpkar, spin. We cannot asseat,
priori, that only the aforementioned quantities are require¢h® unique solution to the
field problem! However, it is, on the other hand, ckbat the quantitieshn,” alone will
not produce the electromagnetic laws. Another diffycii the unified field theory was
the impossibility of deriving quantum theory from itsustiure. Here, | must openly state
that, up to now, the attempts on my own part to recerieéd Dirac-Whittaker theory with
unified field theory, especially the attempt to follonvdugh on Whittaker’'s idea along a
different path, have not taken me very far. A retorthe older, four-dimensional, theory
of relativity (A. Einstein, H. Weyl, A. S. Eddington, Infeld, K. Hattori, et al.), as well
as five-dimensional ones (Th. Kaluza, O. Klein, H. Mkan E. Reichenbacher, the
author, et al.), thus seems to be excluded from theebutSVith the concepts of
teleparallelism, one has truly taken a step in thecdme of understanding! In addition
to theh,m , o, V. Fock and D. lwanenko have introduced the Diafunctions in a
suitable way, while H. Weyl introduced only the two Pauhdtions ¢1), ¢2) . Both
directions define a law of covariant differentiatiftom the ¢¢. Although Dirac’s theory
yields more that is perhaps necessary in experimenétheless, Pauli’'s theory seems to
be superior on several grounds. However, the use of $evave quantities (J. M.
Whittaker, E. Madelung, J. Frenkel, et al.) complicates problem more than it

() A. Einstein, Sitz. d. Preuss. Akad., supplement to velum and 18, 1928, volume 1 and 10,
1929; also R. Weitzenbochid., supplement to volume 26, 1928; H. Reichenbach, Zeit. B§y&.929),
683, and the cited papers of the author.

(")  Where is the gauge invariance of the electromagriiefid tensor and the expression for the
Lorentz force? Furthermore, what are the equationsotibn for charged matter?

Fokk

(") Asone says, this rotational freedom is incompatiith the well-defined functionggy, !”
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simplifies it. It then remains hard to understand whyutligersal constants my are still
present in the in the Dirac interpretation, as theyadlyavere in Schrodinger's. H. Weyl
embarked upon another path, along which he first introdubedet constants by
integrating the equations of continuity (e.g., energysstrur-current) over a space-like
sectiont = const., and then considered the wave equations toalseoseopic laws.
However, what kind of sense do the microscopic equati@missmerge from the variation
of the ¢+functions in the Hamilton integral then have? Therapts of G. Mie and K.
Bollert to derive the wave equations from Mie’s electrwdyics seem compelling, but
they adhered to known serious difficulties that aik redt resolved, and secondly, the
problem of unity would then have to be relinquished in faob Weyl's theory of
relativity. The extension of Maxwell's theory that svenade by Thomson would also
prove to be not sufficiently suitable for the quantum probl The path that | would like
to follow here is the following one: a) Extensiontbé& theory of teleparallelism by a
new dimension. b) Operate with tigefunctions directly.

§ 1. We set:
Ham:ham ] HaO:_fay HOm: 01 HOO: 11 (1)

where the quantitieiam , f» do not include the fifth coordinate’ () and ‘7’ is a
constant with the dimensions of length (
It follows that:

H™=h™  H®=0, HO™=f, ", H%=1. (2)
Furthermore, one has:
ds, = h,,dx, } 3)
dg = dX - f dX
and
LIS SV Y
ds, ax 7 aX @
ON _ 0N
a5, X
A calculation yields:
% = Bap: } (5)
0 =041,

while the remaining vanish.
From this, it follows that:

() It has a spatial, and in what follows, absolute charadn contrast to Th. Kaluza, et al., we do not
couple the transformatidfi, = f, — 4 / 9x” with a transformation of the typ&® =% — A(X}, X, X2, X,
despite the fact that this seems closely-related, utremsformation of the functiongof the type ¢ =
"0y, We thus define the®” as an absolute dimension.

(") Thef, are proportional to the electromagnetic potentiatsare dimensionless.
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Al =83, }
Ayp =0, f,-0,1,,
while the remainingl vanish.
If we set:
f,=f,h", }
fon = T 7R,
in which:
(o o, o,
ox’  ox?’

then one has:

Aklm = /\klm’ }
/]km = fkl’
while the remainingl vanish.
For the torsion, we then have:

(dd,-d,d) §=A,ndsd s }
(dle_ dZdl) = Il qﬁQkS
Now, one also has:

Furthermore:

For the metric, we have:

Vs 9ap t Tt Vo= T0s Voo =1
PRegE, et sl fe,
y=49,

and for the Riemannian curvature:
p=R—f, "
Moreover, if thek, I', mi, ..., a’, B, ... vary from O to 4, one ha¥{

& = {c1 ArmAkrm + C2 AkrmAk i + C3 Ak Ak} \/J_/

") Translator’s note: This equation was undoubtedly miggdiitt the original.
q
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(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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= {1 Awim/Nim + C2 ANkt + C3 Ak + C1 Fron Frnr 1/ - (15)

In particular, if we set:

CL=— , =1 (16)

N[
N

’ C=-
then if & is chosen to be the Hamilton function it will produttee classical field

equationsn vacuo However, the restriction (16) is not absolutely detory ().

8 2. Now that we have presented the geometry of our fimeedsional cylindrical
universe, we go on to the interpretation of its relatgm with wave-mechanics. Let:

w= e’ (17)

be any four complex scalar functions, where ghdoes not depend upoefi 7is a small
constant with the dimensions of a length, and:

w=ge™’ (18)
are their conjugate complements.
Moreover, we would like to introduce the constant fowred Hermitian matriceg,
and subject them to the conditions:

Huatyvyd =€nlE (mn=l,2,34), (19)
& =identity matrix.

One also has the general conditiods (

() Naturally, the degenerate forms®fare excluded.
(" Let:
a(o) - aeixolr’ CZ)(O) - ae—ixolr ,

in which “a” is a real constant. According to (17), (18), we have:

ix0/r ~ -ix0/7
as) =y(s)€e ", s) =g(s)e” .
We would like to choose the matrix componewiss, t') as follows:

TORE ) HE D+ H(S D (O} = & D,
#(0, 0) =ja(s, 0) = (0,9) = J6(s, 0) =16(0,5) = 0,
%(0, 0) = 1.

Relations (20) are then fulfilled with no further assuond. This choice of4 (S, t') is justified by the
absolute character of the fifth dimension.
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o o+ o} = G e (M, =1, 2,3, 4,0). (20)
In addition, let:
|o:|1:|2:|3: 1, |4:i, (21)

and if the sign in front of any quantify, is set toly then the sum is not taken over the
productd; Ay, 12 Ao, 13 Ag, 14 As, lo Ao .
We now define the quantities:

J =l w,
m ~ mym } (22)
Jo =l y,
Under the rotation of the bein-framework:
F =4 =0, 4, =1,
HaD’m’ — ﬁrm, Ha‘r' , om mo 00 (23)
ﬁmrﬁms = 79I‘I‘l‘{'9 sm: g rs
one gets:
0o —
Jrg—ﬁmr\]r, (24)
Jo = J,.

Likewise, they, @ will be transformed into each other in a certain Way One can
prove that the quantities:

on 1
ds [dr =ds {Eizﬂk'rmlwl mykym} w (25)

are subjected to the same “spin transformation” aguhetity witself. In this, one takes
the + or — sign acgording to whether the index 4 apprars or twicerkw, respectively.
From 8§ 1, one has {:

Jd i
[ad, = h” (67'*'; fij‘)i Mgl ild o/ o3
o (26)
i
[ad, :?0”5 furd d o/ ¥ o
We define the quantity:
1.
D =20y yulad oy Qg (27)

If we set:

() Namely: a spin transformation.

(") One also hasgf0)] = + i (k(0),  [a(O)]o = + &(0).
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Sys= 2iIM,, Y Y=V
8421:_2”\/'3! iy4yzy1: 1731
8413:_2”\/'2! iy4V1V3: 1721 (28)
8432:_2”\/'1’ iV4V3V2:J711
and from (22):
In=@ lnm Y,
Jo :612
then it follows that:
i@z—iz,[zlmyfnh"“a—l’”+'—/\me+£Mm\Tm+ lfme+£Jo. (29)
Jo ax° 2 2 r T

The matricesy/,, are also Hermitian.

§ 3. We now choose the quantity:
3=6+kD, (30)

to be the Hamilton function, whekeas a constant, ana,,, f,, but not sayH s, must be
varied ()! If the ¢ are normalized in such a way that they have theedsion [crit’?]
then the constark will have the dimension [cth The variation of théum, fo, ¢, @ in
(30) thus yields the 28 field equations that caonkai,, f,, ¢, ¢, and their derivatives.
Some identities now exist between these equations (

If we seth,m = &m then certainly the electromagnetic field existBhe Maxwell-
Lorentz equations in this case read simply:

of
= Pm, 31
Fokok axr pm ( )
with the current components ():
k
Pm = ?Jm : (32)

Sofia, Physical Institute of the University, 1 Glogr 1929.

()  Then, from (1), the conditions of sharpened cylintritlom = 0, Hoo = 1 exist between the 32
quantitiesH,n , and only the 20 quantiti¢s, , f, remain. In additiony, ¢ (but not, say,&, «) will be
var*i*ed.

(")  Which are five in number.

(") The matricegs, Ymare the analogues of the classical quantities: foucig/anechanical spin,

resp. In a second publication, | will concern mysethwiihe presentation of the field equations.
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The 28 field equations will be presented, in connectioh thie first publication on this situatior).( An
explanation of the character of the matrices employex #merges from this.

§ 1. We set:
N =K. (1)

Y., and s, are then the matrices of Eddington’s theory, (which are Hermitian and
satisfy the conditions | (20):

WVt ViV =& e (M, 0 =0,1,2,3,4). 2)

The relations then follow:

VWV VVe=€  Vo="1V¥n (M=0,123, 4)} 3
%{yml_/n _Vnyr} = i170‘9mn
We set ():
513 dx=0 dx = dx" dx dx’ dx’) (4)

for all variations Pam, [fo], [¢, [¢] that vanish on the boundary. The 20 field equations
then follow:

0) R. Zaycoff, “Fernparallelismus und WellenmechanikZgit. Phys.58 (1929), 833. Cited as I in
what follows.

(") A. S.Eddington, Proc. Roy. Soc. (21 (1928), 524122 (1929), 358.

(") 3 has the value that was given in | (30).
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A% = 2N o \HKE 2N N - AL NP — cNINP
+; aﬂ(cl/\,u/(p/\ﬂkp + CQ/\pr/\ﬂpK + Q%/\p/\ﬂ)
=D, [2CA™ + ¢, (N + ) + ¢ (A" ¢* = N )]}
+c{-4 57+ f, 7 [y}

—ﬁ_{wlky{iﬁnjw—{i jwlkykw}mh”k # gy [ ©)
2 , T ox, 1

ox
k [2f Ky a aky Koa [2f
+ (DO 3O NI +OWNG, ~307 N, 97}
+Ea2 [§” =0,
4
A= 4y g1+ K g7z o, (6)
4

Here, one hasd, is the Riemannian derivative with respectfpD, = 0, - A, , where
0, means the Einsteinian derivative with respecf’t@nd:

Oum=@lklilm U Y a @ k#£l#£m).

Equations (5) describe the gravitational and spin phenamehile equations (6)
describe the electromagnetic phenomena. The chomansfantx, ¢, Cs, &, K, 7is then
arbitrary in them’). Moreover, equations (5) are of second order irtheand of first
order in thef,, ¢, ¢, and equations (6) are of second order infgrand of first order in

the h,m . However, with that, we have, in fact, proved ttiay represent causality
equations.

8 2. The eight remaining equations, which arise by varying/th@ , do not have the
character of causality equations, since they arastfdrder in théd,m , ¢, . They can
thus be regarded as eight auxiliary conditions to equat®ng6). They now read:

iAs—i{i—lrfpjwmmymh”“?li/\nwlmyw—;l\/l #y.=0 @

k i ox,
T - T2 VNIV AV N ©
Kk im ox, T 2 "" mom

Here, the quantitieM,, are determined from formula | (28), and let it foether
mentioned that the following relations are valid:

() The constants, 7, andk have very small values.
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_ oy _ oy
=-h", =Y sw=2Y & hm=gh™ 9
P W= o V= =Tl ®)

Under an infinitesimal coordinate transformation, theatems of the quantitiels,m , f,
Y, ¥ read:
0&”? of 0&”
= Ny Prh =2 [fl=—afPs+f >
[l =28 o [ ] =288+ 1,5
61// 5[,

[¢] = (10)

7] = aw

Under an infinitesimal change in the normalizationhe guiding potentialgy, ¢,
the variations read:

'[hen] =0, '[fa]:aaxi, 1y = —uéw, '[wlziéw. (11)

8 3. It now follows that:

[(Ah,h) + AL+ Bk £ @ A G e,

, ] (12)
[{ATiI+Ad +Hd Rgde®.

The following five identities emerge from this:
(DA A N TN -SRI G g gy =0, (19
X X

- &AM - A+ IgA=0. (14)
| |

We now splitA% into two parts:

AP=2GP+ 2k T% (15)
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where 2G% is the part oA% that includes only the quantitits, and their derivatives,

andk = 89

(g = Newtonian gravitational constant). Since one (ja
C,

D, G +G* A%, =0 (16)

identically, the identities (13) are also true wiete replaces th&® with the quantities
2k T? It follows from (6) that:
%»Y=0, (a7)
and from (5), (15), (16) that:
D, T77 + T NG, =0. (18)

Now, some consideration of (17) yields:
@A+ A= =D (19)
2k Jog o
It then follows from (7), (8) that:
D =0. (20)
The action densit§ then vanishes on the basis of the field equatiohs
Concluding remark. One obtains the macroscopic quantum laws up@giating
the continuity equations (17), (18), and suitabtynbining the formulas that are thus
found.
Sofia, Physical Institute of the University, 20tQuer 1929.

Added during proof (23 November 1929): We now choose the coefficients,, c3
that enter intds,3 as follows:

a=-il+im), e=-i(l-ia), ©=1-q (21)

wherea is a dimensionless constant. The bein-structarebe made pseudo-Cartesian
iff ¢, ¢ vanish, and in this case, one will have:

() G% =G iff the coefficientsc,, c,, cs fulfill the condition | (16). In this, and only in thisase will
the identities (16) assume the classical fodp3* = 0. In general, however, tt@&” are not symmetric in
a, ,8 since thél?is also not symmetric in, £.

(") We also have the same state of affairs in Whittakaeory.
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Gaﬂ = _( Fiiﬂ _% glﬂ F§+a{% gﬂ(_%/\,ukp/\w(p +_i/\,ukp/\ﬂpK _/\;1/\#)

_%(Apka/\flf(ﬂ _2/\0;1/(/\[?”()_%/\0;1/(/\[?# +/\a/\ﬂ
a
+3(D,Ag+DgN,) —0,5D,N} 5 D3 S5 —Nap)
e
or T
We further set:
fo= Yo, ¢a )

149

(22)

(23)

where the ¢, represent the electromagnetic potentials, multiplied M

Empirically, one has:

,=4 [ N
c?\1+ia’ mec/l+ia’

k—8ih aZ_AO |12(1_%cr)
¢’ amef1+ia

a then remains undetermined.

(24)



Unitary theory of the physical field

By

A. EINSTEIN

1. — The “unitary theory of the physical field” proposesrestate the general theory
of relativity and to unite the theories of the electagmetic field and the gravitational
field into a unique discipline.

At present, this new theory is only a mathematicélaedthat is only weakly coupled
by some very loose links to physical reality. It wascdvered by exclusively formal
considerations, and its mathematical consequences haweewtdeveloped sufficiently
enough to permit its comparison with experiment. Nenedess, this attempt seems very
interesting to me in its own right; above all, it @8 magnificent possibilities for
development and it is in the hope that the mathemasioll find it interesting that |
shall present and analyze it here.

2. — From the formal viewpoint, the fundamental idea of ¢emeral theory of
relativity is the following one: The four-dimensionalase in which the phenomena take
place is not amorphous, but possesses a structurexigieree translates into the
existence of a Riemannian metric in that space.

Physically, this signifies that there exists a fundatielequadratic form:

ds’ = gy d¥ dx’

that is characteristic of that space and which expsegsemetric, and which, when
equated to zero:

ds =g, d¥' dx’' = 0,

defines the law of propagation of light in that spacéatTquadratic form is therefore
intimately linked with physical reality. Its introdumh is not simply a mind game, and
its use is justified by the correspondence that one stablesh between its coefficients
g and a class of known phenomena — viz., gravitationalgrhena.

Since the structure of space is defined by the fundameniadratic form, the
problem that is posed is then the following one: What esstimplestlaw that one can
impose upon the coefficientp,? The answer is given by RIEMANN's tensorial theory.
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One can form a tensd® , . by starting with they,, and their derivatives, which is called

the RIEMANN curvature tensor. Upon contracting it wigspect to the indicesandm,
one deduces another second-rank teRgor The simplest law to which one can subject
theg,y is expressed simply by the equation:

Ra = 0.

This theory will be the ideal physical theory if inceompletely describe the field of
forces that actually exists in nature; i.e., the Isat is composed of the gravitational field
and the electromagnetic field. However, the equatiwn= 0, which seem to describe
gravitational phenomena, do not account for electromta@gp&éenomena. The metric
alone does not suffice to describe that set.

In order to completely characterize space, one seekgve, in addition to the
fundamental forng,, dx¥‘ dx’, a linear formg, d¥’, whose coefficientg, will be the
components of the electromagnetic vector potentidle domplete equations of the field
will then be of the forniry + Ty = 0, whereTy is a term that depends upon the potentials
— for example, the MAXWELL electromagnetic tensor —smme analogous thing.
Meanwhile, this manner of proceeding is not satisfacttmgeed, the equatidR, + Ty =
0 involves twoindependenterms; one can logically change one without affecthng t
other one. In this way, one introduces two independamheits into the theory that
correspond tdwo “states” of the space. Nature then presents a lackitf that our
mind absolutely refuses to believe. On the contrargeéms more satisfactory to
attribute this flaw to an imperfection of the theoand to seek to complete and enrich it
in order to realize the unity to which our spirit aspise ineluctably.

The unitary theory of the physical field thus begmsh the affirmation that the
metric alone does not suffice to describe phenomé&feanwhile, it provides at least one
part of truth: It certainly occupies a physical sulistra The problem that one then
poses consists in finding what will complete the mettnd what will permit us to
describe the structure of space without leaving anything out.

3. — To that end, we seek to find what sense one mighbwtirto the notion of a
Riemannian metric and what sort of representation angyive to it.

Consider am-dimensional continuum that presents a Riemannian steuctBuch a
continuum is characterized by the fact that Euclidiaonggry is valid in an infinitely
small domain around a given point. Moreover, if oneiverg two pointsA andB at a
finite distance apart then one can compardehgthsof the two linear elements that are
situated afA andB, but one cannot say the same thing of tde&ctions there exists no
distant parallelism in Riemannian geometry.

4. — Imagine a Cartesian system of coordinates at a giget in such a space,; i.e., a
system oh rectangular axes, each of which is given a unit vecide call such a system
of axes am-pode(n-Bein).

The infinitesimal Euclidian domain that surrounds a pairttharacterized completely
when one is given ampode at that point. The metric of space is known# has fixed
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an n-podeat each pointof that space. Indeed, the metric of space remainsatime if
one subjects all of the-podes to arbitrary rotations. The orientation ofrfgodes is not
fixed when one is given only the metric; there then remaicertain arbitrariness in the
determination of the structure of space. In this marove,thus sees that the description
of space byn-podes is, in some way, richer than the descriptiom wie aid of the
fundamental quadratic form. One imagines that one cad the cause of
electromagnetic phenomena in this arbitrariness shattached to the structure of space,
and these are phenomena that have not found theiriplduetheory.

This is not the first time that such spaces have beeisiened. They had already
been studied previously from the purely mathematical viewpo®ARTAN was kind
enough to produce a note for thlathematischen Annalethat summarizes the various
phases of the formal development of the concept.

Suppose that one is given mipode atA; the structure of space will be defined if we
give an arbitrary-pode at every other point that we regard as paralkbledirst one, by
definition. One can thus establish a relation ofaliom between two points of space, in
addition to a relation of length. The notion of distarparallelism now possesses a
precise sense that it cannot have in RIEMANN's theofywo vectors that have their
origins at finitely-separated points will be parallethey have the same components in
their local systems. When one characterizes thetsiie of space by a field ofpodes,
onesimultaneouslexpresses the existence of a Riemannian metric andfthatlistant
parallelism; between two infinitesimal elements ot thgace there then exists not only a
relation of length that is expressed by the metric,absd a relation of direction that is
expressed by the orientation of th@odes.

In summary, the only new hypothesis that one introducesder to arrive at a more
complete geometry than that of RIEMANN concerns tkistence of “directions” in
space and the relations between these directions. Dhisnnof “direction” is not
contained in either the notion of a continuum or tHaspace. One must then make a
supplementary hypothesis in order to assume that these sxinething like direction
relations in the space that are expressed by the exastanparallelism at a finite
distance.

Meanwhile, it is easy to see that, likewise with Hypothesis of parallelism at a
distance combined with that of a Riemannian metric, iid 6f n-podes is defined only
up to a rotation (that is common to lpodes).

5. — Introduce a general system of GAUSSIian coordinatesansider then-pode
that is attached to the poiRt Leths” be the components of the unit vectors ofrifde
in the GAUSSian coordinate system. In what follows, @ngek index will relate to the
coordinates and any Latin index to thpode. hs’ will thus represent the™ component
of the unit vector that corresponds to thaxis of then-pode. In a quadri-dimensional
space — i.ef = 4 — we thus have 16 quantitie$ that describe the structure of that space
perfectly.

If these quantities are given then one can calcul&edmponents of an arbitrary
vectorA in a local system as functions of its componentségn@AUSSian system. One
has:

1) A’ =hAs,
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and conversely:
(2 Al =hg A,

where thehs, are the minors of the determindnt | hs” |, divided byh. By convention,
one can perform the summation over indices that appéae.

In order to get the metric of that space, one calesldte magnitude of a vectér In
a local system, since Euclidian geometry is valid, lvase

(3) A= A= hy by AAY
The coefficients of the fundamental metric fogp dX¥’ dx” will thus be given by:

(4) O = hey hsy .

One then sees that a fieldrepodes ls") determines the metrigy,) completely, but the
converse is not true.

The quantitiedhs” form the fundamental tensor that is analogous toehsorg,,, of
the old theory; for the case of 4, there are sixteen quantitia$ and only tery,, .

The concept of tensor is found to be broader in thesrth Indeed, here we can
consider not only transformations that change the systfecoordinates, but also ones
that modify the orientations of theepodes. The-podes are determined up to a rotation;
the only admissible relations must then be invariath waspect to such a rotation. For
example, change the coordinate system and the dmentaf the local system
simultaneously. Since the rotation is characterized byctinstant coefficientsr; ,
independently of the coordinates and such that:

1 u=v,
(5 asymsvzavsmys:dw:{o Lty
one will have:
s ox
(6) h = a, p: h”.

Each local index corresponds to a transformaticand each Greek index to an ordinary
transformation.

8. — The algebraic laws to which these tensors are sudnjeaimost the same as the
ones for the tensors of the absolute differentildutas. One can define the sum and the
difference of two tensorf andSthat have the same indices. The product of two tensor
has the same law of transformation as a tensoigbehirank.

The contraction operation is applicable for both three® indices and the Latin
indices. For the former, one must always equate an upgex and a lower one. The
permutation of these indices is possible; in particulae, @an replace a Latin index by a
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Greek one by means of the fundamental tehgor For example, take the tensbr; .
One has:
() he' T =T,

One can then pass from the local components to tneaeents of the same tensor in the
GAUSSian system, and conversely.

Finally, calculate the volume element in this newotlge That important quantity has
the following expression in the general theory of reilyt

de =g O7/ dr,
where
gzlg,uvl and dT:XmEd)(2
Now, one has:
Ouv = hys Thys and g=h%
thus:
(8) dQ =hdr.

The fact that the radical has disappeared is then aredlkantage of the new theory.

7. — Now consider the parallel displacement of a ve&@r In a Riemannian
multiplicity, this displacement is given by the forlau

dA“ =~ 4 A% dx’.
The 7, are the CHRISTOFFEL brackets, and must satisfy twalitons:

1. The translation that they define must preserventégic; i.e., it must leave the
lengths of the vectors in question invariant, and

2. Therl;;, must be symmetric ir and 3.
e

Parallel displacement is not integrable in this geomdtrgne performs it along a closed
curve then the initial vector does not coincide withfihal vector, and the difference is

measured by the RIEMANN tens@, ...

Things present themselves differently in the new thedihe parallel displacement of
a vectorA is given by an analogous formula:

- B
(6) P =~ N AT K,
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However, the displacement is integrable here: Ifdisplaces a vector along a closed
curve then the initial vector will always coincide kwihe final vector. Consequently, the

RIEMANN tensor that is formed by starting with tie, will be zero. Moreover, the
A7, are no longer symmetric imand3. One easily verifies these results by calculating
the expression for thA}, as functions of thé.

Let x* andx” + dx’ be two neighboring points, such that thejpodes are “parallel” to
each other. The vector&s and As + AAs will be parallel if they have the same
components in the two-podes. The condition of parallel displacement’ob x* + dx’
is thereforedAs = 0. By expressing thAs as functions of the components Afin the
GAUSSian system:

As=hg, A,
one has:
(10) dhs,u A'u) =0.

Upon multiplying byhs’, one deduces that:

(11) 0=m"{h§a5N+NBZXLS§5>?},
or, upon denoting the ordinary derivative by a coma (
(12) Agﬂ =h{ hsa, B

and also:

(13) Agﬂ == hsa hsy’ B

By the same mechanism as the one that is used mb8wute differential calculus,
one can form the covariant derivative operator byistawith the A7,. Upon denoting

it by the semi-colon (;), one has for a contravariéirst-rank tensor:

(14) A'u; o= A'u, ot A7 Af,'g ’
and for a covariant, first-rank tensor:
(15) A/l, o = A/l, g Aa’ AZJ .

