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The electrodynamics of anisotropic media in the special theory
of relativity (V)

By Il. E Tamm

Translated by D. H. Delphenich

Notation
E (B, Ey, E3) — electric field strength Fij — covariant electromagnetic tensor:
H (Hi, H2, H3) — magnetic field strength F{4, F2a, F34) = E, (F23, F31, F12) =B
D (D, Dy, D3) — electric displacement f! — contravariant electromagnetic tensor:

B (By, Bz, B3) — magnetic induction f¢4 62013 =-D, (= 3 9 =H

Although all of the recent progress in physics has cabmait in the domain of the
theory of electrons, nonetheless, the complete, rasaopic description of
electromagnetic phenomena in material bodies hasosbtits significance, and that
description is made in a realm in which the electromagmpebperties of a body are
characterized by the values of its dielectric constamiid magnetic permeabiliy. As
far as we know, the macroscopic equations of electrodisahave not yet been
extended to the case of movirapisotropicmedia. In what follows, we shall attempt to
justify the corresponding generalization of the fambliiskowski equation by following
a path that was pointed out to the author of this arbgl prof. L. I. Mandelstam. The
author would once again like to express his deep feeling otuglatto prof. L. I.
Mandelstam for both posing the present problem and mstaot help and attention
while the author was carrying out the work.

In the classical theory of anisotropic media, theieslofs; andy; are regarded as
the components of two symmetric, three-dimensionmedes:

() zh.R.F.Kh. 0., fiz. dep., (1924), 56, vyp. 2-3, 248.
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and analogously fog; . In the derivation of the equations of moving anisotropeclia,

it becomes necessary to combine these two three-diomah tensors of rank two into
one four-dimensional tensor of rank four. This agrees &sglp with the fact that in
relativistic electrodynamics, two three-dimensional tensd rank one (i.e., two vectors:
the first of which is the electric field strendd) and the second of which is the magnetic
field strengthB) are combined into one four-dimensional electromagmnetisor of rank
two F;j . The interpretation of the values §fand; as a relationship betweds) (viz.,

E andB) andf" (viz., D andH) will not involve the velocity tensar, because the role of
the velocity components will be reduced to a subordinale as the parameters of a
Lorentz transformation. 8 1 will be dedicated to therpretation of those Minkowski
equations for which the values efand i/ are regarded as the components of a four-
dimensional tensor, not as numbers.

In this article, we shall confine ourselves to the gbdelseory of relativity. However,
the tensor form of the equations that we will obtaith allow us to convert them into the
general theory. In the near future, we expect to pteabe results of that generalization
of the equations, and in particular, to apply them tofites of anisotropic media.

8 1. First of all, we shall consider the electromagnetjaations for isotropic media
and give them an interpretation that is somewhat éiffiefrom the usual one, but which
will be necessary if we are to address the underlying @noblf deriving the equations of
anisotropic media.

In this paragraph, for the sake of simplicity, we sbafipose that we are dealing with
a dielectric in which there are no free electricrgba.

The differential equations of the field — viz., di« 0, rotF = 0 — remain valid for
anisotropic media, so we shall not need to returnetmthThe main interest for us in the
equations that establish relations between the tehéansd F;;, namely, the Minkowski
eqguations:

D'+ [vH']=&(E" + [vB]), B'-[VET=uH -[vD). (1)
Here, as well as in all of what follows, a value tisagjiven a prime will be measured in
the moving system (with respect to the body in question).

