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Up to now, the mechanics of continua that are endowdd thve general notion of
stress that was created by Cauchy has been almostiestyitepplied to fluid and solid
elastic bodies. Saint-Venant) (has outlined a theory for the domain of plastic or
permanent changes of form that, however, does not yiedrequired number of
equations for the determination of the motion. Otheasional attempts in this direction
have not arrived at any conclusion, eittr (

The following discussion leads to a complete Ansatzlie equations of motion for
plastically-deformable bodies in the context of Cauchyachanics and is connected
with certain facts of experience that charactefizedomain of application.

8§ 1. Notations.

Let the stress state at a point in a body be doyetihe three normal stresses, ¢,
o; and the tangential stressesr, 7, based upon a rectangular coordinate system. In the
matrix:

X !

o, 1, I,
(1) 1, 0, T
1, I, O,

the quantities in the first row then mean the comptmnehthe stress vectar, for an

outer surface element whose exterior normal hasitketn of the positive--axis, etc.
We shall also briefly refer to the vector structurattis represented by (1), which
transforms in the well-known way by means of:

() Comptes rendus, Paris, t. 70, 72, 74. Journ. de math. (i87473.
(® Haar and v. Karman, Géttinger Nachr. 1909, derived equatibnsotion from a new variational
principle whose relationship to the rest of mecharsciil not clear.
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(2) 0, = 0, cosk X) + 0, cosf, X) + 7, cosg, X),
by thestress dyadic & .
Analogous constructions lead to theformation dyadic £ and thedeformation

velocity dyadic 2 . If one denotes an infinitely small elastic displaent of a point by,
n, {then the extensions and angle changes are equal to:

£X:g, g = o 52—%,
0x oy’ 0z
3)
1(dn 0 1(o¢ 0 1(o¢_ 0
W =— _,7-|-_Z , K’:_(_Z*'_gj’ ¥= 5 ,7
2{ 0z oy 2\ 0x 0z ay 0x
and the dyadi& has the matrix:
gx yz yy
(4) yz gy yx'
yy yx Ez

If one takeau, v, w for the components of the velocity vector inste&d, /7, { then one
obtains the extension velocity and displacemer@oig:

(5)

and the matrix for the dyadE
AV, v,
(6) v, A, V.
v, v, A4,

For any dyadic, there exists at least one cootelicass for which the matrix reduces
to the terms on the main diagonal, and thus, fprt¢lthe form:

o, 0 0
0.

(7) a,
00

0 o
0
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In this, a1, &, o3 are the “principal stresses,” which are determined fraandbts of the
secular equation, or also by the following three conafitio

O+ h+;B= Gt o+ oy,
OB+t R BYRO= GO+ OO+ 00— (T +T,+T)),
(8)

o, 1,1,
OG®=T, 0, T,
I, I, O,

v X
y : // /
//,"””’ 1
Figure 1.

If one constructs a coordinate cross such thatztheis coincides with the third
principal axis, while the-axis andy-axis bisect the angle between the first two principal
axes (Fig. 1) then, as a result of (2), this yiel@sftlowing matrix:

0, +0, 0,-0

10
2 2

(9) 0,-0, 0,%t0, 0.
2 2

0 0 o,

Likewise, one can see that the valueg tiiat appear here aeztrema of the tangential
stress; i.e., one always finds the absolutely Ergad smallest tangential stress among
the three quantities:

g,—0 g, —0. g, —0.
10 n=—2—2, =13, r3=—2—1,
(10) T T2 T

The simplest of all stress dyadics is that of il fluid —p. In any coordinate
system, it has the matrix:
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-p O O
(11) 0 -p O.
0O 0 -p

If one subtracts a stress state of the form (Iipfthe stresses that are represented by (1)
then thetangential stresses remain unchanged, and there is a matrix:

o, 1, T,
(12) I, 0, T,
Z-y Z-X z
with
(13) O, =6G+*p, O,=G+p, 0,=0+p.

The dyadic (12) has the same principal directian6ly and principal values; , g,, o,

are the principal values of (1), reduced bp.—With that, it follows from (10) that the
principal tangential stresses are identical fo) @il (1).

All of these relations are naturally valid for teformation dyadicc or for /T, as
well.

We now give a formula that will be employed in whallows that arises from
combining (10) with (8). It is:

(14) ri+rj+1;=5(00+05+03)~3(00,r0p+0g)
= %(0—1+0—2+0—3)2_%(0—10-2'*'0-?34'0—?)
= %(Ux+0-y +Uz)2 _%(Uxa-y +Uyaz +0—za-x)+%(rf +T5+Tzz)

2 2 2
0,0, - o,-0
o Il B N e I A +3(r2+17+71)).
2 2 2 Y

§ 2. Experimental basis.

We now cite some facts of experience that will laixp the calculations in the
following equations of motion. We shall not clatm produce an axiomatic structure;
i.e., we abstain from employing a precise minimdrassumptions.

a) All solid bodies behave like elastic ones for sufficiently small stresses. a one-to-
one correspondence exists between stresses and deformations.