One finds analogous formulas for the tensors of highat.r They are parallel to the
formulas of absolute differential calculus that based upon the metric exclusively, and
are deduced in the same fashion.

One easily conforms that the covariant derivative lif fundamental tensor is
identically zero:

(16) hs’. ; :hsv;r:gm;p:gm;p =0.

Indeed, one has:
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hsv; r= hsv,r + hS”AI;T: (4/ /V,r + hsaAl;r) = hsa(haw,r +A2r) =0.

The covariant derivative of a product of two tensersehtained by the usual rule of
differential calculus. For example, T and S are two tensors of arbitrary rank then
one has:

17) (T:S) =TS +TS, .

Two covariant differentiations do not commute — itke order of differentiation is
not immaterial. LetT~ be an arbitrary tensor. Take successive covariantaties

— first, in the ordero, r and then in the ordar g - and then take the difference between
them. We then have the fundamental formula:

(18) T..-:;Acr;r - T..-:;Ar;a =- TH/\ZT ’
where:
AL = AT —A°

It is easy to prove this formula in some simple cadasst, suppose that - reduces
to a scalagy. In this case, the covariant derivative coincide$ wie ordinary derivative:

Yo=¥¢.o,

and we have:
Wor =Wo, = Waly,
Wro =Wrio—WYaly,,
Gor=Wro=-Wa(Dy-D7)==Wa .

The difference indeed has the stated form. One settait A7 is a tensor.

The case of a vectdr - = A reduces to the preceding case if we take into account

the fact that distant parallelism exists in this theoin effect, the existence of that
parallelism entails the possibility of the existen€a aniform vector field (i.e., a parallel
field); it is possible to imagine that there is a vethat is equipollent to the given vector
at each point of space.

This being the case, considerabitrary uniform vector fielda, ; one easily shows
thata,., =a"., = 0. With the given vectd¥”, for the scalar:

W=AThy.

We may apply the formula for the differenBethat was established above to this
scalar. Then, upon taking into account the rule fordifferentiation of a product, one

has(A‘;ﬂ)U: a, A' ;. The arbitrary quantitiea, turn into factors and disappear, and

finally, one has a relation of the same form:
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A'u;a;r _A'u;a;r E—A”;a/\ZT,

which is easy to generalize to a tensor of arbitrarlg.ran

8. — An important difference between the theory that issemted here and
RIEMANN'’s theory deserves our attention. In RIEMANNheory, there is no tensor
that can be expressed solely by means of the first deasabf the fundamental tensor.
In ours, the difference:

(19) N, =47, -4

is a tensor that contains only first derivatives. abidition, this tensor is remarkable
because, in a certain sense, it is the analogue GIERIANN tensor:If A is zero then
the continuum is Euclidian

This result is easy to establish. From the fornmhda was given fod], , one has:

/\Zv = hsa (hS/l, v hsv, /1) =0.

Upon multiplying byh?, one deduces, sinte” h, = &, that:

ht,u,v_htv,,u: 0,
sohy, is of the form:
_ 9y,
M oxH

If we justifiably take the to be GAUSSian coordinates, which is possible #5e
X' —then the:
. |1 t=u
M = Ay = {O t£u
are constants; they define a matrix in which only tlagainal terms are equal to 1, while
the others are zero. Since thg and theg,, are constant, the continuum is Euclidian.

9. — Consider the quantity, which plays a fundamental role in the new theory.
There are & 4 = 24 quantitieg\, in all, meanwhile, thé are 16 in number. Therefore,
there are some relations between the varidubat must be satisfied. In order to find
them, start with the expression faras a function of th&. Since parallel displacement
is integrable, the “curvature” tensor that is analogouthe RIEMANN tensor will thus
be identically zero. Consequently, we have:

(20) o, D, — AL Ay + A, A7 =0.

U KA
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Make a cyclic permutation of the indices/, 1, and take the sum; then introduce the
covariant derivative in place of the ordinary derivativ@ne thus arrives at the following
identity for theA:

(21) (N +N

KA u Ak

+ /\qu;/] ) + (/\;m/\j,u + /\I/m/\ZK + /\jua/\;a(r) ) = 0
By contracting this once with respectitandx and setting/\7, = @, , one finds another
important identity:

22) A _[6@, _Mj =0

wia | gx ax

In order to deduce another one, one must appeal to #ndoruthe permutation of
covariant derivatives, which is expressed by:

T =T =7 TidlNor-

LOT

We introduce a new notation: We agree that an underlmeeixisignifies that an
index has changed position — i.e., it has been raised erdow For example, if we write

A7, then that signifies that we take the contravariammonents of theé\,
a _ UO VT
N w= /\ZV g“g”.

With that definition, we apply the preceding rule to thg, upon differentiating it
with respect tavanda. One has:

/\[I _/\[7 - _ /\H /\0’

wevia uviaw pvio” tva
The right-hand side can be written:

- /\Zg;al\ga =- (/\Zg/\ga);a +/\Zg/\3a;a'
In the first term of the right-hand side, we chatige names of the dummy indicesa,
andv into a, g, andr, that term becomes:

= (NuNG)g =+ (NLAG).q -
One thus has:
/\Zg;v;a _(/\ZKAZT);H _/\Zg;a;v _AZKAZH;UE 01
or
(23) (NG =N NGy =Ny = NO NG, =0,

uvv uv! Mot pviaw va,o
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which constitutes the desired identity. Introduce thatens:

G' = A%, - NN,

vy

F* = N7

uvia s
The identity (23) is then written:
(24) Gya; a Fya; a ~ /\[I F = 0

uv'va

10. — having defined the manner by which we write the structur¢gh@fspace
mathematically, we now examine the fundamental proldé¢rthe theory, which is to
establish the field equations. As in the general thebrglativity, this problem consists
of finding the simplest conditions that one can impagen the elements that define the
structure of space — i.e., the quantitig’s It thus amounts to making a choice amongst
the possibilities; the difficulty in making that choitken resides in the absence of
benchmarks that could guide us. Before writing the dejirequations of the field, it
seems interesting to me to point out the path tfiolwed in order to discover them.

My point of departure consisted of the identities thatghantities\7, satisfied. In a

more general manner, the search for certain identiirde a great help for the choice of
field equations by suggesting some possible forms for theedeslations. The study of
these identities must therefore logically precede dieice of a system of equations.
However, one cannot knove priori, what the quantities are between which one can
establish these identities.

A primary benchmark that appears here seems to be tbwifgd one: The desired

relations must most likely contain?, and its derivatives, since that tensor is the only

one that can be expressed solely as a function dirthalerivatives of the fundamental
tensor.
The simplest condition for one to impose would be:

Az, =0,

It is obvious that this condition is too restrictive:.yiZhe space would be Euclidian.
Moreover,it contains only first derivativeand it is likely that the equations that regulate
natural phenomena are of second order; for exampl®@8SON equation.

We then attempt to set:

a —_
N, =0.
This relation is not acceptable either, because itm®stl equivalent to the first one;
however, it is useful because it immediately suggestswh try to annul the divergences

that one can form by starting with i€, .. We thus start with that covariant derivative
and contract it in all possible manners (which is egjeit to taking the divergence). We
have two possibilities:

Either:
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(25) N,y =0
or
(26) NS, =0.

v

One immediately sees that the set of these systemst appropriate, since the
number of equations cannot be chosen arbitrarily: Oneataguarantee the compatibility
of these equations without a special study. Now, it isspehsible that the chosen
system should be such that the equations are compatible.

11.— In general, for a space wflimension, there an# variableshs”. However, in a
general covariant theory, since the choice of coordisgstem is arbitrary, among thfe
variables,n of them can be taken arbitrarily. Consequently, thabar of independent
equations will ben* —n. Similarly, the number of equations can be largen tifa- n,
provided that they are related by a convenient number ofitiesrthat render the system
compatible. In any case, the system must satisfyulbetliatthe excess of the number of
equations over the number of identities is equal to the number of vanaioies n

For example, consider the equations of general relativilve have ten unknown
functionsg,, ; since the coordinate system is arbitrary, we cansd in such a fashion
that four of the functiong),, are arbitrary. The six unknowns will thus satisfy ten
equations. However, as one knows, one has, at thetsaeehe four identities:

(Rik _% gikR); (= O,

which re-establish the compatibility) (

One can cite another case for which the number of ieqpgagxceeds the number of
unknowns without the equations being incompatible. For plgnthe MAXWELL
equations:

rotH _EG_E: 0, rotg + Ea—H =0,
c ot c ot
divE =0, divH =0

are eight in number with six unknowns; the systemoisetheless compatible, since the
equations are related by two known identities.

What intrinsically signifies the presence of a greatamber of equations than
unknowns?

In the example chosen, the two vectorial MAXWELL ations determine the
problem canonically. If the fieldE andH are given at the instatthen they are
determined at all remaining times. However, the othalasaelations imply that the
initial conditions are not arbitrary. Therefore,teoeger determination of the problem —
viz., a number of equations that is larger than the numbanknowns (with identities

() The symbol ;" is employed here with a well-knownrsfigance that is different from the one that is
defined in the rest of this article.
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that render them compatible, moreovepartially eliminates the arbitrariness that exists
in this case for the initial conditions. It is, moveo, clear that a theory that is compatible
with experiment is all the more satisfying if it limifsat arbitrariness in a more complete
fashion. Having said that, we return to our problem.

12. - For a four-dimensional space — i®5 4 — we have 16 unknowig', four of
which are arbitrary, so only 12 of them can be determindgfidyield equations. On first
glance, the number of equations that form a conversgstem is 22 — namely, 6
equations (25) and 16 equations (26). There must then be l@iedenthich do not
exist, in this case. In that way, one understands hevwedmpatibility condition permits
us to limit the arbitrariness in the choice of fieldiations in an efficacious manner.

We then examine the identity (24). It suggests that ke ttze field equations to be
the system:

(27) G =0,
(28) F“=0,

or, explicitly:

(27a) /\ZE;V —/\ZI/\ZT =0,
(28a) N =0.

Hvia

This system, which is a little different from the t®m (25), (26), is always
comprised of 22 equations, but ones that are chosen inasmanner as to satisfy the 4
identities (24).

Nevertheless, the excess 22 — 4 = 18 is always greatethé difference 16 — 4 = 12.
In order for the new system of equations to be compatiblis necessary that there
further exist 6 supplementary identities between its equatioWe prove that these
necessary identities exist. In order to show thisfilsegive equations (28) another form
that is equivalent to the first one, and which is guidethbyidentity (22):

(22) /\Zg;a - (¢/1: VT ¢V, /1) =0.
We have sef\; , = 0; from (22), it results that one also has:
a¢ll _a¢v —
ox’  ox“

Therefore @, is the derivative of a scalar, which is convenieddyoted by logy, here:

_ Ology
Pu oxH

Therefore, set:

dlogy
oxt

Fu=0u—
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one has-, = 0. We can then replace the equations:
N =0

Hvia

with the equation&, = 0, and write our system of equations as follows:

(29) G*=0

(30) F,=0,

or

(2%) Ny =N NG, =0,
dlogy

30a - =0

(30a) b= —

We now have 16 equations (29) and 4 equations (30), and tlegrafbequations, in
all. We have introduced a new variable — viz., the scgkathere are thus 16 + 1 = 17
unknowns, four of which are arbitrary. In order for gystem to be compatible, it is
necessary that there be:

20-(17-4) =7

identities between th&““ and theF*“. We have found only 4 of them, namely, the
identities (24). Now, there further exist some idesgitbetween quantities envisioned
and — miraculously, one can say — there are jusethtecannot say what the profound
reason for their existence is. It essentially comesn to the nature of the space in
guestion. Moreover, this type of space was imaginedd®efie by some mathematicians,
notably, by WEITZENBOCK, EISENHART and CARTAN; it isyrhope that they can
assist us in discovering the hidden origin of these idewtities.
Be that as it may, they exist; | would like to poiat bow one can arrive at them.

Decompose the tens@““ into its symmetric parG* and its anti-symmetric part
G"". One has:

pr' Yo

2G*" = (N9, = AL,), =NT NS, + NG NE
= (NG, +NL,), =N NG + NSNS

since the/A/, are anti-symmetric i, v.
One can express@“ as functions oF*“ = A”__ and a tensor that is anti-symmetric

uay

with respect to an arbitrary pair of the indiaegs, v, namely:

(31) iy = Ny *Nay + N

One obviously has') :
2(_5”2 SH + F/la + C/la’

avyy

(") Translator’s note: In the original, tkieterm was given without indices.
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where the complementa@f is given by:

CH= NG N =N g

pr' ot *

In order to calculate it, observe that upon changiegdihmmy indicesr and 7, one
has:

Ng NGy = NN = =N N,

aog 12 ag” “or

and
/\;/\” —/\;U/\fg— /\;U/\ZT

On the other hand, we have the equality:

NONE = NS N

o or ro” “or’?

due to the fact that:
a — a ~fr - a — a
/\m/\g'r /\ g gygl\g-r /\ﬂy/\f/lﬂ /\m/\gr '

Therefore:

= CH = NN =N NGy = 2 (NG, + Ny + NG N =3 (N, + Ny + NN,

a’ ‘or u' tor
or
-C =18 N -1 SN,
Finally, one then has:
(32) 26" =-8),, +3 $Ne =3 SN +F

We develop the covariant derivative (the undedimalices are contravariant). One
has:

= S = S T S T Sl ¥ 985t Bl

Now, upon switchingrandz, we get:

ST A[I — 0’ [7 —_ ]_(ST /\H 311 Tg

ou=or ,um oyu' ‘ot

%ng(/\m_/\g'r) __E Q'I/\ZT’

because
Sou = S.= S
and also
SO = S0, =5S (N —N\y) == 35N,
Therefore:

_S;av S,Zav +% Sil/\gT _% §I/\ZT B §1/\V
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SO consequently:
(33) 2G" =-8S,,,~ S0, + F“.

uayy

We calculate the term,, from its definition. One has:

Ny = O, -0,
Now, in general, by definition:
1 oh _ dlogh
AL = h¥h, ., N ==——=
af hs .5 0 h6 axg

On the other hand, we have set:

N = ¢o
and
FU:¢U—6|°9‘/’,
ox°
Therefore:

N =gt dlogh =F,+ alog(z//h).
ox’ ox’

We substitute this in the previous equation, after myitigl by ¢h:

glog@n) s .

ox?

¢h(2G* -F) =yhs,, -y hE S, -y

Upon moving the second term to the left-hand side, one has:

¢h(26" ~F*+ S, F) =

Now, if one differentiates the right-hand side witspect tox” then it vanishes, and we
have the identities:

(34)

9 [yh (26" - F+ 5%, )] =0.

ox” nae
Indeed, the right-hand side is written, upon changingéimes of the dummy indices:

WhS}y) o0 = WhSiy) ao == WhS}y) 40
since:

a _ _ o
S5,=-S/,.

There are three independent identit{8d). If A“?is an anti-symmetric tensor then:
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A/IU - — AU/I,

such that:

(A 4 =0,

then one has:

(N ap= A" o == (A ya =0.

This is true for anyW““ provided that it is anti-symmetric. If we také” to be the left-
hand side of (34) then we have a relation that is indépnof the values that ti@“”
andF, take, which diminishes the number of independent idestiiy one. Finally, the
number of these identities is 4 + 3 = 7, the number oftemsais 20, and the number of

unknowns is 17. One has:

20-7=17 -4,

so the system is compatible.

13. — One can, moreover, seek to prove the compatilofithe proposed system of
equations directly. In order to do this, supposedHhaif the equations:

G"=0,

are satisfied for ar* = constant =a section.

one contains 13 equation3:(

F.=0, F, =0,

G''=0, G¥=0
Gt=0, G®2=0,
G"=0, G2=0,

and the second group contains the other seven.

Fg’ = 0

Separate them into two groups. The first
F3 = 0, F4 = 0,

Gl3 — 0’

G®=0,

G33 — 0’

One siy mave the following

proposition: If all of the equations are satisfied in aft x a section then if tha3
equations of the first group are satisfied in all of four-dimensional spher the
equations of the second group are also all satisfied automatically.

Indeed, one has:

Fya = F/I’ a

Fou .

SinceF, is everywhere zero, thHg,, will also be so.

In the section’* = a, one has:

Ha
0G -0

ox*
as the following identity shows:

0
ox“

(34)

[M(Zgﬂa — FHa 4 Sgg ET)] =0.

() The compatibility of these 13 equations is not in doubt.



166 Selected papers on teleparallelism

Consider an infinitely close sectioh=a + da. Since theéF,, andF, are everywhere
zero, one deduces from the preceding identity thatfer4, theG,, will be likewise

zero in that section. An analogous argument thatthseislentity:

(24) Gya; a— Fya; a /\U F

ur’ or

0

shows us that the symmetric partGf” — viz., CZS‘”’— is also annulled for = 4 in the
infinitely close sectiox’ =a +da The conclusion is therefore valid for:

G/la - §#0+ C_;W

in a section =a +da, and can be extended step-wise to all of space.

14. — We now examine the physical aspect of the theoty the extent that it is
possible. It is difficult to give a physical interprigda for the equations in full
generality; one must limit oneself to a first approxiomat

In order to do this, consider a space that differs feoBuclidian space infinitely

1
little. Since the latter is characterized by having ke equal to &, = {O , (X

imaginary), this amounts to setting:
(353) hsy = &y + hs, .

One deduces that one must set:
(35b) hSV =& — h/s )

We thus replace th®, with that expression in the given equations and retalintbe
first approximation. One will have:

A4y =h¥h, = h
Ny = -h

The field equations will then be:

(36) ﬁap,v,v _F]m/,,u,v = 0 hap,v,v _F]m/,v,,u = O'

or

(37) hap,v,a - hm/,,u,a = 0 ﬁ av _F]m/'g”u = O

au

The second equation signifies simply that one can set:



Einstein — Unitary theory of the physical field 167

(38) h,. :a_)(,

(39) ha,u,v,v - hm/,v,,u = 0’
(40) Nyo =~ Xu =0.

This form is not, moreover, very satisfactory, beeaos first glance, it does not give
sufficiently clear information about the field envisidneln order to arrive at something
more easily interpretable, recall that the coordingstesn is arbitrary, up to a certain
point, and subject it to an infinitesimal transformation:

(41) X =X g

where the# are infinitely small or first order, which we choosmveniently in order to
give the system a simple form.
Applying the infinitesimal transformation amounts tplaging theh,, with:

(42) h, =h, +&,

(an equation that obeys the transformation rulegsars).
One will then have:

- h a
vy hm/,v +§(,V,v’

— a
v.aa hm/,a +§(,v,a'

Choose the® in such a fashion that these two quantities are annuilétei new
coordinate system. | say that it suffices to take:

(43) qzll’ v, v == ﬁm/,l/ !

(44) (za’ a = _X
Indeed, one first has:

Qza,v,a :Ea,a,v:_)ﬁv:_hm,ya-

The system (43), (44) is then compatible, even thoughmdtitotes five equations for
four unknowns; indeed, one has the identity relation:

(_A/)' v v _(_ ﬁm/,v),a =0.

Therefore the solution of this system gives us quantftissich that one has:
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(45) R, =0,
(46) h

Now make a change of coordinates. Our equations beagmoe Guppressing the
primes):

ﬁa,u,l/,l/ = O'
47 ﬁa,u,a =0,
h,.,.=0

If we decompose thEW into a symmetric parg,, and an anti-symmetric pafy,

then the system decomposes into two other onesctrdain only symmetric or anti-
symmetric terms, respectively:

S =0, Auuv =0,

auy v

(48) and

We have thus arrived at two groups of equatioftse symmetric group gives the laws
of the gravitational field that are compatible with tiMEWTON-POISSON law;
however, the result is not completely identicallt® one that is given by the theory that is
based upon RIEMANNian geometrylhe anti-symmetric group gives tMAXWELL
equationin a more general form. | basically believe tiiet anti-symmetric system must
be interpreted as giving the general equationshefdlectromagnetic field (in the first
approximation).

In this case, there thus exists a very neat sBpardetween the laws of
electromagnetism, on the one hand, and those vitagtian, on the other. However, this
separation is valienly in the first approximationit does not exist in the general case:
The theory is ruled by a single law.

In the present state of the theory, one cannotnwmieite judge whetherthe
interpretationof the quantities that represent the field is ecrior not. In effect, a field
is defined, in the first place, by the motivatingians that it exerts on particles, and one
does not presently known the law of these actitresgiscovery of this law demands the
integration of the field equations, which has nett ljeen realized.

15. - To conclude, we can say, upon condensing thétsebat have presented up to
now:

The particular structure of space that we haverntais the fundamental hypothesis led
us to certain general field equations that reducetie first approximation to the well-
known equations of gravitation and electromagnetidbespite this, the results obtained
up to the present do not give us the possibilityerfifying the theoretical predictions
experimentally. Indeed, one has not, moreovernlsde to deduce the laws of the
structure of particles and their motions in thddfiby starting with the given equations
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and integrating them. The hurdle that the theory mwsrcome will then be the
discovery of integrals — devoid of singularities — tratis$y the differential equations of
the field and are capable of providing a correct solutiothéoproblem of particles and
their motion. It is only after this has been doné tha comparison with experiment will
become possible.

(Conference talk that was given at I'Institut H. POIRE in November 1929 and
edited by AL. PROCA.)




The compatibility of the field equations in unifiedfield theory

By A. EINSTEIN

(Received on 12 December 1929 [cf. Jahrg. 1929, pp. 683].)

Several months ago, | presented the mathematical faandgaof a unified field
theory in a survey article that appeared in the Matheotan Annalen. In this report, |
would like to briefly summarize its essentials and $iameously show the points at
which my previously-appearing papers (these Berichte, &mnineitlichen Feldtheorie,”
1929, | and “Einheitliche Feldtheorie und HAMILTONsches Rpiz1929, X) can be
improved. The proof of compatibility is based upon a briemmunication by
CARTAN, for which | am grateful [cf., 8, (16)], and which is somewhat simpler than
the one that was given in the Mathematischen Annalen.

§ 1. Critique of my earlier papers.

The divergence operation on a tensor density that mresduced in 8§ 1 of the first-
mentioned paper is not preferable. It is better tcarewith the divergence operator that
is defined as the contraction of the expansion of goten The divergence of the
fundamental tensor then vanishes identically by therlagfinition.

The identity (&) [(3b), resp.] ofloc. cit.then assumes the form:

New = (@1 -9 =0, (1)
in which we have set:
@ =N,,. (B)

As we have already explained, the proof of compatybitir the field equations that
was given in that paper rests upon the incorrect assump@rfabr identities exist
between equations (10) that were given in it.

The second of the papers mentioned contains a fatal dtris likewise incorrect that

the G*#“ depend upon thé&;, homogeneously and quadratically. Hence, the derivation

that was given in that article of equation (21), whicimisrpreted as the electromagnetic
field equation, fails.
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8 Overview of the mathematical apparatus of the theory.

The structure of space (the field, resp.) is describethdysAUSSIAN components
hs’ of local orthogonal 4-beins (viz., the” component of thes" bein). The
transformation law for a change of GAUSSIAN coordinatgtesm, with a simultaneous
rotation of all local 4-beins, is:

, X,
hs = a’st67ht ) (2)
in which the constantss; define an orthogonal system.

The normalized sub-determinant of thehs” obeys the transformation law:

ox°?

h;/ :astﬁhta' (3)

Systems of quantities whose transformation propedtféer from those of théx only
by the number of their indices are callehsors The quantitieshg,) [(hs"), resp.]
comprise thédundamental tensor

Addition, subtraction, and multiplication are definedlaey are in the usual theory of
tensors. Contraction relative to two local (Latin) @yordinate (Greek) indices of
differing character is possible.

Changing the index character as a tensor by means dtmkdamental tensor is
always possible by multiplication and contraction; e.qg.:

As=hg A"

If As As is to be the magnitude of the vectdks( then it follows that they,,
coefficients of the RIEMANN metric must be giventhe quadratic construction:

Ouv = hg hsy . (4)

The elementary (i.e., integrable) law of parallehstation:

&V:—A%Aéﬂ} )

Agﬂ = hsa hm,ﬂ’

follows from the assumption of the parallelismtiodé local 4-bein, in which the comma
means ordinary differentiation. The laws of (abse) differentiation follow from this:

Ay = A, + ATAE )
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For tensors with more Greek and Latin indices, aespanding term for each Greek
index appears.
The tensor character of:

N, =47, -4 (8)

follows easily from a double differentiation of the $en®. ., ; that is constructed from a
scalar® [from the tensor character 6b(; » — ®. 1 ), resp.]. The vanishing of al\},

is the condition for the continuum to be Euclidian.
Due to its expressibility in terms of thequantities (due to the integrability of the
parallel translation, resp.), the tensaj éatisfies the identity:
(N, +N

KA u Ak

+/\qu;/1 ) + (/\;m/\j,u +/\I/]H/\ZK +/\jua/\/0({/1 ! (9)
from which identity (1) follows by contraction.

The product rule is valid for absolute differentiation.heTabsolute differential
quotients of theh, as well as the,, (g, resp.) vanish identically. The fundamental
tensor also commutes with the differentiation sigrag a factor.

As for the second absolute derivative of an arbitramgdeT "~ (the ellipses mean

arbitrary indices), we have the following commutatie for differentiation:

T =Ty == TN (10)

—OiT

The proof follows directly whe” has no Greek indices (i.e., it has a scalar chemact

The proof for arbitrary tensors is obtained by multiplyihgm with parallel vectors (i.e.,
vectors that have absolute derivatives that vanish evenay in such a way as to impart
a scalar character upon them.

If the tensorT.” in question has two contravariant indices then one ocatraxct

relative to them anar (7, resp.); one obtains a commutation theorem for thergence
from (20).

The special character of the four-dimensional contmwd physics is established by
defining the coordinat&* to be pure imaginary (also the fourth local coordinatéijle
the remaining ones are real. Tensor components areimpagnary when the have an
odd number of indices; otherwise, they are real.

Finally, we make a formal convention: Changing thetiooaof a Greek index (i.e.,
“raising” or “lowering,” resp.) shall also be expressed underlining the index in
guestion.