The derivation of formula (1) is based upon two assumpdr postulates. First of

all, one postulates that the usual relations are valttla stationary system (with respect
to the moving body), namely:

:,UHi, Eilei- (2)
£
These equations can be put into the following form:
Fio = uf ™, Fia=- lfm (3
£

by using the components of the tensBsandf !, along with analogous expressions for
Fo1, F13, F24, €tC.
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In the second place, it is, of course, necessaryostufate thatF; andf " are
essentially components of tensors, which will determthe character of their
transformations. The argument that is based upon #sssemptions and will result in
formula (1) proceeds as follows:

Assume that some Lorentz transformatfowill take the moving syste/®’ to a state
of rest (relative to the moving body); the componesiftshe tensor considered in the
systemS will then be expressed in terms of the componentseofehsor in the syste8f
by way of some functiong and ¢

Fii = @i (Fogs A, =g (P9 A), (4)

whose arguments will include parameters of the transtiosma. However, we get the
desired relations between the components of the ifgoandf’" in the moving system

from equations (3) and (4) in the compondhtandf ; these relations will include both
the values ofe and i and the parameters of the transformathan However, those
parameters are nothing but the components of the velotitiyeobody relative to the
systemS’. If one takes that into account then it will be et&syget formula (1) by a
simple calculation.

It is known that these formulas can be expresseehsotial form:

fiu¢ = eFu",
Fu+FRuy+Fy =u(fu+fy+ty),

in whichu* is the four-dimensional (rank-one) velocity tensdr (

W= (a=1,2,3), u'= =
1-v

1-v2

In these formulas, the relationship between tmsdesf ' andF;; is established by
using athird tensor, namely, the velocity tensor. This is ustindable: After all, every
linear, tensorial dependency between two tensowefe for simple proportionalities in
their components) can be established by using anhjird tensor; the velocity tensor is
usually chosen to be that “auxiliary” tensor. Hee that is not mandatory. Indeed, in
all of the foregoing, it was tacitly assumed tlwatnd ¢/ were numbers — i.escalars
Meanwhile in the theory of anisotropic media theresponding values ofj and y; are
regarded as the components of two three-dimenstenabrs. Of course, one can take a
further step and interpret and i — viz., the coefficients in formula (3) — as the
components of sonfeur-dimensionatensor that will serve to establish a link betwen
andf; the components of the velocior u' will then revert to their former roles as the
parameters of a Lorentz transformation.

To that end, we write equation (3) in the follog/iform:

() The speed of lighin vacuois assumed to be unity.
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Fi =Sjasf %, (5)
where, obviously, one has the following values:

S1212 = M, and the rest of the s1245 = 0,
(6)

1 -
S1414 =— —, and all the remaining44s = 0, etc.
£

These equations are valid only in the stationary systemif,funder the transition to
another system, we transform the coefficiefts; according to the rules of covariant
tensors of rank four then the equation that will beaimed in that way:

F/ =S fe (5a)

will express the correct relationship betweéh andf’" in any coordinate system.
Indeed, in view of the tensoriality &fandf:

h k
, _ 0OX" 0X ;

F aﬂ_ aXa aXﬂ f’/“u'
ij - 1 i hk ? - 1K U
ox'"' 0X ox'* 0xX

substituting this into (5) will give:

F' =

[

ox" ax< ax' 9x¥ ) _,,
Shah 3o ] 4,
B ax' ax) ax’t ax#

which are obviously equivalent to equations (5a).

Thus, the relationship between fhgandf’’ can be established by way of the tensor
Sjap, Whose components in the stationary system sétsfyconditions (6); the velocity
tensor does not appear explicitly in (5). The assumgtibat underlie our conclusions
are entirely consistent with the generally-acceptedngsBons that were listed at the
beginning of this paragraph.

I must point out that equation (3) is not the only guesivay of writing equation (2)
by means of the components of the tensoendf. For example, we could choose to

write it in the following form:Fy, = %(f 12_£2 Fy= zi(f 14_£4Y, etc., which would
E

change the form of the tenssy,z . However, we shall focus on equation (3), because
they have the following advantages: In this, and only, thiem will the fourth-rank
tensors; s reduce to the square of a second-rank tensor; in otheiswbere will exist a
tensors,, such that:

Sjap=SaSB- (7)
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The proof of the uniqueness of the tensgiis given in the Appendix; as for the form of
its components, they are easily determined from (6) andn(f)e stationary system,
namely:

Ju 0 0 0
0 Ju 0 0
=l o 04Ju O (8)
1
O 0 0 ——
eu
Due to that fact, the tensor equation (5) is prigperitten as follows:
Fi =saspf % 9)
Solving this equation fdr! will give:
f L = g'a gﬁ Faﬁ y (10)
in which the coefficients’ will have the following values:
= 0O O 0
a
1
) 0 — O 0
d=| = Ju (11)
0O O = 0
Ju
0 0 0 -&fu

in the rest system. )

Under the transition to another coordinate systemyaluess’ will transform by the
rule for the transformation of the components cbatravariant tensor of rank two. This
follows from the fact that the’ are the minor determinants that are formed froen th
givens; . In other words, the relationship betwerands; is completely analogous to
the one betweeg! andg; in the general theory of relativity:

ds=d (5 =Owherjzk, and J =1when=Kk).

As an example, we use the foregoing to determinee relationship between the
vectorsB, E, andH, D in a uniformly-moving system. Let the speed af toordinate
system with respect to a material medium equahd let it be directed along tleaxis.
Applying the Lorentz transformation:
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B 00-q8

|l o100 1

aj_ 0 01 O J {:3— 1_q} (12)
-8 00 -8

to the tensos’ will give s’ = a,a, €. If we perform the calculations then that will
give:

+/3 2 as’
——1-g74 0O O 1- 4
1
0 — 0 0
g/l = \/ﬁ
0 0 Ju 0
aB> . _ 2 7
\/;(1 g) 0 0 ﬁsﬁ[l gﬂj

Substituting these values &#f! into, e.g., the expression f@,:
D; :f/42: Sr4i§2j Il:lf — 8122(é41E12+ §44 Ez)
will give:

1., q° q
—D, =¢|1-— |E, —— (1-£u)B,,
,32 p) ( gﬂj 2 ’u( 1 )B,

which is one of Minkowski’s equations, when it éh&d forD;, .

8§ 2. If we turn to the more general case of an anbyitraaterial medium with
conductivity g, and in which there are free chargeshen our problem will be to express
the relationship between the current tenishrelectric field strengtlic, conductivity g,
and the charge densigyin tensorial form. Considerations that are gsitailar to the
ones in the preceding paragraph will lead to tileviang form for that relationship:

in which the speed clearly does not appear. Is\ ghi denote the components of the
tensor that has the following values in the staigrsystem:

(") =(0,0,00); (14)

In the same system, the components of the tenskithaeec'? can be defined by one
of the following expressions: Either:
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o= P M= g and the remaining s'”=0, (15)
or
M= =P =- 0" =-P?=-* =10, andthe remaining”=0. (15a)

It is easy to show that such a tensorial interpmatadif the values o&rand o will lead to
Minkowski's equations. Indeed, in the moving coordinateesgsequations (13) will be
replaced with the following ones:

Expresso’'’ andp’' in terms ofgandp, make use of the relations (14) and (15) and the
transformation formula:

o'¥=aa o™ and p'=dp

[in which a‘j are the coefficients of the transformation (12)}J amsert the values thus
found into (13a); the result will be:

|t = BoE; —qBp, 1'°= Bo(E +qB),
1" =-BoE, +fp, 17°=po(E;-qB).
Here,|’* is nothing but the charge density, as measured in the meyitgm, i.e., with
the usual notation|’ * = p’ Eliminating p from the two remaining equations and
replacingl ** with p’, will give:
0B =B(""+ap),
and from the equation far*

p' =B (- qoE).

It is easy to see that these equations, instead aWwtheelations on the right above,
will coincide with existence of the Minkowski systernegiuations.

8 3. The interpretation of Minkowski's equations above dyefaicilitates the task of
generalizing to the case of anisotropicmedium. Strictly speaking, we can only repeat
the arguments in a slightly-modified form.

