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I.  Derivation of the basic equations from the assumption 
of molecules with polarity. 

 
 Using the hypothesis of discrete interacting molecules as a starting point was already 
well-known when the differential equations of elasticity were presented for the first time 
by Navier 1), Poisson 2), and Cauchy 3), but later on that sort of derivation last its 
credibility due to the fact that an important result that the theory provided – viz., the 
numerical behavior of the two elastic constants for isotropic media – was not confirmed 
by experiment.  Thus, since the time of Cauchy 4) and Lamé 5), one has employed the 
preferable approach to arriving at the basic equations that does not necessarily assume the 
molecular picture, but is nonetheless consistent with the dynamical hypotheses on the 
essence of matter. 
 Now, without a doubt, this new procedure is also so important that exploring and 
understanding the older one also deserves considerable interest.  The molecular picture 
itself is not contradicted by the aforementioned experimental result, but only an arbitrary 
special assumption about the way that the molecules interact that is already improbable, 
in its own right.  In fact, the cited papers by Navier, Poisson, and Cauchy assumed that 
the molecules act with equal strength in all directions, which is also not especially based 
in the assumption that the distances between the molecules are large when compared to 
their dimensions.  When this is the case, the existence of the regular structure of the 
crystal remains a complete mystery. 

                                                
 1) Navier, Mém. de l’Acad., 7 (1824), 374.  
 2) Poisson, Mém. de l’Acad., 8 (1828), 357. 
 3) Cauchy, Exerc. de Math. 3 (1828), 188; 4 (1829), 129.  
 4) Cauchy, ibid., t. 4, pp. 293.  
 5) Lamé, Leçons sur la Théorie de l’Élasticité, Paris, 1852 and 1866.  
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 Poisson himself, in his last, incomplete paper 1), abandoned any arbitrary restriction 
and computed the elastic forces on the assumption of molecular interactions that varied 
with direction.  However, even if the results that he obtained were, in fact, the most 
general, this theory was already contradicted by experiments, since the new Poisson 
formulas in the general case led to a symmetry with respect to three of the mutually 
normal planes, which was in contradiction to the experiments with calcite and quartz. 
 However, under closer scrutiny, one recognizes that Poisson only obtained this three-
fold symmetry for the elementary interaction of two molecules with parallel axes by 
means of a fallacy 2), and that any of the results were also based in this fallacy. 
 It is thus justified for us to repeat the argument on a more general foundation on these 
grounds already.  In order to do this, we also discuss some other circumstances. 
 Indeed, Poisson allowed forces to act between the individual molecules that changed 
with direction – as we say, more briefly: polar forces – but he did not examine whether 
rotational moments could not or must not also appear along with such forces, and 
therefore such moments are no less probable than the polar forces.  By their contribution, 
it can happen that under the growth of a crystal one molecular layer can lie with respect 
to the others in precisely the same way. 
 Furthermore, Poisson’s presentation is, in my opinion, so cumbersome, and therefore, 
not especially clear, that it treats the elementary interaction between two parallel 
molecules as functions of four mutually independent arguments, although they actually 
depend upon only three; the final result is very difficult to discuss in that form.  Here, a 
formal advance seems to be possible. 
 In what follows, I will give: 
 1. The derivation of some fundamental properties of the elementary interaction from 
the principle of energy. 
 2. Some theorem on the elastic stresses and rotational moments that act upon 
surfaces. 
 3. The calculation of these quantities from the elementary interactions. 
 4. The specialization of the results for the individual crystal systems. 
 5. A discussion of those results. 
 6. Consequences that follow for isotropic media. 
 

_______________ 
 

 1. We imagine a homogeneous, crystalline medium as consisting of a system of 
molecules that are in equilibrium under their mutual interaction 3).  These interactions are 
forces and rotational moments whose components vary with the relative positions of the 
molecules in an unknown way.  Let the arrangement of the molecules be regular, in such 
a way that each of them is surrounded by the neighboring molecules in the same way.  
For the case in which this does not correspond to reality, since several types of ever-
recurring groups of molecules are present, our theory requires an extension.  Since, by 
our assumption, the molecules possess a polarity, one must treat them like finite rigid 

                                                
 1) Poisson, Mém. de l’Acad., 3 (1842), 3. 
 2) Poisson, ibid., pp. 41, et. seq.  
 3) If one would like to employ the kinetic theory then one would have to calculate with the mean 
positions of the molecules.  
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bodies, and their positions must be determined by means of the coordinates of their 
centers of mass, as well as the attitude of a system of axes that is linked with them. 
 We denote the coordinates of the center of mass relative to the absolute fixed system 
of axes by x, y, z, the direction cosines of the axes that move with it compared to the fixed 
one by α, β, γ, α′, β′, γ′, α″, β″, γ″ , the displacements parallel to the fixed axes by u, v, 
w, and its rotation around them by l, m, n. 
 In order to explain the properties of the forces of interaction, we assume the principle 
of energy, which requires that the work that is done by any forces under an arbitrary 
variation of the system must be the complete variation of a function that depends only 
upon the configuration of the system; i.e., the relative position of its parts. 
 If we thus denote the components of the effect of one molecule mk on another mh by 
Xhk , Yhk , Zhk , and its moment by Lhk, Mhk, Nhk , and use Xhk , Yhk , Zhk , Lhk, Mhk, Nhk in the 
same sense, then the elementary potential Fhk that is given by: 
 
(1)  − dFhk =  Xhk dxh + Yhk dyh + Zhk dzh + Lhk dlh + Mhk dmh + Nhk dnh  
   + Xhk dxk + Yhk dyk + Zhk dzk + Lhk dlk + Mhk dmk + Nhk dnk 
 
depends upon only the relative positions of the two molecules.  Since the complete 
variation of the function Fhk must be on the right-hand side of this formula, it would 
appear that this would depend upon twelve arguments.  Since the relative positions of two 
bodies are determined by six elements, one must convert it into a form in which only six 
differentials remain on the right-hand side. 
 The relative position of the system (mh, mk) does not change under a common 
displacement without rotation, so for: 
 
dxh = dxk , dyh = dyk , dzh = dzk , and dlh = dlk = dmh = dmk  = dnh = dnk = 0 
 
one has: 

dFhk = 0, 
from which, it follows that: 
 

Xhk + Xkh = Yhk + Ykh = Zhk + Zkh = 0.    (2) 
 
 It also does not change under a common rotation, so for: 
 
 dlh = dlk = dl, dmh = dmk = dm, dnh = dnk = dn,  
and 
 − dxh = yh dn – zh dm, − dyh = zh dl – xh dn, − dzh = xh dm – yh dl, 
 − dxk = yk dn – zk dm, − dyk = zk dl – xk dn, − dzk = xk dm – yk dl, 
 
one must then also have that: 

dFhk = 0, 
 
from which, with hindsight of (2), in the event that one sets: 
 

xh – xk = xhk ,  yh – yk = yhk ,  zh – zk = zhk , 
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it then follows that: 
Lhk + Lkh + Zhk yhk – Yhk zhk = 0,     

Mhk + Mkh + Xhk zhk – Zhk xhk = 0,            (3) 
Nhk + Nkh + Yhk xhk – Xhk yhk = 0.     

 
 This system shows that when the direction of the interaction falls along the 
connecting line between the molecules; i.e., when one has: 
 

Xhk = Rhk xhk ,  Yhk = Rhk yhk ,  Zhk = Rhk zhk , 
 
one always has: 

Lhk + Lkh = Mhk + Mkh = Nhk + Nkh = 0;    (4) 
 

i.e., the rotational moments are opposite or zero, resp., and conversely. 
 In this case, when one also introduces: 
 

lh – lk = lhk ,  mh – mk = mhk ,  nh – nk = nhk , 
 

one simply has the relation: 
 

− dFhk = Xhk dxh + Yhk dyh + Zhk dzh + Lhk dlh + Mhk dmh + Nhk dnh ,         (5) 
= Rhk rhk dr + Lhk dlhk + Mhk dmhk + Nhk dnhk .     

 
 Since the expression on the right must be the complete variation of Fhk, in the case in 
question it can depend upon only the four arguments that determine the mutual separation 
rhk and relative rotations.  If the rotational moments are equal to zero then all that remains 
is: 

− dFhk = Rhk rhk drhk , 
 
and therefore, a potential that depends upon rhk alone. 
 In the most general case, by the introduction of: 
 

Lhk dlh + Lkh dlk = (Lhk + Lkh) 
2

h kl l
d

+ 
 
 

 + (Lhk − Lkh) 
2

h kl l
d

− 
 
 

, etc., 

 
and the use of (3), one can easily arrive at the form: 
 

 − dFhk =  
2 2

h k h k
hk hk hk hk

n n m m
X dx y d z d

+ + + − 
 

 

(6) + 
2 2

h k h k
hk hk hk hk

l l n n
Y dy z d x d

+ + + − 
 

 

 + 
2 2

h k h k
hk hk hk hk

m m l l
Z dz x d y d

+ + + − 
 
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 + (Lhk − Lkh) 
2

h kl l
d

−
+ (Mhk − Mkh) 

2
h km m

d
−

+ (Nhk − Nkh) 
2

h kn n
d

−
. 

 
 If one thinks of a system of axes Ah , Bh , Ch as being fixed at mh , and which was 
parallel to X, Y, Z before the displacement, and if ahk, bhk, chk are the coordinates of mk 
relative to mh then under a rotation of this system, or the molecule mh itself, through dlh, 
dmh, dnh, a system change of: 
 

d′ahk = yhk dnh – zhk dmh , d′ bhk = zhk dlh – xhk dnh , d′chk = xhk dmh – yhk dlh . 
 

will be produced. 
 Likewise, for a system of axes that is fixed at mk, one finds that: 
 

− d′akh = yhk dnk – zhk dmk , − d′ bkh = zhk dlk – xkh dnk , − d′ckh = xhk dmk – yhk dlk . 
 

 Since the axes A, B, C were originally X, Y, Z, one can also write: 
 

dxhk = 
2

hk khd a d a′′ ′′−
,  dyhk = 

2
hk khd b d b′′ ′′−

,  dzhk = 
2

hk khd c d c′′ ′′−
, 

 
in which d″ means the change of the relative coordinates under a displacement or 
rotation, and finally obtain: 
 

(7)  

( ) ( ) ( )

2 2 2
( ) ( ) ( )

( ) ( ) ( ) ,
2 2 2

hk kh hk kh hk kh
hk hk hk hk

h k h k h k
hk kh hk kh hk kh

d a a d b b d c c
dF X Y Z

d l l d m m d n n
L L M M N N

− − −− = + +

− − −− + − + −
 

 
if the dahk , etc., mean the complete variation of the relative coordinates compared to the 
moving system that are produced by the displacement and rotation of the molecule.  With 
that, one obtains a formula that shows how the function Fhk actually depends upon only 
the six arguments that determine the mutual positions of the two molecules. 
 If the two molecules, which are regarded as being of the same type, are parallel to 
each other in their homologous directions then their mutual position is determined by 
three arguments – viz., the three relative coordinates – that are ahk = − akh , bhk = − bkh , chk 
= − ckh .  For this case, one must then have: 
 
 Lhk = Lkh ,  Mhk = Mkh , Nhk = Nkh , 
and                   (8) 
 − dFhk = Xhk dahk + Yhk dbhk + Zhk dchk . 
 
In order for the right-hand side to be a complete differential, one must have: 
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− Xhk = hk

hk

F

a

∂
∂

,  − Yhk = hk

hk

F

b

∂
∂

,  − Zhk = hk

hk

F

c

∂
∂

,  (9a) 

 
while, along with (3), one must have: 
 
2Lhk = Yhk zhk − Zhk yhk ,   2Mhk = Zhk xhk − Xhk zhk ,  2Nhk = Xhk yhk − Yhk xhk .   (9b) 

 
 
 2. Let a surface element ωx that is normal to the X-axis be given at the location x, y, z 
in the interior of the elastic body in question, and construct a right cylinder over it that is 
parallel to the +X-axis.  When ωx is quite small, but large compared to the sphere of 
action of the molecular forces, we can regard the sum of the (force) components that all 
molecules on the negative side of the plane of the surface element ωx exert on the 
molecules in the cylinder as being proportional to ωx , and after dividing by ωx this is 
reduced to the unit of surface area.  We denote the so-called elastic stress components 
that are so obtained by Xx, Yx, Zx , and analogously for the sums defined by the rotational 
moments that are exerted, which we denote by Lx, Mx, Nx .  Just as a surface element ωx 
can be regarded as normal to the X-axis, so can one be normal to the Y-axis, Z-axis, or 
any arbitrary axis n, which then leads to the definition of analogous components Xy, Xz, 
Xn, … and analogous moments Ly, Lz, Ln, … 
 We obtain the properties of these component and moment sums by considering the 
equilibrium conditions for volume elements in the interior or on the outer surface of the 
elastic body.  We write them in the following form: 
 
 0 = ∫ ε dr X + ∫ do X , 
 0 = ∫ ε dr Y + ∫ do Y , 
 0 = ∫ ε dr Z + ∫ do Z , 
(10) 
 0 = ∫ ε dr (L + yZ – zY)   + ∫ do ( )L y Z z Y+ − , 

 0 = ∫ ε dr (M + zX – xX) + ∫ do( )M z X x Z+ − , 

 0 = ∫ ε dr (N + xY – yX)  + ∫ do( )N x Y y X+ − . 
 
