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|. Derivation of the basic equations from the assumption
of moleculeswith polarity.

Using the hypothesis of discrete interacting molecaea starting point was already
well-known when the differential equations of elastiovere presented for the first time
by Navier '), Poisson?), and Cauchy’), but later on that sort of derivation last its
credibility due to the fact that an important resultt ttiee theory provided — viz., the
numerical behavior of the two elastic constants dotropic media — was not confirmed
by experiment. Thus, since the time of Cauthgnd Lamé’), one has employed the
preferable approach to arriving at the basic equationsities not necessarily assume the
molecular picture, but is nonetheless consistent tighdynamical hypotheses on the
essence of matter.

Now, without a doubt, this new procedure is also so itapbrthat exploring and
understanding the older one also deserves consideradtesin The molecular picture
itself is not contradicted by the aforementioned expentia result, but only an arbitrary
special assumption about the way that the molecutegart that is already improbable,
in its own right. In fact, the cited papers by NavRojsson, and Cauchy assumed that
the molecules act with equal strength in all diredjowhich is also not especially based
in the assumption that the distances between thecoleteare large when compared to
their dimensions. When this is the case, the existefdhe regular structure of the
crystal remains a complete mystery.
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Poisson himself, in his last, incomplete papembandoned any arbitrary restriction
and computed the elastic forces on the assumption adcolal interactions that varied
with direction. However, even if the results that digained were, in fact, the most
general, this theory was already contradicted by expatsnesince the new Poisson
formulas in the general case led to a symmetry witipeet to three of the mutually
normal planes, which was in contradiction to the expents with calcite and quartz.

However, under closer scrutiny, one recognizes thatdtomsly obtained this three-
fold symmetry for the elementary interaction of twoletules with parallel axes by
means of a fallac§), and that any of the results were also based ifzatesy.

It is thus justified for us to repeat the argument omae general foundation on these
grounds already. In order to do this, we also discusg stiner circumstances.

Indeed, Poisson allowed forces to act between theidch@ilymolecules that changed
with direction — as we say, more brieffyolar forces — but he did not examine whether
rotational moments could not or must not also appeargalith such forces, and
therefore such moments are no less probable than krefpces. By their contribution,
it can happen that under the growth of a crystal ookecular layer can lie with respect
to the others in precisely the same way.

Furthermore, Poisson’s presentation is, in my opirsongumbersome, and therefore,
not especially clear, that it treats the elementatgraction between two parallel
molecules as functions of four mutually independent argumaftough they actually
depend upon only three; the final result is very difficaldiscuss in that form. Here, a
formal advance seems to be possible.

In what follows, | will give:

1. The derivation of some fundamental properties ottbmentary interaction from
the principle of energy.

2. Some theorem on the elastic stresses and rotatiom@ents that act upon
surfaces.

3. The calculation of these quantities from the elgary interactions.

4. The specialization of the results for the individergktal systems.

5. Adiscussion of those results.

6. Consequences that follow for isotropic media.

1. We imagine a homogeneous, crystalline medium as cogsisf a system of
molecules that are in equilibrium under their mutuadriattion®). These interactions are
forces and rotational moments whose components vahythat relative positions of the
molecules in an unknown way. Let the arrangemethie@molecules be regular, in such
a way that each of them is surrounded by the neighbonmigcules in the same way.
For the case in which this does not correspond to realitge several types of ever-
recurring groups of molecules are present, our theoryiresgan extension. Since, by
our assumption, the molecules possess a polarity, msé tneat them like finite rigid

) Poisson, Mém. de I'Acad3, (1842), 3.
%) Poissonibid., pp. 41et. seq
% If one would like to employ the kinetic theory then omeuld have to calculate with the mean

positions of the molecules.
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bodies, and their positions must be determined by meankeotoordinates of their
centers of mass, as well as the attitude of a systerxes that is linked with them.

We denote the coordinates of the center of massveskat the absolute fixed system
of axes by, y, z, the direction cosines of the axes that move withiihpared to the fixed
one bya, B, y, a’, B, v, a”, B y’, the displacements parallel to the fixed axesl,by
w, and its rotation around them hym, n.

In order to explain the properties of the forces tdriaction, we assume the principle
of energy, which requires that the work that is doneaby forces under an arbitrary
variation of the system must be the complete vanabf a function that depends only
upon the configuration of the system; i.e., the relgtvsition of its parts.

If we thus denote the components of the effect ofrnakeculem, on anothem, by
Xnks Yhk, Znk , @and its moment blyng, Mpk, Nhk , and useéXnk, Yhk, Znk » Lhk Mk Nnk in the
same sense, then the elementary poteftighat is given by:

(1) —dFwk = XokOX + Ynkd¥h + Znkdz, + Lokdln + Mpcdmy, + Nocdm,
+ XnkdX + Ynkdyk + Zndz + Lpkdlg + Mpcdmy + Nnedng

depends upon only the relative positions of the two médscu Since the complete
variation of the functiorF,x must be on the right-hand side of this formula, it \doul
appear that this would depend upon twelve arguments. Smcel#tive positions of two
bodies are determined by six elements, one must cobhwetd a form in which only six
differentials remain on the right-hand side.

The relative position of the systemmy( my) does not change under a common
displacement without rotation, so for:

dx, = dx, dyh = dyk, dz, = dx, and dly=dlk=dm,=dm; =dn,=dnc=0
one has:

thk = 0,
from which, it follows that:

Xnk + Xin = Ynk + Yin = Znk + Zkn = 0. (2)

It also does not change under a common rotation, so for

dlh =dlg =dI, dm, =dmc=dm, dn, = dn¢=dn,
and
—dx, =yndn—zdm —dy, =2z, dl — % dn, —dz =x, dm -y dl,
—dx=ykdn—-zdm —dyk =z dl — x dn, —dz =x dm —ydl,

one must then also have that:
thk = 0,

from which, with hindsight of (2), in the event that wats:

Xh — Xk = Xhk, Yh — Yk = Ynk, Zn — Z = Znk,
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it then follows that:
Lhk + Lxh + Znk Yok — Yhk Zok = 0,
Mhk + Mkn + Xhk Znk — Znk Xhk = O, (3
Nhk + Nih + Yhk Xak — Xnk Yhk = O.

This system shows that when the direction of theraution falls along the
connecting line between the molecules; i.e., whenhase

Xk = Rk Xk, Yhk = Rk Yhk, Zhi = Rk Znk,

one always has:
Lnk + Likh = Mhk + M = Nk + Nkn = O; (4)

i.e., the rotational moments are opposite or zegp, y@and conversely.
In this case, when one also introduces:

Ih =1k = lhk, My — My = My, Nh — Nk = Nh,
one simply has the relation:

= dFnk = XnkdX + Yok dyh + Znkdz, + Lokdlh + Mpcdmy, + Npednyg, 5)
= Rk rhk dr + Lk dlnk + Mpcdmig + Npgdnng.

Since the expression on the right must be the coenpéeiation ofF, in the case in
guestion it can depend upon only the four arguments thahdetethe mutual separation
rnk and relative rotations. If the rotational momentsequal to zero then all that remains
is:

— dFnk = Rukrhk drhk,

and therefore, a potential that depends uppalone.
In the most general case, by the introduction of:

|, +l

| -1
K1+ (Lpk— L) d| —% |, etc,,
> j (Link — Lkn) ( > j

Lhkdlh + Lindlk = (Lnk + Lin) d(

and the use of (3), one can easily arrive at tha:fo

n + +
- dF = th(d)%k'*' Yo & hznk_ znkdmlz m(j

(6) +th(d%k+ zhkd%— % é‘%}

+ + |
+ th(d%k*’ )?.kdw 2”1 - %kdlhz kj
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I =l - n —
+ Lk — Lkr) d h2 <+ (Mhk — Min) dwzm('*'(Nhk_Nkh) d hznk-

If one thinks of a system of axés , By, Cn as being fixed ain, , and which was
parallel toX, Y, Z before the displacement, andai, bnk, Ch are the coordinates o
relative tom, then under a rotation of this system, or the moleoyléself, throughdl,
dm,, dn,, a system change of:

dank = Ynk dm — zp dmy, d’ bk = Znk dly —Xnk dryy d Chk = Xnk AMh — Yhk dlp .

will be produced.
Likewise, for a system of axes that is fixedmatone finds that:

—dan=yndnc—zwdme, —d’bpn=2zwkdlk—Xndn, —dCkn =Xk dMk—Yhk dlk .
Since the axe&, B, C were originallyX, Y, Z, one can also write:

— d'a, - d'g, dyh = d’h, —d', Az = d'c, —d'G,

dx

“ 2 2 2

in which d” means the change of the relative coordinates undesmadement or
rotation, and finally obtain:

-dF, = thd(ahkz_ &) +Y, o b]kz_ ) + Z, q q‘1k2_ Go)

— d(lh_lk) _ d(mh_rnx) _ OUL— I]()
(L = Liw) —2 +(M =M ) 2 +(N =Ny 2 1

(7)

if the dan, etc., mean the complete variation of the relativerdinates compared to the
moving system that are produced by the displaceamhtotation of the molecule. With
that, one obtains a formula that shows how thetfond=n« actually depends upon only
the six arguments that determine the mutual postaf the two molecules.

If the two molecules, which are regarded as behthe same type, are parallel to
each other in their homologous directions thenrthaitual position is determined by
three arguments — viz., the three relative cootdga that aren = — axn, bhk = — bkn, Chk
=—cCwn. For this case, one must then have:

Lk = Lkn , Mhk=Min,  Nik=Nkn,
and (8)
= dFnk = Xnk dank + Yok dbni + Zni dnk

In order for the right-hand side to be a completierntial, one must have:
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= Xnk = ﬂ = Yhk = 9P , —Zn = O , (93)
0ay, o, 0C
while, along with (3), one must have:
2Lhk = Ynk Znk — Znk Yk Mk = Znk Xnk — Xnk Znk s Nk = Xnk Yk — Ynk Xnk-  (9b)

2. Let a surface elemeud that is normal to th&-axis be given at the locationy, z
in the interior of the elastic body in question, andstartt a right cylinder over it that is
parallel to the X-axis. Whenay is quite small, but large compared to the sphere of
action of the molecular forces, we can regard the stithe (force) components that all
molecules on the negative side of the plane of tidase elemeniw, exert on the
molecules in the cylinder as being proportionakgo, and after dividing by this is
reduced to the unit of surface area. We denote the alcglstic stress components
that are so obtained B¢, Yy, Z«, and analogously for the sums defined by the rotational
moments that are exerted, which we denot&,bly, Nx. Just as a surface elemeat
can be regarded as normal to ¥axis, so can one be normal to thaxis, Z-axis, or
any arbitrary axis), which then leads to the definition of analogous comptng, X,
Xn, ... and analogous momeritg L, L, ...

