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Cobordant differentiable manifolds

By R. THOM (Strasbourg)

Translated by D. H. Delphenich

All of the manifolds envisioned here are assumed toobapact and differentiable of
classC”; any submanifold is assumed to be differentiably embeddeldsdC”.

1. Definitions. A spaceM™? of dimensiom + 1 is amanifold with boundary” if:

1. The complemer’™ —\/"is a (paracompact) open subset of dimensih

2. The boundary" is a manifold of dimension.

3. At any pointx of V", there exists a local chart (that is compatible whid given
differential structures ol’xr’l”+1 V" and onV") in which the image of1™! is a half space

of R™! that is bounded by dR" that is the image of".

If M™* is orientable then the bounda¥§ of M™! is likewise orientable, and any
orientation ofM™! canonically induces an orientation &. One may define that
induced orientation thanks to the boundary operator in haybolo

3: Hnea(M™ V) S H (VD).

Let V" be a — not necessarily connected, but orientableoeadted— manifold. If
there exists a compact, orientable manifold with bouni&fy, with boundaryv", and if
M™! may be endowed with an orientation such that** = " then one says thaf' is a
bounding manifold If one repeats this definition with no conditionasfentability forV"
or M™! then one says thaf' is abounding manifold mod 2.

For a long time now, it has been known that therst enanifolds that do not bound,
notably, the ones whose Euler-Poincaré characteisstidd. Steenrod, ir2], posed the
guestion of giving the necessary and sufficient conditifom such a manifold to be a
bounding manifold. We begin this problem by generalizing fobews: Two orientable
manifoldsV", V'" of the same dimensianare calleccobordantif the manifoldv’" — V",
which is the union o¥’" andV", when it is endowed with the opposite orientatiorheo t
given one, is aounding manifold Two manifolds that are cobordant to a third are
cobordant to each other. The set of equivalence slabss defined between oriented
manifolds of dimension will be denoted b2, . The union of two manifolds represents
two classes that define a law of addition on the efesnefQ, that makes it an Abelian
group (viz., thecobordism group of dimension.nThe null class is the class of bounding
manifolds. One verifies that + (-V) = 0, becaus& [ (-V) is the boundary of the
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productV x |, wherel is the segment [0, 1]. N" is cobordant tov’ ", and if W is
another manifold then it is easy to see that the pragacifoldsV" x W andV’'" x W
arecobordant The topological product thus defines a multiplicaborthe direct sum of
the Q, that is anti-commutative and distributive with resgeciddition. One will denote
the graded ring thus defined By

Likewise, with no condition of orientability, one defs two manifolds to be
cobordant mod 2, the cobordism group mai2and the ring?t that is the direct sum of

thet. Any element o091 is order 2.

Invariants of cobordism classes. — From a theorem of Pontrjagi8]] all of the
characteristic numbers of a bounding manifold are n@Recall that a characteristic
number of an oriented manifold is the value that kemaby a characteristic class of
maximum dimension on the fundamental cycle of the folth) As a result, if two
manifolds are cobordant then their characteristicbemnhare equal. These numbers are
as good as the “characters” of the gr@up(or 91s). They amount to theharacteristic

Pontrjagin numbers:7£P*), V*™> that are defined for the oriented manifold of dimension
= 0 mod 4. In cobordism mod 2, they are the charactegt&fel-Whitney numbers
<{W), V>, which are integers mod 2, the fundamental cla&s ¥"> giving precisely
the Euler-Poincaré characteristic reduced mod 2. Finallynote that for an oriented
manifold of dimension K the excessr of the number of positive squares over the
negative squares of the quadratic form that is defined byntbesection matrix of R
cycles (in real coefficientsy an invariant of the cobordism clas3 his results with no
difficulty from duality theorems for manifolds with bodaries, where the duality at issue
is Poincaré-Lefschetz.