 In this, ε denotes the density, dr, the space element, and do, the outer surface element 
of the body or sub-body considered.  X, Y, Z are the components of the external force that 
is exerted on interior points, and L, M, N are the analogous moments, both of which are 
referred to the unit of mass.  X , Y , Z  are the external stress components that are 
exerted on the outer surface and L , M , N  are the analogous rotational moments, both 
of which are referred to the unit of area. 
 We shall apply these formulas to spatial elements whose dimensions, in the sense 
described above, might be infinitely small, and consider only the terms of lowest order in 
them. 
 If the volume element is a cylinder that lies inside the system completely, and whose 
height we assume to be either infinitely small of higher order than the cross-sectional 
dimensions or independent of them, then when we either neglect terms of higher order or 
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set the terms that are independent of the height of the cylinder equal to zero, in the event 
that we denote the interior normals to the two base surfaces by + n and – n, we obtain: 
 

(11)   
0,

0.
n n n n n n

n n n n n n

X X Y Y Z Z

L L M M N N
− − −

− − −

+ = + = + =
+ = + = + =

 

 
 If one of the base surfaces of the cylinder is an element of the free outer surface, on 
which the components X , Y , Z  and the moments L , M , N  might act (we preserve 
the notation of (10) in this sense) then one has: 
 

0,

0,
n n n

n n n

X X Y Y Z Z

L L M M N N

+ = + = + =
+ = + = + =

    (12) 

 
in which, we understand n to mean the exterior normal to the body.  Since, as it seems, 
we have no means in practice to exert the outer surface element rotational moment on the 
molecule, but can operate only with stresses in different directions, in practice, one sets: 
 

nL  = nM = nN = 0.     (12a) 

 
 If we further take a spatial element that is bounded by three surface elements that are 
normal to the X, Y, and Z axes and a normal to a direction n (which is regarded as positive 
away from the coordinate origin and is defined by the angles (n, x), (n, y), (n, z)) then, 
upon restricting to the lowest order, one has: 
 
  − X−n  = Xn  = Xx cos(n, x)  + Xy cos(n, y) + Xz cos(n, z), 
  − Y−n   = Yn  = Yx cos(n, x)  + Yy cos(n, y) + Yz cos(n, z),  
 − Z−n  = Zn = Zx cos(n, x)  + Zy cos(n, y) + Zz cos(n, z), 

(13) 
  − L−n = Ln  =  Lx cos(n, x) + Ly cos(n, y)  + Lz cos(n, z),  
  − M−n = Mn = Mx cos(n, x) + My cos(n, y) + Mz cos(n, z), 
  − N−n = Nn  = Nx cos(n, x)  + Ny cos(n, y) + Nz cos(n, z). 
 
 Finally, if one considers an infinitely small prism that is parallel to the coordinate 
planes then one gets: 
 

  0 = εX − yx z
XX X

x y z

∂∂ ∂− −
∂ ∂ ∂

, 

  0 = εY − yx z
YY Y

x y z

∂∂ ∂− −
∂ ∂ ∂

, 

  0 = εZ − yx z
ZZ Z

x y z

∂∂ ∂− −
∂ ∂ ∂

, 

(14) 
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  0 = εL − yx z
LL L

x y z

∂∂ ∂− −
∂ ∂ ∂

      − Zy + Yz , 

  0 = εM − yx z
MM M

x y z

∂∂ ∂− −
∂ ∂ ∂

 − Xz + Zx , 

  0 = εN − yx z
NN N

x y z

∂∂ ∂− −
∂ ∂ ∂

    − Yx + Xy . 

 
 In this, as we said, X, Y, Z, L, M, N denote the components and rotational moments 
that are exerted on the point x, y, z, perhaps from the outside, both of which are referred 
to the unit of mass.  In practice, L, M, N, like L , M , N , are, as a rule, equal to zero. 
 Equations (11) to (14) are the most general ones in the Xx, …, and Lx, … that are 
derivable from the fundamental equilibrium conditions (10); one can then get to any other 
equation from them. 
 When the first equation in (14) is integrated over an arbitrary piece of the elastic 
body, this gives, in fact: 
 

0 = [ cos( , ) cos( , ) cos( , )]x y zX dr do X n x X n y X n zε − + +∫ ∫ , 

 
from which, using (12) and (13), it follows that: 
 

0 = X dr do Xε −∫ ∫ ; 

 
one has analogous expressions for the Y and Z components. 
 From the fourth of equations (14), it follows from the same operation that: 
 

0 = [ cos( , ) cos( , ) cos( , )] ( )x y z y xL dr do L n x L n y L n z dr Z Yε − + + − −∫ ∫ ∫ ; 

 
in this, one can write: 
 

− ( )y zdr Z Y−∫  = - [ ] [ ]y z
y z

Z Y
dxdz yZ dr y dx dy zY dr z

y y

∂ ∂+ + +
∂ ∂∫∫ ∫ ∫∫ ∫ , 

 
or, from (14): 
 

= − [ cos( , ) cos( , )] yx xz
y y

YZ YZ
do y Z n y z Y n z dr y Z z Y

x z x y
ε ε

 ∂  ∂ ∂∂ − + − − − − −   ∂ ∂ ∂ ∂    
∫ ∫  

= − { [ cos( , ) cos( , ) cos( , )]y y zdo y Z n y Z n z Z n z+ +∫  

  − }[ cos( , ) cos( , ) cos( , )] ( )x y zz Y n y Y n z Y n z z dr yZ zY+ + + −∫ , 

 
and when one substitutes this, while using formulas (12) and (13), this yields: 
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0 = ( ) ( )L dr dr yZ zY do L do y Z z Yε ε+ − + + −∫ ∫ ∫ ∫ , 

 
and similarly for the other formulas. 
 However, with that, the general equilibrium conditions (10) are included in the 
consideration of the extended fundamental formula. 
 
 
 3.  Now, we shall calculate the most general values for the elastic stresses and 
moments at an arbitrary location.  We construct a very small surface element ωx at any 
location that is perpendicular to the X-axis and parallel to the positive X-axis of a right 
cylinder over it.  The sum of the effects of all molecules on the negative side of ωx on the 
molecules in any cylinder provides us with the definition of the components Xx, Yx, Zx and 
the moments Lx, Mx, Nx .  As we said, the surface element ωx in this shall be quite small 
compared to the sphere of influence of the molecular forces, and the latter, in turn, might 
be large compared to the distances between the neighboring molecules.  Therefore, a 
layer of molecules over ωx in the sphere of influence would indeed possess only a 
vanishing thickness, in the usual sense of the term, but would still include a very large 
number of individual layers. 
 We now refer the molecules to the absolute fixed coordinate system X, Y, Z, and call 
the coordinates of the attracting molecules xk, yk, zk, while the coordinates of the attracted 
ones are xh, yh, zh .  These coordinates still do not determine their positions completely, 
since, as we have seen, not only displacements, but also rotations, come into 
consideration.  We imagine that the latter are expressed with respect to a system of axes 
Ah, Bh, Ch, with each molecule fixed in it in the same way and moving with it; we assume 
that in the natural state of the crystal all of these systems are subject to that assumption 
and parallel to the fixed X, Y, Z system. 
 If the displacement components of the points xh, yh, zh and xk, yk, zk are uh, vh, wh and 
uk, vk, wk, resp., then the relative displacement of two points is given by: 
 

uh − uk = uhk ,  vh − vk = vhk ,   wh − wk = whk .  (15) 
 
 Since the u, v, w vary continuously with position, this relative displacement can be 
developed in powers of the relative coordinates of the two points, and we assume that the 
deformations are such that one can truncate this development with the first-order terms 
for molecules that act upon each other appreciably, so in the domain of the molecular 
sphere of influence, the dilatations can be regarded as constant. 
 Therefore, when one further sets xh − xk = xhk , yh − yk = yhk , zh − zk = zhk , one has: 
 

 uhk = hk hk hk

u u u
x y z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

(16) vhk = hk hk hk

v v v
x y z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 whk = hk hk hk

w w w
x y z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

. 
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 The rotations, like the displacements, are also different for the variation molecules, 
but they vary infinitely little along an infinitely small length.  We will then also satisfy 
ourselves with the lowest degree of approximation, and regard the rotations, like the 
dilatations, as constant inside the molecular domain of influence.  Accordingly, for the 
region in which our considerations on the determination of the elastic stresses and 
moments apply, all of the molecules are to be considered as having their axes parallel, 
and we place a single system A, B, C through the coordinate origin of X, Y, Z in order to 
single out their directions from all of the other ones.  The aforementioned two molecules 
(h) and (k) might have the coordinates ah, bh, ch, ak, bk, ck when referred to this system A, 
B, C, which are coupled to xh, yh, zh and xk, yk, zk by means of linear relations that likewise 
apply to the relative coordinates ah − ak = ahk, bh − bk = bhk, ch − ck = chk, and we write, 
accordingly: 
 ahk = α1 xhk + α2 yhk + α3 zhk , xhk = α1 ahk + β1 bhk + γ1 chk , 
(17) bhk = β1 xhk + β2 yhk + β3 zhk , yhk = α2 ahk + β2 bhk + γ2 chk , 
 chk = γ1 xhk  + γ2 yhk  + γ3 zhk , zhk = α3 ahk + β3 bhk + γ3 chk . 
 
 Since we bring only infinitely small deformations into consideration, we also must 
expect only infinitely small rotations of the molecules; i.e., since the system A, B, C 
coincides with the system X, Y, Z in the natural state − hence, α1 = β2 = γ3 = 1 and α2 = α3 
= β1 = β3 = γ1 = γ2 = 0 – we will be able to write down: 
 
 ahk = xhk + yhk n − zhk  m,  xhk = ahk − bhk n + chk  m, 

bhk = yhk + zhk l − xhk  n,       yhk = bhk − chk l + ahk  n,             (18) 
 chk = zhk + xhk m − yhk  l,  zhk = chk − ahk m + bhk  l, 

 
for the deformed state. 
 In this, l, m, n denote the infinitely small rotations around the X, Y, Z axes by which 
the system A, B, C is brought from its original position to the displaced one parallel to the 
X, Y, Z system. 
 We would now like to determine the stress on the surface element ωx normal to the X-
axis at the location x, y, z; i.e., to sum the X, Y, and Z components of the effects of all 
molecules that lie on the negative side of the plane of ωx on the ones that are found in the 
cylinder that is constructed over ωx .  When these sums are divided by ωx this then gives 
the components Xx, Yx, Zx, referred to the unit of area.  We thus imagine that the crystal is 
already found in the deformed state. 
 We can then write: 

 Xx = 
( ) ( )

1
hk

h kx

X
ω ∑∑ , 

Yx = 
( ) ( )

1
hk

h kx

Y
ω ∑∑ ,          (19) 

 Zx = 
( ) ( )

1
hk

h kx

Z
ω ∑∑ . 
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 In this, Xhk, Yhk, Zhk denote the components of the effect of the molecule (k) on (h).  
Indeed, the sums are taken over all (k) – i.e., all molecules on the negative side of the 
element ωx – and all (h) – i.e., all molecules in the cylinder over ωx .  However, due to the 
infinitely small sphere of influence for the molecular forces, only the molecules that are 
negligibly far from both sides of ωx contribute anything to the sum. 
 The six-fold sum can be reduced to a three-fold one. 
 Since, by our assumption, the molecules in a homogeneous crystal are regularly 
arranged in such a way that any of them is surrounded by neighboring molecules in the 
same way, and this regular arrangement, by our assumption, will not be altered in the 
infinitely small region around ωx that we are considering during the deformation either, 
molecule pairs with equal relative coordinates xhk, yhk, zhk will appear in the sum above as 
often as the section of the cylinder of height xhk contains molecules; i.e., when one calls 
the number of them that lie in a unit volume v, this number is v xhk ωx .  If one considers 
this and imagines that, from what was said above, the components Xhk, Yhk, Zhk depend 
upon only the relative coordinates xhk, yhk, zhk, in addition to the angles between the axes 
A, B, C and X, Y, Z, which are constant in the entire region, then one can write the sums 
as: 

 Xx = 
0x y z

x Xν
+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′∑ ∑ ∑ , 

(19a) Yx = 
0x y z

x Yν
+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′∑ ∑ ∑ , 

 Zx = 
0x y z

x Zν
+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′∑ ∑ ∑ . 

 
From this, one can say that for a definite, but arbitrary, molecule on the surface ωx, the 
sum shall be taken over all the components that are exerted on the molecules that lie on 
the negative side of ωx, each of which is multiplied by the relative coordinate of the one 
that lies on ωx .  Therefore, in particular, x′, y′, z′ enters in place of xhk, yhk, zhk, and the 
notation X′, Y′, Z′ shall suggest that the particular relative coordinates x′, y′, z′ are 
likewise substituted in the values of the components Xhk, Yhk, Zhk . 
 Since the crystal is found in the deformed state, the axes of the molecule A, B, C are 
not parallel to the fixed axes X, Y, Z.  If we call the components of the elementary effects, 
when calculated parallel to the former, A′, B′, C′ then from (18) we get: 
 

X′ = A′ − n B′  + m C′,     Y′ = B′ − l C′  + n A′,    Z′ = C′ − m A′  + l B′.    (19)* 
 

The components A′, B′, C′ refer to the deformed state − i.e., to the relative coordinates a′, 
b′, c′ of the interacting molecules that come about by increasing the original ones (a′), 
(b′), (c′) through δa′, δb′, δc′.  Since A′, B′, C′ depend upon only a′, b′, c′, we can express 
their values in terms that relate to the original state, and might be denoted in brackets, 
when we develop: 

                                                
 * Translator’s note:  the equation numbering is inconsistent. 
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A′ = (A′) + 
A A A

a b c
a b c

δ δ δ
′ ′ ′∂ ∂ ∂     ′ ′ ′+ +     ′ ′ ′∂ ∂ ∂     

,    

B′ = (B′) + 
B B B

a b c
a b c

δ δ δ
′ ′ ′∂ ∂ ∂     ′ ′ ′+ +     ′ ′ ′∂ ∂ ∂     

,        (20) 

C′ = (C′) + 
C C C

a b c
a b c

δ δ δ
′ ′ ′∂ ∂ ∂     ′ ′ ′+ +     ′ ′ ′∂ ∂ ∂     

.    

 
 In this, when one neglects terms of second order, such as u′⋅⋅⋅⋅ n, and the like, from 
(18), since the displacements take place starting from the natural state, one has: 
 

δa′ = u′ + (b′) n – (c′) m, δb′ = v′ + (c′) l – (a′) n, δc′ = w′ + (a′) m – (b′) l, 
 

or, upon considering (16), also 1): 
 

δa′ = ( ) ( ) ( )
u u u

a b n c m
x y z

 ∂ ∂ ∂ ′ ′ ′+ + + −   ∂ ∂ ∂  
,     

δb′ = ( ) ( ) ( )
v v v

a n b c l
x y z

∂ ∂ ∂   ′ ′ ′− + + +   ∂ ∂ ∂   
,          (21) 

δc′ = ( ) ( ) ( )
w w w

a m b l c
x y z

 ∂ ∂ ∂ ′ ′ ′+ + − +  ∂ ∂ ∂   
.     