We obtain the properties of these component and moswens by considering the
equilibrium conditions for volume elements in théenor or on the outer surface of the
elastic body. We write them in the following form:

0=[edrX+]do X,
0=[edrY+[doY,
0=[edrz+[doZ,

(10)
0=[edr(L+yZ-2zY) +]/do(L+yZ-2Y),
0=[edr(M+zX-xX)+]do(M+Z X-X2),
0=[edr(N+xY—-yX) +[/do(N+XY-yX.

In this, £ denotes the densitgy, the space element, add, the outer surface element
of the body or sub-body considereX, Y, Z are the components of the external force that
is exerted on interior points, amhgd M, N are the analogous moments, both of which are
referred to the unit of mass.X, Y, Z are the external stress components that are

exerted on the outer surface ahd M, N are the analogous rotational moments, both
of which are referred to the unit of area.

We shall apply these formulas to spatial elements avldimensions, in the sense
described above, might be infinitely small, and consiady the terms of lowest order in
them.

If the volume element is a cylinder that lies inside sistem completely, and whose
height we assume to be either infinitely small ofhleigorder than the cross-sectional
dimensions or independent of them, then when we eiigglect terms of higher order or
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set the terms that are independent of the heighteotytinder equal to zero, in the event
that we denote the interior normals to the two basacesfby 4 and —n, we obtain:

(11) Xn+x—n:Yn+Y—n = Z~.+ Z—n :O'
L,+L,=M +M_ =N_+N_ =0.
If one of the base surfaces of the cylinder is an aetewkthe free outer surface, on

which the componentX , Y, Z and the moments , M, N might act (we preserve
the notation of (10) in this sense) then one has:

=7 7= 0,
v 12)

in which, we understand to mean the exterior normal to the body. Sincat asems,
we have no means in practice to exert the outer suefaogent rotational moment on the
molecule, but can operate only with stresses in @iffiedirections, in practice, one sets:

L,=M,=N,=0. (12a)

If we further take a spatial element that is boundedt®etsurface elements that are
normal to theX, Y, andZ axes and a normal to a directiowhich is regarded as positive
away from the coordinate origin and is defined by the anflex), (n, y), (n, 2) then,
upon restricting to the lowest order, one has:

=X =Xn =Xxcosf, X) + X, cosq,y) +X; cosf, 2),
- Y- =Yn =Yccosf, X) +Y,cosq,y) +Y;cosh, 2,
-Zn =Zn =Zccosf, X) +Z,cosq,y) +Z,cosf, 2,
(13)
-L-n =Ln = Lxcosf, X) +Ly, cosf,y) +L,cosf, 2),
- M-n =My = My cosfy, X) + My cosf, y) + M, cosq, 2),
= N-n =Nn =Nxcosf, X) +Ny cosf, y) + N, cosf, 2).

Finally, if one considers an infinitely small prism ttha parallel to the coordinate
planes then one gets:

X
Ozgx_axx_a y_axz’
ox o0y 0z
oY,
0:£Y—6YX— y_aYZ,
ox o0y o0z
0Z
Ozgz_azx_ y_azz’
ox o9y o0z

(14)
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oL
0:£L_6LX_ y_aLZ _Zy+Yz,
ox dy o0z
oM
o:aw-—aMX—- y—aMZ-—XZ+Zm
0x dy 0z
ON
Ong_aNX_ y_aNZ _Yx+Xy
ox o0y 0z

In this, as we saidX, Y, Z, L, M, N denote the components and rotational moments
that are exerted on the poiqty, z, perhaps from the outside, both of which are referred

to the unit of mass. In practide,M, N, like L ,M , N, are, as a rule, equal to zero.
Equations (11) to (14) are the most general ones iXthe., andL, ... that are
derivable from the fundamental equilibrium conditiob8){ one can then get to any other
equation from them.
When the first equation in (14) is integrated over dntrairy piece of the elastic
body, this gives, in fact:

0= jsx dr—jdo[ X.cos(n, Y+ X, cos(n, y} X cos(n,z,
from which, using (12) and (13), it follows that:
0 :jsx dr—jdo?(;

one has analogous expressions forlaemdZ components.
From the fourth of equations (14), it follows frahe same operation that:

0= jtsLdr—jdo[fxcos(n,x)fLy cos(,y¥ L cosf z )}J dr@Z-Y;:
in this, one can write:
~[dr(z,-Y,)) =- [[dxdq yz]+] dry%+jj dxdy v+ d%,

or, from (14):

=~ [do[VZ — 0Z, _0Z,)_ oY, 9%,
= Jdo[yZycos(n, y)-"ZY cos(n z)]!-j c{r E/g Z o~ azj (z ¥6x ayﬂ
=- Jdo{?[ Z,cos(n, y)+ Z cos(n, 2+ Z cos(n,z

— Z[ Y,cos(n, y)+ Y cos(n, 2+ Y cos(n, z})]-l-j zd( yZ <z,

and when one substitutes this, while using form(d23$ and (13), this yields:
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o:stdr+jadr(yz—zY)+j do‘l_+j dé y Z~2),

and similarly for the other formulas.
However, with that, the general equilibrium comdis (10) are included in the
consideration of the extended fundamental formula.

3. Now, we shall calculate the most general valwegstlie elastic stresses and
moments at an arbitrary location. We construcery wmall surface elemeuf at any
location that is perpendicular to theaxis and parallel to the positivéaxis of a right
cylinder over it. The sum of the effects of alllexules on the negative side @fon the
molecules in any cylinder provides us with the wigibn of the components,, Yy, Zx and
the momentd,, My, Nx . As we said, the surface elemeatin this shall be quite small
compared to the sphere of influence of the moledolzes, and the latter, in turn, might
be large compared to the distances between thdberigg molecules. Therefore, a
layer of molecules overy in the sphere of influence would indeed possedg an
vanishing thickness, in the usual sense of the,tbunwould still include a very large
number of individual layers.

We now refer the molecules to the absolute fixeodrdinate syster, Y, Z, and call
the coordinates of the attracting molecwesy, z, while the coordinates of the attracted
ones are, Yn, z, . These coordinates still do not determine tpesitions completely,
since, as we have seen, not only displacements, alagd rotations, come into
consideration. We imagine that the latter are esged with respect to a system of axes
An, By, Ch, with each molecule fixed in it in the same wag amoving with it; we assume
that in the natural state of the crystal all ofséhesystems are subject to that assumption
and parallel to the fixed, Y, Z system.

If the displacement components of the poXats/, z, andx, Yk, Z areun, v, Wy and
Uk, Vk, Wk, resp., then the relative displacement of two tsamgiven by:

Up — Uk = Unk, Vh — Vk = Vhk, Wh — Wi = Wh. (15)

Since theu, v, w vary continuously with position, this relative plscement can be
developed in powers of the relative coordinatetheftwo points, and we assume that the
deformations are such that one can truncate thislalement with the first-order terms
for molecules that act upon each other appreciaayn the domain of the molecular
sphere of influence, the dilatations can be regarded as constant.

Therefore, when one further sets- Xk = Xnk, Y — Yk = Ynk, Zh — Z = Zn, ONe has:

ou oJu @

Unk = Xy =+ Voo ,
hk = Xhk ox Yh ay Ziy 07
ov ov ov
16 V= Xy —+ Y —+ 7, —
(16) hk = Xk X Yh dy thaz
0 ow ow
Whk = X Yok 5=t
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The rotations, like the displacements, are alstemtint for the variation molecules,
but they vary infinitely little along an infinitely srhdength. We will then also satisfy
ourselves with the lowest degree of approximation, andrdethee rotations, like the
dilatations, as constant inside the molecular doro&imfluence. Accordingly, for the
region in which our considerations on the determinatibrthe elastic stresses and
moments apply, all of the molecules are to be consitlas having their axes parallel,
and we place a single syst&mB, C through the coordinate origin & Y, Z in order to
single out their directions from all of the othereen The aforementioned two molecules
(h) and k) might have the coordinates, by, ¢, a, bk, ¢k when referred to this systef
B, C, which are coupled t®,, yi, z, andx, Yk, z by means of linear relations that likewise
apply to the relative coordinates — ax = ank, bn — bx = brk, Ch — Ck = Crnk, and we write,
accordingly:

Ank = 01 Xnk + 02 Yhk + Q3 Zhk, Xnk = a1 @k + L1 bk + Y Chi,
(17) bk = B1 Xk + B2 Yok + B3 Znk, Yhk = @2 @nk + 22 bk + )4 Chk,
Chk = M Xnk T )5 Yhk + )5 Znk, Znk = O3 @nk + B3 brk + )4 Chk.

Since we bring only infinitely small deformations intonsideration, we also must
expect only infinitely small rotations of the moleesil i.e., since the systefy B, C
coincides with the systei Y, Z in the natural state hencea; =5 = =1 anda: = a3
=6 =6=4=)=0-—we wil be able to write down:

Ank = Xnk + Yk N = Znk M, Xnk = 8nk — Pk N + Ch M,
Brk = Yhk + Zok | = Xk N, Yhk = bk = Chk | + ank N, (18)
Chk = Znk + Xnk M = Yk |, Znk = Chk — 8nk M + b |,

for the deformed state.

In this,|, m, n denote the infinitely small rotations around XeY, Z axes by which
the systenf, B, C is brought from its original position to the displaced @arallel to the
X, Y, Z system.

We would now like to determine the stress on the seidéEmenic normal to thex-
axis at the locatiom, y, z i.e., to sum theX, Y, andZ components of the effects of all
molecules that lie on the negative side of the pt#ng, on the ones that are found in the
cylinder that is constructed ovex. When these sums are divided daythis then gives
the componentXy, Yy, Zy, referred to the unit of area. We thus imagine thatcthstal is
already found in the deformed state.

We can then write:

z hk J
(h)

th , (19

M

Yx

><8||—‘ xe|'_‘>£|l—‘

xM =M =

2
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In this, Xnk, Yk Znk denote the components of the effect of the moledgler{ ().
Indeed, the sums are taken over B)I{ i.e., all molecules on the negative side of the
elementay — and all f)) — i.e., all molecules in the cylinder ovex. However, due to the
infinitely small sphere of influence for the moleaularces, only the molecules that are
negligibly far from both sides afx contribute anything to the sum.