§ 3. The field equations and their compatibility.
The field equations must naturally be covariant. Onstralso assume that they are

of second order and linear in the coordinates of theetdifferentiated field variables.
Whereas in the previous general theory of relativitgehequirements sufficed, at least,



Einstein — The compatibility of the field equations in iguffield theory. 173

for the determination of the field equations, in the pret®eory this is not the case. Due
to the tensor character of one likewise has a much larger variety of tensoas the
ones that one finds in the context of the RIEMANNesuh.

General covariance brings with it the fact thatrfof the field variables must remain
arbitrary. Thus, the sixteen quantitiascan be subject to only twelve independent
conditions. Hence, if the numbhrof field equations is larger than twelve then atti®as
— 12 identities must exist between them.

A simple possibility for the statement of a covatiaystem of only twelve equations
does not present itself. We must therefore state iegsatbetween which identity
relations must exist. The larger the number of equatjand, as a result, the identities
that exist between them), the more definite the states that come out of the theory will
be, beyond the requirement of mere determinism; heéheanore valid the theory will be
in the event that it is consistent with the factexerience). The requirement of the
existence of an “over-determined” system of equation$ wie required number of
identities gives us the means to find the field equations.

As field equations, | propose the two systems of equsitio

G = /\;;V —/\;/\ZT =0, (11)
Fuo= /\Za;g =0; (12)

these are 16+6 equations for the 16 field variables | came upon them by using the
fact that:

/\H _/\[7 - _ /\H /\0’

Hwvia ﬂ;a;v_ pviot tva
With regard to this, one can bring the identity intoftren:

G/m; a— F,ua; at /\,ua Fa'r =0 (13)

by a suitable naming of the summation indices. Theséoar identity relations between
equations (11) and (12), which gave rise to their being wiitbemn.
Equations (12), when combined with the identity (1), leatie@dhiately to the identity:
Fuvpot Fuou +Fpuv=0. (14)

We remark that equations (12) can also be replaced with:

Fow=@.a—@u=0 (12)
or
oy
F,=@ - - =0, 1
u= Y I (1D)

() In the earlier theory of gravitation, there were —e.gen equations for the ten field variables, with
four identities existing between them.
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in which ¢ is a scalar. We further have tHgi, can be expressed in termsf by
means of the relation:
F/IV = F/I, v — FI/,/I . (15)

We obtain a third system of identities upon form@’. , . We first find that (11)
yields:
G,ua;yE /\H _/\T /\H _/\0' /\H

Hviviu aup’ Yot pr’ Yot

If one uses the commutation relations for the divergarfc\j, with respect to the
indicesv andy then one will obtain:

/\;W?/I =" %A;;UAZI :
If one replaces the first term of the right-hand sifléhe identity above by means of this
relation then one can replace the first and third wohectively with:

- /\2 (A;;ﬂ +%/\gw)
or with

- %/\2 (/\ZT;,U +/\gu;a +/\Za;r) .

However, in light of (9), the bracketed term itsedfn be expressed in terms of the
such that one gets:

aA

SN NG + NGNy + NG

or, since the first term in the bracket goes awaltae other two can be combined:

N NG Njy
We thus get:
Gy == NG (N oy = NN,
or finally:
G, + NGT = 0. (16)

(13), (14), and (16) are the identities that elzetiveen the field equations (11), (12).

The fact that these identities actually imply toenpatibility of equations (11), (12) is
clear from the following argument: It might be pib#es for equations (11), (12) to both
be satisfied for a slice’ = a. Likewise, it might be possible for those twebkguations
that are characterized by setting the followingrjities to zero:

Gt g2 gW
G2l o2 g
Gl g2 B
Fia  Fos  Fas
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to be satisfied in all of space.

Furthermore, one might choose the latter solutionsuch a way that it is a
continuous extension of the solution for the skte a. We then assert that this solution
also everywhere satisfies the equations that are atkaed by setting the following
guantities to zero:

Gl4, 624, 634, G4l, G42, G43, F23, F31, F13-

It then follows from this thaf14, F24, F34 must vanish everywhere, and as a result of

(14), thatdF,3 / 0x*, dFs1/0x*, 0F12 / dx* must vanish everywhere. However, sifeg

Fa1, F12 vanish on the slicg® = a they vanish everywhere. Furthermore, it followsriro
(13) and (16) that the derivatives®t*, G*, ..., G* with respect to¢* must all vanish on
the slicex* =a. These quantities, and thereforeGflf', then vanish in the infinitesimally-
neighboring slice* = a + da. By repeating this argument, it finally follows théitc the

G*? must vanish everywhere. Hence, the proof of the cthbility of the field equations
(11), (12) is complete.

First approximation. We shall examine fields that differ from the spkcase of
Euclidian ones only by an infinitely small amount:

hsy = &y + Es, (17)
&y equals 1 (0, resp.) whenever v (s # v, resp.), while theh,, are infinitely small

compared to 1. If one neglects terms that are quadratiein(i.e., second-order terms)
then one can replace the field equations with:

Ea,u,v,v - r_]m/,v,,u = 0’ (11:"-)
ha,u,a,v - hm/,a,,u = 0 (13-)

The Ansatz (17) allows one to make an infinitesimah¢formation to GAUSSIAN
coordinates. It can now be shown that because of egeafib), a choice of
coordinates is possible such that:

h a,a = ha,u,a =0 (18)

7]

is satisfied, so the only field equation that remains is:

= 0. (1h)

auy.v

If one denotes twice the symmetric partr_gj by @,, and twice the anti-symmetric
part byag, then the field equations in the two systems split:into

ga,u,v,v = O’
_ O} (19)

Qo
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a =0,
au.v.y ~ } (20)
Ay =Y

In my opinion, equations (19) express the laws of the gtaomal field, while (20)
express those of the electromagnetic field, in whitke &, play the role of
electromagnetic fields. For more rigorous considenati a splitting of the field into a
gravitational field and an electromagnetic field ig possible. One can find the details
of this in my paper in Mathematischen Annalen.

The most important question that is connected with(iigerous) field equations is
that of the existence of solutions that are free afjdarities that could represent
electrons and photons.

Presented on 6 February




Two rigorous static solutions to the field equatios
of unified field theory

By A. EINSTEIN and W. MAYER

Two special cases shall be treated in what follows:

a) The spatially centrally-symmetric (i.e., rotatiogaBymmetric) case, in which
there is likewise mirror symmetry.
When regarded physically, this will be treated as tktereal field of an
electrically-charged ball of non-vanishing mass.

b) The static solution that corresponds to an arbitrauynber of electrically-
uncharged mass points.

Remark. The development in 8 1 up to equation (27) involves onlyri@ous
mathematical proof that thge” can take the form that is given by (27) for suitableicgho
of coordinates in the case of central symmetry andadpatiror symmetry.

8 1. The spatially centrally-symmetric case.
We shall look for the most general three-dimensiooatinuum:
Xll X21 )le hSa(Xll X21 )Qg) Sl a: 11 21 3
that has the property of rotational symmetry; i.eat th possesses invariance under the
group:
(1) X, = apXp a,5=1,2,3,

where |pgs || is an orthogonal matrix.
The pointP(x;, X, Xs) is transformed into the poirP(X,%,, %) under (1), and the
normalized dreibeiihs?(x) at the poinP is transformed into the dreibein:

(2) h?(X) =ag h7 (%) sa,p=1,2,3
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at the pointP .
In order for there to be rotational symmetry, it ec@ssary and sufficient that there
exist a “local rotation” (i.e., a rotation of the &@@-bein) that is the same for all points of

Rs, under which the dreibeih,” (X) comes from the original dreibein” (X) by way of:
(3) h7 (%) = A h7 () sta=1,2,3.

Rs is asymptotically Euclidian at infinity; i.e., tI‘Fg”(x) converge tad, when thexs, X,
x3 (that is, at least one of these coordinates) go to tmfinWe write this briefly as:
hsa(oo) = O _

It follows from (2) thath,” (X) = asp and from (3) thabs, = Ass at infinity. In place
of (3), we would then have:

(3) h?(X) = ast 7 (X) sta=1,23,
which compares with (2):

(4) agp hsa(X1, X2, X3) = ast (g X, azj X, ag X)) a,Bst=1,23

as the functional equation that yields the desired b&imponents. The relations (4) are
identities in the quantities, X2, X3, a4z, as long as the matrixajz || is orthogonal.

We now direct our attention to the polfx;, xo, X3) and choose thays to be the
dreibein:

(5) Qap = (a$p a =123,
which is normal Euclidian, sin@s as, = (9<és (0¢y,» and in which we have set:

(%) wéa= X—;’ (S = Xa Xq) a=1,2, 3.

For this choice of the matrixds ||, (4) yields:
(6) @& hd(x1, %2, Xa) = n& (s, 0, 0) sta=1,2,3.
We move theg,ésto the other side of (6) and obtain:

(7) he(x1, X2, X3) = s (@&, M(S) =
= 0& &N + ©& @& (S + 1 & NO + 1 @& N.

We now use the indeterminacy in fixing the vectgis,, (3¢, Which, together with
wéa, must form a normal Euclidian dreibein.

If we introduce the zweibeingés, )¢ In (8), after they have been rotated by way
of:



Einstein — Two rigorous solutions to the field equatidnsnified field theory. 179

9) {‘2)5" = COSP o], + SINY 4],

(3)5a =-sing fla + cosp afla

then, in place of the chosen zweibeiné,, 3)¢2, we obtain a new representation of the
dreibeinhs(x;, X, X3), into which the arbitrary anglél@ enters. This representation has
the form:

(10)  hd(x1, X2, X3) = Py + Qs SiN @+ Ry COSP+ S COE @+ T(sp Sin @cos@
Since (10) is valid for an arbitragy it then follows that:
(11) h(x1, %2, Xa) = Pesp » Qusp = Risp = Ssp = Tisp = 0.
If one carries out these simple computations therget&s) = 0, R, = 0:
(12) ho'(9) =hs'(9) =9 =h’(9) = 0.
FromSsy = 0, Ty = O, it follows, moreover, that:
(13) h2?(9) = hs¥(9), h2%(9) = - hs(9).
Due to (12) and (13), (8) becomes:

(14)  hH(x, %, %)
_ %hll(sh 0Ll o+ ofs of 1+ BOH ofs b= of s o).

Now, 0)és ¢y + 3¢ 3¢y = & — 1)és (éy IS independent of the special choice of
normalized zweibeip)és , 3¢ . On the other hand, by permuting the vectgés, 3)<s,
the quantity2)és 3)¢, — (3)és 2)¢, changes sign.

However, if we allow transformations (1) for whidhe matrix ||ax || has a
determinant of plus one thepés 3¢, — @)és ()¢, IS also independent of the special
choice of zweibein. (We must therefore have that}| = 1,a, =1, 2, 3, in we are
given which of the two vectorgés, 3)és is to be regarded as the second and third ones.)
We call such transformatiopsoper rotations

If we introduce the alternating tensgys, with £23 = 1 then we haveyés 3¢, — 3)és
@& = &g )& , and instead of (14), we can write:

(15) h(X1, X2, Xa) = Xs X, A(S) + &y B(S) + & X C(9),
in which:

A(s):—s—lz(hf(s)—rf(s», B(9) = h¥(9), C(s):r;(s)gls (15)

are arbitrary functions afthat only need to correspond to the condition bgét) = &, .
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This necessary form (15) for the bein-components issimple computation will
show, also sufficient foRz to be rotationally symmetric.

Indeed, as long as the improper rotations (&)4| =— 1, i.e., “reflections”) are also
to be admitted we must 3g¢s) = 0.

In what follows, we shall be occupied with this casee] which is why (15), with
C(s) = 0, then represents the most general form of tiedmemponents.

We extend our continuumy, X, Xs, hs’(X1, X2, X3) to a four-dimensional one and

associate a vierbeim“(xy, X2, X3, Xa), S, @ =1, ..., 4 to the poinky, X, X3, X4, iN such a
way that:
(16) hSa(Xll X21 )le X4) = hSa(Xll X21 )Qg) Sl a = 11 21 31

and the remaining vector components, which depend uporxgndy xs, are determined
such thaRy is invariant under the group:

(17) X, =agpXp a,pf=1,2,3, X, =Xs.

Thus, thisRs has a pseudo-RIEMANNIAN structure — i.e., the metric aegg” can
be represented in terms of the normalized vierbéipx, ..., xs) (%) as:

(18) g”=h'h+hh+HH-HH a B=1, .., 4

We again have th#t“(«) = &, at infinity.
The transformation (17) takes the vierbbif{x) at the pointP(xi, Xz, X3, Xs) to the
vierbein:

(19) hi(X)=aphfN) a B=1,2, 3, h* %) =hdX) s=1, .., 4
and now a local rotation shall be given such that:
(20) h.?(X)=Bs h?(X) sta=1,2,3,4,

in whichBg; are constant quantities.

From the behavior at infinity, it follows from (1Mt ﬁs”(oo) =as, a,s=1, 2,3,
h,(0)=0,a =1, 2, 3, and furthermor,*() = hs'(x) = &, . Inserting this into (20)
gives:

8sq = Bsg, sa=1,2 3 B =0, a=1,2,3 Jdu=Bg.

Due to the choice of vierbein (16), relations (19) and (B®xsatisfied, except for:

X) = h(x) = as h*(X), st=1,2,3,

(21) h*
h*(%) = h'(x) = h(%),

(
(21) X

() Here, we shall do without the introduction of imagiesrin order to produce a definite metric
tensor.
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(217) h(X)=ass h/ (X = h{(X) a=1,2,3,

which are the functional equations for the remaining beimponents.
One addresses these equations by the method that wasyedhfalr (6), and obtains:

(22) he* (X1, X2, Xa) = D(S) Xs s=1, 2,3,
(22) ha%(X1, X2, X3) = E(S) Xa a=1, 2,3,
(22’) h44(X1, X2, )(’3) = F(S)

Since we should hava“(«) = &, at infinity, we have the following developments
for the functions that appear in (15) and (22)derco:

N9=Z-W+() a>2, B=1 (), F= ()
(23) > <
C,D, E=§(1+ (), b>1,

where the (.) brackets contain the factar.1/
In the coordinate system:

(24) X = ¢9) X 1=1,2,3, X =X,
in which the dreibeirx, X, X3, hs’(X1, X2, X3), @ = 1, 2, 3 likewise exhibits rotational

symmetry, one justifies the vanishing of the terms in {th&) correspond to the function
A by a corresponding choice of the functign

_J- As ds

(25) p=e B+AS

Sincegtends towards a finite value at infinity, we then haas simple computation will

show — the validity of condition (23) for the new vall®), F(s), C(s), D(s), E(9).
One again justifies the vanishing of the functb(s) that appears in (22) by the

further coordinate change:

(26) X, =Xt U9),

whereby (23) are valid in the new coordinate system, fasebe

Thus, with no loss of generality, we can assumeAfsxt= D(s) = 0.

We further assume that our dreibain X, Xa, hs?(x1, X2, X3) is itself invariant under
reflection, so the vanishing of the functi@{s) is implied by this assumption. The
vierbein (15), (22) consequently assumes the most geoenal f

27) {hj’ =A(90,, a,5=1,2,3, H =0, s 1,2,

h=7(9%, a=12,3, h' = u(s),
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in which we have renamed the functions that appear in it

We shall now look for solutions to the field equati@§ = 0, F““ = 0 of unified
field theory that have the form (27).

If we now denote the covariant vierbein that is adjoirits” by ks, s, B=1, ..., 4,
which is defined by the system:

(28) he ke = ° safB=1..4

(we haveksy = hsy, s=1, 2, 3Kag = — hag), then from (27) it has the components:

o, 0,5=1,2,3, :_L)l X, s 1,2,
(29) s
, a=12,3, ST

We must now write down the formulas that will bedisn what follows: One computes
3

| |
the A, =-— Z% Ky —% k,, as follows:

= 0%,
AL,=0, i)=1...,4,
A, —agﬂai,, ikl=123 A, =0, ik=12;:
X
30
(30) A;k:_ii(i)gj:_ii(ixkj, =123
HOx \ A HOX\ A
p =-ONK 103
0%,

The quantities\), = A, —A,, i, j, k=1, ..., 4 then follow from this:

N OA g 0nA s
0X 0%
/\:4:ii(£>qj, i1=12,3, AL=0, ik=12:
(31) HOx \ A
AL =0, ik=123, k=123
A =-OMH o103
0%,

Furthermore, we require the need the contravangetric tensor, whose system of
components has the form:
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9% =10, -1°%, %, a,=12,3
(32) 94” =—Uurx,

a4 _ 2

g* =2

a
uia

We first address the system of field equatibfis= AY, =0 (g, v — @, . = 0, where

a

@ =N, resp.).
Because of (31), we have:

(33) m:/\f;:a[ﬁw”—j, §=2, i=1,2,3,
7] A S
Ao (T
33 =N =—-_—"—"|—x |, a=1, 2, 3.
(33) A uaxa(/l j

Since the systemgx — @i = 0,i, k=1, 2, 3 is satisfied identically, all that remais¢;
- @4=0,0rg;=0,sinceg,=0;ie.:

(34) @ = const.

From (33), this gives the equation:

(35) 4 (Lj s+ 31 =k, k = constant,
M\ A A

which can also be written in the form:

I

(36) (1 s?’j =kZ ¢,
A A
and integration gives:
(36) %53 = kj‘%szds +ky , k; = constant.

A, 14, T have the developments= 1 + (), u=1+ (),r=c/s (1 + ()),b>1 at
infinity, from whichk = 0, due to (39, i.e., it then follows that:

(87) r=e é , e = constant.

(ky was set te.)
This systenF*" = 0 is then exhausted with that.
We now treat the other system of field equations:
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(38) G"“= N, NN\ =0,

Hiv pr' Yot

which, by a simple conversion, we put into the form:

a

NZ,
(39) GU”Eg”ﬁ|: o —ALA =AL A+ AN } a,u=1, .., 4

pv! Mo ap

We first treat the system of componeats 4, o# 4.
From (39), we get for them:

4
(40) 0 g“f’{"’a’; ~DLN A24/\24+A21/\Lp}+9“%3/\24

ap’ tij4d
0

From (31), (32), and by performing the computations, wefggines the factor:

I’ ! ! ! 2
(41) r(’uj s+)l’u _HA (Lj s+£ +(£j g=0.
H AU U\ A A H
' r 2r
Due to (35), we havek & 0! S+— =—.
ue to (35), w vk E 01): (Aj g g

(41) is satisfied for= 0, so we assume thatz 0. Hence, we can divide (41) lay
and get:

A 2
(41) (”jy“’ﬂ’“ {”j =0,
H AU H H
which leads immediately to:
(42) [ A § = constant,
and then to:
(43) U=k j _+ ke .

SinceA andy tend towards unity at infinity, we hake= 1, so:
(44) H=1+m I— m = constant.

We now address the system of components in (38)yavh# 4, o= 4.
For it, we have:
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oNG . . . .
(45) g” l:a—):;p —Aiu/\i; _Ai;v/\ii +A3j /\lep:l + g4p[AZj /\Jdp] =0.

By performing the computations, this time we §etimes:

w0 e

S

' | 3 3
217 2 +2,u)2le+6)l e 4¢l = 0.
us u’s | us u$

Since:

64°%  4€'A° _ 2)13e+4)l3e g
us' usd oust ous g )
it follows from (46) that:

(47) (1—§4j

S

AN 4 223 a®
A? + + +—=0.
[ﬁj 75 /14 7

Here, we divided through bye2e = 0 already satisfies (46).
An elementary conversion of (47) gives:

(48) (1—6—421}('”1) Lo,
S S S

SO

or finally:
(49) A=c

SinceA is unity at infinity, we must se&t= 1, and we ultimately get:

(50) A=
41-_

S4

We already know the functionk x4, and 7 that are characteristic of the rotationally-
symmetric case from (37), (44), and (50).

The still-unused relations (39), which are thesofee whicha = o= 4 anda, o# 4,
must be satisfied identically for the functions)X344), and (50).

Fora= o= 4, (39) becomes:
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vp 6/\jp 4 i A4 TN
(51) o —0, N, —AL NG [+g%ALN, =0,
or
I I ! AI I
(51) (N Bp— T X Xp) axv(ﬂ @j—(%} Evfp—ﬁfvfp}
HA 0 (r1 _
—|=—x |=0,
% E e P axp()l X'j
resp.

This equation will, in fact, be satisfied due to (37), (4d (50). Fow, o# 4, (39)
reads:

(A%—ﬂxvx,,{a" A€, -680 4[5 ] 60,0, 64
AV AV
[ jfvcza(fad,a £5,)- [ jf,cfm(faczp qu[,)}

, 0 (r B
(52) +A'TX a_)(j(jxaj(gadjp ¢:90)

0 (A _0 (1 A 0(r A" 0

—urx | 2 A2 [ L 5, 2| Lx |+ L Ex |5, -¢0

MXVLXV[// axg(ﬁ X"Dnﬁ” 7 0x, (Ax”j M&b JJ(E" o ~41%)
VRTITNEINTS
w o pax \AT) u A

0o(r 0 (r
22y 12 Lx |=0.
* axj(AX”jaxj(/lx”j

This system will also be satisfied for the functi¢8g), (44), and (50). We shall let
the reader carry out these computations, of which, @méyrequires any attention.
We note the result: The vierbein:

h' = O , a,s=1,2,3, h*= 0,
eZ
4:]_—74
S
(53)
he=—=_22 0g=123 1+mj4}—is
e’ S
4:]_—74
S
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is the most general solution to the centrally-symmégna mirror-symmetric) case. As
far as the physical interpretation is concerreeid, to be regarded as the electrical charge,
and m, as the ponderomotive mass. This interpretationnisiself, arbitrary, if one
disregards the fact that it conforms to the meaning ef fiteld that is given by
considering the field equations in the first approximatidine appearance of tweand
only two — constants is noteworthy, since, in retrospect, shisquired by experiment.

§ 2.  Static, pure gravitational field.

From equation (53), we derive the fact that for vanishingrgee, all of the hs’
except forhs*, are constants, while,* = 1 —m/ s. This finding leads us to conjecture
that there are static solutions of a general somvfach onlyh,* is variable.

To that end, we set:

(1) hSa = éa ] S = 11 21 31 h4a = da O(Xll X21 )Qg)l

such that all of théd;, are zero, except for:

dino
(2) Ajﬂ:/\jﬂ:—kM h4‘fﬂ:— F I
i

All of the field equations are satisfied identigaéxcept for:

©) Gst=g™ {62\)5” —Aiv/\ip} =0,
or
4
(3) 0 =§?T“:—Aip/\2p = Zaa'xr'” + aa'rx‘p” aa'r;p” ,
resp. This says thatsatisfies:
2
(4) ) ZX“ = 0;

i.e., gis a potential.
Since g converges to unity at infinity, the solution (lmetcase of finitely-many mass
points) reads:

m
(5) o=1+>—, m = constant.
Y

This rigorous result is, in retrospect, importéot the physical interpretation of the
theory on the following grounds: Formula (5) shawgsthat there is a rigorous solution
that corresponds to the case in which two or mot®und electrically-neutral masses at
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arbitrary distances from each other are at resterel'ls no such case in nature. One is
then inclined to judge this to be a failure of the theongmvit is compared to experiment.
This was also precisely the case when one attemptedrit@ dee law of motion that
followed from the field equations for such singularitieghe original statement of the
theory. However, this does not seem to be the cabe jpresent theory)(

Hence, no argument for the utility of the theory banderived from the existence of
the static solution that is considered here. Howens, knows full well that in the new
theory one must demand freedom from singularities forsaiytions that could represent
the elementary particles of matter.

Prior to the discovery of such solutions, it would seé¢m possible for us to deduce
the law of motion for the particles from the field efjuas.

Received on 11 March

() The derivability of the law of motion in the earligatement of the theory rested upon the fact that
we had a field equation in the form of a symmetric tergoation whose divergence vanished identically.
However, this condition is not satisfied in the pretieaory.



Solution with Axial Symmetry of
Einstein’s Equations of Teleparallelism

By G. C. McVittie, Christ’s College, Cambridge

(Received 9 June 1930. Read"November 1930.)

§ 1. Introduction. Einstein {) has recently adopted a new set of field-equations in
his Unified Field Theory of Gravitation and Electricity the so-called theory of
parallelism at a distance or Teleparallelismand has given?( a solution of these
equations with spherical symmetry, corresponding tdi¢the of a charged mass-patrticle.
In the present paper, we discuss the solution of thgsatiens with axial symmetry,
which corresponds to a statical field whose field vaeabtiepend upon a single
coordinate only- viz., the coordinate which is measured along the axigrofretry. We
begin by finding this solution and showing that it is theyamle of this type possible on
the theory of teleparallelism. This result contrastth that of the hitherto-accepted
relativity theory of 1916, in which a number of solutions bisttype are known,
corresponding to different values, assigmegriori, of the energy tensor. In particular,
the gravitational field of a uniform electric forc8 pas, on the 1916 theory, the axial
type of symmetry defined above. Bearing this in mind, wa Si®w that the single
solution with axial symmetry yielded by the theory of telafialism has the following
three properties: Firstly, it contains no electronggnforce, according to the definition
of this force in the theory of teleparallelism. Sadly, it is not one of the fields of
electromagnetic force already found on the 1916 thedtyrdly, it corresponds, on this
latter theory, to a distribution of matter which, althopgissible in theory, cannot be said
to have any physical counterpart.

8 2. The field equations. The field variables in a four-dimensional manifold, are
according to the theory of teleparallelism, sixteen ttiash®. Thex are Gaussian
cooordinates, and the manifold is taken to be Riemannighasds metric is:

ds’ = gy dx, dx, .
The geometrical interpretation of tl is this: Consider a point whose coordinates are

(X1, X2, X3, Xa), then for a givenr and fors= 1, 2, 3, 4, the fowh” are the projections on
the a-axis of the Gaussian coordinates of four orthogonal wedtors in a tangent

Q) A
0 A
©) G.

Einstein, Berlin Akad. SitZl (1930), 18.
Einstein and W. Mayeibid. 6 (1930), 110.
C. McVittie, Proc. Roy. Soc. (A)24(1929), 366.
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Euclidian manifold, touching the Riemannian manifold at thatpmnsidered. It can be
shown {) to follow from this that:

g’ =" O =y hy, (2
S/IshV:JVya *hu ' = &7,
where
*hy, = (minor ofsh* in [ |) /|0 ], (3)
g =h=|d"],

5‘;, = Kronecker’s delta.