 Finally, one has: 

x′ = ( ) 1 ( ) ( )
u u u

a b c
x y z

∂ ∂ ∂ ′ ′ ′+ + + ∂ ∂ ∂ 
. 

 
 If one substitutes this then, with the repeated restriction to terms of first order, this 
yields: 
 

 + Xx = 
0

( ) 1 ( ) ( ) ( ) ( )
a b c

u u u
A a A b A c B a n C a m

x y z
ν

+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

 ∂ ∂ ∂ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − +  ∂ ∂ ∂ 
∑ ∑ ∑  

 + ( ) ( ) ( )
A u u u

a a b n c m
a x y z

 ′  ∂ ∂ ∂ ∂   ′ ′ ′ ′+ + + −     ′∂ ∂ ∂ ∂     
 

 + ( ) ( ) ( )
A v v v

a a n b c l
b x y z

′  ∂ ∂ ∂ ∂     ′ ′ ′ ′− + + +      ′∂ ∂ ∂ ∂      
 

 + ( ) ( ) ( )
A w w w

a a m b l c
c x y z

 ′  ∂ ∂ ∂ ∂    ′ ′ ′ ′+ + − +      ′∂ ∂ ∂ ∂       
, 

 

                                                
 1) Despite the fact that (a′) = (x′), (b′) = (y′), (c′) = (z′) for the original state, I prefer to choose a′, b′, c′ 
to be the summation variables, in order to emphasize that they are calculated parallel to the axes of the 
molecules. 
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  + Yx = 
0

( ) 1 ( ) ( ) ( ) ( )
a b c

u u u
B a B b B c C a l A a n

x y z
ν

+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

 ∂ ∂ ∂ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − +  ∂ ∂ ∂ 
∑ ∑ ∑  

 + ( ) ( ) ( )
B u u u

a a b n c m
a x y z

 ′  ∂ ∂ ∂ ∂   ′ ′ ′ ′+ + + −     ′∂ ∂ ∂ ∂     
 

(22) + ( ) ( ) ( )
B v v v

a a n b c l
b x y z

′  ∂ ∂ ∂ ∂     ′ ′ ′ ′− + + +      ′∂ ∂ ∂ ∂      
 

 + ( ) ( ) ( )
B w w w

a a m b l c
c x y z

 ′  ∂ ∂ ∂ ∂    ′ ′ ′ ′+ + − +      ′∂ ∂ ∂ ∂       
, 

 

 + Zx = 
0

( ) 1 ( ) ( ) ( ) ( )
a b c

u u u
C a C b C c A a m B a l

x y z
ν

+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

 ∂ ∂ ∂ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − +  ∂ ∂ ∂ 
∑ ∑ ∑  

 + ( ) ( ) ( )
C u u u

a a b n c m
a x y z

 ′  ∂ ∂ ∂ ∂   ′ ′ ′ ′+ + + −     ′∂ ∂ ∂ ∂     
 

 + ( ) ( ) ( )
C v v v

a a n b c l
b x y z

′  ∂ ∂ ∂ ∂     ′ ′ ′ ′− + + +      ′∂ ∂ ∂ ∂      
 

 + ( ) ( ) ( )
C w w w

a a m b l c
c x y z

 ′  ∂ ∂ ∂ ∂    ′ ′ ′ ′+ + − +      ′∂ ∂ ∂ ∂       
. 

 
 In this, one must remember that v, as the number of molecules that found in a unit 
volume, will possess a different value after the deformation that it did before.  Namely, 
one has: 

(23)    v = (v) 1
u v w

x y z

 ∂ ∂ ∂− − − ∂ ∂ ∂ 
; 

 
however, the factor of (v) would only be considered in the first terms of the formulas 
above. 
 Since they contain only the variables a′, b′, c′, the sums that enter into them have the 
interpretation that for the point x, y, z one should sum all components of the effects (or 
their differential quotients) that start from all of the molecules that lie on the negative 
side of a plane through this point that is normal to the X-axis, while each one of them is 
multiplied by one or more relative coordinates of the point x, y, z of the molecule in 
question. 
 These sums can be expressed in yet another way. 
 From equations (2), one has: 
 

A′(a′, b′, c′) = − A′(− a′, − b′, − c′),      
B′(a′, b′, c′) = − B′(− a′, − b′, − c′),         (24) 
C′(a′, b′, c′) = − C′(− a′, − b′, − c′),     

 



Voigt – Theoretical studies in the elastic behavior of crystals – I.                         14 

and since the arrangement of the molecules is determined by the forces that act upon 
them, one must assume that they come about in opposite directions in the same way. 
 However, from this, it follows that: 
 

0a b c

A a
+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′∑ ∑ ∑ = 1
2

a b c

A a
+∞ +∞ +∞

′ ′ ′=−∞ =−∞ =−∞

′ ′∑ ∑ ∑ ,    

0a b c

A b
+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′∑ ∑ ∑ = 1
2

a b c

A b
+∞ +∞ +∞

′ ′ ′=−∞ =−∞ =−∞

′ ′∑ ∑ ∑ ,        (25) 

0a b c

A c
+∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′∑ ∑ ∑ = 1
2

a b c

A c
+∞ +∞ +∞

′ ′ ′=−∞ =−∞ =−∞

′ ′∑ ∑ ∑ ,    

 
and analogous statements are true for B′ and C′.  Accordingly, the coefficients of the first 
five terms of the formulas above get converted. 
 From (24), the first differential quotients will keep their signs when one inverts the 
signs of all three arguments.  However, since they appear in all sums multiplied with two 
coordinates, the sums that they contain will also admit the replacement of the summation 
over a′ from 0 to ∞ with one from − ∞ to + ∞ when one puts the factor 1/2 in front of the 
sums. 
 If one applies these formulas to the natural state and imagines that all elastic stresses 
vanish for it, then one gets, when one abbreviates the triple sums taken from − ∞ to + ∞ 
with a single one: 
     0 = ∑ (A′ a′) = ∑ (B′ a′) = ∑ (C′ a′). 

 
 The consideration of a surface element that is perpendicular to the Y and Z axis will 
yield, analogously: 

(26)    
0 ( ) ( ) ( )

0 ( ) ( ) ( ).

A b B b C b

A c B c C c

′ ′ ′ ′ ′ ′= = =
′ ′ ′ ′ ′ ′= = =

∑ ∑ ∑
∑ ∑ ∑

 

 
 A noticeable simplification of the formulas above enters into this, and when one 
considers the fact that: 

A′ = − F

a

∂
′∂
, B′ = − F

b

∂
′∂
, C′ = − F

c

∂
′∂
, 

they become: 
 
− Xx = 
 

 
2 2 2

2
2 2 2

( ) ( ) ( )

2 2 2

u v F u v F u v F
a n a b m a c

x a y a z a

      ∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′+ + + −        ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂       
∑ ∑ ∑  

+ 
2 2 2

2( ) ( ) ( )

2 2 2

v v F v v F v v F
n a a b l a c

x a b y a b z a b

     ∂ ∂ ∂ ∂ ∂ ∂   ′ ′ ′ ′ ′− + + +        ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
∑ ∑ ∑  
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+ 
2 2 2

2( ) ( ) ( )

2 2 2

w v F w v F w v F
m a l a b a c

x a c y a c z a c

      ∂ ∂ ∂ ∂ ∂ ∂  ′ ′ ′ ′ ′+ + − +        ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
∑ ∑ ∑  

 
(27) 
 
− Yx = 
 

 
2 2 2

2( ) ( ) ( )

2 2 2

u v F u v F u v F
a n a b m a c

x a b y a b z a b

      ∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′+ + + −        ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
∑ ∑ ∑  

+ 
2 2 2

2
2 2 2

( ) ( ) ( )

2 2 2

v v F v v F v v F
n a a b l a c

x b y b z b

     ∂ ∂ ∂ ∂ ∂ ∂   ′ ′ ′ ′ ′− + + +        ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂        
∑ ∑ ∑  

+ 
2 2 2

2( ) ( ) ( )

2 2 2

w v F w v F w v F
m a l a b a c

x b c y b c z b c

      ∂ ∂ ∂ ∂ ∂ ∂  ′ ′ ′ ′ ′+ + − +        ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
∑ ∑ ∑  

 
− Zx = 
 

 
2 2 2

2( ) ( ) ( )

2 2 2

u v F u v F u v F
a n a b m a c

x a b y a b z a b

      ∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′+ + + −        ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
∑ ∑ ∑  

+ 
2 2 2

2( ) ( ) ( )

2 2 2

v v F v v F v v F
n a a b l a c

x b c y b c z b c

     ∂ ∂ ∂ ∂ ∂ ∂   ′ ′ ′ ′ ′− + + +        ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
∑ ∑ ∑  

+ 
2 2 2

2
2 2 2

( ) ( ) ( )

2 2 2

w v F w v F w v F
m a l a b a c

x c y c z c

      ∂ ∂ ∂ ∂ ∂ ∂  ′ ′ ′ ′ ′+ + − +        ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂        
∑ ∑ ∑ . 

 
 We would now like to abbreviate the sums that enter into these expressions, and the 
corresponding ones for Xy, Yy, Zy, Xz, Yz, Zz, which depend upon only the nature of the 
crystalline substance, and therefore must have a certain connection with its elastic 
constants, with the symbols mn

hkD , and interpret the upper indices to refer to the factors, 

while the lower indices refer to the denominators, in the differential quotients that occur 
in the sums, such that one will then set: 
 

(28)    
2( )

2

v F
a c

b c

+∞

−∞

 ∂′ ′ ′ ′∂ ∂ 
∑  = 13

23D , 

 
and similarly for the other ones. 
 We then obtain the following system of coefficients in the nine components that 
appear in the first column under each other and the nine arguments that appear in the 
upper row: 
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11 12 13 11 12 13 11 12 13
11 11 11 12 12 12 13 13 13
21 22 23 21 22 23 21 22 23
11 11 11 12 12 12 13 13 13
31 32 33
11 11 11 1

x

y

z

u u u v v v w w w
n m n l m l

x y z x y z x y z

X D D D D D D D D D

X D D D D D D D D D

X D D D D

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       + − − + + −          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

−
−
− 31 32 33 31 32 33

2 12 12 13 13 13
11 12 13 11 12 13 11 12 13
21 21 21 22 22 22 23 23 23
21 22 23 21 22 23 21 22 23
21 21 21 22 22 22 23 23 23
31 32 33 31 32 33 31 32 33
21 21 21 22 22 22 23 23 23
11 12 13 11 12
31 31 31 32 32

x

y

z

x

D D D D D

Y D D D D D D D D D

Y D D D D D D D D D

Y D D D D D D D D D

Z D D D D D

−
−
−
− 13 11 12 13

32 33 33 33
21 22 23 21 22 23 21 22 23
31 31 31 32 32 32 33 33 33
31 32 33 31 32 33 31 32 33
31 31 31 32 32 32 33 33 33

y

z

D D D D

Z D D D D D D D D D

Z D D D D D D D D D

−
−

(29) 

 
 Since mn

hkD = mn
khD  = nm

hkD = nm
khD , 36 of these 81 coefficients are different from each 

other. 
 In order to also obtain the rotational moments Lx, Mx, Nx, and their constants in a form 
that is analogous to that of the Xx, …, we would like to employ the fact that from 
equations (9b) the rotational moments around the coordinate axes Lhk, Mhk, Nhk, which are 
exerted from the molecule (k) to the parallel one (h), are coupled with the corresponding 
components Xhk, Yhk, Zhk, and the relative coordinates xh − xk = xhk, yh − yk = yhk, zh − zk = 
zhk by means of the relations: 
 

Zhk yhk − Yhk zhk + 2Lhk = 0, Xhk zhk − Zhk xhk + 2Mhk = 0, Yhk xhk − Xhk yhk + 2Nhk = 0. 
 

 Just as we did in connection with the arguments that were presented for the 
determination of Xx, Yx, Zx, we can therefore write: 
 

Lx = 
0

( )
x y z

x Y z Z yν
∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′ ′ ′ ′−∑ ∑ ∑ ,     

Mx = 
0

( )
x y z

x Z x X zν
∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′ ′ ′ ′−∑ ∑ ∑ ,        (30) 

Nx = 
0

( )
x y z

x X y Y xν
∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′ ′ ′ ′−∑ ∑ ∑ .     

 
 In this, we go over to the quantities that relate to the moving axes A, B, C when we 
set: 
 Y′ z′ – Z′ y′ = B′ c′ – C′ b′ – n (C′ a′ – A′ c′) + m (A′ b′ – B′ a′), 

Z′ x′ – X′ z′ = C′ a′ – A′ c′ – l (A′ b′ – B′ a′) + n (B′ c′ – C′ b′),        (31) 
 X′ y′ – Y′ x′ = A′ b′ – B′ a′ – m (B′ c′ – C′ b′) + l (C′ a′ – A′ c′), 
 x′ = a′ − b′n + c′m. 
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 However, since we consider the crystal in the deformed state, the relative coordinates 
are: 

a′ = (a′) + δa′,  b′ = (b′) + δb′,  c′ = (c′) + δc′, 
 

and the components are: 
 

  A′ = (A′) + 
A A A

a b c
a b c

δ δ δ
′ ′ ′∂ ∂ ∂     ′ ′ ′+ +     ′ ′ ′∂ ∂ ∂     

, 

  B′ = (B′) + 
B B B

a b c
a b c

δ δ δ
′ ′ ′∂ ∂ ∂     ′ ′ ′+ +     ′ ′ ′∂ ∂ ∂     

, 

  C′ = (C′) + 
C C C

a b c
a b c

δ δ δ
′ ′ ′∂ ∂ ∂     ′ ′ ′+ +     ′ ′ ′∂ ∂ ∂     

, 

 
in which the brackets, in turn, mean that the values in question are to be taken in the 
original state. 
 By substitution, one gets, e.g.: 
 

Lx = [
0

[( ) ( )][( ) ] ( ) ( )
a b c

B c C b a u B a c C a bν δ δ
∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + −∑ ∑ ∑  

(32)  

+ ( )
B C B C B C

a c b a c b b c b c
a a b b c c

δ δ δ
 ′ ′ ′ ′ ′ ′ ∂ ∂   ∂ ∂   ∂ ∂            ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − + −                 ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂                

 

− }[( ) ( )] [( ) ( )n C a A c m A b B a′ ′ ′ ′ ′ ′ ′ ′− + −  , 

 
and similarly for the remaining ones. 
 A further development of the values is not necessary, if one recognizes that sums of 
the form: 

0

( )
a b c

B a c
∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′ ′ ′∑ ∑ ∑  and 
0a b c

B
a b c

a

∞ +∞ +∞

′ ′ ′= =−∞ =−∞

′∂ ′ ′ ′ ′∂ 
∑ ∑ ∑  

 
appear here as coefficients of the arguments ∂u / ∂x, …, and l, m, n, which one can regard 
as being of equal order of magnitude in which, in fact, the components themselves seem 
to be multiplied in a product of two, and their differential quotients in a product of three 
coordinates.  However, since the elements of the sums give noticeable values only insofar 
as the variables a′, b′, c′ are unnoticeably small, the coefficients that occur in the 
expressions for the rotational moments are regarded as infinitely small compared to the 
ones that appear in the components Xx, … 
 This has the effect that in the second triple of the equilibrium conditions (14), in all 
cases where the rotational moments do not vary with exceptionally quickly with the 
coordinates x, y, z, their differential quotients can be neglected along with the remaining 
terms – in agreement with the fact that nL , nM , nN  are set to zero on the outer surface of 
elastic bodies for all known problems – and that each equation then reads: 
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 0 = ε X − yx z
XX X

x y z

∂∂ ∂− −
∂ ∂ ∂

, 

 0 = ε Y − yx z
YY Y

x y z

∂∂ ∂− −
∂ ∂ ∂

, 

 0 = ε Z − yx z
ZZ Z

x y z

∂∂ ∂− −
∂ ∂ ∂

, 

(33) 
 0 = ε L – Zy + Yx , 0 = ε M – Xz + Zx , 0 = ε N – Yx + Xy . 
 