The six-fold sum can be reduced to a three-fold one.

Since, by our assumption, the molecules in a homogenaystal are regularly
arranged in such a way that any of them is surrounded gybering molecules in the
same way, and this regular arrangement, by our assumptibmot be altered in the
infinitely small region aroundy that we are considering during the deformation either,
molecule pairs with equal relative coordinatgs ynk, zwk Will appear in the sum above as
often as the section of the cylinder of heightcontains molecules; i.e., when one calls
the number of them that lie in a unit volumethis number i X « . If one considers
this and imagines that, from what was said above, thgpooentsXyy, Yh, Znk depend
upon only the relative coordinatag, Ynk, Znk, In addition to the angles between the axes
A, B, C andX, Y, Z, which are constant in the entire region, then omewrdte the sums
as:

+00 +00

Xy = Vi > XX,
X=0 y=-00 Z=-00

+o0  +o0 +00

(19a) Ye=vy > > XY,
X'=0 y=-0c0 Z=-00
Zy = Vi i i XZ'.

X'=0 y:—oo Z=—00

From this, one can say that for a definite, but antyifrmolecule on the surfac, the
sum shall be taken over all the components that adeskon the molecules that lie on
the negative side ady, each of which is multiplied by the relative coordinatehe one
that lies ona . Therefore, in particulax’, y', Z enters in place o, Y zk and the
notation X', Y', Z' shall suggest that the particular relative coordinatey’, Z are
likewise substituted in the values of the compon&rtsYhk, Znk -

Since the crystal is found in the deformed stateates of the moleculd, B, C are
not parallel to the fixed axe§ Y, Z. If we call the components of the elementary é¢ffec
when calculated parallel to the formét, B', C' then from (18) we get:

X=A-nB +mC, Y=B-IC +nA, Z=C-mA +IB. (19}

The componentd’, B', C' refer to the deformed state.e., to the relative coordinates

b', ¢’ of the interacting molecules that come about by irstngathe original onesa(),
(b"), (¢) throughda', &', &'. SinceA', B, C' depend upon onlg, b, ¢, we can express
their values in terms that relate to the originalestaind might be denoted in brackets,
when we develop:

Translator’s note: the equation numbering is incoarsist
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Q

A= Q)+ (a—A,jci '+(6Aj5b’+(a—A)5d,

da oo ac

B =@)+ (a—Bj oa +(a—Bj ob +(E) oc, (20)
oa’ ob oc

C=@C)+ (aﬁjéa’{a—cjdb’{ﬁjdd.
oa’ ob oc

In this, when one neglects terms of second order, ascin, and the like, from
(18), since the displacements take place starting frematural state, one has:

a=u+@DO)n-(C)m, X=v+(@C)l-@)n, ' =w+@)m-(@p)l,
or, upon considering (16), al$p
v anOU [ 0U ou
oh—(a)&+(b)(a—y+nj+(d)(a—z mj
N LNE Y
ab—(a\)(ax nj+(U)ay+(d)(aZ+ Ij, (21)
N ow_ ow
d:-(a)(ax+mj+(b)(ay Ij+(d)az.
Finally, one has:

ou
0Xx

X = (a’)(1+ j+(b’)g—;+(d)g—;.

If one substitutes this then, with the repeatestriction to terms of first order, this
yields:

x=v3 53 w102 A (A2 (BA My ¢

a'=0b'=—00 ¢=-00 &
oA N[, du ou du_
"'(aa _(a)&+(b’)(a—y+ nj+(¢)(a—z Wﬂ
AN Qv v
+(£a _(a)[a—x nj+(5)ay+(é)[az+ Iﬂ

oA N[, [ow ow_ ow
+(Ea _(a)(&‘*mj‘*'(b)(a—y |j+(é)a—z}},

) Despite the fact that) = (x), (0') = (), (¢') = (2) for the original state, | prefer to choaseb’, ¢’
to be the summation variables, in order to emphasizethieg are calculated parallel to the axes of the
molecules.
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A g ' 0 0 0
v=v3 3 S w100 @2 @02t (car(Ag

a'=0b'=—c0 ¢=—0 X

oB' [, 0u ou du_
"'(aa _(a)&+(b')[a—y+ nj+(¢)(a—z mﬂ

0B [, .n(0v_ ov ov
(22) +(—a _(a)(& nj+(5)a—y+(¢)(a—z+ ﬂ
B’ [, (0w ow_ ow
+(Ea _(a)(&+mj+(b)(6_y Ij+(é)6_2}}

' d 0 0 .
+Zx:|/z 2 z {(Ca)(1+a—ij+(Cb)a—;+(Cé)a—:—(Aa) m( B3

a'=0bh=—o0 d=—

oc' [, du ou ou_
"'(Ea _(a)&+(b')(a_y+ nj+(¢)(a—z mﬂ

oC' N\ [0V _ Qv v
+(Wa _(a)(a—x nj+(5)ay+(¢)(az+ lﬂ

aC’ N[, 0w ow ow
+(¥a _(a)(&+ m}+(b)(a—y Ij+(é)a—z}}

In this, one must remember thatas the number of molecules that found in a unit
volume, will possess a different value after thédweation that it did before. Namely,
one has:

(23) v=() (1—————— :

however, the factor ofv]f would only be considered in the first terms o fiormulas
above.

Since they contain only the variabisb', ¢, the sums that enter into them have the
interpretation that for the point y, z one should sum all components of the effects (or
their differential quotients) that start from ali thhe molecules that lie on the negative
side of a plane through this point that is nornoathte X-axis, while each one of them is
multiplied by one or more relative coordinates lo¢ fpointx, y, z of the molecule in
guestion.

These sums can be expressed in yet another way.

From equations (2), one has:

Al(al’ bl, CI) :_AI(_ al’ — bl, _Cl)’

B'(a',b',C'):_B'(_a’,_b',_C'), (24)
c@,b,c)=-C(-a,-b,-c),
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and since the arrangement of the molecules is detetnfipehe forces that act upon
them, one must assume that they come about in opplasittions in the same way.
However, from this, it follows that:

+00 400 +00

IPIDILEES DIPH LY

a'=0b'=—0 C=-w b'=—c0 =00

>3 Y A= Z > > A, (25)
a'=0b'=—0 C=-w a'=—c0 bh'=—00 d=—00

S5 S Ae=35 5 ¥ ac

a'=0b'=-0 C=-w a'=—c0 h'=—00 d=—00

and analogous statements are trueBfaandC'. Accordingly, the coefficients of the first
five terms of the formulas above get converted.

From (24), the first differential quotients will keepeithsigns when one inverts the
signs of all three arguments. However, since theyappeall sums multiplied with two
coordinates, the sums that they contain will alsoiatina replacement of the summation
overa’ from O toco with one from— o to +00 when one puts the factor 1/2 in front of the
sums.

If one applies these formulas to the natural statkeimagines that all elastic stresses
vanish for it, then one gets, when one abbreviategiffie sums taken from o to +
with a single one:

0= (Aa)=x (B a)=x(Ca).

The consideration of a surface element that is perpéad to theY andZ axis will
yield, analogously:
O=Z(A’b’)=Z(Bb):Z(C b)
(26) L

O=Z(Ac)=Z(Bd)=Z(C C).

A noticeable simplification of the formulas abowvetezs into this, and when one

considers the fact that:
A’:—a_F, B':—a_F, C’:—a_F,
oa ob’ oc

they become:

x =
gi(\zl)z( 'Za;'zj (ay J(V)Z(aba;j (g: j(\)z[abaazj
(av j(V)Z[ 'Za(:abj 35(32[ aaaabj (62 j(\)z(aéawbj
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(om0 e ) S e

(27)

-Y, =
ou (V) (. 0°F 0 ou_ (Y 0° F
&72[6‘ aa'auj [ay j Z[ab aabj (a_z mjzz abaaabj
ov_ (V) ,zaz v (VY N AY
( j Z[ ab'zj dy zz[ abZJ (az+I

[32[ 23
oW YW o 0°F ) (0w (Y °F ) aw(y 0° F
+(&+mj7z[d 6b’6dj+(6_y 'j 2 Z[a“jabacj+ : Z[aéa 5 ’cj

3 2 aaas [ o) T e (55 T 4w
(% j(V)Z( 'Zaabfacj 3??2[ abacj (Z_\} 'j%z(déa ;F'cj
(en{e ) (s ) (]

We would now like to abbreviate the sums that emtter these expressions, and the
corresponding ones fofy, Yy, Z,, X5, Yz Z; which depend upon only the nature of the
crystalline substance, and therefore must have airtertminection with its elastic
constants, with the symboB;;", and interpret the upper indices to refer to the factor

while the lower indices refer to the denominatorshmm differential quotients that occur
in the sums, such that one will then set:

M3&( ., 0°F ) _ s
28 —E ac—— | =D,
( ) 2 [ abracr 23

and similarly for the other ones.

We then obtain the following system of coefficiemisthe nine components that
appear in the first column under each other and the ngerants that appear in the
upper row:
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du (au j(au_ j(av_ j av(av j(aw ](aw_j 0 W

— | —+n||——-m|||—-n] — | —+ ||| —*+m| | — —

ox ( ay 0z 0 X oy \0z 0 X oy 0 2
-X,|Di Dy Dy | D Dy D3| Dy Dy Dy
-X,|Di Df Dy | D D D7 | Dj D Df
-X,|Di DY DF | Dy Dj D7 | Dy D Dj
=Y, | D D D1 D Dz Dp | Dx Dy D329
=Y, |Dn Da DX | Dz Dz D3 | Dz D3 D
Y, |Dy Dy Di | D» Dy Dy | Dy Dy D
-Z,|D; Dy Dy | Dp Di Dy | Dy Dy Dy
-Z,|b; Dy Dy | Dy D D | Di Dy D
-Z,|D; Dy Dt D, Dy Dj| Dy Dy DJF

Since D;;'= D" = Dy'= Dy, 36 of these 81 coefficients are different from each

other.

In order to also obtain the rotational momdntdMy, Ny, and their constants in a form
that is analogous to that of th§, ..., we would like to employ the fact that from
equations (9b) the rotational moments around the coordaat i, Mnk, Nhk, Which are
exerted from the molecul&)(to the parallel onehj, are coupled with the corresponding
componentshy, Yhk Znk and the relative coordinat&s— X« = Xnk, Yh — Yk = Yhk Zn — Z =
Z by means of the relations:

Znk Yok — Yok Zok + Lk =0,  Xnk Znk — Zok Xk + 2Mnik= 0, Yhk Xnk — Xnk Yhk + 2Npk = O.