A further restriction is placed on thle? as follows: Imagine the four unit vectors
defined by them set up at each point of the Riemannian nénifd/e shall call this a
“set of 4-vectors.” Then, every set of 4-vectors Whtan be obtained from a given set
by rotation— the same at every pointof the given set is to be considered equivalent to
that set. This enables Einstein to define a connectiinrespect to the set of 4-vectors
for which teleparallelism exists. The coefficientsltd connection are:

d°h
NS, = Fot (4)
X,

and since they are not symmetricalaandyv, we put:

N = B~ B, ®)

v

@= N, (6)

The field equations given by Einstein are then:

99" (N, —NA7) =0, (7)
Ny =0. (8)

In (7) and (8), the semi-colon denotes that the cawmtmlerivative with respect to the
connection (4) has been taken.
The group (8) of equations can be replaced by:

94, 09,
ox ~ 0Xx

a u

= 0. (9)

The *h, are interpreted physically by Einstein (in the first appration only) as
follows:

() A. Einstein, Berlin Akad. SitZ17-19(1928), 217. It should be observed that we use the sunmmatio
convention regarding repeated suffixes, whether thesia &atin or Greek type.
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If *h, = J; +h,,, where h,, is small compared to unity the, = h, - h,, is the

electromagnetic force tensor in this field, and the= ﬁsﬂ+ﬁﬂS are the gravitational
potentials of the theory.

8 3. The form of the field equations for axial symmetry.Let us denote by, the
coordinate along the axis of symmetry of the field and.bys the coordinates along the
other two directions of space. Let denote the time. We consider fields which are
statical and where, moreover, t#i€ are functions ok; alone. In consequence of this,
the metrical tensog,, is, by (2), a function ok; alone. We may therefore take the
geometry of thexg, x3) “planes” to be Euclidian, and consider these two dinates as
analogous to Cartesian in plane geometry, soxthandx, will enter symmetrically into
our equations.

Furthermore, we contemplate fields containing continubstsibutions of matter or
energy, and assume that no singularities of our fialiakles will occur at the origin.
We also take coordinates such that, at the originhtheave Euclidian values.

We now proceed to show that under these conditions sixlgf the sixteegh” are
non-zero, and of these, only five are independent.

Consider, firstly, a spatial section of the four-dmsienal manifold representing the
field. Such a section is a three-dimensional contimwihich is invariant under the
transformation:

X=X, X, = AapXp (a, =2, 3), (10)

where (gp)) is any orthogonal matrix.
By hypothesis, all of the field-variables are funcsiafx; only; hence, we put:

N7 (X1, X2, X3, Xg) =sh” (X1).

Since the geometry of they(x3z) planes is to be Euclidiagh” must, for a fixed value
of x, and fors, a = 2, 3, be a constant multiple 6f ; hence:

h® (x) =3h° () =0 and Hh? (x1) = 3h® (xa).
Since our field variables are to have Euclidian valtdse origin, we have:
Hh7(0) =5 (s a=1,2,73). (11)

We now apply the condition that all sets of 3-vectlotained from each other by
simultaneous rotations at all points are to be equivalBetform the transformation (10)
on a set oth“; we get:

NER) = () (51,23 (12)
A

“(X)=a, (%) (a,8=23).



192 Selected papers on teleparallelism

If the newh“ are to be equivalent to the old, there must exist a unigirgonal
transformation |sy)) — the same for each point of the three-spasach that the new set

of 3-vectors, specified by theh?(X)at (X,%,,%) can be rotated into the set of 3-
vectors, specified by theh”(X) at the point(x,X,,%,). That is to say:

N (R) =Ac N (R) st y=1,2, 3).

Hence, the functional equations for théare, by (10) and (12):
A T(X) = H(%) (st1,2,.3),

o (13)
'A§tth ()i):%ﬂ sha( %) (a’ﬁ:213)'

Since the As)) is the same for each point, it is sufficientdalculate its value at one
point. We take the origin. Applying (11), we d@etm the first group of equations (13):

@l :ASt dll
Ai1=1, Aq=0 ifs# 1,

and from the second group of (13):

agp 0L = At 07 (a,8=2,3) 6t=1,2,3).
Hence:
Aas = Asa (s, a=2,3),
0=As (a =2,3).

By substituting these values of tiAg into the first group of equations (13), they
become:
1hl(X1) = 1hl(X1),
2hl(X1) =ax 2hl(X1) +az 3hl(X1),
3hl(X1) = a3 2hl(X1) + ag3 3hl(X1),

but theay,, aps, ass are the elements ahy orthogonal matrix. Hence, we can only satisfy
the last two equations if:
h'(xa) = sh'(x) = 0.

By the same reason applied to the second grouguaitiens (13), we get:

1h?(xa) = 1h*(x) = 0.
Hence, we can describe any spatial section ofield by means of the three quantities
1h'(x0), 2h%(x1), andsh®(x).

To extend this to four dimensions: The 4-spacetmosv be invariant under the
transformation:
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X4 =X, Xl =Xy, XH = agp Xs, (0’, ,3: 2, 3), (14)
and such that:
N (Xe, Xo, X3, Xa) = h” (X1, X2, X3) (s, a=1,2,3).

Hence, we have that the only non-zéf®(s, a = 1, 2, 3) argh'(xy), 2h%(x0), sh’(x1) . As
before:
7 (X1, X2, X3, Xg) =7 (X1) fors, a=1,2, 3, 4.

Applying (14) to theh?, we get:

(%) =" (x), (%)=t (x) (s=1,2,3,4),
(%) = agsd’ (x) (a, B=2, 3),

and, as before, there must be a unique orthogonaldrameion Bsy)) for all points, such
that:

h? (%) =Bs,h"(X) (st a=1,2 3, 4.

Thus, the functional equations for € are now:

sha(xl) = Bst tW( )9’ SH( X): B‘;t SF( &’ } (15)

8, () =B H(%,  ($EL234m f=273).
Applying (11), we get:

Bus=1, Bs=0 &%4), Bi1=1, B1=0 6#1),
and
agp = Bst (a, =2,3;51t=1,2, 3,4).

Substituting these into the equations (15), we g@raw the same manner as fof, 5h’,
sh', 1h° that:
4h2 = 4h3 = 2h4 = 3h4 =0.
Hence, finally:
The H appropriate to a field with axial symmete:

N0, (), (%), K9, R(%, AC 3,

where L, H(X=,8( 3 (16)
and ,H(x)=,H(¥=9J,=0 atthe origin

all the other If are zero

8 4. The solution of the field equationsBefore proceeding with the actual solution,
we shall make the further restriction that the fddnis indefinite, and to avoid the use of
imaginaries in our calculation we shall introdulse humberg, , which are such that:



194 Selected papers on teleparallelism

e=leg=6==-1
in our case.
The formulae (2) and (3) then become:

g =e ', g =& °h, hy, (17)
esshlswzév,u’ Sbltﬁlzats’ h:| @shli (18)
*h, =(minor of ' inl e H|)/| e ],
whilst
" 0 °h
A%, =esh” ax”ﬂ , (19)
and (5) and (6) remain unchanged in form.
Also, in virtue of (14), the form of (1) may nowe lwritten as:
ds’ = Qua(x1) X + Qra(xe) X dX' — gra(xa) A = GoolXa) (AX6 + dIX) . (20)

Since we require both the” and the’h, , we calculate the former in terms of the
latter by means of:

¥ = (minor of*h, in | es*h, |) / |es*hy |.
We get:

,ht='h/H, h=-%h/H ,H=-'h/H
=/ H, W= ,®=1/2h,

h=-°h ?h, H, (21)

where H=*h,‘h-"*h'h.

The non-zerd\};, are:

A31:4h4d4m—1h4d1'1:[ a0 d t‘IJ/H,

dx dx dx dx
d*h d'h d*h d'h
A4 - h4 _ h4 - 1 _ 4 H,
11 4 d)& 1 d)i [ n d)S_ n d)&
d? dlog*
R @

4 1 1 4
A:111:4h1d I’1_1hld h: 4hﬂ,d h_lhz;d h H,
dx dx dx dx

1 4 1 4
A}u:lhld h'+4th' h_ 4h4d h4—lh4d h
dx dx dx dx

Hence, the non-zerd;, are:
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4 _ 4 4
/\41 - /\14 /\41’
3 _ 2 _ 3 _ 2 _ A3 _ a2
/\31 - /\21 - _/\13 - _/\12 - /\31 - /\21
1 _ 1 _ 1
/\41 - /\14 - /\41-

The functionsg, are, by equation (6):

@ = Ajl’ b= _Ail_AZZI_ASSI } (23)

¢=¢=0.

We now proceed to substitute these values into trek dglations (7) and (8). Take
first the equations (8) or their equivalents (9); theguce to the single one:

d d
- =0
dx dx
Hence:
N, =a (a = constant). (24)

The equations (7) may be written in full as:

o,
gvpl: axvp — AL N, — DL NG +AVJ'/\JU/>:| =0.

Hence, the ones which do not vanish identically in oue eas:

g %Az—mw—amﬁam}g%t@‘:: 0 25)
g {j—ﬁazl—<aif—aiml+amq+g%‘1@ L=, 26)
gt _(f—XlA:tl —ALA‘;J RS =0, @7)
g %AL —Aapil} +gUAlAL, -0, (28)
| odhmeir-atal e it =0 @9)
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The six equations (24) to (29) now determine the five unknthy . These six
equations are not, of course, independent; the identkissng between them have been
given by Einstein’j.

We have, by (24) and (28), either:

14 44 _

or
A% =0.

The first alternative is impossible, for (by (11)):

g =4n*1h*—hth* = Cha*hi=hi the) /H2 = 0 at the origin,
g =)= hH? ={th)?’=(h)3/H* - 1 at the origin.
Hence, we have:
A = 0.
(27) now gives:
b4 gl4 =0,
whilst (25) and (26) give:
Al = 0.

Hence, equations (24) to (29) are equivalent to:

AL =a, (30)

A;, =0, (31)

ag=0, (32)

Afl =0, (33)

g %Ai—(ﬂiﬁz—ﬂiﬂ Ll-giraz=o. (29)

By (22), the equation (33) is:
4 1
lhl—d h —4h1—d h =0.
dx dx
Hence,h; is a constant multiple dfh; . But,*h; — 0 at the origin, whilsth; - 1, so
that the multiplier must be zero.

Hence:
*hy =0, whilst'hy is arbitrary. (34)

Again, by (22) and (34), the equation (31) reduces to:

() Berlin Akad. Sitz1 (1930), 18.
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Hence:
4h4 =1 (35)

With regard to the equation (32), we have three possibilitie

@ azo, g“=0,
b) a=0, g“#0,
© a=0, “=0.

Consider §):
0= gl4 - 4h4 4hl _ lh4 lhl) JH? = - lh4 / (4h4)2 I:(lhl),
by (34). Hence:
thy=0. (36)

But this is impossible & # 0, since, by (24) and (22):

dx dx

and, by (36) and (34), the right-hand side of this equatieerts whilst the left-hand side
IS not.

Hence, the alternativea) is impossible. Similarly, it may be shown th& (s
impossible. We are thus left with)( which, by (24) and the value gf* given above,
leads to:

h,=o. (36)

Again, the equation (29), by (22), (34), (36), becomes:
2, fd, o d o od
d—xlz(log h,) { o (log hz)} o (log h)G&(log h)=0. (37)

Now, by (34).'h; is arbitrary. Hence, change the variable foarto z by means of:

thy dx = dz
(87) becomes:

d oy [ o T
—(lo - —(lo =0.
Sxog,)-| < (logn)
The solution of this equation, with suitable athosnt of the constants, is:

’h, = ! (c = constant). (38)
c(l-2
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Hence, finally, putting = x; / ¢, we may write our solution in the form:

dg = df - c2df-( & ¥ i+ oY
with *h = 'h, =0, (39)
=1, 'h=c’ *h=°h=(c ¥

The condition’h; = 'hy = 0 is important, since it enables us to say thate is no
electromagnetic force in this field, according e definition of this force in the theory
of teleparallelism. For, referring to this defiai given at the end of § 2, we see that for
(39), in the first approximation, all ttag, are zero.

We see that the equations (24) to (29) are jusicEunt to determine the field (39).
This field is therefore the only one with the tygfeaxial symmetry considered which can
be obtained from the theory of teleparallelism, ahdis a field not containing
electromagnetic forces.

We should add that the metric given in (39) id tifaa curved four-space, as may be
seen by calculating a few components of the Rier@2imistoffel tensor belonging to it.

8 5. Comparison with general relativity theory. It is interesting to note that the
gravitational field of a uniform electric force)(on the 1916 theory, has just the type of
axial symmetry considered in this paper. The fisid

dg = &% df - & dx- €*( de dx }

with s 1/
F,=40e"m""=-F, F,=0 (uv#14),

(40)

whereF,, is the electromagnetic force tensor.

Since (39) is the only solution of this type whiahll satisfy the equations of
teleparallelism, the solution (40), which is nodueible to (39), will not satisfy them.
The gravitational fields of electromagnetic foraas the two theories do not therefore
agree.

If we calculate the energy tensor:

- 87T/= G/ -1GJ,

whereG,, is the contracted Riemann-Christoffel tensor,(89), we get:

() G. C. McVittie,loc. cit.
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~ 87T, :5(1—ﬁj ,
C
-2
87T = (1—%} , (41)
-2
—877T22:—877T33:Z(1—%j .

Since:

-2
-87T=-8nT'= 10(1—%) 20,

the energy cannot be solely electromagnéic The energy tensor (41) corresponds, in
fact, to a distribution of matter whose density isozatx; = = o and infinite at = c.
The hydrostatic pressure in the matter is such that, apamy, the pressure in the
direction is half that in th&, andxs directions. Although theoretically possible, such a
distribution can hardly be said to have any physical @patt.

8 6. Conclusion. The disagreement between the results, for thelsfiedf
electromagnetic forces, on the general relativitptireand the theory of teleparallelism,
pointed out in the last paragraph, provides one reasaejémting the latter in favour of
the former. It is true, of course, that there idivect experimental evidence in favour of
the field (40), but this result was arrived at on thdsbasgeneral relativity, for which
experimental evidence can be found in other directidie theory of teleparallelism, on
the other hand, has provided no results, as yet, whidh ageordance with experiment.

Another disadvantage of this latter theory is itgdity; one set of mathematical
assumptions with regard to the field-variables leads e esult only; on general
relativity, the same set of assumptions leads to mae tine, corresponding to the
solutions of more than one physical problem.

As far as the investigations in this paper go, we thezefonclude that the theory of
teleparallelism is unsatisfactory.

() See A. S. Eddingtori;he Mathematical Theory of Relativit1924), Ch. VI, § 77.



On the theory of spaces with a RIEMANN metric
and teleparallelism

By A. EINSTEIN

Some time ago, a general property of such spaces waslprowehich the question
of its physical interpretation was temporarily deferrgd (

Let (T"") be a tensor that can have other indices besidesotiteavariant indiceg
andv. The following commutation rule for differentiatiaalways true then:

T e =T 6 ==T o N, (1)
By contraction, it arises that:
Ty~ Ty =-T%, AV (1)

From this, a simple conversion gives:
(T =T =TT AL L u +TT A, =0. 2)

Only the anti-symmetric part of the tensbrenters into (2). We may therefore
assume, with no loss of generality, that the terfises anti-symmetric, as far as the
indices in question are concerned. With that, (2) tdke$orm:

[T = 3T AL Lw +3T7 N, =0, (2)

This relation can be further converted by means of thaitgi¢hat follows from the
integrability of parallel translation:

Ny EWr — Gro (% = Ngp), (3)
or
/\57;;1 EWir ~ ot D /\57 : (m)

() The contents of the paper “Die Kompatibilitat...” in skeBerichte, 1930, |, will be assumed as
known in the present paper.
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In fact, due to (8), we have:
%Tm /\51;;1 = (Tm @); = %Tm? r+ %%Tm/\gr .
If one inserts the right-hand side int@)2into which one simultaneously introduces
the divergence operator:

AV/V = AI/; v m/ AV, (4)

whereA" is a tensor of arbitrary rank with a covariant indethen one gets:

U7, =0,
U =T, -1T7A\.. ®)

Thus, starting from any tensor T with an anti-syrmim@air of indicesuv, a tensor U of
rank one lower, whose divergence then vanishediaddly, can be obtained by a linear

differential operation.
Therefore, by way of example, starting from theste:

L = N ta(@,9° —9 o)+ bS, . (6)

in whicha, b are arbitrary constants, and we have set:

Sp= N N + NG, @)
we can derive the tensor:
G/IU = LZV/V _% LZT/\gT ! (8)

whose /-divergence, when taken opewanishes identically:

La
G //1

0. (&)
From this, it follows that the system of equations
G“=0 ©))

is a compatible system of equations for thte that might also be affected with the
constants andb.




ABSOLUTE PARALLELISM AND UNITARY FIELD THEORY

E. CARTAN

The first attempts to construct a unitary theory @& travitational field and the
electromagnetic field returned to the ideas that spdwe@eral relativity. The theory of
Einstein, when reduced to its essentials, reduces thecphykeory of gravitationn
vacuoto geometry. Spacetime is described by a four-dimensi®ieatannian manifold
whose curvature expresses the apparent deviations giriti@ple of inertia that are
produced by gravitation; as for the laws of gravitation tledwes, they are expressed by
certain geometric restrictions that are imposed an dbneral schema of the four-
dimensional Riemannian manifold, restrictions that argally translate into the ten
celebrated Einstein equations.

In this theory, there is no place for the electrometigrfield, electricity, or matter.
One arrives at the truth by considering matter to begthmerator of the gravitational
field, but in the form of a point-like singularity of spioge. As far as electromagnetism
is concerned, the Maxwell equations may not be assdciadéher locally or
asymptotically, with any geometric property of a Riemannmanifold; only the
electromagnetic energy tensor is susceptible to anpirgtation in terms of Riemannian
geometry.

The success itself that was obtained by Einstein itheéwry of the pure gravitational
field must lead to the search for a more completerthe Everyone that attacked the
problem took essentially the same viewpoint as Einsteid: 4 geometric schema that
realizes all that general relativity has realizedjdist the gravitational fieleh vacuq but
also for the electromagnetic field, electricity, amdtter. H. Weyl was the first to
imagine a metric manifold in which there exists no absolutit of length, or rather, in
which the units of length that are chosen by diffecdastervers may be compared locally,
and for two given observers the result of the corsparivaries with the choice of
intermediate observers. Our intention here is peitb study the theory of Weyl nor to
describe the history of the work that followed. We direur attention to the latter
attempts of Einstein that were founded on the noticamRiemannian space with absolute
parallelism. Moreover, some of the observations tleatwll be led to formulate depend
on the principle of the theories of the geometrizatbphysics itself.

As one knows, Riemannian geometry is a generalizafietementary, or Euclidean,
geometry. Riemann founded it by detaching the notion ofraistitom geometry and, in
order to define the distance between infinitely closengspiby giving it an analytical
expressiona priori, that is analogous to the one that provided the theordigtbfgoras,
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but more general. The possibility of constructing a geacteory on such foundations
that preserves at least some of the Euclidean geonmetions is guaranteed by the
following remark: in elementary geometry, the giventbé distance between two
infinitely close points suffices to reconstruct thtiree edifice of that theory. The same
procedures that one uses to locally reconstruct a divetfidean space by s’ () in
curvilinear coordinates may also be employed, in part, vamenis concerned with an
arbitraryds’; from this one may arrive at the very important notidf parallelism that
was introduced by Levi-Civita; thanks to that notion,sitpossible to say that two
directions withinfinitely closeorigins are or are not parallel, and form this or dragle.
One knows the physical importance of this notion in gamedativity: when a material
point of very small mass is placed in a vacuum insidgaaitational field it moves in
such a way that the world-vector that represents itsn@mbum and energy remains
constantly parallet or rather.equipollent- to itself; in other words, it obeys the law of
inertia. The parallelism of Levi-Civita is relatedttos (vincolatg, in the sense that if a
vector is displaced by parallelism in such a mannerittharigin goes from a poift to a
point B then the final position of the vector depends on the fedidhwed fromA to B;
parallel transport is not integrable.

Riemannian geometry, when completed with the discoeéhevi-Civita, was used
that way by Einstein in his general theory of relatigfy One may nevertheless remark
that nothing obligates us to think that this geometry corretgpdo physical reality.
Indeed, we start with the hypothesis that is quite diffitm not admit that our space,
without being Euclidean, may be reduced to a Euclidean spaugy sufficiently small
region. Imagine some physicists of the Euclidean nligntaach of them makes his
observations in his immediate neighborhood, and will adijuradopt a rectangular
coordinate system and place himself at its origin.wtf heighboring physicists want to
coordinate their observations, then they must locéhezereference system of the second
with respect to that of the first. They carry outnsophysical procedure, into whose
nature we shall not enter, that permits us to say:

1. That the origin of the second triad has such-and-suctdo@tes with respect to
the first;

2. That the axes of the second triad make such-and-sucksangh the axes of the
first.

Physics therefore gives us:

1. The distance between two infinitely close points, ineotwords, thels’ of the
space.

2. The angle between two directions that issue from timiiely close points, in
other words, the law by which a vector may be locallysparted parallel to
itself.

() ds’ is the expression that gives the square of the distmtaeen two infinitely close points.
() In reality, the discovery of Levi-Civita came aftemgeal relativity, but the notion of parallelism has
served to make it much more intuitive.
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We thus recover the two fundamental notions of dcgtaand direction here, but these
two notions appear independently of each other here. dntlesre is no reasoa,priori,
other than the reason of geometric simplicity, toKklftimat the parallel transport that is
provided by physical observation coincides with the par#igisport that is deduced
from theds’ of space according to the law of Levi-Civita. The metric schema that
logic itself imposes upon us in order to recover the lafvphysics must therefore be
more general than that of classical Riemannian geomatcause once one is given the
ds’ of space one may imagine an infinitude of distinct lafysarallel transport.

In his latter work on unitary field theory, Einstein do®t take a viewpoint that is as
general as in the foregoing. He admits that the finaitipm of a vector that is
transported by parallelism in such a manner that itsrogges from a poinA to a point
B does not depend on the intermediate path that was falloimeother words, that
parallel transport is integrable, or furthermore, thatahgle between two vectors whose
origins are arbitrary has an absolute significance: ith& of absolute parallelism
(Fernparallelismus).

It is easy to describe the most general manner ofidgfan absolute parallelism in a
given Riemannian space. Indeed, attach referencensysterectangular frames to the
various points of space according to some arbitrary itathen suffices to agree that two
vectors with arbitrary origins, A and B, are paralletather, equipollent if they have the
same projections on the axes of the reference systémsheir origins atA andB; these
reference systems themselves will be called paralldlere are thus an infinitude of
possible absolute parallelisms in a given Riemannian sp@ce the by which one
attaches a rectangular frame to a point of spacengpletely arbitrary; however, it is
important to remark that if one makes all of the fraare about their origins in the same
manner then one obtains the same absolute paralledisra; result, one may give the
frame that is attached to a particular point of spawwe @nd for all.

One may also arrive at the notion of a Riemannianespath absolute parallelism by
following a path that is the opposite of the preceding oDee first defines an absolute
parallelism in am-dimensionahon-metricmanifold by attaching Cartesian frames to the
different pointsM of this manifold, that are formed fromvectors whose origin is &,
and agreeing to say that two vectors with their origind and M ' are equipollent if they
have the same projections on the coordinate vectorsathaattached to &t and M.
One then introduces the metric by agreeing, for exampde,the square of the distance
between twanfinitely closepointsM and M’ is equal to the sum of the squares of the
projections of the vectoMM' onto the coordinate vectors whose origin isMat
Naturally, one may obtain a different metric if ontaahes another system of Cartesian
frames that are mutually equipollent to the differenhisoof space, while preserving the
previously defined parallelism.

From the foregoing, one sees that the metric and tralgdsm are dependent on
each other, but each of them may be defined arbitranige the metric is given, there
are an infinitude of absolute parallelisms that are coivipawith that metric; once the
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absolute parallelism is given, there are an infinitudenefrics that compatible with that
absolute parallelism.

In classical Riemannian geometry the notion Riémannian curvatureplays a
fundamental role; it is related to the deviation thaveator experiences when one
transports it by parallelism by making it describe a edosircuit, or cycle, about its
origin. This notion, when envisioned from the precedingvp@nt, disappears in the
new Einsteinian schema since parallelism has an absauiécaince; one may say that
a Riemannian space with absolute parallelism has no curvatiieanwhile, there is
something that differentiates such a space from Euclisieace, and that is itersion.

In order to make this new notion neatly comprehensi@eall some well-known
properties. One knows that in ordinary the coordsatea pointM with respect to a

m -
rectangular system of axes with orighare the projections of the vect@M on these
axes; one may also obtain them by conneddrig M by a broken line and summing the
projections of the different parts of that line. Onay likewise take a curved line, which
is to be regarded as the limit of a broken line. Nowagime an observer that is placed in
a Riemannian space with absolute parallelism, but has bd&aut mentality. If the
observer that was placed@tand has adopted a rectangular system of axes with @igin
wants to calculate the coordinates that one mudbai to a pointM then he connectd®
to M by a continuous line and proceeds as we have always doregdres the [In©M
as the geometric sum of a very large number of snegliovs. He transports them @
parallel to themselves and forms their geometric sihhe. thus finds a vector with its
origin atO that he considers to be equipollent to the @¥, and whose projections on
the axes will be the desired coordinates. Howeverhdaf dbserver join®© to M by
another line, he will be led to consider it as equenlito a second vectamhich not be
the same as the first vector, in gener#i.other words, the various lines that j@rto M
are not all equipollent to the same vector.

One may present other things. If one considers actlosetour or cycleC that is
traversed in a certain sense, in the context of Ewalideometry, then it is equipollent to
a null vector, from a fundamental theorem of the thearvectors; in a Riemannian
space with absolute parallelism, this is no longer #s®cthe cycl€ is equipollent to a
certain vector that one calls ttasion vectorof the cycle. It is only in Euclidean space
that all vectors have a null torsion vector.