 If one multiplies these equations by 
u

t

∂
∂

,
v

t

∂
∂

,
w

t

∂
∂

,
l

t

∂
∂

,
m

t

∂
∂

,
n

t

∂
∂

, resp., and integrates 

over the entire elastic body then the result is: 
 

 0 =  
u v w l m n

dr X Y Z L M N
t t t t t t

ε ∂ ∂ ∂ ∂ ∂ ∂ + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 
∫  

 + 
u v w

do X Y Z
t t t

∂ ∂ ∂ + + ∂ ∂ ∂ 
∫  

(34) 

 + 
2 2 2

x y z z y

u v w v w
dr X Y Z Y l Z l

t x t y t z z y

  ∂ ∂ ∂ ∂ ∂ + + + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∫  

 + x z y x

w u u v
Z m X m X n Y n

t x t z t y t x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      + + − + + + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
. 

 
 The last integral is the work done by the internal forces, which must have a potential, 
by our basic assumption of the validity of the energy principle.  One must therefore be 
able to set: 

(34a)   Xx = − 
u

x

∂Φ
∂ ∂  ∂ 

,  Xy = − 
u

n
y

∂Φ
 ∂∂ + ∂ 

, etc., 

or one must have: 

xX

u
n

y

∂
 ∂∂ + ∂ 

= yX

u

x

∂
∂ ∂  ∂ 

, etc. 

 
 The agreement of our results with this requirement proves the symmetric form of the 
system of coefficients (29) with respect to the diagonal. 
 For the further analysis, it will be useful to write out at least the second triple of 
equations in (33) explicitly: 
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 0 = εL  + 21 31 22 22 23 23
31 21 31 21 31 21( ) ( ) ( )

u u u
D D n D D m D D

x y z

 ∂ ∂ ∂ − + + − + − −   ∂ ∂ ∂  
 

 + 21 31 22 22 23 23
32 22 32 22 32 22( ) ( ) ( )

v u u
n D D D D l D D

x y z

∂ ∂ ∂   − − + − + + −   ∂ ∂ ∂   
 

 + 21 31 22 22 23 23
33 23 33 23 33 23( ) ( ) ( )

w w w
m D D l D D D D

x y z

 ∂ ∂ ∂ + − + − − + −  ∂ ∂ ∂   
, 

(35) 

 0 = εM + 31 11 32 12 33 13
11 31 11 31 11 31( ) ( ) ( )

u u u
D D n D D m D D

x y z

 ∂ ∂ ∂ − + + − + − −   ∂ ∂ ∂  
 

 + 31 11 32 12 33 13
12 32 12 32 12 32( ) ( ) ( )

v u u
n D D D D l D D

x y z

∂ ∂ ∂   − − + − + + −   ∂ ∂ ∂   
 

 + 31 11 32 12 33 13
13 33 13 33 13 33( ) ( ) ( )

w w w
m D D l D D D D

x y z

 ∂ ∂ ∂ + − + − − + −  ∂ ∂ ∂   
, 

 

 0 = εN + 11 21 12 22 13 23
21 11 21 11 21 11( ) ( ) ( )

u u u
D D n D D m D D

x y z

 ∂ ∂ ∂ − + + − + − −   ∂ ∂ ∂  
 

 + 11 12 12 22 13 23
22 12 22 12 22 12( ) ( ) ( )

v u u
n D D D D l D D

x y z

∂ ∂ ∂   − − + − + + −   ∂ ∂ ∂   
 

 + 11 21 12 22 13 23
23 13 23 13 23 13( ) ( ) ( )

w w w
m D D l D D D D

x y z

 ∂ ∂ ∂ + − + − − + −  ∂ ∂ ∂   
. 

 
These formulas are obtained relatively simply and are derived for completely general 
values of the l, m, n. 
 If one summarizes the terms in each equation that are free of l, m, n with the symbol f 
and briefly denotes the factors of l, m, n by λ, µ, ν then these equations take on the form: 
 
 0 = λ1 l + µ1 m + ν1 n + f1 , 

0 = λ2 l + µ2 m + ν2 n + f2 ,          (35′) 
 0 = λ3 l + µ3 m + ν3 n + f3 . 
 In this, one has: 
 

λ1 = 23 33 22
23 22 332 ( )D D D− + , µ2 = 31 11 33

31 33 112 ( )D D D− + , ν3 = 12 22 11
12 11 222 ( )D D D− + , 

ν3 = µ3 = 23 11 12 31
11 23 31 12( ) ( )D D D D+ − + , λ3 = ν1 = 31 22 23 13

22 31 12 23( ) ( )D D D D+ − + ,  (35″) 
µ1 = λ2 = 12 33 31 23

33 12 23 31( ) ( )D D D D+ − + . 

 
 If one sets the determinant: 

1 1 1

2 2 2

3 3 3

λ µ ν
λ µ ν
λ µ ν

 = Π 
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then one obtains the formulas: 
 
 − l Π = f1 (µ2ν3 – µ3ν2) + f2 (µ 3ν 1 – µ 1ν 3) + f3 (µ 1ν 2 – µ 2ν 1), 

− m Π = f1 (ν2λ3 – ν3λ2) + f2 (ν 3λ1 – ν 1λ 3) + f3 (ν 1λ 2 – ν2λ1),         (36) 
 −  n Π = f1 (λ2µ3 – λ3µ2) + f2 (λ 3µ 1 – λ 1µ 3) + f3 (λ 1µ 2 – λ 2µ 1) 
 
for the determination of the rotations l, m, n when the dilatations ∂u / ∂x, … are 
determined by these and the given momenta L, M, N. 
 However, what is more important than the determination of these quantities is their 
elimination from the Xz, Yy, … that enter into the equilibrium conditions (33). 
 To that end, we add to the three equations (35′) above the one that (29) yields for the 
value of an arbitrary one of the stress components, which might be denoted by K, in a 
form that is analogous to (35′), and thus obtain the system: 
 

1 1 1 1

2 2 2 2

3 3 3 3

,

0 ,

0 ,

0 .

K l m n f

l m n f

l m n f

l m n f

λ µ ν
λ µ ν
λ µ ν
λ µ ν

− = + + +
= + + +
= + + +
= + + +

     (37) 

 
 When one multiplies the f by an arbitrary quantity p and divides, one can now solve 
the four equations for p and then obtain, since p again falls out: 
 

− K 
1 1 1

2 2 2

3 3 3

λ µ ν
λ µ ν
λ µ ν

 = − K Π = 1 1 1 1

2 2 2 2

3 3 3 3

f

f

f

f

λ µ ν
λ µ ν
λ µ ν
λ µ ν

,   (38) 

 
and with it, the form of – K that is free of l, m, n.  The f are linear functions of ∂u / ∂x, …  
If one denotes the coefficients of any of these arguments in the f, f1, f2, f3 by κ, κ1, κ2, κ 3, 
resp., then the coefficient k of this same argument be given in the definitive form of – K 
by: 

(38′)    + k Π = 1 1 1 1

2 2 2 2

3 3 3 3

κ λ µ ν
κ λ µ ν
κ λ µ ν
κ λ µ ν

. 

 
 The number of coefficients of the differential expressions ∂u / ∂x, … thus obtained is 
again 81, since nine components with nine terms are present.  However, they do not all 
vanish, by any means. 
 Next, since Yz and Zy, Zx and Xz, Xy, and Yx differ from each other only by εL, εM, εN, 
resp., the nine coefficients of the ∂u / ∂x, … that appear twice in these component pairs 
must be equal; with that, the total number of them reduces to 54. 
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 Moreover, the terms: 
v

z

∂
∂

, 
w

y

∂
∂

, 
w

x

∂
∂

, 
u

z

∂
∂

, 
u

y

∂
∂

, 
v

x

∂
∂

 

occur only in the combinations: 
 

v

z

∂
∂

+
w

y

∂
∂

, 
w

x

∂
∂

+
u

z

∂
∂

, 
u

y

∂
∂

+
v

x

∂
∂

, 

 
since the elastic components can depend upon only deformations and, perhaps on the 
rotations of the volume elements, as well. 
 We would like to prove that our theory actually yields this result, and thus further 
reduce the number of factors in the dilatations ∂u / ∂x, …to 36. 
 Let 1κ ′ , 2κ ′ , 3κ ′  and 1κ ′′ , 2κ ′′ , 3κ ′′  be the factors of two terms of pairs of differential 

expressions in the equations of eliminations above, let κ′ and κ″ be the factors in the 
value of any of the components Xx, …, and let k′ and k″ be the factors that appear in the 
same formula after the elimination of l, m, n.  The statement above then demands that one 
have: 

k′ = k″. 
This condition reduces to: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( )

( )

( )

( )

κ κ λ µ ν
κ κ λ µ ν
κ κ λ µ ν
κ κ λ µ ν

′ ′′−
′ ′′−
′ ′′−
′ ′′−

 = 0. 

 
However, the λ, µ, ν are the coefficients of l, m, n in the same four equations that we 
mentioned.  If one observes that they occur in (29) only in the combinations: 
 

v

z

∂
∂

+ l,  
w

y

∂
∂

− l,  
w

x

∂
∂

+ m, 
u

y

∂
∂

− m, 
u

y

∂
∂

+ n, 
v

x

∂
∂

− n 

 
then one sees that no matter which alternative one chooses, in the determinant in 
question, one of the last three columns always equals the first column, which must then 
be all zeroes. 
 Thus, the values of the elastic stresses that are obtained by the elimination of l, m, n 
will, in fact, depend upon just the six arguments: 
 

u

x

∂
∂

= xx ,    
u

y

∂
∂

= yy ,    
u

z

∂
∂

= zz ,    
v w

z y

∂ ∂+
∂ ∂

= yz ,    
w u

x z

∂ ∂+
∂ ∂

= zx ,    
u v

y x

∂ ∂+
∂ ∂

= xy . 

 
 However, from the relations for the components Xx, … that are free of l, m, n, one 
finally has: 
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x

y

X

x

∂
∂

= y

x

X

x

∂
∂

, x

z

X

y

∂
∂

= x

z

Y

x

∂
∂

, etc. 

 
For this, it is requisite that when the same thing that is written in terms of the sequence 

Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Zz is associated with the arguments in the sequence 
u

x

∂
∂

, 

u

y

∂
∂

,
u

z

∂
∂

, 
v

x

∂
∂

,
v

y

∂
∂

,
v

z

∂
∂

,
w

x

∂
∂

,
w

y

∂
∂

,
w

z

∂
∂

 it exhibits a system of coefficients that is symmetric 

with respect to the diagonal. 
 This is easily proved with hindsight of the system (29) and (35). 
 If one takes two corresponding terms (perhaps k and h) in two arbitrary components 
(thus, h and k) then the coefficients will be determined by (38′) thus: 
 

k
hk Π  = 1 1 1 1

2 2 2 2

3 3 3 3

k
h h h h

k

k

k

κ λ µ ν
κ λ µ ν
κ λ µ ν
κ λ µ ν

, h
kk Π  = 1 1 1 1

2 2 2 2

3 3 3 3

h
k k k k

h

h

h

κ λ µ ν
κ λ µ ν
κ λ µ ν
κ λ µ ν

. 

 
However, from (29), one has: 

k
hκ  = h

kκ  

in it, and from (29) and (35): 
 

−λh = 1
hκ , −µh = 2

hκ , −νh = 3
hκ , 

−λk = 1
kκ , −µk = 2

kκ , −νk = 3
kκ . 

 
 Moreover, since, from (35), one has: 
 

µ1 = λ2 , ν2 = µ3 , λ3 = ν1 , 
 
the above two determinants can be brought into a form in which the rows of one of them 
agree with the columns of the others by inverting the signs in their first row and last 
column: They are therefore equal. 
 With that, the number of distinct coefficients of the ∂u / ∂x, … ultimately reduces to 
21 in the most general case, in agreement with the result of the theories that are not based 
upon the molecular hypothesis. 
 As far as the rotational moments L, M, N are concerned, they always have the factor 
zero in the first of equations (37), and in the following ones only one appears with the 
factor ε.  One can then readily write down the coefficients k′, k″, k′″ that they are afflicted 
with in the value of – K; they are, in fact: 
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(38″) k′ Π = − ε 2 2 2

3 3 3

λ µ ν
λ µ ν
λ µ ν

,    k″ Π = − ε 3 3 3

1 1 1

λ µ ν
λ µ ν
λ µ ν

,    k′″ Π = − ε 1 1 1

2 2 2

λ µ ν
λ µ ν
λ µ ν

. 