Just as we did in connection with the arguments thae vpeesented for the
determination o¥y, Yy, Zx, we can therefore write:

00 +00 +00

L= D > X(Y'2-2Y),
X'=0 y=-0c0 Z=—00

Me=v> S S (2% - X2, (30)
X=0 y=-00 Z=-00

Ne=v) D > X(XY-YX).

X'=0 y:—oo Z=—n

In this, we go over to the quantities that retatéhe moving axe8, B, C when we
set:
Y'Z-2'y=B’'c-Ch-n(C’d-AC)+m(A’b —B’d),
Z'X -X'Z=C'd-AC-I(A’f-B’a) +n(B’c - C'h), (31)
Xy -YX=A-Ba-mB'c-Ch)+l|(C'a -—AC),
X=a-bn+cm
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However, since we consider the crystal in the defdrstate, the relative coordinates
are:

al = (al) + &1, bl = (bl) + d)l, CI = (CI) + &I’

and the components are:

= (2o 2 2] .

a
B =@)+ (—Bjéa’{—Bjch’ +(68J56
oa’ ob oc

¢ = @)+ (2 Joa+( 52 Jow + 25 o,
oa' ob oc

in which the brackets, in turn, mean that the values intigueare to be takem the
original state.
By substitution, one gets, e.g.:

=13 Y S (B -(CHI( 4+ -+ BAst{ Cha

a'=0 b'=—c0 d=-0c0

(32)

o[ o2 25
- n(Cd)-(AJI+ i Ab~( BH ],

and similarly for the remaining ones.
A further development of the values is not neagsstone recognizes that sums of

the form:
S S @Edy) ad 33 ( j

a'=0b'=-c0 d=-0c0 a'=0b'=—c0 d=-00

appear here as coefficients of the arguméatx, ..., andl, m, n, which one can regard
as being of equal order of magnitude in which,actfthe components themselves seem
to be multiplied in a product of two, and theirfdiential quotients in a product of three
coordinates. However, since the elements of thessgive noticeable values only insofar
as the variables, b’, ¢ are unnoticeably small, the coefficients that ocituthe
expressions for the rotational moments are regaadeidfinitely small compared to the
ones that appear in the componexys...

This has the effect that in the second triplehef €quilibrium conditions (14), in all
cases where the rotational moments do not vary estteptionally quickly with the
coordinates, y, z their differential quotients can be neglectedchglavith the remaining
terms — in agreement with the fact thgt M, N, are set to zero on the outer surface of

elastic bodies for all known problems — and thahesquation then reads:
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X
Ozgx_axx_ay oX
ox 0y 0z
oy,
0:£Y—an y 0y,
ox o0y o0z
0Z
Ozgz_azk_ y_aza
ox o9y o0z
(33)

du ov ow dl dm on .
resp., and integrates

If one multiplies these equations bg‘L ot ot ‘ot ot ot

over the entire elastic body then the result is:

jdr( x My OV, 7O, 01, oM, Na—nj
ot ot ot ot ot @

ou —o0v Zawj

0=eL-2Z,+Y,

+J'd0( X—+Y—+ Z—
ot ot ot
(34)
2 2 2
+J.dr X, gu +Y, oV +;a W+YZ(@+ |j+ z, ﬂv_|
otox otay 0toz 0z oy

Rl xSl ol o)

+z 2|2
“ot\ ox ot\ 0z

The last integral is the work done by the internatdésr which must have a potential
by our basic assumption of the validity of the energy jwlac One must therefore be

able to set:
(34a) Xy == 6;3 : Xy =— L etc.,
a(”j 6(au + nj

1) oy

or one must have:
0X
X, = ay , etc.
0 a—u +n 0 (uj
oy 1)

The agreement of our results with this requirement grove symmetric form of the
system of coefficients (29) with respect to the diagjona
For the further analysis, it will be useful to wribeit at least the second triple of

equations in (33) explicitly:
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0=e +24(D3-D +(?+nj (D2- 25( jD§f D3
y
+[S-n)oz-0n+2z-09+[ 2L+ 05D Y
X
ow ow
o[ m)oz- 3>+[ay j<o§§—o§§>+5<oss—os3,
(35)
ou au
0=t + 240203+ 24 o057 03+ 32 m|(03- 03
ov 6u
o[ Sn)oz-0p+ S 0208+ J2e1 02D Y

ow ow ow
o [2m) 3;—Déé){a—y—lj(fo—D§§>+E(Df§—0§3’

0=+ 2 (03D [3—;} (05-03)+( 2-m)(0- D3
ov u

+(&—nj(D;§—Df§)+a—y(D;§ B+ 3 +|j<D;§Di§

D2t ow 12 13 2

(_'*'mj(D;s 13)+(a_y lj(DB 132)+ (D23 Dj

These formulas are obtained relatively simply arel derived for completely general

values of thé, m, n.
If one summarizes the terms in each equationatefree of, m, n with the symbof

and briefly denotes the factorslofm, n by A, 4, vthen these equations take on the form:

O:)I1I+,ulm+ vn+f,

0:A2|+,Uzm+ vLn+f,,

O:)I3I+,u3m+ sn+fs.
In this, one has:

(39

vs = 2D2 - (DZ+ DY),

A1=2DZ-(DE+DZ),  p=2D¥-(DL+DH),
(33)

V3—,U3—(D1213+D23) (D12+D125 /]3—V1—(D31+D22) (D23+D§,
ﬂl—AZZ (D12+D33) (D31+D33.

If one sets the determinant:
A v
A, w, vl =11
A s v
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then one obtains the formulas:

=1 N =f (Vs — W) + T2 (UsV1—U1V3) +i3 (V2 — 2V 1),
—-m =1y (A3 — 13A) +f2 (V3 —Vid3) +13 (Vid 2 — 1Ay), (36)
= nM =f (Aopls —A3tp) + 2 (A a1 —Ads) + 3 (Apt2 — A apta)

for the determination of the rotatioms m, n when the dilatation®u / 0x, ... are
determined by these and the given moméntd, N.

However, what is more important than the determinatibthese quantities is their
elimination from theXy, Yy, ... that enter into the equilibrium conditions (33).

To that end, we add to the three equationy @3ove the one that (29) yields for the
value of an arbitrary one of the stress components,hamight be denoted bl in a

form that is analogous to (35and thus obtain the system:

-K= Al +um +vn +f,
0= Al +uym +v,n +f,
0= A +um +v,n +f,
0= A +um +v,n +f,.

(37)

When one multiplies thEby an arbitrary quantitp and divides, one can now solve
the four equations fqy and then obtain, singeagain falls out:

A v f A uv
1 1 71 fA .
~K A, v, =-Kn=|} 1 Fu Ve (38)
fZAZﬂZVZ
A3ﬂ3|/3
f; Ay (s v

3 3 3

and with it, the form of K that is free of, m, n. Thef are linear functions afu/ 9x, ...

If one denotes the coefficients of any of these argusnarthef, 1, f,, f3 by &, K1, &2, k3,
resp., then the coefficiektof this same argument be given in the definitive form &f

by:

K A uv
Kl Al ﬂl I/l
KZ AZ ﬂZ VZ .
K3 A3 ﬂ3 VS

(38) +kM =

The number of coefficients of the differential exggiensdu / dx, ... thus obtained is
again 81, since nine components with nine terms are prestawever, they do not all
vanish, by any means.

Next, sinceY; andZy, Z, andX;, Xy, andYy differ from each other only bst, &M, &N,
resp., the nine coefficients of tde / dx, ... that appear twice in these component pairs
must be equal; with that, the total number of them reciacBg.
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Moreover, the terms:
ov Ow Oow Jdu Ou ov

9z’ oy ox 9z’ day’ ox
occur only in the combinations:

6v 6W 6W ou 6u+6v
az 6y X 62 dy ox’

since the elastic components can depend upon only defonsatimd, perhaps on the
rotations of the volume elements, as well.
We would like to prove that our theory actually yieltiss tresult, and thus further

reduce the number of factors in the dilatationg dx, ...to 36.
Let «; ,k,, k; and ;| ,k,, k, be the factors of two terms of pairs of differential

expressions in the equations of eliminations abovex leind k¥’ be the factors in the
value of any of the components, ..., and letk andk” be the factors that appear in the
same formula after the eliminationlpfm, n. The statement above then demands that one
have:
kK =k".

This condition reduces to:

(K'=k"Y A u v

(kK =Ky) Ay py vV

(K;_K;) /]2 Hy V

(K;_K;) /]3 M3 Vg

However, thed, 4, v are the coefficients df m, n in the same four equations that we
mentioned. If one observes that they occur in (29) onilge combinations:

ov ow ow ou ou ov
—+ —_— - —+m —-m, —+n, —-n

oy 0x

then one sees that no matter which alternative dmwmses, in the determinant in
guestion, one of the last three columns always egbal$éirst column, which must then

be all zeroes.
Thus, the values of the elastic stresses that aaeneld by the elimination df m, n
will, in fact, depend upon just the six arguments:

ou _ ou _ ou _ 6v ow aw ou _ ou odv
X - - _+_ Xy .

x a_y_yy’ a2 2 62 dy ~ Yz ax dz = 0y Ox

However, from the relations for the componeXis... that are free off, m, n, one
finally has:
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X, _ 0X, X, _ oY,
=% etc.

ax, ax, ' 9y, ox

A

For this, it is requisite that when the same thing thatritten in terms of the sequence
X Xyy Xz Yxo Yy, Yo, 2y, Zy, Z, is associated with the arguments in the seque‘(;#ce
X

ou ou o Ll ov ow ow w it exhibits a system of coefficients that is symneetri

with respect to the diagonal.

This is easily proved with hindsight of the system (29) @5).

If one takes two corresponding terms (perhapsdh) in two arbitrary components
(thus,h andk) then the coefficients will be determined by’j38Bus:

Kn An Hy Vi Ke A By Vi
k:n = K]I.( Al ﬂl I/l k:l—l = KZF Al ﬂl I/l )
K3 Ay Hy Vs K Ay Hy v,
Ky Ay My Vs Ky Ay My Vg
However, from (29), one has:
K = K]
in it, and from (29) and (35):
—/]h:th, —,Uh:K;, —h = Ky,
A=K k=K, —WK= K.
Moreover, since, from (35), one has:
=72, V2 = [, Az =1,

the above two determinants can be brought into a forwhich the rows of one of them
agree with the columns of the others by inverting thessigrntheir first row and last
column: They are therefore equal.