2. Classification of submanifolds. Let W), W be two oriented submanifolds of an

oriented manifoldV". Form the produc¥” x I, wherel is the segment [0;1]. If there

exists a submanifold with boundax§i** that is embedded " x |, and whose boundary,
which is entirely contained within boundary’( 0) O (V", 1) of V" x |, is composed of
W, which is embedded inA, 0) andW,, which is embedded inA, 1), then one says

that W, and W, areL-equivalent. If Wy andW; areL-equivalent to the same submanifold
Y then they ard_-equivalent to each other. This results from thet that one may
assume, with no restriction on generality, that tiemsnifold with boundar)*** meets
the boundary\(", 0) O (V", 1) of V" x | orthogonally (for a Riemannian metric that is
given in advance). One will denote the setleéquivalence classes for oriented
submanifolds of dimensiok by L(V) and the set ok-equivalence classes mod 2 for

oriented submanifolds of dimensignwith no orientability conditions, bl (V"; Z). If

k < n/2 then the representatives of two classes may be adstarbe disjoint, and their

union defines a law of addition di(V") that makes it an Abelian group. (Indeed, here

\a/t\%ain,V\f + (AW is the boundary of\f x |, which is embedded as a neighborhood of
.)  Two L-equivalent submanifolds are botobordant and homologous. If two
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submanifoldsw, W’ form the boundary iv" of a submanifold with boundary that is
embedded iV"; they are obviously.-equivalent.

It is easy to verify that the characteristic nunsbar submanifolds that are defined by
either starting with characteristic classes of therfibundle of normal vectoradrmal
characteristic numbers) or starting with classes g tangent bundle tahgent
characteristic numbers) give essentially numermadiiants of thé.-equivalence classes.

Map associated to a submanifold. One denotes the orthogonal grouk wariables
by O(k) and the subgroup @(k) that is formed from transformations that presenee th
orientation (the rotation group) I8Qk). Gk will denote the Grassmannian of unoriented

k-planes, andG, will denote the Grassmanian of orientegdlanes, which is a covering

with two sheets.Asqy Will denote the universal bundle kfballs with baseék that is

obtained by associating ayplane with the unit ball that is contained in Bsqy is a
manifold with boundary whose boundaBgq. is the universal fiber bundle that is
fibered into k—1)-spheres. Le® be the map that is defined by identifying the boundary
Esak of Asqy to a point. The image spa®€Asqy) will be denotedM(SQKk)). One has
analogous definitions fdEsqy), Asaw, andM(O(K)).

Let W'* be a submanifold of the manifoM®, and endow" with a Riemannian
metric. The set of points that are situated at a geodtstance fronW'™ that is less
than & is, for a sufficiently small€ > 0, a fiber bundle o' * that is fibered into
geodesic norma-balls. This seN — which is a normal tubular neighborhood/df* in
V' — is a manifold with boundary whose bounddrys fibered ovetW'™ into spheres

S, Suppose that the manifold is embedded in Euclidian spag&™. At any pointx

of WX, let Hy be thek-plane that is tangent 8' and normal ta\" ¥, and endowed with
an orientation that is compatible with the given nt@tions of\" andW'*. Choose &-

plane that is parallel tel at the originO of R™™. This defines a map:

A

gW™* . G,.

Upon associating any normal geodesix atith its tangent vector at and the unit
vector that issues fro@ and is parallel to it, one defines a map:

G:N > Asqk),

where g is the projection of the fibration ikdalls ofN andAsqy) -
We form the composed map:

N 0% Asqy 0% M(SQK)).

Its restriction to the boundafy of N mapsT onto ®(Esqw) = &, a singular point of
M(SQK)). As a result, there exists an obvious prolongatib® o G to anyV". It
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suffices to map any point of the complemafit— N onto the pointa. The map thus
obtained:
f: V' - M(SQK))

is, by definition, the map associated with the submanifdld. One remarks that if one
considersG, to be embedded iN(SQK)) (as the image b of the central section of

Asqy) then the reciprocal imageof ék is nothing but the submanifo/ ¥, and the
mapf, when prolonged to tangent vectors, induces an isomorpifisine fiber bundle of
vectors transverse M with the bundle of vectors transverseép in M(SQK)). One
may easily show that tHeomotopy classef the mapf depends upon neither the choice of