  
 Therefore, all three moments L, M, N enter into each of the stress components, in 
general. 
 The result of this general examination is that values of the elastic components that are 
obtained by the elimination of l, m, n contain a system of constants that shows the 
following arrangement: 
 

11 12 13 14 15 16 11 12 13

21 22 23 24 25 26 21 22 23

31 32 23 24 25 26 31 32 33

41 42 33 34 35 36 41 42 43

41 42 43 44 45 46 41 42 43

51 52 53 54 55 56 51 52

1

x y z x x y

x

y

z

z

y

x

x y z y z x L M N

X D D D D D D E E E

Y D D D D D D E E E

Z D D D D D D E E E

Y D D D D D D E E E

Z D D D D D D E E E

Z D D D D D D E E

ε ε ε− − −
−
−
−
−
− +
− 53

51 52 53 54 55 56 51 52 53

61 62 63 64 65 66 61 62 63

61 62 63 64 65 66 61 62 63

1

1

z

y

x

E

X D D D D D D E E E

X D D D D D D E E E

X D D D D D D E E E

− +
−
− +

  (39) 

 
 In this, Dhk equals Dkh, but Ehk does not equal Ekh . 
 As long as L, M, N are non-zero, Yz and Zy, Zx and Xz, Xy and Yx are not equal, and one 
must consistently keep these values distinct when substituting into the equilibrium 
equations. 
 We keep the rotational moments L, M, N in the formulas, regardless of whether there 
is no means of exerting them on molecules directly in applications up to now, because the 
recent hypothesis of Prof. Riecke 1) of a permanent electrical polarity in molecules 
suggests that it does not seem unthinkable that such moments would be preserved by 
electrical interactions; this gives rise to interesting theoretical speculations, moreover. 
 
 4. We have previously carried out the completely general proof that the theory of 
elasticity that is based upon the interaction of polarized molecules leads to the same form 
the differential equations and the same values of the elastic stress components for 
ordinary applications as the theories that make no assumption about the causes of elastic 
phenomena; however, we have not summarized the comparison between the general final 
form and the older one.  The values of the elastic components that are obtained by 
eliminating the molecular rotations l, m, n are, in the form that only includes the sums 

mn
hkD , very complicated and, for the time being, lacking in practical significance. 

                                                
 1) E. Riecke, Gött. Nachrichten 7 (1887), 194.  
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 By contrast, from now on, they, as well as the values of the molecular rotations 
themselves, shall be derived and communicated for the crystal systems that are 
distinguished by their symmetries.  Meanwhile, only the most important ones shall be 
given for the summary; the less hemi-hedral and hemi-morphic structures that, to judge 
from the crystallographic symmetries, diverge from the elastic behavior of holohedral 
forms shall only be mentioned, but not treated. 
 As in the previous theory for the elastic potential, so also here for the behavior of the 
potential F of the elementary action between molecules, which appears in the sums that 
define the coefficients mn

hkD , we shall consider the symmetry properties of the crystalline 

form as definitive, because observations have shown that in all known physical properties 
(e.g., concerned with light and heat), the crystal must posses at least the symmetry of the 
form, and at most still higher symmetries.  Therefore, it seems appropriate to read off the 
most general symmetry law of the crystalline substance from the crystal form and to 
assume that it represents the same thing as the comprehensive law for all physical 
properties.  On the same grounds, however, it does seem permissible to employ other 
physical properties of the crystal that obey more particular laws than the crystal form 
alone would require for the specialization of the elastic potentials 1), except for the fact 
that the less numerous previous observations on the elastic phenomena in crystals have 
already shown that the same general and complicated symmetry properties feature in the 
optical and thermal phenomena.  The restriction to this as a means of specialization thus 
seems so prudent that it still remains hypothetical and in need of confirmation by 
experiment. 
 The symmetry elements that determine the crystal form are the symmetry center, 
symmetry axis, and symmetry plane; their definitions are well-known to be the following 
ones 2). 
 A symmetry center is a point that bisects all lines that go through it such that both 
ends terminate on the crystal polyhedron. 
 A symmetry axis is any line, around which one can rotate the polyhedron through an 
aliquot part of a complete rotation in such a way that all of its points coincide with the 
points of its initial position.  If 2p/n is the smallest rotation angle that belongs to the axis 
then the symmetry axis is called n-fold.  The only crystallographic possibilities are the 
cases n = 2, 3, 4, 6.  Two symmetry axes are called equal when the arrangement of 
surfaces and edges for the one is the same for the other one.  Accordingly, if the two sides 
of one and the same axis are equal then one calls the symmetry axis two-sided. 
 A symmetry plane is any plane that divides the crystal polyhedron in such a way that 
one half is the mirror image of the other relative to the symmetry plane.  Two symmetry 
planes are called equal when the arrangement of surfaces and edges is identical for both 
of them. 
 For our special purpose of the application to the specialization of the values of elastic 
potentials and stress forces, the following question has special importance: Which of the 
simultaneously appearing equal or different kinds of mutually independent symmetry 
elements should one consider, in particular? 
 There exist a number of easily-proved theorems in regard to this. 
                                                
 1) For that reason, I cannot agree with the procedure of Minnigerode [Götting. Nachr. 6 (1884), 219], 
that calls upon the optical behavior of crystals in certain cases.  
 2) Cf., Liebisch, Krystallographie, Leipzig, 1881, pp. 191, et seq.  
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 For symmetry axes alone, one has the following: 
 If two equal two-fold symmetry axes are present then they must make angles of 2π/3, 
2π/4, or 2π/6 with each other, and there simultaneously exist 1, 2, or 4 equal axes with 
them 1) that lie in the same plane and which define the same angles with the neighboring 
axes.  The bisectors of this angle are likewise equal, and for the former distinct two-fold 
symmetry axes, the direction that is normal to their plane is a two-sided 3, 4, or 6-fold 
symmetry axis, resp.  This theorem can also be inverted in such a way that the existence 
of two-sided 5, 4, or 6-fold symmetry axes has the two-fold neighboring axis as a 
consequence. 
 Several equal three-fold symmetry axes are possible only in the case in which they lie 
on the four vertex diagonals of a regular hexahedron.  Three four-fold equal parallels to 
the edges of the hexahedron and six two-fold equal parallels to the surface diagonals then 
appear with them. 
 For symmetry planes, one further has: 
 If several symmetry planes intersect in a line then they are either all equal or divide 
into two groups of mutually equal ones that appear alternately.  Neighboring symmetry 
planes therefore intersect with equal angles and the planes of the one group bisect the 
angle that is defined by those of the other group.  The line of intersection is an n-fold 
symmetry axis when n symmetry planes intersect in it. 
 If a center of the symmetry is present then it follows from the presence of two normal 
symmetry planes that a third one exists that is normal to the first two. 
 All three symmetry elements are linked to the theorem: A center of symmetry, an 
even-numbered symmetry axis, and a symmetry plane that is normal to it are three things, 
the presence of any two of which necessarily implies the third one. 
 From this, in any case, one can select from the number of symmetry elements that are 
perceived for a crystal form, the independent ones, and therefore the only ones that are 
essential for applications. 
 Yet another simplification is provided by the result that emerges from the utilization 
of equation (2) or the principle of the equality of action and reaction, that opposite 
directions are elastically equivalent for arbitrary, homogeneous, elastic media in full 
generality, so a center of symmetry always exists in them.  From this, it follows that the 
theorems above that are connected with the existence of a symmetry center are always 
fulfilled when one considers the elastic behavior of the crystal.  In this sense, a symmetry 
plane is therefore perpendicular to any two-fold symmetry axis, and conversely, and so 
forth.  In general, one can state the rule that the symmetry behavior that is definitive for 
elastic behavior is not that of the crystal form itself, but that of a permutation or 
completion that one obtains from them when one adds opposite face to any face of the 
form, in the event that is absent.  From this, it follows immediately that all of the hemi-
hedral and hemi-morphic forms that one can obtain holohedrally by letting one of the 
pairs of opposite faces in the latter vanish must behave the same as holohedral crystals do 
elastically. 
 Of the symmetry elements, only the symmetry axes come under consideration as 
definitive for the specialization of the elastic potential or the potential for the elementary 
interaction, from their basic existence.  All symmetry planes are then necessarily linked 
                                                
 1) In the last two cases, any two axes lie in opposite directions and together they define a two-sided 
symmetry axis. 
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with certain symmetry axes here, and seem to be their consequence, which is not 
conversely true.  The general hypothesis that was already stated above that any symmetry 
of the form corresponds to the same symmetry of the elastic behavior will then take on 
the following special form: 
 If the crystal form (when “completed” as we said above) possesses a symmetry axis – 
i.e., if there is a direction, around which the crystal form rotates as a rotational axis 
through an aliquot part of 2π (hence, also the point system that gives the positions of the 
molecules) so that it comes to cover its original position at all points – then the potential 
must again completely assume the original form when transformed to a correspondingly 
rotated coordinate system. 
 Meanwhile, for our applications, it is often more convenient to employ, in place of 
the property that a even-number symmetry axis be present, that of the presence of a 
normal symmetry plane that is coupled with it.  The latter yields, without computation, 
the value zero for all of the sums mn

hkD  whose arguments possess opposite values on the 

two sides of the symmetry plane. 
 The monoclinic system is characterized 1) by the existence of a two-fold 
crystallographic symmetry axis, which, from the foregoing, always has a normal elastic 
symmetry plane. 
 If one chooses the YZ-plane to be the symmetry plane then all of the coefficients mn

hkD  

must vanish in which the index 1 appears once or three times.  Accordingly, the Xx, Yy, Zz, 
Zy in system (29) will be free of: 
 

u
n

y

 ∂ + ∂ 
, 

v
n

x

∂ − ∂ 
, 

w
m

x

∂ + ∂ 
, 

u
m

z

∂ − ∂ 
, 

 
and the Xy, Yx, Zz, Zx will be free of: 
 

u

x

∂
∂

,    
v

y

∂
∂

,    
w

z

∂
∂

,    
v

l
z

∂ + ∂ 
,    

w
l

y

 ∂ − ∂ 
. 

 
Accordingly, one will have: 
 
 λ1 = 23 33 22

23 22 332 ( )D D D− + ,    µ2 = 31 11 33
31 33 112 ( )D D D− + ,    ν3 = 12 22 11

12 11 222 ( )D D D− + , 

 
 ν2 = µ3 = 23 11 12 31

11 23 31 12( ) ( )D D D D+ − + ,    λ3 = ν1 = 0,    µ1 = λ2 = 0; 

(40) 
 f1 = 

εL+ 12 31 22 23 23 33 23 33 22 23
31 12 23 22 33 23 23 22 33 23( ) ( ) ( ) ( ) ( )

u v w v w
D D D D D D D D D D

x y z z y

∂ ∂ ∂ ∂ ∂− + − + − + − + −
∂ ∂ ∂ ∂ ∂

, 

 

                                                
 1) Liebisch, loc. cit., pp. 212 and 380; Minnigerode, loc. cit., pp. 216.  
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 f2 = εM + 23 12 33 31 31 11 31 11
11 31 11 31 12 23 31 33( ) ( ) ( ) ( )

u u v w
D D D D D D D D

y z x x

∂ ∂ ∂ ∂− + − + − + −
∂ ∂ ∂ ∂

, 

 

 f3 = εN + 12 22 31 23 11 12 11 12
12 11 12 11 22 12 23 31( ) ( ) ( ) ( )

u u v w
D D D D D D D D

y z x x

∂ ∂ ∂ ∂− + − + − + −
∂ ∂ ∂ ∂

; 

 
one then has: 

Π = λ1 (µ2 ν3 – ν2 µ3), 
and thus, from (36): 

1 1

2 3 2 3 2 3 3 2

2 3 2 3 2 3 3 2

,

( ) ,

( ) .

l f

m f f

n f f

λ
µ ν ν µ ν ν
µ ν ν µ µ µ

− =
− − = −
− − = − +

    (41) 

 
Likewise, (38′) gives, more simply: 

kλ1 (µ2 ν3 – ν2 µ3) = 1 1

2 2 3

3 3 2

0 0

0

0

κ λ µ ν
κ λ
κ µ ν
κ µ ν

     (42) 

and (38″) gives: 
 
k′λ1 = − ελ, k″(µ2 ν3 – ν2 µ3) = − ε(µν3 – νµ3), k″′(µ2 ν3 – ν2 µ3) = − ε(µ2 ν – ν2 µ). 

 
One then easily calculates the values of the components that are free of l, m, n: 
 
− Xx = D11 xx + D12 yy + D13 zz + D14 yz  − E11 εL,  
− Yy = D21 xx + D22 yy + D23 zz + D24 yz  − E21 εL,  
− Zz = D21 xx + D32 yy + D33 zz + D34 yz  − E31 εL,  
− Yx = D41 xx + D42 yy + D43 zz + D44 yz  − E41 εL,  
− Zy = D41 xx + D42 yy + D43 zz + D44 yz  − (1 + E41) εL,  

(43) 
− Zx =  D55 zx + D56 xy  − E11 εL − E53 εN, 
− Xy =  D55 xx + D56 xy  − E21 εL − E53 εN, 
− Xz =  D65 xx + D66 xy  − E31 εL − E63 εN, 
− Yx =  D65 xx + D66 xy  − E41 εL – (1+ E63) εN. 
 