With that, the number of distinct coefficients bédu / 9, ... ultimately reduces to
21 in the most general case, in agreement with thet ifsihle theories that are not based
upon the molecular hypothesis.

As far as the rotational momerntsM, N are concerned, they always have the factor
zero in the first of equations (37), and in the follogvimnes only one appears with the
factore. One can then readily write down the coefficidii&”, K" that they are afflicted
with in the value of K; they are, in fact:
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A uv A uv A uv
(38") KMN==¢|A, w,v,|, KMM==&|A, gyv;|, K'MN==&€| A 1 v,|.
AS /'13 V3 Al /'11 I/1 AZ /'12 I/2

Therefore, all three moments M, N enter into each of the stress components, in
general.

The result of this general examination is that valdébeoelastic components that are
obtained by the elimination df m, n contain a system of constants that shows the
following arrangement:

X Yy Z Y% % % —eL-eM -£N
_Xx 1 D12 13 14 15 16 E 11 12 13
_Yy 1 D22 23 24 25 26 E 21 22 23
_Zz 1 D32 23 24 25 26 E 31 32 3B
_Yz 1 D42 33 34 35 36 E 41 42 a3

(39)

(6]
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In this, Dnk equalDyn, butEng does not equddyy, .

As long ad., M, N are non-zeroY; andZ,, Z, andX,, Xy andYx are not equal, and one
must consistently keep these values distinct when sutitsgi into the equilibrium
equations.

We keep the rotational momenisM, N in the formulas, regardless of whether there
is no means of exerting them on molecules direatpplications up to now, because the
recent hypothesis of Prof. RiecRe of a permanent electrical polarity in molecules
suggests that it does not seem unthinkable that such n®menid be preserved by
electrical interactions; this gives rise to interestimgpretical speculations, moreover.

4. We have previously carried out the completely generabfpittat the theory of
elasticity that is based upon the interaction of padarimolecules leads to the same form
the differential equations and the same values of tasti®@ stress components for
ordinary applications as the theories that make nongstgon about the causes of elastic
phenomena; however, we have not summarized the caopdretween the general final
form and the older one. The values of the elastimpmments that are obtained by
eliminating the molecular rotationsm, n are, in the form that only includes the sums

Dy, very complicated and, for the time being, lacking ircpical significance.

) E. Riecke, Gétt. Nachrichtéh(1887), 194.
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By contrast, from now on, they, as well as theueal of the molecular rotations
themselves, shall be derived and communicated for thetatrgystems that are
distinguished by their symmetries. Meanwhile, only thestmmportant ones shall be
given for the summary; the less hemi-hedral and hearphic structures that, to judge
from the crystallographic symmetries, diverge from élestic behavior of holohedral
forms shall only be mentioned, but not treated.

As in the previous theory for the elastic potentialalso here for the behavior of the
potentialF of the elementary action between molecules, which appedahe sums that

define the coefficientd}", we shall consider theymmetry properties of the crystalline
hk

form as definitive, because observations have shown tlaitknown physical properties
(e.g., concerned with light and heat), the crystal rposses at least the symmetry of the
form, and at most still higher symmetries. Therefareeems appropriate to read off the
most general symmetry law of the crystalline substainom the crystal form and to
assume that it represents the same thing as the compvehéw for all physical
properties. On the same grounds, however, it does seamisgible to employ other
physical properties of the crystal that obey more paaiclaws than the crystal form
alone would require for the specialization of the tédgsotentials®), except for the fact
that the less numerous previous observations on tedceffhenomena in crystals have
already shown that the same general and complicatethslry properties feature in the
optical and thermal phenomena. The restrictiorhi®ds a means of specialization thus
seems so prudent that it still remains hypothetical andeed of confirmation by
experiment.

The symmetry elements that determine the crystah fare the symmetry center,
symr?etry axis, and symmetry plane; their definitionsveet-known to be the following
ones").

A symmetry centeis a point that bisects all lines that go through it stnatt both
ends terminate on the crystal polyhedron.

A symmetry axigs any line, around which one can rotate the polyhedraugjtr an
aliquot part of a complete rotation in such a way thabfits points coincide with the
points of its initial position. If @/n is the smallest rotation angle that belongs to ¥e a
then the symmetry axis is callegfold. The only crystallographic possibilities are the
casesn = 2, 3, 4, 6. Two symmetry axes are called equal wheratrangement of
surfaces and edges for the one is the same for theast@erAccordingly, if the two sides
of one and the same axis are equal then one callgrtimaetry axigwo-sided.

A symmetry planés any plane that divides the crystal polyhedron in sualay that
one half is the mirror image of the other relatiweghe symmetry plane. Two symmetry
planes are called equal when the arrangement of sudadesdges is identical for both
of them.

For our special purpose of the application to the speaiain of the values of elastic
potentials and stress forces, the following question pesial importance: Which of the
simultaneously appearing equal or different kinds of mutuallependent symmetry
elements should one consider, in particular?

There exist a number of easily-proved theorems in detgathis.

) For that reason, | cannot agree with the procedureimilyerode [Gotting. Nach6 (1884), 219],
that calls upon the optical behavior of crystals inaiertases.
3 Cf., Liebisch Krystallographie Leipzig, 1881, pp. 19%&t seq.
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For symmetry axes alone, one has the following:

If two equal two-fold symmetry axes are present they thust make angles o3,
274, or 2716 with each other, and there simultaneously exist by 2, equal axes with
them?) that lie in the same plane and which define the samées with the neighboring
axes. The bisectors of this angle are likewise equdlfar the former distinct two-fold
symmetry axes, the direction that is normal to tpéane is a two-sided 3, 4, or 6-fold
symmetry axis, resp. This theorem can also be invamtedch a way that the existence
of two-sided 5, 4, or 6-fold symmetry axes has the tvd-feeighboring axis as a
consequence.

Several equal three-fold symmetry axes are possibleiotiye case in which they lie
on the four vertex diagonals of a regular hexahedrameeTl four-fold equal parallels to
the edges of the hexahedron and six two-fold equal partiléte surface diagonals then
appear with them.

For symmetry planes, one further has:

If several symmetry planes intersect in a line they tare either all equal or divide
into two groups of mutually equal ones that appear altdynatéeighboring symmetry
planes therefore intersect with equal angles and ldneep of the one group bisect the
angle that is defined by those of the other group. Thedlinatersection is am-fold
symmetry axis when symmetry planes intersect in it.

If a center of the symmetry is present then it feidrom the presence of two normal
symmetry planes that a third one exists that is notonde first two.

All three symmetry elements are linked to the theorAnzenter of symmetry, an
even-numbered symmetry axis, and a symmetry plane thatnsal to it are three things,
the presence of any two of which necessarily implieghird one.

From this, in any case, one can select from the nunflsmametry elements that are
perceived for a crystal form, the independent ones tlag@fore the only ones that are
essential for applications.

Yet another simplification is provided by the result thaterges from the utilization
of equation (2) or the principle of the equality of actemd reaction, that opposite
directions are elastically equivalent for arbitrarpmogeneous, elastic media in full
generality, so a center of symmetry always existsemth From this, it follows that the
theorems above that are connected with the existehaespmmetry center are always
fulfilled when one considers the elastic behavior ofdtystal. In this sense, a symmetry
plane is therefore perpendicular to any two-fold synmynakis, and conversely, and so
forth. In general, one can state the rule that yinengetry behavior that is definitive for
elastic behavior is not that of the crystal formelits but that of a permutation or
completion that one obtains from them when one addssitepface to any face of the
form, in the event that is absent. From this, ibfes immediately that all of the hemi-
hedral and hemi-morphic forms that one can obtain lealclly by letting one of the
pairs of opposite faces in the latter vanish must betieveame as holohedral crystals do
elastically.

Of the symmetry elements, only the symmetry axesecander consideration as
definitive for the specialization of the elastic potahtir the potential for the elementary
interaction, from their basic existence. All symmagitgnes are then necessarily linked

%) In the last two cases, any two axes lie in oppdadiections and together they define a two-sided
symmetry axis.
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with certain symmetry axes here, and seem to be twisequence, which is not
conversely true. The general hypothesis that was glistated above that any symmetry
of the form corresponds to the same symmetry of th&tielbehavior will then take on

the following special form:

If the crystal form (when “completed” as we saida) possesses a symmetry axis —

e., If there is a direction, around which the criy$tem rotates as a rotational axis
through an aliquot part of7/2(hence, also the point system that gives the positbtize
molecules) so that it comes to cover its originaippan at all points — then the potential
must again completely assume the original form whansformed to a correspondingly
rotated coordinate system.

Meanwhile, for our applications, it is often morengenient to employ, in place of
the property that a even-number symmetry axis be pret@it of the presence of a
normal symmetry plane that is coupled with it. Théeelayields, without computation,
the value zero for all of the suni3" whose arguments possess opposite values on the

two sides of the symmetry plane.

The monoclinic system is characterized) by the existence of a two-fold
crystallographic symmetry axis, which, from the foregoialways has a normal elastic
symmetry plane.

If one chooses théZ-plane to be the symmetry plane then all of thefamefts D,,"

must vanish in which the index 1 appears once or thres.tihecordingly, theXy, Yy, Z;,
Zy in system (29) will be free of:

and theXy, Yx, Zz, Zx will be free of:

By gw () (0w
ox oy a9z \oz ) loy )

Accordingly, one will have:
M =2D,;~(D;+ D), to=2D; - (Dyu+Dy), vs=2D; - (D +Dy),

Vo= = (D7 +Dy)=(Dyi+D), A=n=0, m=A=0;
(40)
f]_:

aw
2+ 5DE-DY IO D P+ TUD D Fr 10 20 §,

) Liebisch,loc. cit, pp. 212 and 380; Minnigerodec. cit., pp. 216.
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=M+ (07 -D)+ I 0-DY+ (D 5D )+ 2D 20 )

=N+ 4D - D)+ (DE-D )+ (0 D J+ 37D 1D I

one then has:
M= (& vs— s &),
and thus, from (36):
-1A = f,
_m(luzvg_vzlus) = f:y3_ fy 2 (41)
—n(,Ll2V3 _Vzlus) =- f2/13+ fauz

Likewise, (38) gives, more simply:

K A uv
kK A 0 O
KA1 (Lo V3 — Vo 1i3) = N (42)
Ky O 1, V4
Ky O s v,

and (38) gives:

Kh==&l, Ko vs—V, ) =—8uvs—vis), K'(le V3=V h) == lbV -1z ).