The notion of torsion may also be introduced in anfenian space with a
parallelism that is not absolute, but it is more diffi to explain in the general case. We
content ourselves by pointing out that the classicahf@nnian space, which has Levi-
Civita parallelism, is endowed with curvature, but not torson the contrary, the new
Einsteinian space is endowed with torsion, but not curvature

One imagines that the analytical expression for dmsidn of a space involves a
tensor with three indices. Indeed, any cycle may beomposed into elementary
parallelograms; on the other hand, the torsion vedi@uoh a parallelogram involves
three directions, those of the edges of the parallalogand those of the torsion vector
itself; a series of indices corresponds to each e$dtthree directions. In reality, the
torsion vector of an infinitely small parallelogram proportional to the area of that

. . . . k
parallelogram, and the factor of proportionality appeatse torsion tensdy; .
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The various components of torsion are not absolutelyrampifunctions; they satisfy
certain identities, and it will suffice for us to indte their geometric significance.
Consider a three-dimensional volume in space; deconthesdosed surface that bounds
it into a large number of small areas, which are boundedytigs that are all described
in the same sense. The geometric sum of the torsictions of all of these cycles is null.
This theorem is a particular case of the general theofehe conservation of curvature
and torsion.

We first approach the problem of the unitary theory bgifgaon the notion of a
Riemannian space with absolute parallelism. From the glkideas of Einstein, there is
nothing to stop us from passing to a rigorously Euclidean wgveBuch a universe is
physically impossible: its metric may be produced only by pihesence of material
bodies, and the existence of these bodies is suffit@e make the universe no longer
Euclidean. Howeverall of the intrinsic geometric properties that characterize a
Riemannian space with absolute parallelism are derivable from itsotgrand are
expressed analytically by means of the components eftdhsion tensor and their
covariant derivatives of various orders. Therefokghysics is geometrizable, then it
must be true that all of the physical laws are expeesy partial differential equations
between the components of the torsion. On the otdned, ht is natural to admit that all
of the physical laws are logical consequences ofite fumber of them. The problems
that the unitary theory poses are thus the following:

PROBLEM A. —By what partial differential equatiorts must the general schema of
a Riemannian space with absolute parallelism be restricted in oocdebtain a faithful
image of the physical universe?

PROBLEM B. —Integrate the equations Bnd recover matter, electricity, and the
gravitational-electromagnetic field in the solutions so obtained, and in &m®us
manifestations that experiment reveals to us.

vV

We first occupy ourselves with problem A. Apparentlynay be solved only if we
have prior knowledge of the physical laws. This is tiug,to some extent much less
than one would thinka priori. Indeed, from the logical conditions that are impatbexd
nature of the question itself and conditions of anaytstmplicity that are reasonable to
accept, it suffices to add just one condition, which cofm@m physical determinism, in
order that Problem A admit only a very restricted nuntifesolutions, in such a way that
the physicist, if the attempts of Einstein were notvain, will only have to choose
between a small number of universes that are constrogtagurely deductive method.

We briefly review the conditions to which we alludedttbi@e equation€E must
verify.
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1. Logical conditions— Equation€E must obviously express the intrinsic geometric
properties of space. In order to describe them effdgtisme may — and this is the
simplest procedure — attach rectangular frame to theuspoints of space that are
mutually equipollent. Equationg& are then expressed by relations between the
components of torsion, as referred to these framed, their various derivatives.
However, these relations must remain the same if dmoses the frames that are
attached to the points of space in another manner, thghframes still mutually
equipollent, since otherwise the equati@express particular properties of the chosen
frames, rather than intrinsic properties of space.

The latter stated condition may be extended in a largeestricted way. As one
knows, in ordinary space there exist two distinct caiegoof triads: direct triads and
inverse triads. An inverse triad may be obtained asriner image of a direct triad.
There is one analogous distinction in spaces of arpittanension. One may then
imagine a system of equatioBghat retain their form in all direct rectangulasams of
reference, but which change their form for the inversenes. Such a system will
correspond to one universe, in which the set of lawthfogravitational-electromagnetic
field enjoy a type of polarization: for example, if onensiders a system of electric
charges and their evolution in a certain interval iofet and this evolution will be
impossible if one reverses the sense of the intepygskics will beirreversible. There is
no correlate to this in classical theory; howeverisinot forbidden to think that the
irreversibility of physics eludes our experiments due tof¢lebdleness of the fields that
enter our domain of immediate observation.

One may also demand that the equatBihe independent of the choice of the unit of
length; in this case, they must satisfy certain suppiéang conditions of homogeneity.
One is or is not constrained to restrict this homotggmepending on whether one does
or does not admig priori, that there exists no unit of length - or rathenntdrval - that
plays a privileged role in the universe.

We must add another observation. Equat®msust depend on both the metric and
the parallelism, because physical laws must obviouslghmevthe metric, and we know
that the metric alone is not sufficient to specifgrth For example, one recognizes that
equationsE depend only upon parallelism if they preserve their form upptacing all
of the chosen rectangular frames by another syste@Gadésianframes, rectangular or
not, that are equipollent to them. Similarly, the @dghations of general relativity may be
written by introducing an absolute parallelism into &sileal Riemannian space, but it is
clear that they express properties of space that angandent of this parallelism; for this
reason alone, they must be rejected.

2. Conditions of analytical simplicity— From a purely logical viewpoint, these
conditions present a great degree of arbitrarinesss riatural to admit, with Einstein,
that equationsE must involve only the first order derivatives of torsi@md these
linearly, while reserving the possibility that there ather terms that contain the
components of torsion; these terms will be quadratiecefequations are homogenous in
the sense that was indicated above.

3. Compatibility conditions and conditions that come from physical determirism.
The compatibility conditions of a differential systewe in the domain of mathematical
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technique. At this point in analysis, the actual thedrpantial differential equations
allows us to decide the compatibility of a system onlpnke occupies oneself with
analytic solutions of that system, which is itself assumed tdolbmed fromanalytic
equations ). A priori, there is no reason to assume that the laws of ghyamie
expressed by means of analytic functions; this is a hggathhat we will be obliged to
make — for lack of anything better! If one admits thHagéntone has the means to decide
whether such a system of equatidhshat satisfies the previously stated conditions is
compatible or not. To say that it is compatible isitoply affirm the existence ddcally
defined analytic solutions, i.e., solutions that are defined in a suffitye small
neighborhood of a point in spacetime. If the compatybilit this sense, is necessary in
order for the equations to lead to the desired image of spacetime, then ibwsoasly
not sufficient; this is an important point that we shetiurn to later on.

It is not sufficient that equatiortssbe compatible; one must further have that they are
not in disaccord with physical determinism.

This is an extremely important point that has narnbgiven enough attention in the
various discussions that followed the creation okegairelativity.

In the ordinary sense of the word, we affirm that ptalsileterminism gives the state
of the universe at a completely determined given momeins inltimate evolution. Of
course, one must specify what one means bystat of the universe. The classical
mechanics of material points conforms to determinisith thie condition that we call the
state of a point at a given instant the set of itstjposand velocity. In any physical
theory that is based on partial differential equationg, imagines that one may precisely
define what one means Btatein order for this theory to conform to determinism.

What complicates a few things is precisely the faat tine theory of relativity tells us
that time is inseparable from space; to speak of die sf the universe at a given instant
does not have an absolute sense. In reality, one pesk sf the state of the universe in
a three-dimensional section of spacetime.

But then some other difficulties present themselvdsch Hadamard has drawn
attention to. In reality, there is mathematicaltedeinism and there is physical
determinism. It may happen that the state of the univeraghree-dimensional section
of spacetime involves the state of the universe in tighbering sectionsr the physicist
would have to confirm thighis amounts to saying that a very weak variatiothefstate
of the universe in the given section may, in a certase camvolve enormous variations in
a section that is as close as one wants to theofuestthe dependency of the states on the
two sections is therefore completely masked from phgsicists. In classical
electromagnetism, there is mathematical determinfem almost all of the three-
dimensional sections of spacetime, but there is palysieterminism only for sections
that do not penetrate the interior of the time cdresah of their points.

Of course, equatiorts on which the unitary field theory will be founded, Wi too
complicated for one to study anything but mathematical detesrm but they must
conform to this determinism. If one confines his ambitiomghat much, then the actual
state of analysis permits us to decide whether thikadrsystem of equatioisconforms

() In this phrase, the wordnalytic has a very precise technical sense. A functiomasdytc if it is
developable into a power series.
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to determinism¥). For example, one may be tempted to think thantt®n itself of a
Riemannian space with absolute parallelism expressekth# taws of the field, and that
no restrictive equation is necessary; however, thilsb&icontrary to determinism. The
geometric schema will be too general.

One may apply these latter considerations to thehaldry of general relativity. In
the formulations that one habitually makes, any fouregisional Riemannian space is
likely to represent a possible universe (with no elecagmetic field). The regions of
space in which the ten Einstein equations are verifiedttse ones in which no matter
exists; as for the others, the state of matter, widclsomposed of its density, the
velocities of its particles, and its elastic pressisemly the physical manifestation of a
purely geometric spacetime tensor. One must rejecfoimaulation, even in the absence
of any electromagnetic field, because it does not contormeterminism. Indeed, to
know the evolution of this material fluid, one must knaat anly the state of this fluid at
a given instant, but also the distribution of its #tapressures at all instants of the time
interval. This is not to say that gravitation and eratto not obey the laws that are
indicated by that theory, but only that these lawsnatethe only ones; one may say that
one has a theory of phenomena that isemptanatory but at mostescriptive.

Vv

We return to the problem of the unitary field. Thank&sntore-or-less artificial
restrictions that convenience or the insufficiencyoof knowledge demands that we
state, the conditions of various types that we wouldtlikase to restrict the equatioBs
permit us to solve problem A completely. Einstein hascatéid a solution that involves
twenty-two equations. There are several others, sointbem with fifteen equations,
others with perhaps sixteen, and still others twenty#goations. One may think that
there is good reason to prefer the systems that cahiifargest number of equations;
for the most part, this is a matter of personal tadtethe presence of the system of
Einstein, there only remains one other system thasistsnof the same number of
equations and involves two absolute numerical constattishvare arbitrarya priori.
Such a system will correspond to irreversible physicégast if one of the constants is
non-null, but the irreversibility is not obvious ihet first approximation. We must,
moreover, reject that system for the following remsé contains the original ten
equations of gravitation, which involve only the metric. THsquite improbable,
although it is logically possible. By definition themmains only the system of Einstein,
which was found by almost miraculous intuition. Itherefore upon this system that the
destiny of the new unitary theory rests.

VI
We now arrive at problem B. It amounts to the probdénmtegrating the twenty-two

Einstein equations and recovering the field, matter amctredity. In the program that
Einstein discussed at the two conferences he addresdémv@mber, 1929 at l'Institut

(") Of course, one is constrained to consider onlyatraytic solutions of equation& and the states that
are expressed by means of analytic functions. Undee tlestrictions, the mathematical problem becomes
absolutely intractable.
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Henri-Poincaré, he proposed to look for the physicas lsmthenon-singularsolutions of
his equations; matter and electricity therefore exisy amlthe continuousstate. We
place ourselves in the terrain that he chose, witheurtg too surprised that the path we
follow seems to be in opposition to the one that copteary physicists have followed
with success.

A first difficulty of an exclusively mathematical nme presents itself. Indeed, not
only does one have no method for finding the non-singwhurtisns of a differential
equation, but furthermore, there is no reason to admit $uch a system, which is
compatible in thdocal sense that was indicated above, will also be cofvpain the
integral sense. In truth, one may easily indicate some mgukr solutions of the new
system of Einstein, but these are isolated soluticatsatte too small in number for one to
hope to found a physical theory upon them.

The problem is further complicated here as a resutheffollowing circumstance.
The four variables that permit us to localize a poinspacetime do not appear in the
equationsE such as were considered above; however, in practicenase express the
functions (16 in number) that define the metric and theolates parallelism of the
universe by means of these four variables. Now, when pessem this form, the
statement of the problem involves a gratuitous hypothesisely, that one may establish
a bijective point-like correspondence between spacetingt anfour-dimensional
Euclidean space. However, there is no reason toresghat spacetime enjoys the same
topological properties as a Euclidean space. One magi@mvunany other hypotheses,
for example, that spacetime is closed. All that loa& a right to demand is that the points
of a sufficiently small region of the universe may ftemed by four numbers, without
which there would necessarily exist a framing that is Vvalidthe entire universe. As
long as one retains the viewpoint lotal integration, the topological properties of the
universe do not enter into the discussion, but they mesgssarily play an important
role, and preponderate when one seeks a solution withmutlaiities that exists in all of
space.

One sees as well that the search for the loca ta@vphysics may not be disassociated
from problem of cosmogony. Moreover, one may not Bathe one precedes the other;
they are inextricably linked to each other.

One confirms the preceding viewpoints by considering gesyshat is analogous to
the system of Einstein, which Einstein has imagined, rhatadiately rejected, and with
good reason, moreover. It is the system of equaticatsetkpresses that a space with
absolute parallelism has constant torsion; this signifias tivo equipollent cycles have

equipollent torsion vectors, and, analytically, that d:bmponents;\}‘ of torsion, when

referred to frames that are mutually equipollent, arestamts. This system is, moreover,
independent of the metric of space. The theorem o€dhservation of torsion shows

that the constanus}‘ are not arbitrary, but are linked by certain algebramticels. The

search for spaces with constant torsion is only &kweiwn problem of analysis, but in a
new geometric form, because these spaces are nonetlmherepresentation spaces of
the transformations of a finite continuous group. Nthe, integration that provides the
spaces with given constant torsion leads to one or aevem-singular solutions,
depending on the case. When there are several, thbycearespond to topologically
distinct spaces.
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Vi

Whereas one may be stopped in the solution of probleby Bhe mathematical
difficulties that we just pointed out, one may nevddse infer some important physical
consequences from the continuity hypotheses that weneukated by Einstein, which
are, moreover, in agreement with the concepts thateogorary physics tends to make
on matter. We have said above that equatiBnshust conform to mathematical
determinism, i.e., the state of the universe in neighbaections. Now, this may not be
the case for certain particular sections that ons characteristic. These characteristic
sections play an important role in physics; for exi@nghe equation of the propagation
of light admits characteristic sections that are¢htlimensional sections that are tangent
to each of their points at the light-cone relativaltis point. Now, in the unitary theory
that is founded on the notion of a Riemannian spaceatsiolute parallelism, it is quite
easy to account for the faet,priori - and this is true precisely because of the invariant
character of equatiorts with respect to a rotation of the frames — that tHg passible
characteristic sections are the ones that are taagjeach of their points to the light-cone
at that point, and these characteristic sectionsexist essentially when the equatidas
include the metric of space, as is necessary. Onefoinerdramatically recovers the
classical laws of propagation for light as a logicahsequence of the metric character of
space.

This conclusion is only natural. However, there isnsthing much more
disconcerting. In the classical theories that comexs matter in a continuous state, for
example, hydrodynamics, there are other charactessttions than the ones that refer
to the propagation of light, which are the ones thatganerated by the world-lines of the
various material points that comprise the fluid congderfor these characteristic
sections, these world-lines play the same role asigherays in the latter, and they are
obviously completely distinct. Since any characterist@ction of this type may present
itself in the unitary theory of Einstein, one is ledhk that this theory will be obliged
to deny the physical individuality of the various pointstleé fluid that comprise the
material or electrical fluid that is assumed to behi& continuous state. The material
point is a mathematical abstraction that we have nasdu as is the custom, and
concluded by attributing a physical reality to it. Ifusthermore an illusion that we must
abandon if the unitary theory of fields is to be essdiald.

If one wants to discuss the preceding, one sees thetwaf aspects that one must
envision for the unitary theory of fields, and also thi#iculty of the problems that it
raises. However, Einstein is not one to shrink frofficdlties, and likewise, if his
attempts are not successful, then we shall be forcedflext upon the great questions

that lie at the foundations of science.
E. CARTAN
(Sorbonne)



Direction fields and teleparallelism inn-dimensional manifolds

By E. STIEFEL, Zurich

Introduction

1. Then-dimensional manifolds that will be considered in thager will be closed
and continuously differentiablé)( The question of whether a non-singular, continuous
direction field exists on such a manifold is answered H®y following well-known
theorem 9):

TheoremA; . A singularity-free, continuous direction field exists on the manifdld M
iff the Euler characteristic of Mhas the valu@ (§ 5, no. 2).

Therefore, on the one hand, amongst all closed andtalle surfaces, the ones with
the topological type of the torus are the only onesatanit the existence of a continuous
direction field ¢); on the other hand, one can endow any manifold of oddrdiion — in
particular, any three-dimensional manifold — with a camus direction field (8 6, no.
1).

However, since one would not expect that all manifelfil®edd dimension behave
precisely the same way in relation to the continudrecton fields that exist on them,
the contradiction that was formulated just now (e.gtwikeenn = 2 andn = 3) compels
one to look for a refinement of the original questiorhe Tollowing question is closely
related: Let am-dimensional manifoldM" and a numbem from the sequence 1, 2, .n,
be given. Is there a system of m direction fields oh thiat are linearly independent at
every point of N

This question, which is answered by Theo&pfor m = 1, and which commands
special and self-evident interest for=n — 1 andm = n (cf., no. 5 of this introduction),
defines the subject of the present paper. Indeed, the ayuesili not be answered
completely, in the sense of presenting the generaizatf TheoremA; to a necessary
and sufficient condition for the existence of a systémm independent direction fields —
in the sequel, referred to briefly as an-field.” Rather, some theorems will be proved
that, on the one hand, serve to resolve the problem iy syzecial cases, and which, on
the other hand, represent new contributions to the geo@@ogy of closed manifolds.

() Cf., chap. XIV, § 4 ofTopologie(v. 1) of Alexandroff and Hopf (J. Springer, Berlin, 193%his
book, whose terminology we will follow in this paper, Mi€ briefly referred to as “AH” in the sequel.

() AH: chap. XIV, § 4, Theorem lIl.

() Poincaré, Journal de Liouville (#)pp. 203-208.
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2. Before we formulate the most important theorem, reeall a theorem that is
related to Theorer; and is likewise well-known'}:

TheoremB; . There exists a direction field on any manifold tiat is singular (i.e.,
discontinuous) at no more than finitely many points. The number of thgskasiies,
when counted with the correct multiplicities (“indices”), is ipé@adent of the particular
field: It is always equal to the characteristic of (& 5, no. 2)

We shall prove the following generalization of this ttezo:

Theorem By, . For any m(1 < m < n), there exist m-fields on any "Mvhose
singularities (i.e., points of discontinuity for the individual direntifields or points of
linear dependency for the various fields) define a complex of dimensimansatm -1.
With a correct enumeration of the multiplicities of the singulagijtieis a cycle, and the
homology class of this cycle is independent of the particular m-fielslal distinguished
element of the (m —"1Betti group(*? of M" (§ 4, no. 4, 5)

We shall call this homology clagd™ the ‘m™ characteristic class’of M". In the
case ofm = 1, it is the zero-dimensional homology class thatsits of a point oM",
multiplied by the Euler characteristic.

TheoremA; will now be generalized, in a certain sense, by wayheffollowing
theorem:

Theorem A, . There exists an m-field on"Mvhose singularities define a complex of
dimension at most m2-iff F™* = 0 (i.e., the zero element of the (m ¥ Betti group of
M™ (8 4, no. 5).

It follows from this immediately that:

Theorem A.. In order for a singularity-free m-field to exist on" Mt is necessary

that:
FP=F'=..=F"'=0.

However, this condition might not be sufficient.

3. This suggests the problem of determining the charadteriasses™* (m= 1, 2,
...) for a givenM". In the casen = 1, the determination d&¥™* is equivalent to the
determination of the Euler characteristicMf, and on the basis of the Euler-Poincaré
formula:

Y (-1)ya =X (-1) p,

() AH: chap. XIV, § 4, Theorem I.
(*3 The coefficient domain to which these Betti groupisites is defined in § 4, no. 3 (cf., also AH:
chap. V).
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in which thea' refer to the numbers ofdimensional cells in a decompositionMf and
p’ means the™ Betti number oM", one can express it in two different ways: namely, in
terms of thea” and in terms of thp'.

The first of these two possibilities seems to be ca&pablbeing carried over to an
arbitrarym (8 5, no. 3, footnote 22); however, the more important quest whether
one can also represent the cl&85' in a way that corresponds to the representation of
the characteristic on the right-hand side of the EBtEncaré formula, and thus in terms
of known topological invariants dfl". Moreover, if the answer to this question, which
was unknown to us up till now, is in the negative theat twould teach us something
new: F™* would be anew topological invarianbf a manifold.

There exists yet another relationship between the did5% and the Euler
characteristic, in another regard: The intersectionbamof F™* with an 6 —m + 1)-
dimensional manifold that is embeddedViis congruent (mod 2) to the characteristic of
that manifold, as long as the embedding fulfills certagurements that are formulated
in 8§ 6, no. 2.

4. The determination df™* for a given manifold is achieved in some cases with the
help of TheorenB,, alone; on the basis of that theorem, one indeedsnte construct
only aspecial mfield that is constructed so neatly that one can Spéwe complex by
means of its singularities. In this way, we will tréla¢ (& + 1)-dimensional projective
spaces as an example; it will be shown that:

Theorem C. For the (4k + 1)-dimensional real projective spacé'® F!is the class
that contains the projective line, so it is therefore non-zero (®63).

This theorem, as well as in the fact that there e¢orinuous direction field on any
odd-dimensional manifold, includes the fact that:

Theorem C'. There is a continuous direction field ofB, so for any pair of fields
there exist points at which the directions of the two fields iinereequal or opposite.

This property of projective spaces allows one to provéicealgebraic theorems
whose proofs seem to be unknown, up to now, when onkswath the usual algebraic
lemmas (8 6, no. 3).

5. The question of whether amfield exists on arM" deserves a special and self-
evident interest; namely, the existence of such a feeleguivalent to the idea that one
can introduce aeleparallelismon M", or, as we also say, thit" is “parallelizable’
Therefore, we caM" parallelizable when one can decompose the totalia}l afirections
in M" into mutually disjoint, single-valued, and continuous atiom fields that we call
“parallel fields,” such that the following condition fslfilled: If v, vy, ..., vk are

directions at a poirp of M" and v}, v}, ...,b, are the same directions at another arbitrary
point p', as deduced from some parallel fields, then the linedependence of the
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follows from the linear independence of the We will briefly call directions “parallel”

when they are taken from the same parallel field.
In fact, one easily sees that parallelizabilitydentical to the existence of arfield:
If an n-field exists then one calls two directions v’ at the pointsp and p’, resp.,

“parallel” in the event that their components relativetie directions of the-field at p
andp', resp., agree with each other, up to a positive factiog; has then introduced a
teleparallelism. On the other hand, if a teleparahels defined then one distinguishres
linearly-independent directions at a fixed point; the diogst that are parallel to these
directions at the remaining pointsMf then define an-field.

Non-orientable manifolds are not parallelizable. Onater hand, one easily shows
that the existence of amnfield on an orientable manifold already follows frommet
existence of ann(— 1)-field. With that, the examination of parallebday is completely
converted into the examination af £ 1)-fields. It is therefore no restriction when we
assume thain < n in what follows. Theoren#, yields:

Theorem D. The vanishing of all characteristic classe$ F, ..., F"? is necessary
for the parallelizability of M.

Here, as well, — confer Theore#y, — one should not assume that the condition is

sufficient.
Since agroup manifold(*) is certainly parallelizable, Theorefnyields a necessary
condition for a given manifol" to be able to be made intayeoup space.

6. All manifolds for which the Euler characteristic nen-zero are certainly non-
parallelizable- like, e.g., the spheres of even dimensiocso one indeed also h&S# 0;
neither are the projective spaces of dimensior 4 that were mentioned in Theor&n
By a product construction, one can further prove:

Theorem E. For any dimension n that is different from 1 and 3, there are n-
dimensional (closed and orientable) manifolds that are non-parallelizable (8 8).no.

For n = 1, there is a single closed manifold, namely, thelei it is trivially
parallelizable. The question of parallelizability isritfeést open only fon = 3, and there
one has:

Theorem F. Any three-dimensional closed and orientable manif¢l® is
parallelizable (8 5, no. 3).

This remarkable special position of dimension three @gain points to the difficulty
in the search for a classification of three-dimensionanifolds; the attempt to divide the
orientable three-dimensional manifolds into paralléigaand non-parallelizable ones
would then fail.

() AH: Introduction, § 3, no. 17; there, you will alsodireferences.
* In addition, the manifold must fulfill certain differentiliy assumptions (cf., § 5 and Appendix I).
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7. The theorems that were stated in this introductidinbeiformulated and proved in
88 4-6; 88 1 and 2 have a preparatory character. In 8§ ltlenlyefinition in no. 1 and
the results of no. 4 are important for the remaining pathe paper. In Appendix I, the
determination of the clas§' for three-dimensional, orientable manifolds will be
discussed in detail that was only suggested in 8 5, no. 3. ndpp#d subsequently
arises; in it, it will be proved that a manifold witim @dd characteristic that lies in
Euclidian space cannot be represented by regular equdiions (

| have already reported on the individual partial tssaf this paper in other places
(Verh. der schw. naturf. Gesellschaft, 1934, pp. 270; furthexm&nseignement
mathématique, 1934, 1, pp. 6).

At this point, | would like to thank Herrn Prof. H. Hofair the impetus to do this
work and for his enduring interest in its progress, a$ agefor his worthwhile advice at
decisive moments.

8 1. The manifoldsVy m .

1. Definitions. In the sequel, we shall call an ordered, normalizéabgonal system
Oh, m Of m vectorsvy, vy, ..., by that contact a point in-dimensional Euclidian spad®

anm-system in R In this, letm be constrained by the inequalities:
0<m<n. (1)

Vi, m is defined to be the set of alksystemsa, , at a fixed point oR". If one introduces
a notion of neighborhood into this set in a natural WeanV,, » becomes a topological
space whose pointsare them-systemsa, m.