In this, the Dhk and Ehk denote the following aggregate of mn

hkD : 

 
λ1D11 = 11 13 12 2

1 11 12 13( )D D Dλ − − , λ1D22 = 23 23 22 2
1 22 22 23( )D D Dλ − − , λ1D23 = 33 33 32 2

1 33 32 33( )D D Dλ − − , 

λ1D23 = λ1D32 = 23 23 22 33 32
1 23 22 23 32 33( )( )D D D D Dλ − − − , 

λ1D31 = λ1D13 = 31 33 32 13 12
1 31 32 33 12 13( )( )D D D D Dλ − − − , 

λ1D12 = λ1D12 = 12 13 12 23 22
1 12 12 13 22 23( )( )D D D D Dλ − − − , 
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λ1D14 = λ1D41 = 13 22 23 12 33 23
12 33 23 13 22 23( ) ( )D D D D D D− + − , 

λ1D24 = λ1D42 = 23 22 23 22 33 23
22 33 23 23 22 23( ) ( )D D D D D D− + − , 

λ1D34 = λ1D43 = 33 22 23 32 33 23
32 33 23 33 22 23( ) ( )D D D D D D− + − , 

λ1D44 = 33 23 22 23 23 33
22 23 33 23 23 22( ) ( )D D D D D D− + − = 23 23 33 22

23 23 22 33D D D D− , 

 

   (µ2ν3 – ν2µ3) D55 = 

13 11 13 12 11
31 33 31 31 32

33 13
11 31 2 2
11 13
33 31 3 3

( ) ( )

( )

( )

D D D D D

D D

D D

µ ν
µ ν

− −
− −
− −

, 

 

(44)  (µ2ν3 – ν2µ3) D66 = 

22 21 23 22 21
11 13 11 11 12

32 12
11 31 2 2
12 22
21 11 3 3

( ) ( )

( )

( )

D D D D D

D D

D D

µ ν
µ ν

− −
− −
− −

, 

 

  (µ2ν3 – ν2µ3) D56 = 

23 21 23 22 21
11 13 11 11 12

33 13
11 31 2 2
13 23
21 11 3 3

( ) ( )

( )

( )

D D D D D

D D

D D

µ ν
µ ν

− −
− −
− −

, 

 
λ1E11 = 13 12

12 13( )D D− , λ1E21 = 23 22
22 23( )D D− , λ1E31 = 33 32

32 33( )D D− , λ1E41 = 33 32
22 23( )D D− , 

  E52 (µ2ν3 – ν2µ3) = 11 13 12 11
33 31 3 31 32 3[( ) ( ) ]D D D Dν µ− − − , 

  E53 (µ2ν3 – ν2µ3) = 12 11 11 13
31 32 2 33 31 2[( ) ( ) ]D D D Dµ ν− − − , 

  E62 (µ2ν3 – ν2µ3) = 21 23 22 21
13 11 3 11 12 3[( ) ( ) ]D D D Dν µ− − − , 

  E63 (µ2ν3 – ν2µ3) = 22 21 21 23
11 21 2 13 11 2[( ) ( ) ]D D D Dµ ν− − − . 

 
 These formulas are always exceedingly complicated to discuss, so here they shall also 
constitute the starting point for simpler forms. 
 In crystals of the rhombic systems (with the exception of the rare “hemi-morphic 
forms of the second kind”), there is elastic behavior in three mutually normal symmetry 
planes 1), so all of the mn

hkD  in whose indices any one of the numbers 1, 2, 3 appears just 

once will vanish. 
 With that, one has: 
 
   λ1 = 32 33 22

23 22 332 ( )D D D− + , µ1 = 0,  ν1 = 0, 

   λ2 = 0,  µ2 = 13 11 33
31 33 112 ( )D D D− + , ν2 = 0, 

   λ3 = 0,  µ3 = 0,  ν3 = 21 22 11
12 11 222 ( )D D D− + , 

(45) 

                                                
 1)  Liebisch, loc. cit., pp. 212 and 365; Minnigerode, loc. cit., pp. 215. 
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    f1 = εL + 23 33 22 32
32 22 33 23( ) ( )

v w
D D D D

z y

∂ ∂− + −
∂ ∂

, 

    f2 = εM + 31 11 33 13
13 33 11 31( ) ( )

w u
D D D D

x z

∂ ∂− + −
∂ ∂

, 

    f3 = εN + 12 22 11 21
21 11 22 12( ) ( )

u v
D D D D

y x

∂ ∂− + −
∂ ∂

, 

 
and all of the results simplify to a considerable degree. 
 One next has: 

− lλ1 = f1, − mµ2 = f2, − nν3 = f3 ; 
 
one can also write this as: 
 

 l = 

22 331
33 222

1
2 32 33 22

23 22 33

( )

2 ( )

v w
L D D

z yw v

y z D D D

ε  ∂ ∂+ + − ∂ ∂ ∂ ∂  − − ∂ ∂ − + 
 = 

22 331
33 222

32 33 22
23 22 33

( )

2 ( )
zL y D D

D D D

εϕ + −
−

− +
, 

 

m = 

33 111
11 332

1
2 13 11 33

31 33 11

( )

2 ( )

w u
M D D

u w x z
z x D D D

ε ∂ ∂ + + − ∂ ∂ ∂ ∂   − − ∂ ∂ − + 
 = 

33 111
11 332

13 11 33
31 33 11

( )

2 ( )
xM z D D

D D D

εψ + −
−

− +
,  (46) 

 

 n = 

11 221
22 112

1
2 21 22 11

12 11 22

( )

2 ( )

u v
N D D

y xv u

x y D D D

ε  ∂ ∂+ + − ∂ ∂ ∂ ∂  − − ∂ ∂ − + 
 = 

11 221
22 112

21 22 11
12 11 22

( )

2 ( )
yN x D D

D D D

ε
χ

+ −
−

− +
, 

 
in which one lets ϕ, ψ, χ denote the rotational angles of the entire volume element at the 
location x, y, z. 
 Furthermore, one has: 
 
 − Xx = D11 xx + D12 yy + D13 zz = 11 12 13

11 12 13x y zD x D y D z+ + , 

 − Yy = D21 xx + D22 yy + D23 zz = 21 22 23
21 22 23x y zD x D y D z+ + , 

 − Zz = D31 xx + D32 yy + D33 zz = 31 32 33
31 32 33x y zD x D y D z+ + , 

(47) 

 − Yy = D44 yx − E41 εL = 
23 23 33 22 33 23
23 23 33 33 22 23

23 33 22
23 22 33

( ) ( )

2 ( )
zD D D D y D D L

D D D

ε− − −
− +

, 

 − Zy = D44 yz − (1 + E41) εL = 
23 23 33 22 23 22
23 23 22 33 22 33

23 33 22
23 22 33

( ) ( )

2 ( )
zD D D D y D D L

D D D

ε− − −
− +

, 

 − Zx = D55 zx − E52 εM = 
31 31 11 33 11 31
31 31 33 11 33 31

31 11 33
31 33 11

( ) ( )

2 ( )
xD D D D z D D M

D D D

ε− − −
− +

, 
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 − Xz = D55 zx − (1 + E52) εL = 
31 31 11 33 31 33
31 31 33 11 31 11

31 11 33
31 33 11

( ) ( )

2 ( )
xD D D D z D D M

D D D

ε− − −
− +

, 

 − Xy = D66 xy − E63 εN = 
12 12 22 11 22 12
12 12 11 22 11 12

12 22 11
12 11 22

( ) ( )

2 ( )
yD D D D x D D N

D D D

ε− − −
− +

, 

 − Yz = D66 xy − (1 + E63) εN = 
12 12 22 11 12 11
12 12 11 22 12 22

12 22 11
12 11 22

( ) ( )

2 ( )
yD D D D x D D N

D D D

ε− − −
− +

. 

 
 The crystals of the quadratic systems, with the exception of the pyramidal hemi-
hedral, and the rhomboid and sphenoid tetrahedral forms, possess two equivalent normal 
symmetry planes in their elastic behavior 1); in the event that one chooses the Z-axis as 
the distinguished one, and thus regards the Y and Z directions as indistinguishable, the 
following sequence of values will result 2): 
 

 l = ϕ − 
11 331
33 112

31 11 33
31 33 11

( )

2 ( )
zL y D D

D D D

ε + −
− +

, 

 

 m = ψ − 
33 111
11 332

31 11 33
31 33 11

( )

2 ( )
xM z D D

D D D

ε + −
− +

, 

 

 n = χ − 
12 22
12 112( )

N

D D

ε
−

,  

 
− Xx = 11 12 13

11 12 13x y zD x D y D z+ + ,  − Yy = 12 11 13
12 11 13x y zD x D y D z+ + , 

− Zz = 13 13 33
13 13 33x y zD x D y D z+ + , 

 

 − Xx = 
31 31 33 11 33 31
31 31 11 33 11 31

31 11 33
31 33 11

( ) ( )

2 ( )
zD D D D y D D L

D D D

ε− − −
− +

, 

 − Zy = 
31 31 33 11 31 11
31 31 11 33 31 33

31 11 33
31 33 11

( ) ( )

2 ( )
zD D D D y D D L

D D D

ε− − −
− +

, 

 − Zx = 
31 31 33 11 11 31
31 31 11 33 33 31

31 11 33
31 33 11

( ) ( )

2 ( )
xD D D D z D D M

D D D

ε− − −
− +

, 

 − Xz = 
31 31 33 11 31 33
31 31 11 33 31 11

33 11 33
11 33 11

( ) ( )

2 ( )
xD D D D z D D M

D D D

ε− − −
− +

, 

 − Xy = 
12 22
12 11( )

2
yD D x Nε+ +

,  − Yx = 
12 22
12 11( )

2
yD D x Nε+ −

. 

                                                
 1) Liebisch, loc. cit., pp. 212 and 339.  Minnigerode, loc. cit., pp. 213.  

 2) Indeed, this indistinguishability has the consequence that 11

11
D  = 22

22
D  and 22

11
D  = 11

22
D , but not, by 

contrast, 11

11
D = 22

11
D , which is easy to show precisely. 



Voigt – Theoretical studies in the elastic behavior of crystals – I.                         31 

 Whereas the rhombic and lower symmetry systems, even when no external rotational 
moments L, M, N act, yield an autonomous rotation of the molecule − namely, the l, m, n 
are different from the ϕ, ψ, χ, which rotate the volume elements – this then shows that for 
quadratic systems these autonomous rotations vanish around the Z-axis when it is 
distinguished. 
 For the regular systems 1), where all three normal symmetry planes are 
indistinguishable, one can introduce an abbreviated notation to good effect.  One sets: 
 

11
11D  = 22

22D = 33
33D  = A,  23

23D  = 31
31D = 12

12D  = B,  
22
33D  = 33

22D = 33
11D  = 11

33D  = 11
22D = 22

11D  = C 

 
so one has for all forms of the system: 
 

l = ϕ − 
2( )

L

B C

ε
−

, m = ψ − 
2( )

M

B C

ε
−

, n = χ − 
2( )

N

B C

ε
−

, 

 
− Xx = Axx + Byy + Bzz , − Yy = Bxx + Ayy + Bzz , − Zz = Bxx + Byy + Azz , 

(49) 

   − Yx = 
2 2z

B C L
y

ε+ + ,  − Zy = 
2 2z

B C L
y

ε+ − , 

 

   − Zx = 
2 2x

B C L
z

ε+ + ,  − Xz = 
2 2x

B C M
y

ε+ − , 

 

   − Xy = 
2 2y

B C N
x

ε+ + , − Yx = 
2 2y

B C N
x

ε+ − . 

 
 Here, one thus finds that under the influence of only stress forces and vanishing 
moments L, M, N there never exists an autonomous rotation of the molecule in the 
volume element, so one always has l = ϕ, m = ϕ, n = χ. 
 The formulas for the crystals of hexagonal systems – apart from the rhombohedral 
forms, which we will treat separately – one gets quite easily, when one uses the fact that 
the symmetry elements that are present in them, when completed in the way carried out 
above (pp. 25), collectively give a six-fold symmetry axis, and thus necessarily couple 
twice six to their normal equivalent two-fold symmetry axes or twice three to their 
parallel equivalent symmetry planes, which subtend equal angles with each other 2).  If 
one puts the six-fold (principal) axis along the Z-axis then when one rotates the 
coordinate system around it in six positions that are inclined at 60o to each other, the 
elementary potential must exhibit the property of three-fold symmetry with respect to the 
coordinate planes, and thus take on the identical form. 

                                                
 1)  Liebisch, loc. cit., pp. 211 and 223.  Minnigerode, loc. cit., pp. 209. 
 2)  Liebisch, loc. cit., pp. 211 and 279.  Minnigerode, loc. cit., pp. 379, et seq. 
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 Let such a position, as the initial position, be chosen to be the coordinate system, so 
the system (46) and (47) is valid for it; a rotation of the X and Y-axes around the Z-axis 
gives the substitution: 
 x = a =    ξα + ηβ, ξ = aα – bβ, 
 y = b = − ξβ + ηα, η = aβ + bα; 
 
we now have to introduce the sums that define mn

hkD . 

 This yields, e.g.: 
 

11
11D  = 

2
2

2

F
a

ξ
∂
∂∑  = ∑ (α2 ξ2 + β2 η2 + 2αβξη) 

2 2 2
2 2

2 2 2
F F Fα β αβ

ξ η ξ η
 ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 

, 

 
or when one introduces the abbreviation mn

hk∆  for the new system in the same sense as 
mn
hkD  for the old one: 

 
11
11D  = α4 11

11∆  + β4 22
22∆  + 2α2β2 22 11 12

11 22 12( 4 )∆ + ∆ + ∆ + α3β 11 12
12 11(2 2 )∆ + ∆ + αβ3 22 12

12 22(2 2 )∆ + ∆ . 

 
 In order for the new system be equivalent to the old one, the mn

hk∆  must equal the mn
hkD , 

so, since the coordinate planes should be symmetry planes, one must then have: 
 

11
11D  = 4 11 4 22 2 2 22 11 12

11 22 11 22 12( 4 )D D D D Dα β α β+ + + + . 

 
 One likewise finds that: 
 
    22

22D = 4 11 4 22 2 2 22 11 12
11 22 11 22 12( 4 )D D D D Dβ α α β+ + + + , 

    22
11D = 2 2 11 22 12 4 22 4 11

11 22 12 11 22( 4 )D D D D Dα β α β+ − + + , 

    11
22D = 2 2 11 22 12 4 22 4 11

11 22 12 11 22( 4 )D D D D Dα β β α+ − − + , 

    12
12D = 2 2 11 22 22 11 2 2 2 12

11 22 11 22 12( ) ( )D D D D Dα β α β+ − − + − , 

(50) 
    13

13D = 2 13 2 23
13 23D Dα β+ ,  23

23D = 2 13 2 23
13 23D Dβ α+ , 

    11
33D = 2 11 2 22

33 33D Dα β+ ,  22
33D = 2 11 2 22

33 33D Dβ α+ , 

    33
11D = 2 33 2 33

11 22D Dα β+ ,  33
22D = 2 33 2 33

11 22D Dβ α+ . 

 
 It follows from this that for any α and β that deviate from 1 and 0: 
 
(51)  11

11D  = 22
22D ,   22

11D  = 11
22D ,   12

122D  = 12 22
12 11D D− ,   13

13D  = 23
23D ,   11

33D  = 22
33D , 33

11D  = 33
22D . 