For simplicity, we first assume that the axeshef three-dimensional tensarsnd i/
coincide with each other (i.e., that the correspan@ixes of the ellipses agree). Choose
a stationary coordinate system whose spatial axesigeindth those of that tensor. The
relationship between the components of the terfispandf " can obviously be written in
the following way:

Fio= st Fia= ) f14 (16)

&
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etc. €). We continue to write this system of equations frséeial form:
Fij = Sjap faﬁ. (17)

The components of the tensej,z obviously have the following values in the
coordinate system that we chose:

S1212 = 121 = U3, $323 = S3232 = 4, $1313 = S3131 = 2,
(18)

S1414 = S4141 = — 424 = 4242 = —, $3434 = 4343 = —.
1 82 83

The rest of the components are equal to zero, éxoepthe elements of the main
diagonal. As for those elements of the main diafjaheir values cannot be determined
from the relations (16) and (17), since when onesitters the anti-symmetric tensdfis
andf ", those elements will drop out of the dependen@y il any coordinate systerf).(

A significant different between the equations thathave considered for anisotropic
media and the equations of isotropic media considtsthe fact that the main
electromagnetic constitutive tensois a tensor of rank four in that case that, a&asy to
see,cannot be reduced to the square of a tensor of rank twgarticular, it is obvious
that the tensor cannot be reduced to the squaaesgimmetric tensor of rank two, as it
can in the isotropic case. Indeed, the 12 indepatnealuess; and 4 cannot be brought
into agreement with the 10 components of a symmeégnsor of rank two. Generally
speaking, a tensor of rank four should play a §iant role in the relativistic theory of
anisotropic media. The following article will shotlat the phenomenon of double
refraction in such a medium leads to the conclusian there is some other tensor that
characterizes the properties of anisotropic meddhisialso a tensor rank four.

We return to the question of the components oftémsors;qs in the stationary
coordinate system (whose axes coincide with thecpal axes of anisotropy). As is
obvious in (18), the tensay,z is symmetric with respect to permutations of tigides in
the groupsi@) and (f) and permutations of those groups with each oth2ue to the
fact that the only non-zero componesfgs are the ones for which one simultaneously

() There are other possible ways of writing this; &g = (/5 / 2) 2 —f %), etc. However, we have
stopped with equation (16), because that is the system di@tgithat reduces to the system of equations
(3) under the transition to the isotropic case.

() One shows, for example, that the elements of the $gyndrop out of the relationship betweeit

and H; in any coordinate system:

(becauseH =2 =—f"*):

s, -< )

j12 1 21

0s

PPPP
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hasi = a andj = 5, we can symbolically denote the tensgpys in the form of a square
matrix:

1

[k 1y _?1

1

s [,U] H _g_

Sjap = 12 , (19)

H H [,U] _?3

S 1 171

g & & |&u

in which the elements in the positions (1, 1), (1, 2), (1,.3),correspond to the
component$; i1, S1212 S1313 --., resp. The form of the elements in the main diagas
we have already said, remains undetermined, and the ponaiag locations of those
elements contain only their dimensions, and are defbethe following conditions:
Under the transition from an anisotropic medium to sotropic one, the tens;qs
[formula (18)] will go to the square of the tensy [formula (8)]. Analogously, it is
possible to find the corresponding contravariant tensbich satisfies the relations:

fijzéjaﬁFaﬁ, (20)
namely:
{1} 1 1
R —_ —_ —é‘l
Hl K
1 F} 1
SP= oy L] o 7. (21)
1 1 {1}
—_— —_— R —83
H M LM
—& —&, —& €4

It is obviously that equations (17) and (20) are equivatemtach other, and that the
tensors’” has the same symmetry properties as the texmgor It is also easy to verify
the following tensorial relation:

9% 5= 03,  where % =0 when! n
o, =1 wheni =n

We shall use a concrete example in order to expilaw to use the formula that we
have derived, and to that end, to take advantage ob aletermine the relationships

between the three-dimensional vectBfsE’, andH’, D' in the moving coordinate system
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whose velocityg is parallel to one of the principal axes of anisotrffpy example, the-
axis).
In order to simply the calculations, we introducenbéation:

The dependency of the componefttd* (= —-D;) on the components d&&” andE’ can
obviously be expressed in the following formula:

pa
f/l4 — Zz Snl4aﬂ F;ﬂ .
B a

In other words, if one takes into account the fact $ is non-zero only when one
hasp =r andq = s simultaneously then that will give:

S10= Y S aal( - 4 q) §°

in which a‘j are the coefficients of the Lorentz transformat{@g). Considering the

values of these coefficients, we see that the notyzero component st***? with 8# a
will be the componerg'***4

$04= el (el - dd) ¢ dl dd- 49 &

Sinces'*=¢""'= - g, andaa} - a;a'is equal to unity (as the determinant of a Lorentz
transformation), one will have:
5"1414 =——g

and therefore:

B>a
14 _ nldaf -1 — _ ]
f —zz SUPE =- gF,,
B a

or
D, = ¢E,,. (22)
Analogously, one gets:
1
H, =—B, (23)
o

and a somewhat more lengthy calculation will leadauthe formulas:

D; :ﬁz(gz_q_zj E;—qﬂz[i—gzj &’ (24)
Hs H,
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1 1
Hr: 2__2 ! 2__2 ) 25
o[tgsw{ia)e e

Eliminating E, from this gives:

B, :ﬁz[ﬂz_(‘i—jHé'{'qﬁz[ﬂz_%j D5 (26)

3 2

The last equation can be obtained directly using thaare$a(17), instead of equation
(20). Indeed, (26) is obtained from (25) by replachgwith f ", and conversely,
replacings’ % with Sjap and changing the sign gf(that sign change corresponds to the
transition from the direct Lorentz transformationtte inverse one, which should be
applied when transformingpvarianttensors).

If one adds another equation) to the previous three equations:

E, =8’ [i—qzﬂsj D’z‘Qﬂ{ﬂa—?lj H3, (27)

83
then that will easily put them into the following form
B, +0E, = 15(H;+aD,),  Dy+aH; = 6,(E;+qB,).

Similarly, we obtain two analogous equations Bjr, H,, D,, andE;. It is easy to

see that the formulas that we found can be reduced tdotleeving two vectorial
equations, which are entirely analogous to Minkowski's fda® in their outward
appearance:

D' +[vH]=&(E +[vB)), B —[VE]=u(H —[vD). (28)

Herev denotes the speed of the material medium with redpdtie coordinate system
consideredr = — g, while £ and denote théhree-dimensional tensors:

& 00 4 0 0

0¢& Of, |0 4, Of,

0 0¢g 0 0 4
in which, as usual:

(eB) = iisﬂ,Ea + jiszaE,, +ki£30,Ea , and etc.

It is obvious that formula (28) will remain valid for angtation of the coordinate
axes, provided that the motion takes place parallehdoptincipal axes of anisotropy.
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When considering the general case of a velocity witlarditrary direction, it will be
necessary to return to the fundamental equations (17) and (20)

8 4. In the previous paragraph, we assumed that the dmmeasional axes of the
ellipsoids € and i coincided with each other. (This is true for all seys$ in crystals,
except for monoclinic and triclinic ones.) In orderdliminate that assumption, let us
consider the case of a purely spatial rotation of otiairaxes (i.e., axes that are at rest
relative to the crystal and parallel to its principaég)x It is known that under that
constraint, the character of the transformatioeary four-dimensional tensor will split
into a number of independent three-dimensional speiadors ). In particular, the
tensors; s splits into:

1) A spatial tensor of rank two that is composed of‘tfiternal” components of the
tensors;jqz — i.e., none of the indices of the component is egutiur.

2) Two spatial tensors of rank two:

340'4

S4jap

} Laj,B=123,

whose corresponding indices have identical valuesfiaaidy:
3) A spatial tensor of rank zero (i.e., a scalar) tbaresponds to the tersuas (©).

One should pay attention to the fact that the compsnef the first tensor depend
upon only thews, 1, and s, and the components of rank two depend upon only the
numberss;, &, ands; .