V,., 1 is homeomorphic to then( 1)-dimensional spher@™ that it traced out by the
endpoints of the vectar;. However, ifm > 1 then we displace the vectars ..., vy

of an, m parallel to the endpoint of the vectar ThereforeV, n can also be described as

the set of allifh — 1)-systems ifR" that are tangential t8"™. In particular\V,, 2 is the set
of directed line elements &

One can arrive at another representation of the space by stereographic
projection which we will briefly denote by in what follows: If one project§™ from
its North Pole onto its equatorial spaR€® then a systersr, -1 that contacts the sphere
at a pointp goes to anni— 1)-systenoi-1 m1 in R that contacts the image pojmtto
p. On-1, m1 IS established uniquely by its contact p@pntand the ifh — 1)-system that is
parallel togh-1, m-1 Of @Vn1, m1 =V, that is embedded iR"*. A pointv of V is thus

given by a poinp; of R"* and a point; of V. We briefly write:

V=pP1XV;1. (2)

() One can also confer AH: Introduction, § 1, no. 7.
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This representation breaks down only for those syst@gmg that contact the North
Pole. In order to also treat these systems, we prSjeconto R"™ from the South Pole.
Analogous to (2), one gets:

V=pP2X%XVa. (2)

V; is a point of the se¥, that features in place & under the second projection. If we

denote the equatorial sphereSt by S then the two pointp; andp, go to each other
under the transformation by means of reciprocal radiiih
Formula (2) describes a relationship betw&emand V| ; i.e., betweenV, n and

Vh-im-1. By iteration, we obtain a relation between spadeke sequence:
Vi,my, Vo-1,m-1, --+y Vak meks -+-5 Vo1, 1= s, (4)
One can infer the following conclusions from this:

I. Any point ofV, n possesses a neighborhood that is homeomorphic to én@int
of a Euclidian ball.

Il. Vi mis connected. (Due to (19, " is connected.)
[ll. One has the recursion formula for the dimengiQm, of Vi, m:

Uoom = th-1,m1 + (N—1), (5)

_ _m+1
,un,m—mE(n 5 j (6)

2. Decomposition o, . For our first projectiorS™ bounds the closed bdl in
R We define:

SO

Ki=E1xV,. (7)
Analogously, for the second projection, one has:

Ko=Exx V. (8)
Vis then the set union &k andKs:

V=K +Ks. (9)

If one iterates this decomposition &, ., for the sequence (4) then it follows
inductively that:

VI. Vi, mis a polyhedron.
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It now follows from I-1V that:
Theorem 1. V,, mis a closed manifold

We call the manifolds of the sequence (4)rtanifolds that are associated with M
For the intersection d; andK,, one gets:

For the first projection: Ky K, =S x V/, (20)
For the second projection: Ky (K, =S x V,. (11)

We would like to derive the properties of the Betti grouwgdsV from our
decomposition (9) of the manifoly by induction on the sequence of associated
manifolds. For > 0, we understanB'(K) to mean the-dimensional Betti group of the
complexK, while forr = 0, it is the group of O-dimensional integer homologgsda that
contain only reducible cycles. (A O-dimensional cycleeducible when the sum of its
coefficients vanished)). We call algebraic subcomplexes of:

V=K +Ky, Ki, Kz, KiKy, V/, V,
C, Ci, Ca, Cio, Ci, C;, resp.

Cycles will always be denoted hyr Z.
We now make the following basic assumption:

let B'(Vi-1,m-1) = O for a fixedr with 0<r <n-2. 01)
One then has, for an arbitraryr(+ 1)-dimensional sub-cyc®&™ of Vi, m :
7" =727+ 21, (12)
(Z™ is a sub-cycle dk; and Z,"* is a sub-cycle oK, .)

Proof: It follows from ;) that B'(\/) = 0, so one also had) (B'(S"?x V) = 0; it

then follows from (10) that:
Br(Kl |:K2) =0. (13)

Now let Z*' = C; — C, be any decomposition af** into two algebraic r( + 1)-
dimensional sub-complexes &f andK, . Taking the boundary yield€, = C,; this

common boundary lies iK1, as well as irK; , so it is az, . It follows from (13) thatz,

() AH: chap. IV, § 4, no. 7, and furthermore, chap. \1, §0. 5.

(®) This theorem is a special case of an addition #medn combinatorial topology; cf., AH: chap. VII,
§ 2, especially no. 5.

() For Betti groups of product complexes, see AH: chap.8/3.
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= C,0C1 — C1; andC, — Cy; are cycless, z, resp., and one ha&' =z — 2 , with
which (12) is proved.

Under the sharper assumption:
Let B"(Vi-1,m-1) = O for a fixedr with 0<r <n -3, 02)
one then obtains the isomorphism:
B'(Vn,m) = B (Va-1,m-1). (14)
Proof. From the theorem on the Betti groups of producipexas, it follows that:
B'(Ky) = B™HE1 x V) = B"NE1 X V-1, m1) = B™ (Vi1 moa).
Analogously, one obtains, with consideration of thé flaatr + 1 <n— 2:
B™(Ky K2) =B™ %S x V) =B"{S™? X Voot m1) = B (Voet,ma),  (15)

and therefore:
B"(Ky [K2) = B™Y(Ky).

This isomorphism can be realized if one associates albggnclass oK; [K; , whose

r+l r+1

representative cycle ig,”, with the homology class of,” in K;. From that, we infer
the following conclusions:

a) A cycle ofK; [K; is contained in anyr (+ 1)-dimensional homology class kf
(or Ky).

b) From the homology,,* ~ 0 inK; (or Ky), it follows that:
Zgl ~0 inKl K.

If one associates a homology clas&ofK,, whose representative cyclezs,*, with

the homology class oZ[,* in K; + K, then a homomorphic map 8 (K, OKy) into
B"(Ky + K2) comes about. This map is an isomorphism, in the ¢hant

1. A cycle ofK; [K; is contained in any (+ 1)-dimensional homology class ¥f +
K>.

2. The homologyz;;* ~ 0 inK; [X; follows from the homologyZ;;* ~ 0 inK; + Ko.

1. follows from (12) and a).
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2. is verified in the following way:
Z3' ~ 0 inKy + K2 means thaZ;* = C. A decompositioi€ = C; — C; of C gives Z[;*
= C,—-C,. This possible only whe€, = z;* andC, = Z,*. Sincez,;' ~ 0inKjy, one
gets from b) thatz;* ~ 0 inK; [K,, and likewisez,* ~ 0 inK; K, and therefore also

Z3* ~ 0inKy K. With that, we hav8™(K; + K2) = B™(K; [K»).
Our proof then gives:

Lemma. Under the assumptiofd,), an (r + 1)-dimensional homology basis for K
K is also a homology basis fora/K; + Ko.

The following theorem can now be proved easily:
Theorem 2. For0<r <n—m- 1, one ha8'(V, m) = 0.

The proof proceeds by complete induction on the sequerassotiated manifolds; thus,
let it be already proved that:

B (Va-t.m1) =0  forO<sr<n-m-1.

It further follows from Theorem 1 th&"(Vh-1 m1) = 0, so one also h&(Vy-1. m1) = O.
Sincem > 1 was assumed) is true, and therefore (14), and therefore Theoremmt
induction will be anchored on the manifolf}-m+1, 1 = S™™, for which Theorem 2 is
trivial.

Theorem 3. For m> 2,0ne has B™(Vn m) = B"™"(Vh-1 m-1).

Proof: From Theorem 2J{) is true forr =n—m- 1. (14) then gives the assertion.

3. Topology of V2 . B"™(V, m) can be determined from Theorem 3 when
B"™(Vh-ms2, ) is known; therefore, then(- 2)-dimensional Betti group of a manifol »
shall be calculated in this section. The sequenceswfcgated manifolds consists of only
an ( — 2)-dimensional sphere in this case. We use our firgjegion for the

representation o¥, » ; V. is then a spher&§" 2. Let the two sphereS" and §"?be
equally oriented, so we also denote the cycles thaprakeded by these orientations by
S™and S"2. If sis an arbitrary, but chosen once and for all, poin8bf, and s, is a
point of S"2 then, from (10), the two cycles, =sx S"2 andS'™?x s define anif —
2)-dimensional homology basis i (K, . (The case of = 3 is represented in Fig. 1)
Any (n—-2)-dimensional cycl&;, of K; [K; thus satisfies a homology:

Zior~azo+ ,8212 in K; [Ks, (17)
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? Figure 1. Figure 2.

wherea and  are well-defined numbers. We now pose the problenetaroining the
homologies (17) thaZ;, fulfills in K; or K, . We first solve this problem for a special

cycle Z;, that is defined in the first projection as the fieldeaferior normal vectors on
S"2. For this cycle, (17) reads:

Z) ~z+72, in Ky K. (17)
Proof: Z;, fulfills a homology:

20 ~a na+f 7, inKy [Ks. 7"

The determination of the unknowms and 8 is achieved in the following way: One
associates a poim; x v; of K; OK; [see (2)] with the pointy of V) = §"?; this
continuous mayp of K; [K; into §"* induces a homomorphic map of the Betti groups of
K1 [K; into the Betti groups 05" that transforms (17 into the homologyf (Z))~

a M(z) + F F(z,)= aOS"2. The fact thatf (Z) ~ S"? yieldsa = 1; one finds
that8 =1 in an analogous way.

Relative toK;, Z,, fulfills the homology:
ZlD2 ~ 212 in K. (1é)

The proof is by continuous variation &f,: One lets an arbitrary poipi x v; of Z, run
through the path that is suggested by the following schema:

P1 X V1, pat) Xvi,  Sxvi. O)

In this, t is a deformation parameter that ranges from 0 fm(); moves uniformly and
rectilinearly fromp; to the points of S,

By performing the transformation through reciprocaliradiS'?, Figure 1 becomes
Figure 2, where one finds, in an analogous way:
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Z0 ~ (1) Oue inKs . (19)

For the arbitrary cycl&;, , we now have, from (17) and (17%), ttat ~ (a—p) Oz, + 5
0z,, in K; Kz, and thus also iK; ; it then follows from (18*) thaZi, ~ a Oz2 in Ky .
Analogously, with the use of (19 one getsZi, ~ [a@ - B+ (-1)" 08 Oz2in K, . This
then yields the following solution to our problem:
From the fact that:
Ziz~aznxt 7, inKi[Ks,

it follows that:

Zi1o~ a7 in Ky (18)
and

Ziy~[a- B+ (-1)' A n2inKz. (19)

We now infer some consequences from these formulas:

Theorem 4. The(n —2)-dimensional Betti group of,Y is cyclic and has orded for
even n and orde2 for odd n

In this, we understand a cyclic group of order O to meageacyclic group.

Proof: From (7), our cycle, defines anr{— 2)-dimensional homology basiskj ;
however, sincd; andK, are mapped to each other topologically by our transfooma
through reciprocal radig, is also a homology basis f&p . Furthermore, from (12) [the
assumption Jy) is fulfilled for r = n — 3], any ( — 2)-dimensional cycle o¥,, can be
written as the sum of a cyclefa and a cycle ifK, . From these facts, it follows that the
homology class of;» in V,,» generates the grou %(V,, »), so that group is cyclic; in
order to establish its order, we must determine the @fdes . Thus, let, sayy [z, ~ 0
in Vi, 2—i.e.,yu, = C. A decompositior€ = C; + C, of C then givesy[z» = C, +C,.

This is possible only fo€, =Z;, andC, = Z,,. We then find that:
yOno=2Z1p+ 2,  withZ;;~0inKyandZ,~ 0 inK; . (20)

If we assume that is perhaps odd then it follows frof, ~ 0 inK;, by means of (18),
thatZy, ~ S0z, in Ky K> . By substituting this into (20), we find the homolagi:,» ~
2B 0y + (B+P) Oz, inKy [Ky. This homology is possible only fgr= 2B ; it then
follows that yis even from the fact thatzi, ~ 0 inV,,2. The order oty is then at least
2; the fact that it is exactly 2 follows from a cores@tion of-Z,. Namely, from (18),
one has-Z,~ 0 inV,2, and from (19);-7,~ 2 Oz in V,2. One then has, in fact, that

221, ~ 0 inV,2. Since the case of evencan be examined analogously, Theorem 4 is
proved.



Stiefel — Direction fields and teleparallelismrrdimensional manifolds. 223

It is likewise shown thati; is a basis cycle for the gro®(Vi2). (This will be
important later.) We shall then given a definition zf that is independent of the
decomposition ol,> . To this end, one considers all 2-systems of V,» (no. 1) that
coincide in their first vector. The endpoints of tkead vectors of this system will run
through anif — 2)-dimensional sphere, which we think of as orientete Jysteng .
then defines ann(—- 2)-dimensional cycle that ca#l,, . It is clear thatz,» can be
identified withz, ; we then find the following:

Lemma: The cycle z is the basis element for the (n — 2)-dimensional Betti group of
Vn’2 .

The manifoldV,; is orientable. We will prove this later. From Thems 2 and 4,
one can then determine all Betti groups\at with the help of the Poincaré duality
theorem. One then obtains the following result:

Theorem 5. For even n, the non-zero Betti numbers g &te: @ = p"2 =p"* =
p?"3 = 1; no torsion is present. For odd n, one also had p p"™* = 0, but an(n — 2)-

dimensional torsion of orde&t also enters in.

Furthermore, the relations (18) and (19) allow us to deterthe continuous maps of
an at mostr{— 2)-dimensional sphere ini,>. One has, in fact:

Theorem 6. Two continuous maps of an at m@st 2)-dimensional sphere into,Y
are homotopic if they have the same homology (y&™d.

We preface the proof with some preliminary considenatio Let, perhapd, be a
given continuous map of the sphe® (r < n - 2) intoV,» , and letv, be an arbitrary

point of §. If, as in no. 1, we think of,, as the set of all vectors Rl that are tangent

to S"! then we can assume for all homotopy investigatioristhieaimage vector of point
Vo does not conta@'™ at the North Pole. (If this were not true thengsir <n - 1, one
could always make it so by a continuous changk)inNo image vectors are then lost
under the transition to our first projection, and one lfrasn (2), thatf(vp) = p1 X vi.
Furthermore, one can actually assume that only theg®i; (see Fig. 1) can appear
as image points. (In fact, the continuous m@p- p; X vi can be changed into a map
that has the desired property by the deformation pro®gsbéginning of this no.)) We
then assume that:

f(vo) =S X% vi. (21)

We call the magb(vo) = v; of §) into the associated manifol§"*to V,, theassociated

map ¢ to the mag. Now, if f is a second map o, into V. and @ is its associated
map then one has:

()  AH:chap. VI, § 3.
(*°¥ This theorem is a generalization of the theorenmhenclassification of sphere maps (AH: chap.
X, § 2).
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The homotopy of and f follows from the homotopy of and @ . (22)

This follows simply from the fact that multiplicatidoy the fixed poins is a topological
map of §"?into Vi 2.
We now go on to the proof of Theorem 6. There amethases to consider:

Case 1.r <n—2. From Theorem 2, we must show that any maf§ointo V, is

homotopic to zero, so the image §f can be contracted to a point. However, from (22),

this is a consequence of the fact that smeen — 2, the associated map is homotopic to
zero.

Case 2.r =n—2 andh is even. Lef and f be the two maps of which we spoke in
Theorem 6. If we understarf = )% to also mean the cycle that this sphere represents
with a chosen orientation then the assumption obfidra 6 says thaf (§?) ~ (%)
iN Vo2 =Ky + Ko . From (21),f(S)?) and (S)?) are cycles irk; [Kz, so they fulfill
the homologies (17)f (S)?) ~a ziz, T(S?)~ @ z» in Ky [Kz; one then hag [z, ~
@ z12 inVh2. From Theorem 4, this is possible onlyrit @, and one finally gets that
f(S7?) ~ F(S?) inKy K2. We map this homology t8"2 by assigning the poi;

x vq in Ky [K; to the pointv; . One thus finds thap(S) %) ~ #(S7?) in §"*. The two
maps¢g and @ of S)* into §"* thus have the same mapping degree, from which their
homotopy follows. (22) concludes the proof.

Case 3.r =n—2 andnis odd. Theorem 4 then gives only tlef @ (mod 2). Let
a =a- X, perhaps. The proof above will also work in this caseeican show that our
map f with f (§7%)~ a z, in K; OK; can be changed continuously into a nfiavith
f,(S57?) ~ (a - 2k) z12 in K; [K; that satisfies the condition (21). To that endFlée an
arbitrary map of§~ into S"? of degreek. Next, f will be changed into a maf
according to the following schema:

f(Vo) =SXV, F(Vo, 1 —t) XV, F(Vo) XV, = f]_(Vo).

F(vo, t) again moves uniformly and rectilinearly froRfvo) to s. The cycle f,(S)?)
again lies inK; [K; and satisfies the homologf;(S)*)~ a z» + kZ, there, which one

proves analogously to ()7 From (19), one has,(S*)~ (@ - 2k) z2 in K, . One now
goes to Figure 2 by means of the transformation througiproeal radii, and changés
there by the deformation process that is analogouB)}o The result is a mafp with
f,(S7?)~ (@ - 2K) z2 in Kz and f,(S)?) ~ dzi2 in K; [K; that satisfies the condition
(21). As for the unknowrd, one easily finds from (19) thal= a — X. With that,
Theorem 6 is proved completely.
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It then follows from Theorems 2 and 6 that:
Theorem 7. For n> 3,the manifold W2 is simply-connected, and thus orientable

As a non-simply-connected manifold, the manifgld then occupies a special place
in the V2, which we will later (8 5, no. 3) exploit in our investiga of the
parallelizability of three-dimensional manifolds. Weention thatVs ; is homeomorphic
to the three-dimensional projective sp&e To prove this, one observes thgp, as the
set of line elements on a two-dimensional sphere, is domhic to the group of
Euclidian rotations of that sphere. Such a rotatipimasvever, determined uniquely by
four homogeneous parameters.

4. Topology of Vam . The union of the results of sections 2 and 3 alltves
derivation of further topological properties of tMgm . One proves the following
theorem by induction on the sequence (4) of associated nasnifowhich is now,
however, broken by the manifo\§ 2, 2— in which one always assumes tiret 1:

1. The Betti grouB" " (Vam) is cyclic of order O for even —m and of order 2 for
oddn—-m.

The proof follows from Theorems 3 and 4. In orderfitm a basis cycle for
B"™(Vam), One considers ath-systemsdnm in Vam (No. 1) whose firstri— 1) vectors are
given as fixed. The endpoints of the latter vector$igfaystem run through an £ nm)-
dimensional sphere that we regard as being oriented. syi8temsr, , then define ann(
— m)-dimensional cycle,m .

2. Zumis a basis cycle fa8" ™(Vnm).
The proof follows from the two lemmas in no. 2 and310.

3. Two continuous maps of an at most-«{ n)-dimensional sphere int¥,n are
homotopic when they have the same homology type.

To prove this, if and f are two maps then one defines the associated ¢gnapd @

iNto Vy-1m-1 iN @ manner that is analogous to no. 3. The homotogdyaofl f then
follows from the homotopy of the associated maps.

From 3,Vhm is simply-connected fom < n - 1, so it is also orientableV, -1 is
homeomorphic to the group of Euclidian rotations ofrar ()-dimensional sphere and,
as a group manifold, it is therefore orientable. Forntasifold, one has, moreover:

4. The fundamental group ¥f -1 is a cyclic group of order 21¢ 2).
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The proof of this differs from that of 3 in only inestal ways. (In order to anchor
the induction, one observes that 4. follows Wy, from its homeomorphism with
projective space.)

In conclusion, we would like to derive some propertie¥/,pf from these theorem
that will be needed in what follows:

Theorem 8. The continuous image of an at m@st- m — 1)-dimensional sphere in
Vam (M arbitrary) can be contracted to a point.

Proof is from 3. and Theorem 2.

Theorem 9. If f is a continuous map of an orientable sph&g™into \Vi,m then one
has the homology:
f (Sg_m) -~ aZn’m |n Vn’m .

If n — mis even or m 1then a is determined uniquely, and two maps with the same
value ofa are homotopic.
However, if n — m is odd and m is different frbthen a is determined onlymod 2)

(*); two maps that are associated with valuesaothat are congruen{mod 2) are
homotopic.

§ 2. The open manifolds, ..

1. Definitions. In this section, we would like to freely make the nieBon to
orthogonal and normalized+systems. We define: An ordered systejﬁm of m
linearly-independent vectors, v,, ..., b, that contact a point d¥" is called araffine m-

systemin R". We now call the systems,, of § 1 orthogonal m-systemsn order to
distinguish them from the affin@-systems;m again fulfills the inequalities:

0<m<n. (1)

The set of all affinen-systems that conta&’" at a fixed point is calle?,’,. A system

o’ is given by than Om components of its vectors, so it can be regarded asaip@in

n,m

(n Om)-dimensional numerical space. In this way of Iookingjha'angs,vn?m becomes a
sub-domain of the numerical space, so it is an open oddnif

2. Retraction mapping. For anym-system of\/n?m, we replace the vector with the
vector:

()  Therefore, we can assume in what follows thhts the value 0 or 1 in this case.
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b} = i — (0i [b)) v . (2)

i andj are chosen to be fixed, but different from each otfweril;) means the scalar
product ofo; andv; . This produces a continuous nfapf V. into itself; we denote the
image set byf (me) . By considering the family of maps:

o (t) = vi —t (v;i Oby) v (O<st<),

one recognizes thdtis a deformation; i.e., it belongs to the class efitentity. If one
replaces the vectai in any systenu,, . in V, . for a definite value ok with the vector:

% =77 (3)

then this gives another continuous neppf Vn?m into itself. g is also a deformation, as
the family of maps:

v (1) = [t+ (1) Ooo|]

Oy

O<t<1)
|0,

yields. The two mapsandg leave the manifol&/, » invariant, which is indeed a subset
of V..
One can once more perform a deformation of type (), fesp.] with f(\/n?m)

[g(me), resp.], and ultimately construct a deformation th&tpssnvfm onto Vpm

continuously by composing finitely many deformations of tigge. This follows from
the well-known fact of analytic geometry that anyiraffsystemo,’ in V,,, can be

orthogonalized by finitely many steps of type (2) and (Bje call the deformatiok the
retraction mapping®) of me ontoVnm.

3. Topology ofvfm. With the help of our retraction, we can now caskgr the
results of § 1, no. 4 to the open manifg,,:

Theorem 10. meis completely homology-equivalent tq.V; i.e., one has for an
arbitrary r: B’ (me):: B'(Vam); furthermore, all of the results that were proved fg,V
in § 1, no. 4 are also true for the manifald ..

() This concept goes back to K. Borsuk; cf., AH: chapil, \86.
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Proof: The retraction malp induces a map oB' (Vn?m) to B'(Vnm). In order to prove

that this homomorphism is an isomorphism, it sufficegce anyr-dimensional
homology class o¥,, appears trivially as an image class) to show that nsekeonsists
of only the zero class. Therefore, let, saybe a cycle otV andF(Z) ~ 0 inVym,

hence, also itV,,,. SinceF(Z) goes toz under deformation, one h&$z) ~Z in V",
so, in factZ ~0inV,,,.

The second assertion of Theorem 10 can now be provéy wak the help of our
retraction.

Remark. All positively-orientech-systems that contact a fixed pointRf define a
manifold that is homeomorphic to the grofpof all proper affine maps &¥". From our
analysis, it easily follows th&, is completely homology-equivalent Y -1 and that the
fundamental group d&, is a cyclic group of order 2 for> 2.

8 3. Vector fields in Euclidian space. Characteristic.

1. Characteristic of anmtfield on a sphere In this section, we understafit™ to
mean anr(+ 1)-dimensional curved cell that is embedded in the Eadlidpac&" and
S to mean the boundary sphere®t’. If we denote a point o by p then we can
establish the points of the c&8** by means of a polar coordinate systenp. (o is a
number that runs from 0 to 1, the point |g,is the origin of the coordinate system, and
(1, p) is identical withp.)

If an affine msystemo(p) of R" is attached to every point &f then we speak of an
m-fieldg onS. The examination of this field is the objective oftparagraph. To that

end, we choose a set of vect&’[%1 that is embedded R" and associate the pojniof S
with the m-system oan?m that is parallel too(p). A mapf of the spheres into the
manifold Vn?m Is given by this association that we cathapping by parallel m-systems.

We further call the fiel§ continuouswhenf is continuous; this will always be assumed

in what follows. We define a continuous field on thel &I* and the associated
mapping by parallah-systems in an analogous way.

Now, this immediately suggests the question: Under adraditions can a continuous
field o(p) that is given orS be extended to a continuous fielp, p) onE™'? [i.e.,a(1,
p) = a(p).] If the dimensiorr of our sphere is less than — mthen Theorem 8 (10)
shows that this process is always possible. In faftS) is then homotopic to zero in

V., then ¢) f can be extended to a continuous mapg'6finto V... However, ifr =n —
m then the sphere is1(~ n)-dimensional (and oriented), and it follows from Theoi®m

(10) that the desired process is possible iff the nuralibat is associated with our map
by parallelm-systems vanishes.

() AH: chap. XIII, § 1, Lemma Il
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This numbera is called thecharacteristicof the m-field § on the spher& = S'™.
One then finds that:

Theorem 11. A continuous m-field that is given on the boundary of a cell can be
continuously extended into its interior:

a) If the dimension of the sphere is less than n — m.
b) If the sphere ig¢n — m)-dimensional and the characteristic of the field on @.is

Extension through central projection:

A boundary field can always be extended into the imteof the cellE™* by the
definition: “o(p, p) is parallel too(p).” We call this processxtension through central
projectionfrom the point (Op). However, the continuity of the extended field whien
generally break down at the center of projection. Meeeoif an arbitrary, not-
necessarily-continuous-field is given on the boundary sphede and we denote the set
of its discontinuities by, then the field that is extended by central projectiba the
cellE** is discontinuous at all points of the cone dViewith the center of projection for
its vertex.