 
 These relations must then also be true for hexagonal systems, and together with (46) 
and (47) they yield the following values: 
 



Voigt – Theoretical studies in the elastic behavior of crystals – I.                         33 

l = ϕ  − 
11 331
33 112

13 33 11
13 11 33

( )

2 ( )
zL y D D

D D D

ε + −
− +

,  m = ψ  − 
33 111
11 332

13 33 11
13 11 33

( )

2 ( )
xM z D D

D D D

ε + −
− +

, 

n = χ  − 
12 11
12 112( )

N

D D

ε
−

, 

 
− Xz = 11 12 13

11 12 13x y zD x D y D z+ + ,  − Yy = 12 11 13
12 11 13x y zD x D y D z+ + , 

− Zz = 13 13 33
13 13 33x y zD x D y D z+ + , 

 

 − Yz = 
13 13 33 11 33 13
13 13 11 33 11 13

13 33 11
13 11 33

( ) ( )

2 ( )
zD D D D y D D L

D D D

ε− − −
− +

, 

 − Zy = 
13 13 33 11 13 11
13 13 11 33 13 33

13 33 11
13 11 33

( ) ( )

2 ( )
zD D D D y D D L

D D D

ε− − −
− +

, 

 − Zx = 
13 13 33 11 11 13
13 13 11 33 33 13

13 33 11
13 11 33

( ) ( )

2 ( )
xD D D D z D D M

D D D

ε− − −
− +

, 

 − Xz = 
13 13 33 11 13 11
13 13 11 33 13 33

13 33 11
13 11 33

( ) ( )

2 ( )
xD D D D z D D M

D D D

ε− − −
− +

, 

 − Xy = 
11 12
11 12

2 2y

D D N
x

ε+ + , − Yx = 
11 13
11 13

2 2y

D D N
x

ε+ − . 

 
 This system agrees precisely with long-known formulas, up to the values of l, m, n, 
which the older theory does not give, and the coefficients of L, M, N, which no one 
considered. 
 The number of mutually independent mn

hkD  in it is six. 
 Finally, in order to address the rhombohedral forms, we employ the fact that, at least 
when one recalls the previous general remarks, they posses a three-fold axis in the 
context of elasticity, and therefore, twice three equivalent neighboring symmetry axes to 
any normal or three equivalent parallel symmetry planes that subtend equal angles with 
each other 1).  Only the rhombohedral tetartohedra (Tetartoëdrie) and the fourth hemi-
morphy are excluded as forms.  If one again puts the principal axis in the Z-direction then 
the elementary potential must exhibit the property of symmetry with respect to a plane 
that goes through the Z-axis – say, the YZ-plane − under rotation of the X and Y-directions 
around it through three positions that are separated by 120o, and thus exhibit an identical 
form. 
 Let such a position be chosen to be the initial position, so the system (43) is valid for 
it.  A rotation of the X and Y around the Z-axis by way of the substitution: 
 
 x = a =     ξα + ηβ,  ξ = aα – bβ, 
 y = b =  − ξβ + ηα,  η = aβ + bα, 
 

                                                
 1) Liebisch, loc. cit., pp. 211 and 299; Minnigerode, loc. cit., pp. 379, et seq.  
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gives 11
11D , 22

22D , 11
22D , 22

11D , 12
12D , 13

13D , 23
23D , 11

33D , 33
11D , 22

33D , 33
22D  for the sums of the 

values that are assembled into the system (50), and therefore gives the same relations (51) 
between them for the rhombohedral system as for the hexagonal system.  The sums that 
appear in (43) along with these are, with consideration for the fact that the HZ symmetry 
plane is equivalent to the YZ symmetry plane, found to be determined as follows: 
 

(53) 

23 23 3 23 2 13 2 11 11 3 22 2 12 2
11 11 23 12 23 23 23 13
23 23 2 23 3 13 2 22 11 2 22 3 12 2
22 11 22 12 23 23 23 13
13 13 2 2 2 23 23 12 12 2 2 2 22
12 12 22 11 13 13 23

2 , 2 ,

2 , 2 ,

( ) ( ), ( ) (

D D D D D D D D

D D D D D D D D

D D D D D D D D

α αβ αβ α αβ αβ
αβ α αβ αβ α αβ
α α β αβ α α β αβ

= + − = + −
= + + = + +
= − + − = − + − 11

23
33 33 23 23
23 23 33 33

),

, .D D D Dα α= =

 

 
The foregoing formulas lead to the following results: 
 

 23 23
11 22D D+  = 0, 13

12D  = 
22 2
11

2 2

2

( ) 1

D αβ
α α β− −

, 33
23D  = 0, 

 11 22
23 23D D+  = 0, 12

13D  = 
11 2
23

2 2

2

( ) 1

D αβ
α α β− −

, 23
33D  = 0. 

 
 Therefore, only two of these relations depend upon the rotation angle.  The latter 

subtends 120o here, so one has α = − 1/2 , β = − 3 / 2, and the values that pertain to this 
thus read completely: 
 

(54) 
11 22 22 11 12 11 22 13 23 11 22 33 33
11 22 11 22 12 11 11 13 23 33 33 11 22

23 23 13 11 22 12 33 23
11 22 12 23 23 13 23 33

, , 2 , ,

, , 0.

D D D D D D D D D D D D D

D D D D D D D D

= = = − = = =
= − = = − = = =

 

 
From this, one finally gets the following system that is valid for rhombohedral crystals: 
 

 l = ϕ − 
11 331
33 112

13 33 11
13 11 33

( )

2 ( )
zL y D D

D D D

ε + −
− +

, 

 

 m = ψ − 
33 111
11 332

13 33 11
13 11 33

( )

2 ( )
xM z D D

D D D

ε + −
− +

, 

 

 n = χ − 
12 11
12 112(3 )

N

D D

ε
−

, 

 
 − Xx =  D11 xx + D12 yy + D13 zz + D14 yz − E11 εL, 
 − Yy =  D12 xx + D11 yy + D13 zz − D14 yz + E11 εL, 
 − Zz =  D13 xx + D13 yy + D33 zz , 
 − Yz =  D14 xx − D14 yy + D44 yz − E41 εL, 
 − Zy =  D14 xx − D14 yy + D44 yz − (1 + E41) εL, 
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 − Zx =  D55 zx − D14 xy − E52 εM, 
 − Xz =  D55 zx − D14 xy − (1 + E52) εM, 

 − Xy = − D14 zx + 11 12

2

D D−
xy − E62 εM + 1

2 εN, 

 − Yx = − D14 zx + 11 12

2

D D−
xy − E62 εM − 1

2 εN. 

 
In this, the coefficients have the following values: 
 

 D11 = 
23 11 2

11 11 23
11 13 33 11

13 11 33

( )

2 ( )

D D
D

D D D

−−
− +

, D33 = 33
33D , D12 = 12

12D , D13 = 13
13D , 

 

 D14 = 
23 11 13 11 33 13
11 23 13 23 11 13

13 33 11
13 11 33

( ) ( )

2 ( )

D D D D D D

D D D

− + −
− +

, D11 = 
13 13 33 11
13 12 11 33
13 33 11
13 11 332 ( )

D D D D

D D D

−
− +

, 

(56) 

 E11 = 
23 11
11 23

13 33 11
13 11 332 ( )

D D

D D D

−
− +

, E41 = 
23 13
11 13

13 33 11
13 11 332 ( )

D D

D D D

−
− +

, 

 

 E52 = 
11 11
33 23

13 33 11
13 11 332 ( )

D D

D D D

−
− +

, E62 = 
12 23
13 11

13 33 11
13 11 332 ( )

D D

D D D

−
− +

. 

 
 The values deviate substantially from the values that are valid for hexagonal crystals 
in many respects. 
 
 5. The foregoing formulas for the various crystal systems differ formally from the 
ones that are ordinarily employed only by the appearance of the rotational moments L, M, 
N, and the rotational angles l, m, n, which relate to the individual molecules, not to the 
volume element of the crystal.  We would like to next discuss the relevant terms. 
 Rotations l, m, n of the molecule, which obviously do not involve the entire volume 
element, do not appear as a result of the usual mechanical influences 1) in the regular 
systems at all, and in the quadratic and hexagonal ones they appear only around the 
neighboring axes.  We would therefore like to inquire of the formulas for the rhombic 
systems (46) and (47), as the lowest-order ones that exhibit the general phenomena at all, 
whether they actually permit the calculation of the molecular rotations that appear for an 
arbitrary deformation; in particular, whether the constants that determine their quantities 
are derivable from observations with mechanical influences. 
 From (47), these methods of observation lead to a knowledge of the nine constants: 
 

11
11D , 22

22D , 33
33D , 23

23D , 31
31D , 12

12D , 

(56)   
                                                
 1) By the term “mechanical” influences, we understand this to mean ones that leave the L, M, N equal 
to zero, and therefore exclusively distant forces of attraction and surface tensions, in contrast to the forces 
of electric or magnetic origin, which can give finite values to the L, M, N.  
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23 23 33 22
23 23 22 33
23 33 22
23 22 332 ( )

D D D D

D D D

−
− +

, 
31 31 11 33
31 11 33 11
31 11 33
31 33 112 ( )

D D D D

D D D

−
− +

, 
12 12 22 11
12 12 11 22
12 22 11
12 11 222 ( )

D D D D

D D D

−
− +

, 

 
while in equations (46), only the following three appear for l, m, n: 
 

22 33
33 22

23 33 22
23 22 332 ( )

D D

D D D

−
− +

, 
33 11
11 33

31 11 33
31 33 112 ( )

D D

D D D

−
− +

, 
11 22
22 11

12 22 11
12 11 222 ( )

D D

D D D

−
− +

. 

 
 One recognizes with no calculation that the latter aggregate is independent of the 
former one and one can therefore express the following assertion for the rhombic, and all 
the more for the crystal systems of lower symmetry – but also, as is easily seen, also for 
higher symmetries: 
 “Observations of deformations that are produced by purely mechanical forces do not 
lead to knowledge of the constants upon which the autonomous molecular rotations 
depend.” 
 However, these constants would be determined when one is concerned with 
measuring the deformations that are produced by the rotational moments L, M, N that the 
molecules are subjected to.  Such rotational moments are perhaps the result of external 
electrostatic forces in crystals or also the influence of galvanic currents in permanently 
magnetized steel, in the event that one regards its molecules as being endowed with 
polarizations, similar to those of a crystal. 
 Since the problem still has no immediate practical significance, I would like to appeal 
to only a special case of this to show how one of the aforementioned influences in fact 
leads to the determination of a new aggregate, and therefore to a means for the resolution 
of the question. 
 Let a rectangular prism be given in a rhombic crystal whose boundaries are parallel to 
the principal crystallographic axes.  A constant moment L around the X-axis acts on it, 
and tangential forces on the surfaces that are parallel to the X-axis.  Let the givens be 
chosen such that the rotation of the entire prism ϕ is equal to zero.  In the event that the 
force P is parallel to the ± Y-axis on the surface that is normal to the ± Z-axis, one then 
has: − Yz = P, Zy = 0, and therefore, from (33): 
 

P = εL, 
and, from (47): 

yz = 
23 22
23 33

23 23 22 33
23 23 33 22

( )L D D

D D D D

ε −
−

. 

 
By contrast, if the force Q acts parallel to the ± Z-axis on the surface that is normal to the 
± Y-axis, one has, analogously, − Yz = 0, Zy = 0, and therefore: 
 

Q = εL, 
 

yz = 
33 23
22 23

23 23 22 33
23 23 33 22

( )L D D

D D D D

ε −
−

. 
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 If it were thus possible to measure the change of angle yz / 2 between the surfaces that 
are normal to the Y and Z axes then one would arrive at a new way of determining a 
constant. 
 Observations of a similar kind with moments M and N allow one to present three 
relations that allow one to calculate, along with the known constants (56), in total, all 
twelve mn

hkD .  The molecular rotation is thus also completely determined by them. 

 For the further considerations, we would now like to assume purely mechanical 
influences, and thus set L, M, N equal to zero in the values of Xx, …, from which one 
likewise has Yz = Zy, Zx = Xz, Xy = Yx . 
 We thus obtain the form of the elastic tension components that the observations on 
crystal elasticity have been based upon up to now, and this begs the question of how one 
is to evaluate theoretically the numerical values that are obtained by measurements of the 
constants that appear in it. 
  One next remarks that for the case of an unpolarized elementary interaction – i.e., for 
interactions between the molecules that depend upon only the relative separations – the 
potential F can only be a function of the relative separation r′, which is given by: 
 

r′2 = a′2 + b′2 + c′2. 
Here, one then has, e.g.: 

F

a

∂
′∂
 = 

a F

r r

′ ∂
′ ′∂

, 

thus: 

2

2

F

a

∂
′∂

 = 

2 1
1

F
aF r r

r r r

∂′ ∂∂ ′ ′∂+
′ ′ ′∂ ∂

, 
2F

a b

∂
′ ′∂ ∂

 = 

1 F
a b F r r
r r r

∂∂′ ′ ∂ ′ ′∂+
′ ′ ′∂ ∂

, 
2F

a c

∂
′ ′∂ ∂

 = 

1 F
a c F r r
r r r

∂∂′ ′ ∂ ′ ′∂+
′ ′ ′∂ ∂

. 