One then easily calculates the values of the coemsrthat are free ¢fm, n:

— Xy =D11% +D12yy + D132 + D1s V. -Eund,
— Yy =D21 X+ D2 Yy + D23z + D2y, -BExd,

—Z;=Do1 %+ Da2yy + D337 + Das Y, -Es 4,
=~ Yx=Da1 X+ Daz Yy + Daz z, + Dasy, —Ead,

—2Zy=Da1 X+ Da2yy + Dazz + Daa y; - (1+Es) &,

(43)

-z = Dss 2, + Dsg Xy —E11 8 —Esz &N,
- Xy = Dss Xx + Dsg Xy —Ex1 8 —Esz &N,
- X = Des Xx + Des Xy - B3 —Es3z &N,
- Yy = Des Xx + Des Xy — Ea1 8 — (1+Es3) &N.

In this, theDy« andEn denote the following aggregate DBf;™:

AiD11= ADy; = (D35 -D1) %MDz = A D3 -(D35-D3) % AiD2s = ADZ - (D3 -D3) 2
MD2s = D3 = AD;-(D3;-D2)(D5-D3),
AiD31 = AiD13 = A D3 —(D3;-D3)(D3-D 13,
MDi2 = hiD12 = AD;; —(D;;-D1)(D5;-D 33,
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AD14 = D4y = D5(D3; = D) + D (D - D 5,

MD24 = hDaz = D;(Dg5~D2;) +D 2D ;- D 5,

MDss = 1Dag = Dy;(Dg3~D2;) + D (D -D 5],

MDas = D;(Dy3 = D) + D o{D 3~ D ;j= DD - DD,

Dii  (Dz-Dy) (Di-D3)
(tbVs — Voltz) Dss = _(D1313 - Déf H; V, '
_(Dégl‘_ Déf Hs Vs

D1212 (D1231_ DfD (D 1212 -D 1223
(44) (Vs — Voi) Des = | =(Djf = Dgp U, v, ,
—(D;i - D1212 M3 Vs

D7  (D5-D)) (D-DJ)
(toVs — Vopi3) Dse = | —( D1313 - D;f H; vV, '
_(Dﬁ - D1213 Hs Vs

ME1 = (D5 -D2), MExn=(DZ-D2), MEsi= (D -D3), MEsn=(D-D32
Es2 (tovs — votk) = [(D3;— D3 v,—(D5i—-D i,
Ess (b3 — Vo) = [(D3; — D3y) 4,~ (D3 D v 1,
Es2 (toVs — vots) = (D - D) V,~(Dy-DHul,
Ees (t2Vs — vots) = (DY D) f1,~(D5—D v ].

These formulas are always exceedingly complicaieatiscuss, so here they shall also
constitute the starting point for simpler forms.

In crystals of therhombic systems (with the exception of the rare “hemi-rhaap
forms of the second kind”), there is elastic bebawn three mutually normal symmetry
planes'), so all of theD;," in whose indices any one of the numbers 1, 2,p@as just

once will vanish.
With that, one has:

M =2DZ-(DE+D®), =0, n=0,
A> =0, o = 2D§f (Dll+ le), v =0,
Js=0, =0,  v=2D2-(DZ+DYy,

(45)

) Liebischloc. cit, pp. 212 and 365; Minnigerodec. cit, pp. 215.
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ov aw
flza_+E(D§2‘°’— + D2,
ow au
fo=eM +&(D1331_ Dy + 313
ou av
f3:5N+a_y(D§ )+ 12})

and all of the results simplify to a consideralbdgee.
One next has:
—|A1:f1, —m/,lzzfz, —nV3:f3;

one can also write this as:

ov_ ow) 2 33
eL+i| —+— |(D5 —-D
{G_W_@_Vj_ 2(62 ayj( wo . eL+1y,(DZ - Dy

oy oz 207 - (DE+ DZ) 2DZ-(DE+D2Z
ow 0du), a3
M+1l ==+~ |(D¥-DX
_(@_a_j_g Z(GX 6zj( B _eM+3z (D7 - Dy (46)
20z ax 208 - (D + DY) 2D - (D“+D33 ’
ou ov) i1
+ D
(v _ou) Z[ay j( . :X_5N+%>§/(D2_D1212)
“lox gy 207 - (D + Dy, 2D; ~ (D17 + Dy,

in which one letsp, ¢, x denote the rotational angles of the entire volaeteenent at the
locationx, y, z
Furthermore, one has:

- X« =D11X% + D12y + D13z = D/jx + Dllzzyy + Dj3z,

=Yy =Da1 X+ D22 Yy + D23 2 = D%, + D3y, + D3z,

= Z;=Da1 %+ D32 Yy + D33z = D%, + D37y, + D3z,

(47)

_ (DxD;-DiD)y, ~(D3-D el
205~ (02+D%

_ (DxD;-D3D)y, —(D5Z-D el
2DZ - (DZ+D2

_ (DD5 —-D3D )z —(Dg- DgjeM
2D;} - (Dg;+ Dy

—Yy: D44yx —Esn

—Zy:D44yZ —(l +E41) e

—Zx =Dss5 2 - Es2 M
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_ (D505 -D3D )z, — (D= DjJeM
2D;; - (D5 +DyY
_ (D;;D; -D;iD )%, ~ (D~ D 3N
) 2D;; = (D7 + Dy,
1212 22~ 1 12 1
~Y,=Desx — (1 +Ee) N = (D1; Dz, _2D11122D2;)X>/22_(D11f_ D 23‘9N .
D - (Dll +Dy,

- Xz=Dssz — (1 +Es) &L

—Xy:DGBXy - E63€N

The crystals of thejuadratic systems, with the exception of the pyramidal hemi-
hedral, and the rhomboid and sphenoid tetrahedral formsep® two equivalent normal
symmetry planes in their elastic behavifirin the event that one chooses fhaxis as
the distinguished one, and thus regardsMtend Z directions as indistinguishable, the

following sequence of values will resjt

_£L+3y,(Dy - DY)
2D;; ~ (D35+ Dy

| =¢

_EM+32,(D - Dy)
2D3; ~ (D + Dy

m=y

EN

N=Y— ——-,
2(Dy; - DY

13

- X« = D% + D3y, + D3z, =Yy = D;;x, + Dyy, + Di3z,
- Z,= D%, + Dy, + Dz,
D3 D5~ DiD 3y, — (D7D jjel
2DJ - (D3;+ DY
_7 - (DsiD5 DDy, ~ (D~ D el
y 2D31_(D11+D33 !
31 33 11
D3iD;1—D;D3)z —(Dz-D3jeM
2DJ} - (D3;+ DY
(D5iDsi-DiD3)z —(Dj- DjeM

yo

g

_XZ: )
2D - (Dy+ D3y
(D7 +D)x, +£N (Dy; +D)x, —€N
_Xy: 2 ’ _YX: 2 .

) Liebisch,loc. cit, pp. 212 and 339. Minnigerodec. cit, pp. 213.
%) Indeed, this indistinguishability has the consequence Edat=DZ and D = D,., but not, by

contrast,D;; = D”?, which is easy to show precisely.
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Whereas the rhombic and lower symmetry systems, when no external rotational
momentd_, M, N act, yield an autonomous rotation of the moleeutamely, thd, m, n
are different from the, ¢, x, which rotate the volume elements — this then shoatsfoin
guadratic systems these autonomous rotations vanish around-akis when it is
distinguished.

For the regular systemd), where all three normal symmetry planes are
indistinguishable, one can introduce an abbreviated notatigood effect. One sets:

11 _ 22 _ 33 _ 23 _ 31 12 _
Dll - D22 - D33 _A’ D23 - D31_ D12 - B’

22 _ 33_ 33 _ 1 11 22 _
D33 - D22_ Dll - D33 - D22_ Dll _C

so one has for all forms of the system:

eL EM EN
|:¢_—’ m:w_—’ n:X_—l
2(B-C) 2(B-C) 2(B-C)
- X« =Ax+ By + Bz, - Yy =Bx+Ay, + Bz, - Z,=Bx+ By +Az,
(49)
B+C eL B+C L
-Y, = +—, -7, = -,
S STy T
—ZX:B+C +£_I_’ —XZ:B+C X_é’l\/l’
2 2 2 2
_Xy: B+C +£_N’ —YX: B+C _S_N
2 2 2 2

Here, one thus finds that under the influence W stress forces and vanishing
momentsL, M, N there never exists an autonomous rotation of tldecule in the
volume element, so one always hasg, m=¢, n= y.

The formulas for the crystals of hexagonal systenapart from the rhombohedral
forms, which we will treat separately — one getsgegeaasily, when one uses the fact that
the symmetry elements that are present in themnwbenpleted in the way carried out
above (pp. 25), collectively give a six-fold symnyeaxis, and thus necessarily couple
twice six to their normal equivalent two-fold synmmyeaxes or twice three to their
parallel equivalent symmetry planes, which subtegdal angles with each otHdr If
one puts the six-fold (principal) axis along tHeaxis then when one rotates the
coordinate system around it in six positions that iaclined at 6©to each other, the
elementary potential must exhibit the propertyloée-fold symmetry with respect to the
coordinate planes, and thus take on the identcal.f

) Liebischloc. cit, pp. 211 and 223. Minnigerodeg. cit, pp. 209.
%) Liebisch,loc. cit, pp. 211 and 279. Minnigerodeg. cit, pp. 379¢t seq
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Let such a position, as the initial position, be emo® be the coordinate system, so
the system (46) and (47) is valid for it; a rotation & XhandY-axes around th&-axis
gives the substitution:

x=a= é&a+np, f=aa—-bg
y=b=-¢B+na, n=ap+ba

we now have to introduce the sums that defdjg.

This yields, e.qg.:
Dll:Zazaz—F:Z(aZ52+,[>2/72+20ﬁE/7) 0262F+,3262F+20,3 92F
H 9&? a&? an? agon )

or when one introduces the abbreviatiafj’ for the new system in the same sense as
Dy for the old one:

D = d' &5 + B'07; + 207 F (A + M+ 40T + @8 (2053 + 201)+ aff (207 + 21.%)).