In other words, we can say that in the stationaith(respect to the body in question)
coordinate system, the electromagnetic constitutivesaes;j,s will split into one
magnetic and two identical electric spatial tensbeg transform independently of each
other (if we ignore the invariant elemesiuss). Whereas the magnetic constitutive tensor
has rank four, the electric one has rank two, which isomplete agreement with the
well-known distinction between the magnetic vectdr&andB and the electric ones
andD (since the former are, in essence, tensors of rank tp simple calculations that
we shall not give here, we can show that the charadteéhe transformation of the
magnetic components of tiieurth-rank constitutive tensor is consistent with that of the
transformation of the usuaécond-rankensor:

() Cf., e.g., H. WeylRaum-Zeit-Materie5" ed., Berlin, J. Springer, 1923, pp. 183, or M. Laue,
Relativitatstheorie1™ ed., Bd. Il, Braunschweig, F. Vieweg and Sohn, 1921, pp. 63.

() Generally speaking, a four-dimensional tensor of rank Will split into 16 spatial tensors, but in
our particular case of the tensgg, , all of these tensors will be zero identically, gptci®r the ones that
were listed in the text.
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#4 0 0
O u O
0 0 44

[The proof of that is based upon the well-known theotbat states that every minor
determinant is orthogonal to its corresponding adj(ret its algebraic complement).]

All of the above gives us the right to make thedfwihg assumption: In the case for
which the ellipsoidal axes af and i coincide with each other, the values of the tensor
componentssj,z (or 999 can be found in the following way: Let the spatial
transformatiorA correspond to the rotation of the coordinates that mideesaxes of the
ellipsoid of  coincide with the axes of the ellipsoid ©f The components of the fourth-
rank matrix transform by the same rules as the tgd€)r and are then transformed Ay
into one with only internaklements (i.e., ones that depend updnwhile leaving the
remaining terms unchanged. The elements of the nthtrsxobtained will correspond to
the components of the tensgks in the coordinate system whose axes coincide with the
ellipsoidal axes o€.

Appendix (to pp. 5)

Proof of the uniqueness of the tenspr In other words, the proof that the values of
the components of that tensor (in the stationaryesystare determined uniquely by
equation (9)F; =S4 Ssf .

From a comparison of these equations with the releBo = ¢/ H;, B, = 1 Hp, B3 = 4
Hs, one will get the following equalities:

S11 S22 —S12 91 = Y, @
S11 83 —=S13B1 = 4, 0)
S22 33— 3832 = U ©
Moreover, sinceFi, does not depend upod, — i. e.,dF;>, / dH, = 0 — and

furthermore, SinCéFlz / 6H1 = 0,6F13 / 6H1 = 0,6F13 / 6H3 = 0,6F23 / 6H3 =0, andang
/ 0H3 = 0, one will have:

S11 923 —S13%1 =0, o) Si1S32—S12%1 =0, 0)
S12 93 —S13%2 =0, e 912 —S2%1 =0, 0)
S12 83 —S13S82 =0, (] 91 83— 531 = 0. )

If none of the terms in equationd) (@nd €) are non-zero then those equations will
give s;1 2 = S12 $1, Which contradicts equatiora)( Therefore, at least one of the
components o§; must equal zero. Assume that one of the elementeahain diagonal
—e.g.,511 — Is zero. Fromad) and ), one will then have; 1 = 13 31 = — 4, and from
equation ¢), one will gets;» s,1 = 0, which are mutually contradictory. Therefore, none
of the components of; that are equal to zero can belong to the main diagoAal.
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consideration of equationd){(i) will show that if the members of the main diagonal a
non-zero then if any off-diagonal element equals z#wen all of the off-diagonal
elements must equal zero.

The remaining elemenss;, S», andsz; are determined uniquely by the equalitiak (
(b), and €). (Only the signs of these elements are arbitrarAh entirely similar
argument applies to the elements that have only oneooiotws in their indices.

Odessa-Moscow 1922-1923.