 
Now since, from (26), the nine sums of the form: 
 

∑ (a′ A′) = − F
a

a

∂ ′ ′∂ 
∑ , ∑ (a′ B′) = − F

a
b

∂ ′ ′∂ 
∑  

 
vanish, the six sums of the form: 
 

2a F

r r

′ ∂
′ ′∂∑ , 

a b F

r r

′ ′ ∂
′ ′∂∑ , 

 
which are identical to them, also equal zero for unpolarized forces, and from the above 
we get: 

2
2

2

F
a

a

 ∂′ ′∂ 
∑  = 

4
1 F

a r r
r r

∂∂′ ′ ′∂
′ ′∂∑ , 

2

2

F
b c

a

 ∂′ ′ ′∂ 
∑  = 

2
1 F

a b c r r
r r

∂∂′ ′ ′ ′ ′∂
′ ′∂∑ , 

 
etc.  The characteristic conditions: 
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mn
hkD  = hk

mnD  = kn
hmD  = hm

knD , etc., 

 
for unpolarized forces follow from this, or the rule that the four indices of any mn

hkD  can 

be permuted arbitrarily. 
 A consideration of them lets one recognize that the molecular rotations vanish 
completely for the general system (29), and the system of coefficients for triclinic crystals 
is given by the matrix: 
 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 23 36 25

15 25 35 36 31 14

16 26 36 25 14 12

x y z z x y

x

y

z

z

x

y

x y z y z x

X D D D D D D

Y D D D D D D

Z D D D D D D

Y D D D D D D

Z D D D D D D

X D D D D D D

−
−
−
−
−
−

,    (57) 

 
which contains 15 different constants.  It differs from the system (39), not only by the 
absence of terms in L, M¸N, but by the validity of the six conditions: 
 

D44 = D23,    D55 = D31,    D66 = D12,    D56 = D14,    D64 = D25,    D45 = D36 .  (57′) 
 
 One can also conclude that in crystals for which observations show that these 
conditions are fulfilled the molecular interactions are found to be close to uniform in all 
directions, so the molecule possesses only very slight polarity. 
 If observations do not agree with these relations then one can, if need be, infer a 
conclusion about the behavior of the elementary interaction from the sense of the 
deviation. 
 For the sake of example, let the elementary potential F be constant around the Z-axis, 
so it is a function of only e′2 = a′2 + b′2, so one can arbitrarily permute the indices 1 and 2 
in those mn

hkD  that contain only those two, and thus set 22
11D  = 11

22D  = 12
12D , 12

11D  = 11
12D , 12

22D  

= 22
12D , and likewise when one or the other upper index is 3, one then sets 32

11D  = 31
12D , 

31
22D  = 32

12D , 11
32D  = 12

31D , 22
31D  = 12

32D , 32
31D  = 31

32D ; however, the remaining relations are not 

valid. 
 From (51), for a hexagonal crystal with the Z-axis as its principal axis this would 
yield 12

123D  = 11
11D , so D66, which is the factor of xy in the equation for – Xy in (52), is 

equal to 12
12D . 

 
 6. Up to now, from the procedure of Navier, Poisson, and Cauchy, one has always, 
as far as I know, specialized the general elastic equations that are obtained by calculating 
the molecular interactions in isotropic media, in which one introduces the assumption that 
any medium possesses molecules that exhibit no polarity and are uniformly distributed in 
any direction.  One then arrives at the relation between the two elasticity constants for 
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isotropic media that has provoked so many objections that it is in contradiction with 
experiment. 
 However, any hypothesis that is introduced is basically quite arbitrary if a substance 
that possesses polarized molecules in a crystallized modification can scarcely be ascribed 
unpolarized molecules in an amorphous modification, and if, as we know, the purely 
mechanical effects are too coarse to act upon the individual molecules, so it is therefore 
entirely plausible to assume that the formation of amorphous bodies also produces 
smaller or larger crystal fragments, and they would originate in the mechanical forces 
between them.  The fact that we know any number of examples for any sort of rock – 
which can be resolved into aggregates of crystal fragments, whether to the naked eye or 
under great magnification – confirms this intuition. 
 However, its theoretical consequences with regard to elastic behavior produce 
entirely different results from the assumption of unpolarized molecules. 
 A very small surface element in a homogeneous substance is attached to crystal 
fragments with all possible orientations, and the resulting values of the stress components 
will be obtained, accordingly, as the mean values of the ones that are yielded by a 
regularly crystallized substance for all possible orientations of the surface elements in the 
crystal. 
 We now calculate these mean values.  For this, one best employs the potential of the 
elastic force, which is defined by: 
 

− Xx = 
x

F

x

∂
∂

, − Xy = − Yx = 
x

F

x

∂
∂

, etc., 

 
and in the most general case of a triclinic crystal it is a function of degree two in the xx, 
… with 21 constants. 
 To abbreviate, we set: 
 

xx = x1 ,    yy = x2 ,    zz = x3 ,    yz = x4 ,    zz = x5 ,    xy = x6 , 
 

so one can briefly write: 
2 F = mn m n

m n

D x x∑∑ ,      (58) 

 
where the sums are taken from 1 to 6. 
 Now, let a second coordinate system Ξ, Η, Ζ be given by its attitude with respect to X, 
Y, Z: 

 
1 1 1

2 2 2

3 3 3

,

,

,

x

y

z

ξα ηβ ζγ
ξα ηβ ζγ
ξα ηβ ζγ

= + +
= + +
= + +

 
1 2 3

1 2 3

1 2 3

,

,

,

x y z

x y z

x y z

ξ α α α
η β β β
ζ γ γ γ

= + +
= + +
= + +

   (59) 

 
and the deformation quantities that relate to this are similarly abbreviated: 
 

ξξ  = ξ1,    ηη  = ξ2,    ζζ  = ξ3,    ηζ  = ξ4,   ζξ  = ξ5,   ξη  = ξ6, 
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so one must write: 
2F = µν µ ν

µ ν
ξ ξ∆∑∑    (60) 

 
in terms of them, where the sums are likewise extended from 1 to 6.  The ∆µν in them are 
the “derived elasticity constants” of the substance for the system Ξ, Η, Ζ. 
 The latter form for the potential must follow from the former by means of equations 
(59).  On the same grounds, we next conclude the relations: 
 

2 2 2
1 1 1 1 2 1 3 1 1 4 1 1 5 1 1 6 1

2 2 2
2 2 1 2 2 2 3 2 2 4 2 2 5 2 2 6 2

2 2 2
3 3 1 3 2 3 3 3 3 4 3 3 5 3 3 6 3

4 2 3 1 2 3 2 2 3 3 2 3 2 3 4 2 3 2

,

,

,

2 2 2 ( ) (

x c

x c

x c

x

ν ν
ν

ν ν
ν

ν ν
ν

α ξ β ξ γ ξ β γ ξ γ α ξ α β ξ ξ

α ξ β ξ γ ξ β γ ξ γ α ξ α β ξ ξ

α ξ β ξ γ ξ β γ ξ γ α ξ α β ξ ξ

α α ξ β β ξ γ γ ξ β γ γ β ξ γ α α γ

= + + + + + =

= + + + + + =

= + + + + + =

= + + + + + +

∑

∑

∑

3 5 2 3 2 3 6 4

5 3 1 1 3 1 2 3 1 3 3 1 3 1 4 3 1 3 1 5 3 1 3 1 6 5

6 1 2 1 1 2 2 1 2 3 1 2 1 2 4 1 2 1 2 5 1 2 1 2 6 6

) ( ) ,

2 2 2 ( ) ( ) ( ) ,

2 2 2 ( ) ( ) ( ) ,

c

x c

x c

ν ν
ν

ν ν
ν

ν ν
ν

ξ α β β α ξ ξ

α α ξ β β ξ γ γ ξ β γ γ β ξ γ α α γ ξ α β β α ξ ξ

α α ξ β β ξ γ γ ξ β γ γ β ξ γ α α γ ξ α β β α ξ ξ

+ + =

= + + + + + + + + =

= + + + + + + + + =

∑

∑

∑

 (61) 

 
which can be briefly summarized in: 

xn = nc ν ν
ν

ξ∑ . 

 
 The introduction of this into (58) gives: 
 
  2F = mn n m

m n

D c cν ν µ µ
ν µ

ξ ξ∑∑ ∑ ∑  

   = mn m nD c cν µ µ ν
µ ν ν µ

ξ ξ∑∑ ∑∑ , 

 
from which, by comparing with (60), it follows that: 
 

∆µν = mn m nD c cµ ν
ν µ
∑∑ . 

 
 The ∆µν depend upon the position of the coordinate system.  If we take their mean 
values (∆µν) over all possible positions then, from the above, we obtain those coefficients 
that appear with either the products xµ xν or ξµ ξν in the form of the potential, which 
corresponds to an isotropic substance in the picture that we developed, in the event that it 
can be regarded as an aggregate of very many different oriented crystal fragments. 
 Since we know from the symmetry behavior that only the coefficients: 
 
 (∆11) = (∆22) = (∆33) = A, (∆23) = (∆31) = (∆12) = B, 
(62) 
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  = (∆44) = (∆55) = (∆66) = C = 
2

A B−
 

 
can be non-zero, the problem then reduces to the calculation of only three (two, resp.) of 
them. 
 One next has: 
 
∆11 = D11

4
1α  + 2D12 

2 2
1 2α α  + 2D13 

2 2
1 3α α  + 4D14

2
1 2 3α α α  + 4D15 

2
1 3 1α α α  + 4D16

2
1 1 2α α α  

  + 2D22 
4
2α  + 2D23 

2 2
1 3α α  + 4D24

2
2 2 3α α α  + 4D25 

2
2 3 1α α α  + 4D26

2
2 1 2α α α  

   + D33 
4
3α  + 4D34

2
3 2 3α α α  + 4D35

2
3 3 1α α α  + 4D36

2
3 1 2α α α  

   + 4D44 
2 2
2 3α α  + 8D45α2α3α3α1 + 8D46α2α3α1α2 

     + 4D55 
2 2
2 3α α  + 8D56α3α1α1α2 

      + 4D66 
2 2
1 2α α . 

 
 It is clear that when one takes the mean value of this all terms must vanish that 
contain an odd power of one of the direction cosines α1, α2, α3 .  We do not write out 
these terms, and one has, more briefly: 
 

(63′)  
4 4 4 2 2 2 2 2 2

11 11 1 22 2 33 3 44 2 3 55 3 1 66 1 2
2 2 2 2 2 2

23 2 3 31 3 1 12 1 2

( ) 4( )

2( )

D D D D D D

D D D

α α α α α α α α α
α α α α α α

∆ = + + + + +
+ + + +⋯

 

 
 If one likewise omits the terms in the other ∆µν that drop out from symmetry 
considerations then one obtains: 
 
∆12 =  

2 2 2 2 2 2
11 1 1 22 2 2 33 3 3( )D D Dα β α β α α+ + + 4(D44α2α3β2β3 + D55α3α1β3β1 + D66α1α2β1β2) 

 + 2 2 2 2 2 2 2 2 2 2 2 2
23 2 3 3 2 31 3 1 1 3 12 1 2 2 1[ ( ) ( ) ( )]D D Dα β α β α β α β α β α β+ + + + +  + … 

(63″) 
∆44 =  

2 2 2 2 2 2 2 2 2
11 1 1 22 2 2 33 3 3 44 2 3 2 2 55 3 1 1 3 66 1 2 2 1( ) [ ( ) ( ) ( ) ]D D D D D Dβ γ β γ β γ β γ β γ β γ β γ β γ β γ+ + + + + + + +

 + 2(D23β2γ3β3γ3 + D31β3γ3β1γ1 + D12β1γ1β2γ2) + … 
 
 The determination of the mean value of these ∆µν comes down to the calculation of 
the five mean values that are denoted by brackets: 
 

4( )hα ,    2 2( )h kα α ,    2 2( )h hα β ,    2 2( )h kα β ,    (αh βh αk βk), 

 
so, from symmetry, all of the terms that are present coincide with one of these five when 
one takes the arithmetic mean. 
 For the calculation of these quantities, we would especially like to consider the cases: 
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4
3( )α ,    2 2

1 2( )α α ,    2 2
1 1( )α β ,    2 2

1 2( )α β ,    (α1β1 α2 β2). 

 
If the angle between the Ξ direction and the Z-axis is called ϕ and the angle between the 
XZ-plane and ΞZ is called χ then we can set: 
 

α3 = cos ϕ, α1 = sin ϕ cos χ, α2 = sin ϕ sin χ . 
 

If one further sets the angle between the planes ΞX and ΞY equal to ψ and the one 
between ΞX and ΞΗ equal to ω then one has: 
 

β1 = cos ω 2
11 α− , β2 = cos(ψ − ω) 2

21 α− . 

 
The first two mean values are to be taken over the direction cosines of only one of the 
axes Ξ, Η, Ζ, so they are obtained by simple integration over a spherical surface and 
division by 4π: 

 4
3( )α   = 

2 4

0 0

1
cos sin

4
d d

π π
χ ϕ ϕ ϕ

π ∫ ∫  = 
1

5
 

(64′) 

 2 2
1 2( )α α  = 

2 2 2 5

0 0

1
cos sin sin

4
d d

π π
χ χ χ ϕ ϕ

π ∫ ∫ = 
1

15
. 

 
 The latter refers to the direction cosine of two axes.  In order to obtain all possible 
positions for them, we next rotate the Η-axis around the Ξ-axis by integrating over ω and 
then move the Ξ-axis while we integrate over a spherical surface.  Here, the denominator 
is then 8π2.  One then obtains: 
 

 2 2
1 1( )α β  = 

2 23 2 2 2 2
2 0 0 0

1
sin cos (1 sin cos ) cos

8
d d d

π π π
ϕ χ ϕ χ ϕ χ ω ω

π
−∫ ∫ ∫  = 

1

15
 

 

 2 2
1 2( )α β  = 

2 23 2 2 2 2
2 0 0 0

1
sin cos (1 sin sin ) cos ( )

8
d d d

π π π
ϕ χ ϕ χ ϕ χ ω ψ ω

π
− −∫ ∫ ∫  = 

2

15
 

(64″) 
 (α1β1 α2 β2) = 
 

2 23 2 2 2 2
2 0 0 0

1
sin cos sin 1 sin cos 1 sin sin cos cos( )

8
d d d

π π π
ϕ χ ϕ χ χ ϕ χ ϕ χ ω ω ψ ω

π
− − −∫ ∫ ∫

 = − 1

30
. 

 If one briefly sets: 
 

D11 + D22 + D33 = 3Α,    D23 + D31 + D12 = 3Β,    D44 + D55 + D66 = 3Γ 
 
then, from (63), this yields: 
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 A = (∆11) = 1
5 (3Α + 2Β + 4Γ), 

(65) B = (∆12) = 1
5 (  Α + 4Β − 2Γ), 

     C = (∆44) = 1
5 (  Α −  Β + 3Γ). 

From this, it follows that: 

C = 
2

A B−
, 

 
in agreement with the results of all other theories.  However, the objectionable relation: 
 

A = 3B 
 
is true for only the special value Β = Γ, which, as we have seen, must indeed necessarily 
appear when one assumes molecules with no polarity, which however, are not produced 
by the general theory. 
 By means of the assumption of polarized molecules, which seems to be required on 
many other grounds, the contradiction between molecular elasticity theory and 
experiment will then be lifted completely. 
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