In order for the new system be equivalent to the ol theA[' must equal thB;;",
S0, since the coordinate planes should be symmetryglane must then have:

Di; = a’Di+ 8D +a’BAD, 7+ D ,+4D 3.
One likewise finds that:

Dy = B'Dyy +a Dy +aBAD,+ D y+4AD ),
Dit= 0" (Dl +DE-4D D +a DA D
D;,= a’B*(D;; +D,;-4D;)-BDi+a D,
D1122: azﬁz(D1111+ D2222_ D1212_ Dzlé) +(a 2_,3 3 D 112’

(50)
DS= a’DF+ADE D= FDE+aDE
Di= a’DY+FDE,  DE= FDi+a’D,
D= a’DF+DF D= FD+aD

It follows from this that for anyr andSthat deviate from 1 and O:
(51) DY =DZ, DZ =Dy, 2D%=DZ-DZ DE=DZ Di=DZDE=DZ

These relations must then also be true for hexagysé¢ms, and together with (46)
and (47) they yield the following values:
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o, _eL+iy,(O8-DY) _
=¢ - 2DE— (D% ! m=y
Dy = (Dy; + D

_EM+32,(D} - Dy)
2D;5 - (DY + Dy

ey - &N
2(Di; -Dy)
- X, = Dix, + D2y, + Dj3z, =Yy = Di;x, + Dyyy, + Di;z,,
-Z,= Digx, + D3y, + D3;z,

D,2D1:~ DDy, —(D,- D JeL
2D;; ~ (Diy'+ Dg;
_7 - (D5Di;~DiD )y, = (D= D el
' 2D;5 - (D7 + D3
_z, = (DiDi;~D3D 2z ~(D3y- DijeM
2D;; ~ (D7 + Dg;
_x, = (PDi; DDz, ~(Dy;= DJeM
2D;; ~ (D7 + Dg; |
_x :Dll11+D1122X+£N _YX:Dll11+D11§' _eN
/ 2 Vo2 2 2

Ly

This system agrees precisely with long-known fdasuup to the values of m, n,
which the older theory does not give, and the ddefits ofL, M, N, which no one
considered.

The number of mutually independeBf}” in it is six.

Finally, in order to address theombohedraforms, we employ the fact that, at least
when one recalls the previous general remarks, posges a three-fold axis in the
context of elasticity, and therefore, twice thregigalent neighboring symmetry axes to
any normal or three equivalent parallel symmetgnpk that subtend equal angles with
each other). Only the rhombohedral tetartohedra (Tetart@ddand the fourth hemi-
morphy are excluded as forms. If one again pwptincipal axis in th&-direction then
the elementary potential must exhibit the propeftgymmetry with respect to a plane
that goes through théaxis — say, th& Z-plane— under rotation of th& andY-directions
around it through three positions that are separayel2@, and thus exhibit an identical
form.

Let such a position be chosen to be the initigitmm, so the system (43) is valid for
it. A rotation of theX andY around the&Z-axis by way of the substitution:

éa+np, é=aa-bpg,
- éB+na, n=ap+ba,

) Liebisch,loc. cit, pp. 211 and 299; Minnigerodeg. cit, pp. 379gt seq.
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gives D;;, D27, D;;, D?, D, D;:, DZ, Di, D, DZ, DS for the sums of the
values that are assembled into the system (50), arefaheigives the same relations (51)
between them for the rhombohedral system as fohétxagonal system. The sums that
appear in (43) along with these are, with consideratiothforfact that thélZ symmetry
plane is equivalent to théZ symmetry plane, found to be determined as follows:

D7 =DZo*+DFF*-D2ap>  DL=D § *D FB D ap ?
D2 =DZap*+Dr*+D 20  DZ=D B +D B +D 2up
D2 =DZa(a*~ ) +apDZ-DJ), D =D a =B J+ap (D D),
D% =ab, D5 =ab3

(53)

The foregoing formulas lead to the following results:

22 2

pz+DZ=0,  Df=_-m% . pp=g
ala*-p)-1
11 2

p+DZ=0,  DE=_ D pz=o
a(a”-p7)-1

Therefore, only two of these relations depend upfenrotation angle. The latter
subtends 1Z20here, so one has=-1/2 ,3= -+/3/2, and the values that pertain to this

thus read completely:

11 22 22 _ 11 12 11 22 13 23 11 2 33
Dll_D Dll_D22’ 2DlZ_Dll Dll’D13_D23D33_D3??D 11_D ;

227

23 _ _M23 — 13 11 _ 22__ 12 33 23
Dll - D22 - D12’ D23_ D 237 D 13 D 23~ D 33" 0

(54)

From this, one finally gets the following systerattls valid for rhombohedral crystals:

_ £L+3Y,(Dy - DY)
2Dy - (D)f+ Dy

1= ¢

_EM+32,(D} - Dy)
2Dy5 - (DY + Dy

=y

h g €N
FEE DL

—Xx= Di11X+D12yy + D13z + Duay; -Eunnd,

—Yy= Di2X<+Di1yy + D13z —Duny; +E1 &,

—Z;= DizX+Di3yy + D337,

= Yz= Diax—Daayy +Daay, —Ead,

—Zy= DisX—Duayy +Dasy, —(1+Es) 4,
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—Zx= Dssz—DiaXy — Esz2 eM,
- Xz= Dssz—Duaxy —(1+Es2) &M,

D,-D
_xy:_Dl4Zx+%xy —Es2 M + 3 &N,

—YX:—D14ZX+—D11;D12XY ~ Eso M — L &N.

In this, the coefficients have the following values:

Dy = D — (D1213 ~ D;?l, ? Das = D33 Dy = D12 Dis= D13
" 2D5- (0F+DY)

. _DIDE-DH+DHDEDY L _ DEDE-DIDE
14 = 13 33 11 ' - 13 33 1’
2D13 - (Dll + D33 2D13 - (Dll + D33)
(56)
. oF-py __ op-oE
Ei1= 13 33 N Ea1= 13 33 1’
2D13 - (Dll + D33) 2D13 - (Dll + D33)
. DEDE . DEoDE

~ 2D5-(D+ D1’ 2D -(DF+D3)’
The values deviate substantially from the values tleavalid for hexagonal crystals
in many respects.

5. The foregoing formulas for the various crystal systehifer formally from the
ones that are ordinarily employed only by the appearafttes rotational moments M,
N, and the rotational anglésm, n, which relate to the individual molecules, not to the
volume element of the crystal. We would like to ndistuss the relevant terms.

Rotationsl, m, n of the molecule, which obviously do not involve the entiolume
element, do not appear as a result of the usual mechéarfloances?) in the regular
systems at all, and in the quadratic and hexagonal oegsagppear only around the
neighboring axes. We would therefore like to inquire ef fitrmulas for thehombic
systems (46) and (47), as the lowest-order ones that ettilebgeneral phenomena at all,
whether they actually permit the calculation of thelenular rotations that appear for an
arbitrary deformation; in particular, whether the canst that determine their quantities
are derivable from observations with mechanical inflesnc

From (47), these methods of observation lead to a kadgelef the nine constants:

11 22 33 23 31 12
Dll’ D22 ! D33’ D23’ D31’ D12 !

(56)

) By the term “mechanical” influences, we understandtthimean ones that leave theM, N equal
to zero, and therefore exclusively distant forces ohetiton and surface tensions, in contrast to the forces
of electric or magnetic origin, which can give finite value thel, M, N.
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Dy:Dzs~DzDss  DsiDi-DeDiy DDy, ~DiDy,
2D;5 - (D +D3) 2D~ (Dy+Dyy) 2Dy~ (D + D)’

while in equations (46), only the following three appeal far, n:

22 33 33 11 11 22
D33 D22 Dll D33 D22 Dll

2D;5 - (D +D3)  2D3; —(Dy+Dyy) 2Dy~ (D +Dyy)

One recognizes with no calculation that the latgggregate is independent of the
former one and one can therefore express the folgpagsertion for the rhombic, and all
the more for the crystal systems of lower symmetbyt-also, as is easily seen, also for
higher symmetries:

“Observations of deformations that are produced by purelghanical forces do not
lead to knowledge of the constants upon which the autor®mmalecular rotations
depend.”

However, these constants would be determined when i®neoncerned with
measuring the deformations that are produced by the rahtimmentd., M, N that the
molecules are subjected to. Such rotational momentpaabaps the result of external
electrostatic forces in crystals or also the influeatgalvanic currents in permanently
magnetized steel, in the event that one regards itecmels as being endowed with
polarizations, similar to those of a crystal.

Since the problem still has no immediate practicalii@ance, | would like to appeal
to only a special case of this to show how one ofafbeementioned influences in fact
leads to the determination of a new aggregate, andidheit® a means for the resolution
of the question.

Let a rectangular prism be given in a rhombic crystadse boundaries are parallel to
the principal crystallographic axes. A constant manhearound theX-axis acts on it,
and tangential forces on the surfaces that are patallile X-axis. Let the givens be
chosen such that the rotation of the entire prgsis equal to zero. In the event that the
force P is parallel to thet Y-axis on the surface that is normal to th&-axis, one then
has:-Y; =P, Z, = 0, and therefore, from (33):

P=e,
and, from (47):

23 22
— SI—(ng ~ D33
23 23 22~ 33
D23 D23 - D3§D 22

z

By contrast, if the forc€) acts parallel to the Z-axis on the surface that is normal to the
+ Y-axis, one has, analogoustyy; = 0,7, = 0, and therefore:

Q=dl,

33 23

— SI—(Dzz_Dzs
23 23 22~ 33"
D23 D23 - D3§D 22

z
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If it were thus possible to measure the change okangPl between the surfaces that
are normal to thé¢ andZ axes then one would arrive at a new way of determiaing
constant.

Observations of a similar kind with momemisand N allow one to present three
relations that allow one to calculate, along wite #mown constants (56), in total, all
twelve D;;". The molecular rotation is thus also completely mheitged by them.

For the further considerations, we would now like touass purely mechanical
influences, and thus set M, N equal to zero in the values ¥f, ..., from which one
likewise hasy; = Z, Z, = X, Xy = Yx.

We thus obtain the form of the elastic tension camepts that the observations on
crystal elasticity have been based upon up to now, anthegis the question of how one
is to evaluate theoretically the numerical values #éinatobtained by measurements of the
constants that appear in it.

One next remarks that for the case otiapolarizedelementary interaction — i.e., for
interactions between the molecules that depend upontlalyelative separations — the
potentialF can only be a function of the relative separatipmwhich is given by:

r’=a’+p?+c?