Riemannian metric ov" nor the immersion o¥" in R™™. Conversely, being given a

map f: V' - M(SQK)), there exists an approximatidhto f such thatf"l(ék) IS a

submanifoldW'* of V", the prolonged maf$ inducing an isomorphism of the spaces of
transverse vectors. Moreover, one may show tHasifdg verify these conditions and

they are twchomotopicmaps o' into M(SQK)) then the submanifolda”™ = f'l(ék) ,

Wk = g'l(GK) are L-equivalent(lt suffices to conveniently regularize the mapv/bix

| that defines the homotopy.) Finally, in any class gisfia\V' — M(SQK)) there exists
anf that may be obtained by the construction that wasridescabove. LeC(V") the
set of maps of¥/" into M(SQK)). One then proceeds to show that there is a bigctiv
correspondence between elementsLgf(V") and elements oC(V"); the class of
submanifolds that are-equivalent toO corresponds to the class of inessential maps. On
the other hand, K > n/2 thenC(V") may be endowed with an Abelian group structure as
the cohomotopy group Indeed, one easily shows thei{(SQk)) is aspherical for
dimensions <, in such a way that the classes of maps of a spadienehsion <R -1
into M(SQKk)) may be endowed with an Abelian group structure.

One finally obtains:

Theorem 1. The set h4(V") of L-classes of dimensiordkmay be identified with the
set G(V") of classes of maps ¥' - M(SQK)). For k > n/2, this identification is an

isomorphism of Abelian groups (V") and G(V"). Likewise, l«(V"; Z,) is identified
with the set of classes of map¥t - M(SQK)).

3. Maps. There exists a canonical mapf the set_ (V") into the homology group
Hk(V"); for anyk > n/2, it is an isomorphism. The image bin Hy(V") is comprised of
only those homology classes that are realizable lojpmanifold; Theorem 1 allows us to
resolve that question to a certain degree. One rectheesssence of these results in (1).
Here, we shall occupy ourselves with only the kerighe mapJ; this kernel is non-
zero, in general. We meanwhile point out the follonspgcial case: The kernel dfs

zero onL,4(V"), La=(V"), andLi(V"), i < 3, and similarly on,1(V"; Z,). One deduces,
for example:
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Any oriented submanifold of dimension2 that is homologous to 0 M" is L-
equivalent to 0. In particular, it is a manifold withundary. We now place ourselves in
the case wher" is the spher&'. One obtains:

Lemma. If n> X + 2then the groups S’) and (S"; Z,) are identified with the
cobordism group$8 and91y, respectively

This results from the facts that any manifefdmay be embedded R" and that two

cobordant manifolds in it ade-equivalent.
Moreover, as is known, the cohomotopy groupgS") are identified with the
homotopy groupsra(M(SQK)). Theorem 1 thus gives:

Theorem 2. — The cobordism groupQx and 91k are isomorphic to the homotopy
groups7«(M(SQn)) and 75.+(M(O(n)).

It then results from this that the homotopy gromps(M(SQ(r)) are independent of
for k < 2r — 2. One may, moreover, show directly that thesaptexesM(SQKk)) and
M(O(K)), like the sphere and the Eilenberg-MacLane complexegM(SQn)), verify a
“suspension” theorem.

Theorem 2 thus reduces the calculation of the grQu@End 9, to that of homotopy
groups of a space. This latter problem may be approachadrgghod that was pointed
out by H. Cartan and J. P. Serre: Construct a compétxs homotopically equivalent to
the space that is given by successive fibrations of EilgAald@acLane complexes. The
method arrives at the compleXd$O(r)); it then collides with some algebraic difficulties
that | cannot surmount, for the moment, at leastimtite case of complex@4(SQ[r)).
Here are the results:

4. Thering 91. Up to a dimensionr2 the complex that is homotopically equivalent

to M(QO(r)) is a producl of Eilenberg-MacLane complex&$Z,, i) of the form:

Y = K(Za, i) % (K(Za, r+2)) x ... % (K(Z,,r +h))?™ h<r,

whered(h) denotes the number of partitions of the intdgerto integers that do not have
the form 2" — 1.