2. Remarks on the calculation of the characteristicln many cases, it proves to be
useful to calculate the characteristic in some othayr than by means of the mapping by
parallelm-systems: Let a continuous field of positively-oriented tsystems3(p, p) be

given on the celE™?!. Such a field is called hasis fieldon the cellE™™.
(“Positively-oriented” means oriented the same asstts¢eny, ¢, ..., ¢, Of basis vector

in R".) In order to calculate the characteristic ohafield o(p) that is given oi8'™, we
proceed as follows: Laet, (=1, 2, ...,m) be a vector ot(p) and letv,; (i =1, 2, ...,n)

be its componenteelative to the basig(1, p). If one now associates every vector
with the vector that contacts the originRfand has the components relative toes, e,
.., en then this produces a continuous nfapf S'™ into theV, . at the origin ofR".

From Theorem 9 (10), a number is associated with this map; we prove thdis the
characteristic of the givem-field onS'™.

To that end, we construct a continuous fani{p) (0 <t <1) of basis fields o8'™
such thatf(p) = A1, p) andBi(p) is parallel toes, ¢z, ..., en. (TO construct this family,

one defines, say, forOt< 1: Z(p) is parallel tof1 — 2, p); the systemg@,»(p) are then
parallel to each other and can easily be made paralgl ..., ¢, by a deformation in the
interval £ <t < 1.) A map f' of S™ into V, that is continuous and continuously
varying int belongs to every basis fielé(p). f, is ourf’, while f is identical with the

mapf through parallem-systems.f andf” are then homotopic; the assertion the follows
from this.
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Calculation of the characteristic by recursion:

Our new method of calculation of the characteristiery useful when one is dealing
with the following situation:

a) The cellE"™! lies in ann’-dimensional plan&?” of R". (" <n) R" will be
spanned by, perhaps, the basis veat@rss , ..., en .

b) Suppose that the vectars, v2, ..., bpy Of the systeno(p) are not contained in

R": they then define am(-n)-system inR", and all of these systems define an (
-n')-field onS'™. We assume that this field can be extended tm am()-field
7 (p, p) onE"™,

c) Let the vectors,-n+1 , ..., bm Of a(p) be contained ifR"; they then define am'-
systemd'(p) iNR". (M =m—n+n).

o(p) and d'(p) then possess characteristicanda’ onS'™. One then has:
a=a (mod 2).

(One can actually prove the equality@find @ for certain orientation assumptions; for
our purposes, however, it suffices to have congruence2mod

Outline of proof: One chooses a basis figlf, p) on the celE"™' in R". This
basis field will be extended b§ (o, p) to a basis fielgX o, p) in R". One calculates the
desired characteristics relative to this basis fieldere one suitably lets the basic cycle

Zy, m Of me (8 1, no. 4) run through the orthogonakystems that contact the origin of
R" whose first fn— 1) vectors arey, ¢z, ..., em-1.

3. Characteristic of a field-pair on a cell. If two continuousn-fields oy, p) and
oi(p, p) are given on our celt”™?, and if, moreover, a continuous fami(p) of m-fields
in constructed on the boundary sph&efor 0 < t < 1 that satisfies the boundary
conditionsap(p) = (1, p) and i(p) = ai(1, p) then we speak of eld-pair in E™. A
field-pair thus consists of two fields on a cell tha¢ aoupled on the boundary by a
continuous family.

We would now like to examine the conditions under whigs continuous coupling
can be extended into the interior. A continuous fawilyn-fields a(po, p) shall then be
constructed irE™! that satisfies the requiremesi{p, p) = a(p). This investigation can
be carried out with the help of Theorems 8 and 9, wathsideration given to Theorem
10, if the dimension + 1 of the cell is at most —m

Let T be, say, the (oriented) unit interval that the parantetens through. We then
construct the cylindeg, in abstractg which is defined as the topological prodick
E™!, and we denote its points by (o, p). We further associate the poink@po, p) of Z
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with the system that is parallel tg(p, p) that contacts the origin iR" [and analogously
for 1 x (o, p)] and associate the pointx (o, p) with the system that is parallel @m(p)
that contacts the origin iR". With that, a continuous map of the boundarg afto V",

is given. Ifr + 1 <n — mthenf can be extended to a continuous map of the entire
cylinder into V", from which, the extension of our continuous couplingalso

n,m?
constructed. However, if+ 1 =n —m then the extension is possible iff the number
that is associated with according to Theorem 910) vanishes, so we call it the
characteristic of the field-paion E™**. In order to calculate this characteristic, the
cylinder boundary must be oriented; siites a product, an orientation can be given by
an orientation of the celi™*. One then has:

Theorem 12. The boundary family that belongs to a field pair can be extended into
the interior:

a) If the dimension of the cell on which the pair lies is less thanm).

b) If this dimension is(n — m) and the characteristic of the field-pair on the
(oriented) cell i9.

We then give a relation between the characterist& fedld and a field-pair. Let two
arbitrary continuousnfields § andg’ be given on the sphe®8™ with the characteristics
aandd’, resp. Furthermore, I&™ be decomposed into the celi8™™, and lety andg’

be coupled by a continuous family of fields on the compenf the f — m- 1)-
dimensional cells of this cell decomposition. Witlattha field-pair is given on any

cellE™™, whose characteristic we denote &y. (Let the cellsE™™ be coherently

oriented with respect to the orientation3T" that was employed for the calculationaf
andd’.) One then has:

ad=a+).a for evenn —morm-= 1.
0)
©)
ad=a+) a (mod2) for oddh —mandm# 1.
0)

These formulas define the foundation for the followinglgsis; it is easy to prove:
One constructs the orientated product complexS'™ =T x Z E""= Y. Z , where

theZ are constructed ovef™ ™ and with the cylinder that was employed in the proof of
Theorem 12. Taking the boundary gives the relation:

(1xS™)-(0xS™M=Y7. ®
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The cylindersz; define a cell decomposition @fx S'™; if one maps eacH, into V"

as in the proof of Theorem 12 then a continuous E&pgiven from the complex oh(—
m)-dimensional cells of this cell decomposition mﬁﬂ and it follows from R) that:

F(IxS'™ —FO0xS™=> F(Z)inV,,,
and from the definition ofr, a', anda; that:
a' Zom—AZm~2 GZom NV

The assertion follows from this homology and Theor8rasd 10.

Here, we must mention the following special case adld-pair: We call a field-pair
with ap(1, p) = a(p) = ai(1, p) afield-pair with rigid boundary valuest consists of two
continuousm-fields that are given on the c&™* and coincide on the bounda®y. (The
connecting boundary family coincides with the commauraary values of the two
fields.) It now follows from Theorem 12 that: The fifgeld of a given field-pair with
rigid boundary values oB"™ can be deformed into the second fieldile preserving its
boundary valuedf the characteristic of the pair vanishesBn".

4. Fields and field-pairs with given characteristics.We need a topological lemma
for what follows:

Let S be ak-dimensional sphere that is decomposed into thekidimensional cells
E andE', and letP be a connected polyhedron. A continuous rapf E into the
polyhedronP can be extended to a continuous maf‘dhat belongs to a given mapping
class ofs into the polyhedrof®.

Proof: LetF, be any map o8 into the polyhedrot® that belongs to the given class,
and letfo be the map thdf, induces orE. We construct a continuous family of mdps
(0<t<1)that connectly tof; . (Such a family can be found, sireéés connected.) The
family f; can be extended to a family of mdpsof Sfinto the polyhedro® (*); F1 is our
desired map.

If one identifiesS‘ with our cylinderZ over a cell

identifiesP with the manifoldV,’ . then this easily yields:

En—m

(no. 3) in this lemma and

Theorem 13. A continuous m-field that is given on the c€ll"Ecan be extended
through a second field on that cell to a field-pair with rigid boundary valnes3) and a
given characteristic

() AH: chap. XIII, § 1, lemma la.
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8 4. Vector fields on manifolds

1. mfields, parallelizability. We now move on to the study wifields on a closed
n-dimensional and differentiable manifol”. For this, we must temporarily make the
case distinction of Theorem 9:

Case 1.n — mis even om= 1. M" is then orientable.
Case 2.n — mis odd andn# 1. M" can then also be non-orientable.

We callM" differentiableif the following condition is fulfilled: M" is endowed with a
system of neighborhoods that is chosen once and farallwhich we will calelements
in the sequel. Each element is homeomorphic to a EutlgpaceR" and is equipped
with a Cartesian coordinate system. The coordinatsfsemation that is induced on the
overlap of two coordinate systems shall be continuousfgrentiable and possess a
nowhere-vanishing, and in Case 1, positive functional detant

With these assumptions, one can define vectorddrand apply the conceptual
structures and theorems of § 3 to it; One must only ceptlae Euclidian space with an
element inM", which is reasonable.

If an m-system is attached to every point\df then we speak of am-field on M";
this field is calleccontinuousin the event that it is continuous on every eleméhthere
are continuoug~fields onM" but no continuousy(+ 1)-fields then we caji thedegree
of parallelizability of M"; A manifold with = n will be referred to as parallelizable
manifold. The basis for this terminology is easy to segz3fn then there is a continuous
basis field (§ 3, no. 2) oll". If we establish an arbitrary vector M with the contact
point p by its components relative to the basis that is gaep then two vectors are
called parallel when the possess positively-proportional components. h Wiat, a
continuous teleparallelism is constructedMt from which it follows, for example, that
the manifold of directed line elementshti is homeomorphic to the topological product
of M" with an g — 1)-dimensional sphere. Examples of parallelizableifoids are easy
to give: The product of two parallelizable manifolds is agaarallelizable, so the-
dimensional torus (i.e., the productrotircles) provides an example of a parallelizable
M". We further remark that one can calculate chariatitar by parallel translation of all
the distributed vectors to a fixed pointMf, precisely as one does in Euclidian spaces (§
3, no. 2).

The central problem of this paper, towards whose solstone steps will be made in
what follows, is the determination of the degreef a given manifold. We are justified
in calling this problem a topological one, since two n@dg that correspond by means
of a map that is one-to-one and differentiable in lwbtéctions will obviously have the
same degree.

2. Frameworks and framework-pairs. Let a fixed cell decomposition &f" be
established for the following considerations; we denotedimensional, oriented cell by
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X and the cell that is dual td in the dual decompositiort)(by &". Let the cell
decomposition be sufficiently fine that the staxofwhich is the totality of all cells that
have points in common witk) lies completely in some element Mf. In Case 1 (no.
1), we would further like to orient the dual céll" to X' as is customary in orientable
manifolds ¢°); in Case 2, orientations will play no role whatsoever

Now, aframeworkis a continuouanfield that is defined on all cells of a sub-
complexK of thedual cell-decomposition. IK is homogeneouslg-dimensional) then
we also briefly speak of adimensional framework In the case that is most important
for us, K is the complex of aljp-dimensional cells of the dual cell-decomposition; a
framework that belongs to this complex is calledratimensional framework that is
defined everywhere on the manifold. Mn the sequel, it will always be assumed that the
cells ofK are at mostr(— m)-dimensional.

One then has:

Theorem 14. Any framework on Mcan be extended to gm — nm)-dimensional
framework that is defined on all of the manifoltl MO <m < n).

Proof: Let& be the cells oK and let” be the cells of the dual cell-decomposition
that do not belong t&. One now attaches an arbitrarysystem to every verte$°.
With that, arm-field is given on the boundary of every céll, which, from Theorem 11,
can be extended continuously into the interior. Now,niHfield that is given on the
boundary of every celf? can again (in the event that< n — 1) be extended into the

interior of the cell. (Theorem 11) One proves the @by pursuing the construction
further. It follows from this that:

Corollary. There exists afn — n)-dimensional framework that is defined on all of
M",
Such a framework will always be denotedthy

We will understand® to mean the framework thét induces on the complex af €
m — 1)-dimensional cells of the dual cell decompositishile an arbitraryf — m— 1)-
dimensional framework that is defined on alMfwill be denoted by.

Two frameworks®, and®; define aframework-pairwhen a continuous family (O
< t < 1) of frameworksg is given withgy = &, andgs = &,. &, and ®; are then

connected to each other on the complexmf(m— 1)-dimensional cells df1" by a
continuous family.

Theorem 15. Two arbitrary frameworkss, and &; can always be combined into a
framework-pair.

() cf., Seifert-Threlfall:Lehrbuch der TopologiéB. G. Teubner, 1934), and furthermore, AH: chap.
XIl, 81, §68.
() cf., AH: chap. IV, § 1, no. 2.
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The proof proceeds analogously to that of Theorem 14.tl@@meconnects the two-
systems that are given I, and ; at a vertex® of the dual cell decomposition by

means of a continuous family of-systems and then extends this connection to the
higher-dimensional cells using Theorem 12.

3. Preliminary remarks on characters inA"™". We next choose @oefficient ring J
that will serve for the definition of algebraic comyds inM" (1), and, in fact, led be the
ring of whole numberg Case 1 (no. 1) and theg of residue classgsnod 2) in Case 2.
We denote algebraic sub-complexes oftfeell decomposition by and algebraic sub-
complexes of the®-cell decomposition by. All (n — nm)-dimensional complexeg"™
define a group\"™ that contains the groufd'™ of (n — r)-dimensional cycles and the
groupH"™ of (n — r)-dimensional boundaries as subgroups. The difference gfoup
H"" is, as is well-known, then(- )-dimensional Betti group"™ of M".

A character y in A" is a homomorphic map from\"™ to the coefficient ring.
Therefore, iff ; andl, are complexes IN"™ anda is an element of then one has:

a) )((Fl + F2) :)((Fl) +)((F2); b) )((0' r]_) = a)((rl).
From these two facts, it follows that:

c) A charactey is known when its values for the complex defined bysasbafA"™
are given. (e.g., all cell8"™ define such a basis.)

d) If Cis anr-dimensional sub-complex of tixecell decomposition that is chosen to
be fixed then a charactgrin A" will be generated by setting:

XTI =dCT).

(In this, T is an arbitrary complex gf"" and @ means the intersection number of
the complexes in parentheses.)

e) Any character i\"" can be generated by a compl€xin the way that is
suggested by d).C is determined uniquely, and is called tt@mplex that is
associated withy.

The proof best proceeds by giviGgexplicitly. One has:
C=> x(&M)x .
(i)

r

In this, the summation is extended overalimensional cells<j )

() AH: chap, IV.
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Our next objective is to determine the properties ofjgheerated comple® from the
properties of the characteys

f) C is a cycle iff y vanishes in the groupl"™; i.e., if for every f — r + 1)-
dimensional comple& of the é-cell decomposition one has:

x@)=0. (1

The proof follows from the fact that for any characyeand an arbitraryA one has the

relation:
X&) = @C,A) =+ ¢C,A).

g) Between two charactegs andy; in A" and a charactef in A", there exists

the following relation:
x(r) = x(r) = x(), (I1)

so between the associated complé&xesC;, andD, there exists the relation:
Ci-Cy== D .
Proof: For an arbitraryn(— r)-dimensional complek, one has:

AC1—Co, M) =C1,T) =G0, T) = xa() — Yo(T')
:X(r) =¢D,N)=x¢dD,IN).

Sincel” was arbitrary, the assertion follows from this that:

h) Let a set of charactegs in the groupA"™ be given, each of which satisfies the
condition (1), and any two of which fulfill a relatioof the form (II). One then

has:

a) The given set determines a charagtein the Betti grouB" ™" whose elements
(these are homology classes) we denoté.by

£ The complexes that are associated wyttare, from f), cycles and lie in a
singler-dimensional homology clags

) One hasy (Z) = ¢A, =).

Proof:
Of a): From the existence of (ll), it then follows thait charactersy; in the cycle

group Z"™ coincide, and thus induce a single character in that grdye to (1), this
character has the same value for homology cyclesgawer, so it actually determines a
single charactex in the Betti groupB" ™.
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Of £): Due to (ll), one has the assertion g), from whicfgllows that the cycles that
are associated with two characters of the givenrsgh@mologous.
Of J): This follows directly from the definitions gf andA.

4. The characters that are determined by frameworks; mainteorems. Now,
let an o — m)-dimensional frameworks that is defined on all of the manifod" be

given. (cf., corollary to Theorem 14.) We now defa charactey in A"™* by giving
the values o for the cellsé"™*, as in no. 3, c): Le(&"™) be the characteristic of the
continuous m-field that is given by® on the boundary spheré™™*! of &™

(Naturally, the orientatiod™™"* is the one that was employed in the calculation & thi
characteristic. One further observes that the chaistateis an element 0d.) The
character thus defined is called tti@racter y that is associated wité.

In addition, we consider alh(— m)-dimensional frameworke; that are also defined

on all ofM". The characterg that are associated with them define a set like thehate
we considered in no. 3, h). We assert that thisutitsf the assumption of no. 3, h).

Proof: Let, say,®, and &; be two frameworks, and lefo and xi1, resp., be the
associated characters. We next show that a chargcexists inA"™ such thatyo , X,
and y fulfill the relation (I1) of no. 3. Due to no. 3, dj, suffices to defingr for the
cells ™. To that end, we couple the framewoeksand®; into a framework-pair using

Theorem 15; lex(é"™) be the characteristic of the field-pair that is inducad®d™ by
this framework-pair. Due to formul&) of 8§ 3, no. 3, one has:

X&) = xo(87™) = x (M™Y.

The relation (1) now follows from no. 3a) and b),fact. Furthermore, we have to show
that each of our characters satisfies the conditjoof 0. 3. If we apply the relation (I1)
that we just proved to the compléxthen this yields:

xi(A) = xo(A),

so it suffices to prove (I) for a single characteattis induced by a special framewdbk
Moreover, due to a) and b), it suffices tihabe a celld ™2 We now construc®, as
follows: Let them-systems o, be parallel to each other on the bound&ty™2. (This

definition makes sense, sinéd&™? lies in an element (no. 1).) From Theorem 14, such a
framework can always be found. For the associate@ctayo, one now has, trivially:
xo(&™2) = 0, with which all parts of (1) are proved.

From the assertion of no. 3, h), it now followatth
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The charactey that is associated with a framewatkhas a cycle for its associated
complex, which will be called th&ingular cycleof &, and from no. 3, e), it is given by:

7= ZX(Q(Jn—rml) ij—l .

(1

All of the charactersy; determine a charactgr in the f — m+ 1)-dimensional Betti
groupB" ™ which we will cally"™™* in the sequelj. One further has:

Theorem 16. (First main theorem).The singular cycles of a(h — m-dimensional
frameworks® that consist of m-systems and can be defined oartti@ manifold M lie

in a single (m — 1)-dimensional homology classs italled thecharacteristic homology
classF™ ™. If = is an arbitrary(n — m+ 1)-dimensional homology class then one has:

XTE) = fFT 2),

In the next paragraph, we shall see that the ctergy"™' represents a
generalization of the Euler characteristic.

To these immediate consequences of the discussitn 3, we must add a somewhat
deeper theorem:

Theorem 17 (Second main theorem). Any cycle that is contained in the
characteristic class F* is the singular cycle of a framework.

Proof: Let, sayz be the given cycle in the claf&". We choose an arbitrary, but
fixed, initial framework®, with the singular cycle, . From Theorem 16 also lies in

F™ so one hag ~ z, and thereforg — z = D. Our framework®, induces am-field
To on the cell&™, which we extend by means of another figldto a field-pair with

rigid boundary values (8§ 3, no. 3) whose charastieron "™ possesses the valgéD,
&™) (Theorem 13). Thenfield §; that is thus constructed on all cefl§™ combines

into a framework®;. &, and®; together define a framework-pair that gives risat
charactery as in the beginning of this section. By consiamtone hasy(é"™) = ¢D,
&™) i.e., the complex that is associated wjithis the comple.

We have seen that the relation (II) of no. 3 eximtween the characteysof &, and
1 of &1 and the charactgr, so the assertion of no. 3, g) is true; ze=2 = = D, if we
denote the singular cycle ¢&f; by zz . The given cycle is then a singular cycle @f;,
with which, Theorem 17 is proved.

() The charactey”™" is, ex definitongindependent of the choice of framework; it is given Hoy t
geometric properties ofl".
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The meaning of the characteristic cl&Ss" for the problem of this paper is based in
the following Theorem:

Theorem 18 (Existence theorem)The exists aiin — m+ 1)-dimensional framework
that is defined on the entire manifold Kf the characteristic class"F* is the zero class.

Proof: @) Let ann(—m + 1)-dimensional framework that is defined on al\fbe
given. It induces a framewow on the complex of celld"™, and thus am-field § on

each cell boundary™™*. SinceJ is extended into the interior of the cél™", its
characteristic vanishes 0™ ™!, so the charactey that is associated witks also
vanishes, and one has 0 for the singular cycleof &, soz ~ 0 precisely.

b) Let the characteristic clas8"™ be the zero class. From Theorem 17, there is a
framework & whose singular cycle is the zero cycle. The charatte y that is

associated witl® then vanishes; however, from Theorem 11, the field thetduced by
@& on ™™ can be extended into the interior.

5. Fields with singularities. Our endeavors to construct a continuoufeld on the
manifold M" step-wise by frameworks are obstructed by the existehttee @lassF™*;
however, we can always fina-fields whose continuity is broken at certain “singtilar
points. In order to not go into dimension-theoreticiclitties, we would like to consider
only mfields that satisfy the following assumption: If allc&’™ of our x-cell
decomposition contains a singular point in its interleent it consists of nothing but
singular points. All of these cells define an absotaplexkK'™ — viz., thesingularity
complexof the field in question. [The number £ 1) means the dimension of the
highest-dimensional cell in this complex.] Now, a fielhwthe singularity complek"™
obviously induces ann(- 1-dimensional framework that is defined on all f.
However, the converse is also true: Evary-(r)-dimensional framework that is defined
on all ofM" is associated with an-field onM" with a singularity compleK'™. In order
to see this, one extends thefield that is given by the framework on the ceflS" by
central projection (§ 3, no. 11) into the higher-dimemaiocells & ™. If one then
chooses the projection center to be the intersepiomt of & ™ with the dual celk
then the necessary cone construction can be perfosmeglicially on a common
subdivision U of the x and é-cell decompositions. With this relationship between
frameworks and singular fields, it now follows from tterollary to Theorem 14 and
from Theorem 18 that:

Theorem 19. There always exists an m-field with @n —1)-dimensional singularity
complex on a manifold the necessary and sufficient condition for the existence of an
m-field with an at mosfm — 2)-dimensional singularity complex is the vanishing of the
characteristic class ™.
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Since any singulam-field an fn - 1)-dimensional singularity complex ofl"
uniquely determines am & m)-dimensional framewor that is defined on all dfI", we

can briefly call the singular cycle that is associatéh & (no. 14) thesingular cycleof
the given field. One then has:

Theorem 19a. The singular cycle of an m-field with tHen — 1)-dimensional
singularity complex R is an algebraic sub-complex of"K in the subdivision that it
induces through U; it measures the multiplicities of (tlhe- 1)-dimensional singularities
and represents the characteristic class’F

In order to prove this, one employs the explicitrespntation of the singular cyde

D x(E ™) x™ and Theorem 11.
M

8 5. Determination of the characteristic classes in speciedses.

1. Differential simplicial decompositions. A simplicial decompositiorK of a
given manifold is calledlifferentiablewhen any simplex oK, along with its perimeter,
lies in an element d¥" (§ 4, no. 1) and is either a Euclidian simpl8xof the image of a
Euclidian simplex by means of a topological map tkacontinuously differentiable in
both directions in this element.

For what follows, we will need the barycentric division ¢) K of such a simplicial
decompositiorK. If we denote the center of mass ofradimensional simplex df by a;

then the simplexes’ = (a,.8,,---,a ) are the simplexes df. (fo<ri<..<rgand6

=0, 1, ...,n. Now, letK be ourx-cell decomposition of § 4; we denote the dual cell
Eﬂ_s Of XS by Eﬂ_s = éf(rorl.“rs) '

2. Single vector fields. In this number, we concern ourselves with thethef 1-
fields (in the sequel, we briefly refer to themwaztor fieldy on a manifoldM". This
theory has already been developed for some tfijnerfd the concluding results go back
to H. Hopt

Theorem 19 then shows that there is always a wdield § with a 0-dimensional

singularity complex irM"; § is then singular at only finitely many vertice$ of thex-

cell decomposition. We understand timglex j of the singularity X’ to mean the
characteristic of the 1-field that is given Byon the boundary of the cell&" that is
dualtox’. (We find ourselves in Case 1 of § 4, noML;is thereforeorientable and the

() AH: chap. Ill, § 1, no. 1.
() AH: chap. Ill, § 2, no. 3.
() AH: chap. XIV, § 4.
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cells &' arecoherently oriented A simple argument gives the singular cyclesag 4,
no. 5) as:

2=3j,x°. (1)

0]

The characteristic clagd will then be represented by the cygleX ji (< is an arbitrary,
but fixed, vertex of the-cell decomposition). The index suxj; is called thealgebraic
number of singularities. If one denotes tha&-dimensional homology class that is
represented by the sum of all ceflsby =" then, from Theorem 16, this yields for the
charactery” in the Betti grouB" :

Y(E) = dF =N =2 2)
Since="is the single basis element B, (2) determines the characpgrcompletely.
It now follows from Theorem 16 and 18 that:

Theorem 20. The algebraic number of singularities is the sawreall vector fields
on M"; one then has vector fields that are continuoualbpoints of M iff this number
vanishes.

One further has:

Theorem 2(G. For a suitable orientation of M the algebraic number of
singularities of any vector field onNk equal to the Euler characteristi¢M") of M".

This theorem is equivalent to the following assertion:

The characteristic clag® can be represented BYOy(M"). Moreover, the formula:

X'(E") = x(M") 3

also says precisely the same thing. We will prove hberem for the simplest caserof

= 2 in this latter form. We carry out the proof underabksumption thal* possesses a
differentiable simplicial decomposition. (Theorema2@® still true without this
assumption.) We then construcs@ecialone-dimensional framewor that consists of
1-systems on the barycentric subdivision of the dallldecomposition whose associated
charactery we determine. The part ¢f that lies in a simplexag, a1, a) (no. 1) of the

barycentric subdivisiorK is depicted in Fig. 3. From this figure, it is clear thse
vectors of® that lie on the boundary of a cell of tygg) (no. 1) point to the exterior of
&o) , and on the boundary of a cell of tyfig , they point to the interior af2 . [In Fig.
3, the parts of three cells that lie i,(a1, &) are suggested b , &) , &) .] For a
suitable orientation, one finds that the characiergt the field that is induced b$ on

the boundary of a ceff;) has the value-{)", so one has:
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X(éo) = 1) (r=0,1,2), (4)
and the singular cycleof & will be:
z=(-1) a, (4a)

where the summation is taken over all vertices(of If one denotes the number of cells
of type & by a then that would yield for the characpgr= X

X(E)=XE &) =ZME) =Z Méo) +Z M) +Z X&) =a0—a+ 2.

p Ao

@)

&o) $u)

Figure 3.