Here, one then has, e.g.:

oF _a oF

ga  r'or'’
thus:

a'Zaiaj aiaj aiaj

0°F 216_F+ r' or' 0°F - a’blﬁ_*_ r' or' 0°F - a’C’a_F+ r' or'
da? r'or' a’' 7 9aonw  r o' o' "o9aac  r o' '

Now since, from (26), the nine sums of the form:
oF oF
aA)=->|a—|, aB)=-)|a—
ram=-3(ag) rem=z«F]
vanish, the six sums of the form:

a12 aF arbra_F

r' o'’ r'or'’

which are identical to them, also equal zero fopalarized forces, and from the above
we get:
1 0F 1 0F

0—— 2wt 0———
20°F) _va o L 0°F ) _afhe gy
Z(a aa'zj "2 o' 2 bcaa'2 g3 o'’

r r

etc. The characteristic conditions:
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mn — hk _— kn _— hm
th - Dmn - Dhm - Dkn , etc.,

for unpolarized forces follow from this, or the rulettbiae four indices of any;;" can

be permuted arbitrarily.

A consideration of them lets one recognize that thdeecndar rotations vanish
completely for the general system (29), and the sysfaroefficients for triclinic crystals
is given by the matrix:

X Y Zz Y, 4 X
=X, By Dy, Dy Dy Dyg Dy
_Yy D12 D22 D23 D24 D25 Dz
=Z,|Dyy Dy3 Dy Dyy Dy Dy, (57)
=Y, | D4 Dy Dy Dy Dy Dy
=Z, |Dis Dys Dyg Dyg D, Dy
~X, 1D Dy Dyg Dyps D1y Dy

which contains 15 different constants. It differs frtm system (39), not only by the
absence of terms In M N, but by the validity of the six conditions:

Das=D23, Ds5=D31, Des=D12, Dsg=D1s, Des=D2z5 Das=Dze. (57)

One can also conclude that in crystals for which olasiems show that these
conditions are fulfilled the molecular interactica® found to be close to uniform in all
directions, so the molecule possesses only very gightity.

If observations do not agree with these relations thenaan, if need be, infer a
conclusion about the behavior of the elementary acteon from the sense of the
deviation.

For the sake of example, let the elementary potdntie constant around tlZeaxis,
so it is a function of onlg? = a'? + b', so one can arbitrarily permute the indices 1 and 2
in those D/} that contain only those two, and thus B&f = D;; = D;7, D;? = D;;, D3
= D7, and likewise when one or the other upper index isng, then set®? = D,

D) = D?, D, = D?, DZ? = Dy, D = DZ}; however, the remaining relations are not
valid.

From (51), for a hexagonal crystal with tBeaxis as its principal axis this would
yield 3D;7 = D;;, soDgs Which is the factor ok in the equation for X, in (52), is

equal toD;?.

6. Up to now, from the procedure of Navier, Poisson, angclbg one has always,
as far as | know, specialized the general elastic @msathat are obtained by calculating
the molecular interactions in isotropic media, in vilndme introduces the assumption that
any medium possesses molecules that exhibit no podarityare uniformly distributed in
any direction. One then arrives at the relation betvtbe two elasticity constants for
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isotropic media that has provoked so many objectionsithatin contradiction with
experiment.

However, any hypothesis that is introduced is basicalite gubitrary if a substance
that possesses polarized molecules in a crystallizetificadion can scarcely be ascribed
unpolarized molecules in an amorphous modification, andsifwe know, the purely
mechanical effects are too coarse to act upon theigdudivmolecules, so it is therefore
entirely plausible to assume that the formation wfoghous bodies also produces
smaller or larger crystal fragments, and they wouldimate in the mechanical forces
between them. The fact that we know any number afmgtes for any sort of rock —
which can be resolved into aggregates of crystal fraggnertether to the naked eye or
under great magnification — confirms this intuition.

However, its theoretical consequences with regard #&stiel behavior produce
entirely different results from the assumption of uapaéd molecules.

A very small surface element in a homogeneous sulestsnattached to crystal
fragments with all possible orientations, and thelteg values of the stress components
will be obtained, accordingly, as thmean valuesf the ones that are yielded by a
regularly crystallized substance for all possibleragons of the surface elements in the
crystal.

We now calculate these mean values. For this, esedmploys the potential of the
elastic force, which is defined by:

_XX:a_F, _Xy:_YX:a_F,etC,

0X, 0X,

and in the most general case of a triclinic crysta a function of degree two in thg
... with 21 constants.
To abbreviate, we set:

XX:Xll yy:XZ, ZZ:)%l yZ:X41 ZZ:X51 Xy:XGl

S0 one can briefly write:

2F =) DpXpXe, (58)

where the sums are taken from 1 to 6.
Now, let a second coordinate systénH, Z be given by its attitude with respectXp
Y, Z:

x=éa, +npB,+{y,, $=xa, +ya,+ o,
y=éa, +nB, +4V,, n=XB,+YB,+ 78, (59)
2250'3‘*'/7,33'*'(1/3, Z:XV1+yy2+ZV3’

and the deformation quantities that relate to this andasily abbreviated:

ée =&, Ny =& (=& nNe=& (=&, & =4,
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SO one must write:

2F=2>1,54 (60)

in terms of them, where the sums are likewise extfiden 1 to 6. Thé,, in them are
the “derived elasticity constants” of the substanceHersystent, H, Z.

The latter form for the potential must follow frommetformer by means of equations
(59). On the same grounds, we next conclude the relations

X = ai, B, +yiE, +By¢, +yaé +a & g =>cé,
X, = a, B, V€, +By£, e, ra B¢, =3¢ .4,
X, = a, B, V€, +Byf, e, raBé, =Yc, (61)

X = 20,04, *2BBE, Y ¥E By VY BX o+ VG 30 1)E +(@ B+ LA =.Cud,,
%= 20,08, +2BPE, +YyEr ByiyBY Ve tay ¥ F@BBGK F2 4,
X6: 20’10’251 +2ﬁ1ﬁg2 +2yy5(3+(081/2+yﬁ¥4+(yq é'-al{ g 5+ (aq ?ﬁai g GZZCVé/’

which can be briefly summarized in:

X = D Cud,
The introduction of this into (58) gives:

2F = 22D Cnd, 2 ik
= 22246422 D Co

from which, by comparing with (60), it follows that:

Dy = ZZ DyCrniCo -
v ou

The A, depend upon the position of the coordinate system. [lfake their mean
values Q) over all possible positions then, from the abovepttain those coefficients
that appear with either the produsisx, or ¢, & in the form of the potential, which
corresponds to an isotropic substance in the picturevihaeveloped, in the event that it
can be regarded as an aggregate of very many differentexticrystal fragments.

Since we know from the symmetry behavior that onlycthefficients:

(D11) = (D22) = (Ds3) = A, (A23) = (Q31) = (A1) =B,
(62)
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= (Ag) = (Bs5) = (Dee) =C = %

can be non-zero, the problem then reduces to the atoubf only three (two, resp.) of
them.
One next has:

A1 =Dunia; + Dy ata’+ Dz alal + Dualaa,+ Disalaq, +4Disala,q,
+ D a;  + Dz alal+ ADuada,a,+ 4Dy alaa, +4ADxaiaq,
+Dazai  +4Duala,a,+ Dssalaa, +4Dssalaq,
+ Dyg aja; + 83030 + 8Dasr 03N
+ Dgsaja;  + sz n >
+ Degg 0'120'22 .

It is clear that when one takes the mean value afdhliterms must vanish that
contain an odd power of one of the direction cosimegsr,, as . We do not write out
these terms, and one has, more briefly:

(63) A, =(Dya;+D, a5+ D @) +4(D 29’5+ D g9+ D g7’

+2(nga§a§+Dgpiaf+Dlg2p22)+~--

If one likewise omits the terms in the oth&y, that drop out from symmetry
considerations then one obtains:

A=
(Dya;B; + D135+ D 1@ 0 ) + 4(Das020338 + Dssazan 551 + Des0i a251/3)
+[D(asB5+aiB) +Dfa’Bi+aBI+D gaBra Bil +..
(63")
AV
(DuBiy:i + Do oy5+ Dy I+ID LBY + B YL +D LB r+BY)s+D BritLy) ]
+ 2023506055 + Days)sfli + Dfiyif)e) + ...

The determination of the mean value of thaggecomes down to the calculation of
the five mean values that are denoted by brackets:

(@), (apad), (afB), (@iB9), (@G ak/B),
so, from symmetry, all of the terms that are presemntcide with one of these five when

one takes the arithmetic mean.
For the calculation of these quantities, we would aafigdike to consider the cases:
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@), (@ay), (@B), (@B), @bap).

If the angle between the direction and th&-axis is calledp and the angle between the
XZ-plane ancEZ is calledy then we can set:

a3 =Cos¢y, ap=sing cosy, a=singsiny.

If one further sets the angle between the plaf¥sand =Y equal toy and the one
betweereEX and=H equal towthen one has:

Bi=cosw.l-a}, [=cos@- &) 1-a].

The first two mean values are to be taken overdifection cosines obnly oneof the
axesz=, H, Z, so they are obtained by simple integration ovepherical surface and
division by 4z
2m m
@) = %Tjo dx["dpcos g sip = é
(64)
(ata?) = iJ.Zﬂd)(co§)( sirf)(J‘” sing dg = 1
L2 Ao 0 15
The latter refers to the direction cosine of twasa In order to obtain all possible
positions for them, we next rotate tHeaxis around th&-axis by integrating ovewand
then move thé&-axis while we integrate over a spherical surfaelere, the denominator
is then 87. One then obtains:

2p2y _ L gemenm 3 . 27 1
(a7 B)) _ﬁjo IO dg dysin®¢ cog y (& siig cosy J‘g dew c&su—l—S

(@ ;) = %J?”J‘ZW dysin®g cos xy (t siRg siAy j');”da) clY-w = %
(64")
(npraz ) =

éjﬁﬂj‘;wdxsinw cosy sin)(\/} sihg c&s)(\/ 4 sigp s?lp(J‘OZ”da) s ap{w

1
30°

If one briefly sets:
D11+ D22+ D33=3A, D23+ D31+ D12=3B, Das+Dss+ Des=3

then, from (63), this yields:
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A:(All):%(3A + 2B +4|_),
(65) B=@Qw)=%( A+4B-2r),

C=(u)=%( A= B+3N).
From this, it follows that:

in agreement with the results of all other theoridewever, the objectionable relation:
A=3B

is true for only the special vallg2=T, which, as we have seen, must indeed necessarily
appear when one assumes molecules with no polarityhwinwever, are not produced
by the general theory.

By means of the assumption of polarized molecules, wsgems to be required on
many other grounds, the contradiction between moleculasti@ty theory and
experiment will then be lifted completely.