One may show that the generators of the Eilenberd-&eae spacé(Z,, r+h) that

are factors ol correspond to certain characteristic classes ofitinesrsal fibratiomnAo
- Gy that is defined as follows: Let the “Stiefel-Whitney y@mial” be defined:

1+Wit+Wot2 + ... +W, 1,
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in which t;, t;, ..., ti, ... denote the symbolic roots of that polynomial. Td{h)
generators in dimensian+ h correspond tal(h) characteristic classes that are defined as
symmetric functions of :

Xo= D ()% () (t,)™

where the integera;, ay, ..., an, none of which have the formi2- 1, define thel(h)
possible partitiongvof the integeh.

This permits us to show thatfifs a map oS™" into M(O(n)), when it is regularized
on G in such a fashion that the reciprocal imatfe= f %(G,) is a subspace, and thaf if
iS not inessential then at least one of the normatacheristic numbers{,, of the
manifold W' is non-zero. This gives:

Theorem 3. — If the dh) normal characteristic Stiefel-Whitney numbers that are
associated with the classes, &f a manifold W are zero then all of the characteristic
Stiefel-Whitney numbers (both normal and tangent)b&n& zero, and s a bounding
manifold mod 2.

This contains the converse of the theorem of Pomtrjdmat was cited above. From
that, one may deduce the structure of the 9ing

Theorem 4. — The ringt of cobordism classes mod 2 is isomorphic to an algebra of

polynomials over the field, that admits a generator {for any dimension k that is not
of the form2* — 1.

For example, the first generators are:

U,: the class of the real projective plaRi?,

Us: the class of the real projective spadé,
Us: the class of the manifold of Wu Wen-Tsiin, which ibar bundle overS'
whose fiber is the complex projective plaB€” (Cf. [4]).

Us: the class oRF".
The group91; are:

Ny =7, which is generated hy»,
‘nz = 0,
Ns=Z,07Z,, with generator§ls and U,)?

Ns = Zo, which is generated hys,
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Na =7, 0 Zo 0 Zo, with generatorts , Us , Us , and U2)*.

One may take the generatds of even dimension to be the class of the real ptive
spaceU, . By contrast, | do not know of the general constomctf U; for oddi. (The
first unknown one i$)1; .)

5. Thering Q. One may determine the complex that is equivaleM ®Qr)) for
dimensions +k, k< 7. One thus obtains:

Theorem 5. — The cobordism group@y are, for k< 7:
91292293:0, Q4:Z, Q5:ZZ, QGZQ7: 0.

Any class ofQ, is characterized, on the one hand, by the valueeotharacteristic
Pontrjagin numbeP*(V), and on the other hand, by the indexhat was defined in

paragraph 1. For the complex projective pl&#, one hasP*(V) = 3 andr = 1.

Therefore, the generatf), is the class of P* and:

Theorem 6. — The characteristic Pontrjagin numbef(®) of an oriented manifold of
dimensiod is equal to37, wherer is the excess of the number of positive squares over
that of the negative squares of the quadratic form that is defined ughproduct on

H3(V*; R) (Cf., [5]).

It is therefore a topological invariant, just likeetblass of?, if the same topological
manifold V* can be endowed with two non-isomorphic differentialcttires, while that
manifold remains cobordant to itself.

The algebra Q in rational coefficients. — Let Q be the field of rational numbers.

Upon applying theC-theory of J. P. Serré] to the complexM(SQ[r)) (C being a family
of finite groups) one obtains:

Theorem 7. — Any of the group; are finite for i# 0 mod 4. The algebraQ [ Q is

an algebra of polynomials that admits a generatgy f6r any dimension that is divisible
by 4.

One may takeY,m to be the class of complex projective spde®™. One then
obtains:
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Corollary 8. — For any oriented manifold \there exists a non-zero integer N such
that the multiple manifold is cobordant to a linear combination with integefficients
m; of products of complex projective spaces of even complex dimefsiernintegers m
are homogeneous linear functions of the characteristic Pontrjagin numberkeof t
manifold NOV".

In particular, if all of these numbers are zero tthere exists aN # 0 such thaN [V
is a bounding manifold.
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