However, by definitionay, — a; + a; is the Euler characteristigM?); with that, (3) is
proved in the special case = 2. Theorem 2§ can be proved fon-dimensional
manifolds in an analogous way.

Formula (3) confirms the fact that was mentioned in Bad the charactey’ ™* can
be regarded as a generalization of the Euler charstateri

If follows from Theorems 20 and apthat:

Corollary. There exists a continuous vector field on the notohif?" iff the Euler
characteristicy(M") vanisheg**9.

This theorem is true faron-orientable manifoldsut this is not directly provable by
our methods. Our argument can also be carried out foionentable manifolds in the
event that we introduce the ring of residue classes @haal place of the ring of whole
numbers (§ 4, no. 3). If we understafll in this case to mean thedimensional
homology class that is represented by the sum ofttariented) cell§” then one has:

X'(Z") = x(M") (mod 2). (32)

(**3 Cf., AH: chap. XIV, § 4, Theorem 3.
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3. Three-dimensional manifolds. We now examine the parallelizability (8 4, no. 1)
of three-dimensional manifolds. One has the imporesult:

Theorem 21. Any orientable, three-dimensional, closed manifold that admits a
differentiable simplicial decomposition is parallelizable.

Before we give the proof of this theorem, we mentibat tit follows from the
considerations of § 4, no. 1 that:

Corollary. If a three-dimensional manifold Mulfills the assumptions of Theorem
21 then the manifold of its directed line elements is homeomorphie ttopological
product of M with a two-dimensional sphere.

The proof of Theorem 21 proceeds in four steps:
|. Determination of the characteristic cl&s

We can satisfy ourselves with the following hints foe golution of this problem,
since in Appendix | we have rigorously determined the cheariatic clas$=* for three-
dimensional, orientable manifolds under somewhat difteesssumptions and by other
methods.

F! is the characteristic class of the 2-fields, so wistrsetm = 2 andn = 3. We are
then in Case 2 of § 4, no. J1;is then the ring of residue classes (mod 2). In omler t
determineF!, one can, in analogy to no. 2 (Fig. 3), construspecial 1-dimensional
framework & that is defined on all of1°, and which is coupled with the barycentric

subdivision K . | will not go into the somewhat tedious constructif this framework
that is composed of 2-systems here; one finds for secaded charactgrthat:

X(ry) =1, ®)

such that the singular cycteof & is given by {):

2= (a,a,)- (5a)

This cycle (mod 2) thus consistsaif edges of the barycentric subdivisi¢h. One can
now show thatz always bounds in aorientable manifold M3, while this does not

() Formulas (4a) and (5a) are closely related to thwecture that for arbitrarym and m the
characteristic class™* can be represented:
in Case | of § 4, no. 1 by (-1)*"*"(a, ,3,...3,)

and in Case Il, by (a, ,a,...a, ).

The summation is therefore taken over all{ 1)-dimensional cells oK ; the complexes above are, in
fact, cycles of the coefficient ringy
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necessarily need to be the case in a non-orientabldaieaél). This then yields that in
an orientabléV 3 the characteristic clagd is always the zero class.

Il. There exists a framewo that is defined on all d¥1* and consists of 2-systems.

Since, from |, the clas&® vanishes in our orientabl®, this fact is a direct
consequence of the existence Theorem 16.

Il. There exist continuous 2-fields o,

In order to prove this, we show that the 2-figldhat is given by) on the boundary

£® of a cell & can be continuously extended into the interiogof Since& lies in an
element (8 4, no. 1), we must therefore prove thevadlg theorem: A continuous 2-
field § that is given on the boundary sph&eof a 3-dimensional celE® that lies in
Euclidian spac&® can be continuously extended into the interioEbf

The following statement is equivalent to this theoréihe map ofS into the
manifold VS?Z by parallel 2-systems (8 3, no. 1) that is associatéugvis homotopic to

zero. Our statement Il can thus be expressed irotloeving form: Any continuous map
of a 2-dimensional sphef into V,, is homotopic to zero. Now, since, from § 2, no. 2,
the closed manifolt¥s . is a deformation retract af;’,, it suffices to prove this assertion

for maps of¥ into Vs, . However, sinc#s, is homeomorphic to the projective sp&ce
(§8 1, no. 3), and since any map $finto P? is, in fact, homotopic to zero, we have
proved the assertion IIl.

IV. There exist continuous 3-fields oA,

The fact that the existence of continuous 3-fields Wedlorom the existence of
continuous 2-fields on asrientable M is easily proved.

8 6. Theorems on characteristic cohomology classes. Applicatson

1. Order of the characteristic class. In this section, we pose the problem of
determining the order of a non-vanishing characteristisscla This problem is
meaningful only in Case 1 of § 4, no. 1, for which the coieffit ring J is the ring of
whole numbers. We will solve it for evem € n).

We preface the following analysis with a subsidiargstderation that relates to the

manifoldsvﬁm (8 2) for whichn — mis even. Namely, we shall examine the topological
map ¢ of V', to itself that comes about when one replacesriheectorv,, in anym-
system of\/n?m with its opposite vector s, . On the i — n)-dimensional sphere that is

() Cf., problem 187 in the Jahresbericht der deutschen Kiatfileervereinigung, Band 45, pp. 22.
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provided by the basis cycig m of 8 1, no. 4 for a fixed orientatiog, is the diameteral
map; since this sphere possesses an even dimensioyiekthés

P(znm) == Zym - (1)

With those preparations, a framewoek that consists ofm-systems will be
constructed on the given manifdil' by employing the notations and assumptions of § 4,
and we letn — mbe even. We thus find ourselves in Case 1 of § 4, nondltre
coefficient ringJ is therefore the ring of whole numbers. The franma induces an
m-field on the boundary of any (— m+ 1)-dimensional celf whose characteristig(<)
is established by means of the nfiags ¢ into Vn?m by paralleim-systems (8 3, no. 1).

If one now replaces the" vector on anyn-system of$ with its opposite vector then

a new framework® arises that is associated with the characterg(i€) and the map
f. Obviously, f arises from the composition band ¢; it then follows from (1) that:

X(&) =— x(&. The relation:
X=X (2)

then exists between the charactermnd ¥ that belong ta® and &, resp. yx, as well as
¥, then induce the charactg?™* in the o — m+ 1)-dimensional Betti group; it then

follows from (2) thaty"™* = - Y™, so ultimatelyy™™* = 0.

It would be incorrect to conclude the vanishingh# characteristic clagg™* from
the vanishing of"™; this conclusion is only permissible when mo 1)-dimensional
torsion is present iM".

If we set, saym = 1 then we find thay" = 0 for manifolds of odd dimension;
however, from § 5, formula (3), it follows from ghihat the characteristic of an orientable
manifold of odd dimensions vanishe$. ( From the corollary to Theorem 20 it then
follows, moreover, that any orientable manifoldodifd dimension possesses a continuous
vector field.

Theorem 22. If M" is orientable, (n — m) is even, and the cla8s' fs not the zero
class then that class has order 2.

Proof: We have to show: For evan£ n), one always has &F™*= 0. Now, from
(2), the relatiore = —Z exists between the singular cycieand Z of the frameworkss

and &, resp., that were employed above. Since bothexfe cycles lie iiF™*, one has
F™! = — F™ this was to be proved.

Corollary. If (n — m) is even and no (m — 1)-dimensional torsion is present'in M
then F™* is the zero class.

() To my knowledge, J. Hadamard was the first to derivevéinéshing of the Euler characteristic of a
manifold of odd dimension from the theory of vector fieldsf., Tanneryintroduction a la théorie des
fonctions(Paris, Hermann, 1910), t. I, note by Hadamard, no. 42} .
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2. An intersection theorem. In what follows, Cases 1 and 2 of § 4, no. 1 will no
longer be distinctall consideration will be based upon the ring of residue clagsesl
2) as the coefficient ring,.andM" can be either an orientable or non-orientable manifold.

In order to bring our theory to a definite conclusiae must find manifolds in which
non-zero characteristic classes exist; only then thél theorems of § 4 contain non-
trivial statements. The analysis of this section salve to resolve this problem.

We call av-dimensional manifoldv” that is embedded in the given manifdit! a
hypersurfacevhen the following conditions are fulfilled:

a) Let M” be the image of a differentiable parameter manifoldniBans of a
topological and continuously-differentiable map of thisapaeter manifold into
M".

b) MY admits a cell decomposition that is a sub-complexe#ficell decomposition
(8 4, no. 2) of the manifoltn".

Due to a), vectors okl” are also vectors od", and the totality of all vectors dv”
that contact a point of M" defines av-dimensional vector structure off'. If the vectors
in a (W — v)-system orM" that contacp do not belong to this structure then we call the
systemforeign to M". If a continuous field of( — V)-systems exists oM" that are
foreign toM” then we say tha¥!” possesses axternal(n —v)-field (). If v=n-1then
this simply means tha#l” is two-sided irM".

Due to b),M" is a cycle (mod 2) of thé-cell decomposition that representsa

dimensional homology class” of M" and av-dimensional homology class’ in M".
One has:

Theorem 23. If a hypersurface Mthat lies in M possesses an external (n)-field
then the intersection number of the characteristic clds§df M" with M” is the (mod 2)
reduced Euler characteristic of 'M

Before we prove this theorem, we introduce the follmmielations: Leté be the
cells of theé&cell decomposition that induce a cell decompositioMbfising b); a ¢ -
1)-dimensional framework that is defined on alMifand consists of\(— v + 1)-systems
will be denoted by, and associated character in the gratpf M" (8 4, no. 4), by. A
(v - 1)-dimensional framework that is defined on alMfand consists of 1-systems will
be denoted by®, and the associated character in the gratmpf MY, by ¥. The
charactersy determine the charactgt (8 4, no. 4) in the~dimensional Betti group of
M", while the charactefg determine the charactgf’ in the v-dimensional Betti group

of M"” in an analogous way.
We then prove the following:

() A hypersurface with an external £ v)-field that lies in an orientable manifold is orientable.
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Lemma. If there exist two framework& and & such that for every celf’ the
relation:

X&) = x(&") (mod 2) (2)
is fulfilled then the assertion of Theorem 23 is true.

Proof: By summing over all cell§”, one gets from (2) that:

X(EN=x"(=") (mod 2). 3)

From Theorem 16, the left-hand side of (3) is the inttime number ofgF"™, =),
while, from 8 5, formula (3a), the right-hand side isgrolent to the Euler characteristic
of M". With that, we have proved the lemma.

In order to prove Theorem 23 now, we have to consthecframeworks$ and &
that satisfy the assumption of the lemma: Fi#stis chosen arbitrarily. Furthermore, the
system of® on the cellsé’™ shall be the system of external<{ v)-fields, extended by
the vectors of%; in the remaining part df1", & will be constructed arbitrarily with the

use of Theorem 14. (2) is, in fact, fulfilled with thisoice of® and &, as one easily
confirms by applying the process of calculating the charetic by recursion (8 3, no.
2).

We shall not go into the closely-related generabzretiof Theorem 23, but merely
apply this theorem to the solution of the problem that p@sed at the start of this
paragraph:

Theorem 24. For a given n and m witham - 1 (mod 2),there exists a manifold
M" in which the characteristic clas$"F is not the zero class.

Addendum. If n=m- 1 (mod 4)then there is indeed an orientablé' M which F"*
does not vanish.

The following remarks suffice for the proof of thesedtems:

1. The assumption of Theorem 25 is fulfilled whdhis the topological product of
MY and an arbitraryn(— v)-dimensional manifold.

2. If the assumption of Theorem 23 is fulfilled andvif possesses an odd Euler
characteristic then it follows from this theoremtttige clas$""" does not vanish iN".

3. There exist manifolds of even dimension that have bddacteristics, and there
exist orientable manifolds with dimensions that are sine by 4 and have odd
characteristics. One now s@ts- 1 =n — nand constructd" as a product manifold.

By a special choice an, it follows easily from the Addendum that:
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Theorem 25. For any dimension n that is not equal to 1 or 3, there exists an
orientable, but not parallelizable, n-dimensional manifold.

(One observes that, from Theorem 19, the vanishingl chatacteristic classes is a
necessary condition for parallelizability.)

3. Examples and applications. Let Xo, X1, X2, ..., X, be coordinates in am @ 1)-
dimensional number-spad®*?, and letp mean the position vector( X1, Xz, ..., X, in

that space. Len vector fieldso” (u=1, 2, ...,m) be given inR™?, and for everyy, let

the components” (i =0, 1, 2, ... ) of the vecton” be homogeneous functions of first

degree of the independent variabdgsxi, Xz, ..., Xa. We project this vector field from
the origin ofR™* onto then-dimensional projective spad® that complete®™* into an
(n + 1)-dimensional projective space. From our homogeweitgition, it follows that in
order form vector fields inP" to define amm-field in the sense of § 4, no. 1, the € 1)
vectorsp = v°, v, v% ..., v™ would have to be linearly independent at all point&Bf,

except for the origin.

We shall employ this convenient representation foruéetor fields in projective
spaces in the sequel in order to discuss the charactetrlaSses oh-dimensional
projective spaces. So, for example,rcr 3 andm = 3, the vectors:

0°( X X X %)
o' (=X, X X %) 0
0°( X X, X —X)

0°( X =X X, %)

provide a continuous 3-field in 3-dimensional projective spBtewith which the
parallelizability ofP?, and therefore the 3-dimensional sphere, is establishesdample.
One can also find an analogous example in dimensiontpémallelizesP’ and the 7-
dimensional spheré)(

We now examine the case= 5,m = 2, so we concern ourselves with 2-fieldh
The three vectors:

0°( Xoo X X% X X %)
0'( X, X% "X % =%, %) (In
0°( =X %, %, =%, 0, 0)

are linearly-independent only f&g = x1 = X2 = x3 = 0, so except for the projective liRé
that is given by, = x;3 = X2 = x3 = 0, they provideéwo linearly-independent vector fields
on P° that that we again denote Iy and v® for the sake of simplicity. We now

construct a-cell decomposition oP°, with the use of the notations of no. 2, in which the

() Cf., H. Hurwitz: “Uber die Komposition der quadratiseshieormen von beliebig vielen Variabeln”
(Math. Werke, Band I, pp. 565-571, especially pp. 570, wherdinde the matrix that is analogous to 1.)
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4-dimensional projective spaé® lies as the hypersurfasg = 0. The intersection point
P of P' and P* lies in the interior of a cellE;' of the cell decomposition of”.

Furthermore, two framework and & shall be constructed that satisfy the assumptions
of the lemma in no. 2: Let the vectors®fbe the vectors? on the cellsZ®, while the 2-
systems of5 shall be the systent, v? on the cells®; & is arbitrary on the remaining
cells & of P°> and can be constructed using Theorem 14. The charaaesy that are
associated witl and &, resp., actually fulfill the congruence (2) that was neglin

the lemma:
X(EY) = X(&EY (mod 2).

In order to prove this, one observes that for any £&llexcepté,’, the relationy(&*) =
Y(&*) = 0 exists, since, as well as®, can be continuously extended into the interior
of the cell. One verifies the assertion for the & by calculating the characteristic by
recursion (§ 3, no. 2); in order to be able to apply thishaktit suffices that the cedl;’

be foreign to the projective spaxe= 0; the vectors® whose contact points are points of

& do not lie inP* then.

From the statement of the lemma, it now followat ttihe intersection number of the
classF* of P> with the hypersurfac®* is the (mod 2) reduced characteristic Rf
however, this characteristic has the value 1. Thezefbe clas§’ is not the zero class,
and will be represented by a projective line.

One achieves the determination of the clls® projective spaces of dimensiok 4
1 (k> 0) with the help of analogous vector fields; one finds

Theorem 26. The one-dimensional characteristic class in a real projective space
dimension(4k + 1) k > 0) will be represented by a projective line; it is therefore
impossible to find two linearly-independent continuous vector fieldesetspaces.

An algebraic application. We would like to relate our investigation of projective
spaces to an algebraic problem that has a close camedath the older investigations
0.

We call fn + 1) linearly-independent quadratit € 1)-sequences of real matrices:

A(/l) — (3{:)

( ©=0,1,2,.. mj 1)

i,k=0,12,.. n

linearly-independentwhen any matrixy, A% y, that comes about through linear
combination is non-singular, as long as only one of¢laé mumbery, is non-zero. One
then has the following:

() Cf., Hurwitz: Werke, Band I, pp. 565-571 and pp. 641-666;h&urhore, Radon: Abh. math.
Seminar der Univ. Hamburg, Band I, pp. 1-14.
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Lemma. If there are (m + 1) linearly-independent matrices (1) then thgistean
everywhere-continuous m-field in projective spRte

Proof: IfB is any non-singulam(+ 1)-rowed matrix then obviously the matrid@s
A (1= 0, 1, ..., m) are also linearly-independent; since we can ch8os¢A®)™, we
can assume from now on that:

o {O fori zk, )

% 711 fori =k.

We now understand”, for # = 0, 1, ...,m, to mean the vectors d¥"! whosei™
componenti(=0, 1, 2, ...n) is given by:

W=i%&: 3)

k=0

if one recalls (2) ther® is the position vectas = (X, X4, ..., X,) in R From no. 3, it

follows that the statement of the lemma will be gabyvas long as one can show that the
(m+ 1) vectors” are linearly-independent forz 0.

m
Therefore, Ietz y, 0" = 0 for a certain vectgr# 0; i.e.:
#=0

> alixy, =0 (=0,1,2 ..5).
k,u

Sincep # 0, the rank of the matri)((z a,y,) is less thann(+ 1). Since the matrices”
U

= (a{j) are linearly independent, this is possible onlyewfally, = 0. This was to be

proved.
The lemma now permits the following algebraic fatation of Theorem 26:

Theorem 27. Any three quadrati¢dk + 2)+owed matrices are linearly independent
(k= 0).

APPENDIX |

The one-dimensional characteristic class
of an orientable three-dimensional manifold

In § 5, no. 3, we saw that that for a three-dirnmra manifoldM?, the vanishing of
the one-dimensional characteristic cl&sis a necessary and sufficient condition for
parallelizability. We further mentioned that fon arientableM® with a differentiable
simplicial decompositionF* is always the zero class, but left the readeramsiple for
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the proof of this fact. It shall now be returned to undemewhat different
differentiability assumptions.

1. A combinatorial lemma. The following lemma is interesting in its own rigdnd
is useful for the study of three-dimensional manifolds.

Figure 4.

Lemma. Any cell decomposition of a three-dimensional manifofdcih be
refined to a subdivisiok) such that any two-dimensional homology class (mod 2)%f M
can be represented by a sub-cycle of U that consists of one or m@mtdig/o-
dimensional manifolds.

One must then show that any two-dimensional cyfeof the given cell
decomposition inJ gives one or more disjoint surfaces that collectivddyine a cycle
that is homologous t#. The proof proceeds in two steps:

1. Zis a cycle (mod 2), so an even number of polygors pfeet along an edge of
Z. We now consider an eddé of Z at which more than two (sayn2polygons meet.
Let £ and &0 be the boundary points gt and let be the dual cell t@* in the given
cell decomposition oM®. We denote the intersecting line segmentsofith the 2
polygons that meet af by s;, S, ..., S , where the numbering shall be given by the
natural cyclic ordering of these line segments (see &ifpr n = 2). Between two
successive line segmenss; andsy (k= 1, 2, ...,n), we now interpolate a small triangle
Ay and construct the conk over the boundary of\c that has its vertex ag;.

Analogously, Ko will be constructed with its vertex afy. K + Ke is a two-

dimensional cycle that is homologous to zero, Ao+ Z(Kkl+Kk2) is a cycle
(k)

homologous ta?, in which & is replaced with edges, each of which is incideith
precisely two polygons of this new cycle. One raty introduces a suitable sub-
division of the given cell decomposition by caryiout this construction.

If all edges ofZ at which more than two polygons met were removgdthis
construction then one would obtain a cyzfe that would be homologous # and would
consist of one or more disjoint pseudo-manifolds.
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2. Let & be an arbitrary vertex of?. We construct a sub-divisidn in which the
stars of the vertice&’ are disjoint. Le be the boundary sphere of the staébf The
intersection ofz? with & consists of some disjoint closed polygon perimetettshiiand
a sub-complexC? of €. We construct the coné® that has its vertex af° over the
boundaryC?. C? + K? is a two-dimensional cycle that is homologous to zso@?+ C?

+ K?is a cycle that is homologous &, which we replac&? with.

If one carries out this construction for every vertben a cycle arises that is

homologous taz®, as well as, that consists of some disjoint two-dimensional siesa

3. Determination of the classF:. We now determine the clagg of a given
orientablemanifold M by comparingv® to a “standard manifoldM . M. is either the

three-dimensional projective spaegor the topological produdt® = & x S' of a sphere
and a circle. Both standard manifolds are parallelizaplée parallelizability oP® was

proved in § 6, no. 3; from Theorem 23, the clgss the zero class iff 3, soT % is

parallelizable. One can, moreover, also give a naatis 3-field orT * directly.) The
given manifoldM* now fulfills the followingassumption:

Any two-dimensional manifold that is embedded M without singularities
possesses a neighborhood that can be mapped into ardtenatafold topologically and
continuously differentiably.

This assumption is only a differentiability assumptismce any two-dimensional
manifold F that is embedded ikI® without singularities possesses a neighborhood that
can be mapped topologically into one of the standardfaildsi In order to show this,
one constructs a manifold without singularitiésn P? or T 2 that is homeomorphic 6.
(Three cases must be distinguished in the process ahgn#tkis construction: a)F is
orientable;F’ can then be constructedRfior T . b)F is not orientable and possesses an
odd Euler characteristi&' can then be constructed . c) F is not orientable and
possesses an even Euler characteriBtican be constructed i) Now, sinceM? is

orientable F' is two-sided {) in M, as long a§ is two-sided inv®, and likewiseF' is
one-sided inM_: whenF is one-sided ifvi®, a topological map of onto F' can then

always be extended to a topological map of a neighborbbBdo a neighborhood d'.
With that, our assertion is proved.

We now consider the cell decompositiorof M® that was mentioned in the lemma,
whose cells we denote b¥; furthermore, letF now be a sub-cycle (mod 2) bf, in

particular, that consists of the cefS of U. If we imagine that a continuous 2-field is
constructed on the standard manifditf then the map of a neighborhoodrointo M,
which exists by assumption, induces a continuous 2-§iedd that neighborhood. The 2-
systems off that contact the points of the celf$ define a one-dimensional framework
(8 4, no. 2) that, from Theorem 14, can be extendedotweadimensional framewor&
that is defined on all d¥1® and consists of 2-systems. The charagt 4, no. 4) that is

() On the relationships between the concepts of “origeitaand “two-sided,” cf., Seifert-Threlfall, §
76.



Stiefel — Direction fields and teleparallelismrrdimensional manifolds. 253

associated witls has the value O for every cdl® if the 2-field that is induced b on

&? is continuously extended into the interior f. One then hag(F) = 0. In other
words: The characteristic cla$ has intersection number zero wiEh Now, sinceF*

has intersection number zero with any surfacand on the other hand, from our lemma,
any two-dimensional homology class (mod 2) can be reptexsdry one or more two-
dimensional manifoldd=, F* has intersection number zero with any two-dimensional
homology class, so from the Poincaré-Veblen dualieptém, it is the zero class (mod
2).

APPENDIX I

On the representation of hypersurfaces in Euclidian space
by systems of equations')

In this appendix, we deduce a consequence of the interséatiorem 23. In analogy
to 8 6, no. 2, we understand tadimensional hypersurface that is embedded-in
dimensional Euclidian space to mean a sub-complékeo€ell decomposition d¥" that
is the topological image of a~dimensional parameter manifold by means of a
topological continuously-differentiable map (< n).

Now, letx;, X, ..., X, be Cartesian coordinates R and let 6 — V) continuously-
differentiable function$i(x;, X, ..., %)) (i =1, 2, ...,n — V) of these coordinates be given.
Now, the equations:

fi(xy, X2, ..., %) =0 (1)

define av-dimensional hypersurfadd’, and if the functional matrix of the functiofis
has rankif — V) at every point oM" then we will callM” a “hypersurface that is regularly
representable by equations.”

Theorem 28. Any hypersurface that is regularly representable by equations has an
even Euler characteristic.

Proof: The gradients grddof the functiond; that contact the points &f" are disjoint
to M" (8 6, no. 2), and the gradients that contact a poikt'aire, by assumption, linearly
independent, so they define am £ v)-system. Since this system varies continuously
with its contact point, moreove]” possesses an external« V)-field, in the sense of §

6, no. 2.

We close the Euclidian spa&8 into then-dimensional spher&€' with an infinitely
distant point. Our hypersurfadé” that lies inS' fulfills the assumption of Theorem 23,
so, from that theorem, its characteristic is congrymod 2) to the intersection number
of the characteristic clags'™ of S' with M". SinceF"™ is trivially the zero class i,
this intersection number vanishes, with which our asseis$ proved.

() This Appendix came about as a follow-up to a question &difert.
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It follows, in particular, from Theorem 28 that a hypeface that is regularly
representable by equations and homeomorphic to a real gecoplane cannot lie in
any Euclidian space of any dimensidh (

() The Euler characteristic of the real projective planl, while that of the complex projective plane is
3 (cf., B. L. van der Waerden: “Topologische Begriindung<dgkuls der abzahlenden Geometrie,” Math.
Ann. 102 (1929), 337-362, especially pp. 361.) The fact that the repgtive plane cannot be regularly
represented by equations in aRYyfollows from the general theorem that any manifold thaiegularly
representable ilR" is orientable. (For the proof, cf., footnote 25.) isTheorem was already proved by
Poincaré (J. Ec. poly. (2), pp. 3). The representation of the projective plar ithat was given in pp.
301 of the book by Hilbert and Cohn-Vossen on intuitive geéigm@erlin, J. Springer, 1932) is not
regular.