With this postulate, we limit the solid bodies itviscid ones. An example of a
“solid” would be ductile wax, which admittedly ad@y yields to minor external
pressures, or iron, which first reaches its elagtitmit at very high pressure. By
contrast, pitch, or the like, is not plasticallyf@l@nable at normal temperatures, but fluid.

We will discuss the meaning and form of the edatstiimit later on.
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As is known, the mathematical theory of elastictysumes that the connection
between the stress dyadit and the deformation dyadi is linear:

= L(%).

Qll

(15)

The most general linear relationship under which no tiinecin space is preferred
consists of the one for which the two dyadics haeesdme principal directions and their
principal values are coupled by:

(16) og=agat+tfa+e+s), w=as+tpatets),
B=ags+feat+etes).

In this, o and 3 are elastic constants. In a well-known way, (16)lm@converted in such
a way that relations arise between the componemtSvelto arbitrary axes.

b) If the elasticity limit is reached then the solid body behaves essentially like a
viscous, almost incompressible fluid.

The behavior of the fluid that we intend here is ctimrazed by the fact that it is not
the deformatiorstate that generates stresses, as for elastic bodiegshéuteformation
process. However, one cannot simply assume that the sthgmdic & is a function of
the deformation velocity dyadid now, but one must observe that a volume element
experiences no finite deformation velocity under armetlpressure that is the same for
all time. Thechange in volume that therefore comes about always comes from the order
of magnitude of the elastic distortions, as observagimws accordingly.

It then follows, in turn, that in the mechanics ofcass fluids one must subtract a

part— P from the stress dyadig that corresponds to a pressure that is the same for all
time. The remainde&’ [cf., (12) in § 1] can then be described as a linear ifmct

(17) g =L).
If one observes the same symmetry as above thdogana to (16), one has:
(18) O =kA+K (A + A+ Ay, ...
However, the expression in parentheses measures fyehselivergence — or change in
volume — that was mentioned above, such that it igiely small compared td; . One

thus gets:
(19) O'i :kﬂl, 0'; :kﬂz, 0'; :kﬂ3.

These equations say nothing more than the fact @atemerges froml when one
multiplies each component of byk, thus:
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(20) o, =o+p=kA, o, =g+p=kA, 0,=0G+p=ki;,
=KW, L=kw, L=kv.

These are precisely the same equations thalawier-Sokes theory of viscous fluids
led to. An essential difference will arise when waraine the meaning of the quantity
more closely. That would lead to the following, decisirgical postulate:

c) If one changes the velocity with which a motion proceeds, while preserving all
relationships between absolute values, then for plastically-deformable bodies the work
that is needed to arrive at a certain change in form does not change.

We justify this postulate on the basis of all the oles# materials that have been
examined up to now in the realm of permanent changeswf hamely, in engineering.
For the most part, engineering employs formulas fe work done that omit the
influence of velocity from the outset. Whenever ihituence is especially noticeable, it
proves to be slight'\. One will have to regard the constancy that isestdh the
postulate c) as similar to the constancy of frictimeflicients under varying normal
pressures under the sliding friction of solid bodies.th&tvery least, the assumption in c)
specifies andeal case that admits a well-defined theory, and which necegsenplies a
approximation in the actual behavior of bodies.

The second work done per second per unit volume is ggngnadn by:

(21) oA +0A +OA+ 20+ 25V +21, V,
=K (A + AT+ AT+ 22+ D0+ D7),

If one multiplies all velocities by a factoct then this expression changes by a
proportionality factokc®. Likewise, however, the duration of the deformatiomcpss is
shortened by the ratio Ic; so the total work will then be proportionalka Therefore,
the proportionality factok that was introduced into (20) will be inversely proporticieal
the velocity. One can also say: The stress dyagicremains the same when all

components ofl will be changed in the same ratio.

From the latter formulation, it follows that th&resses in a plastically-deformable
body must vary in a domaiof dight multiplicity when compared to, perhaps, an elastic
one. ltis clear that this domain cannot be anythinghmsiastic limit; i.e., our postulate
c) can also be stated:

C) The stresses always remain at the elastic limit under plastic deformations.

This rule implies the demand that the elastic limitstrbe independent of an additive
contribution of the form (11). (cfinfra)

One can verify ‘cimmediately by observation. In the one-dimensiarasde of the
tensile loading of a rod, from)¢the stress-extension diagram must have the fofrgin
2: First, one has an inclined line for the elastic sthté converges to the velocity-

() This is detailed, along with references, in my etayedia article IV 10, no. 5, pp. 187.
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independent limiting stress in the plastic domain. Observaiow shows that for iron,
steel, and similar materials, in fact, a horizoniatp connects to the inclined line, but it
soon turns into a weakly-increasing line. This goes back
Ao to a process that is linked to the crystalline naturthef
body and strongly thermally-influenced, and which one

L calls “solidification.” Thus, our theory does not aant
for this solidification. However, one must considlest
the actual domain of application for plasticity thebeg
in the domain of the load pressure (viz., posipye It is
still not sufficiently clear whether such a soliditican
also exists for pressures in iron, etc. In any evedges
not seem unlikely that “solidification” plays a very
minor role for slightly ductile bodies — like wax, &t

We turn to a last postulate that concerns the nature of
the elastic limit:

)

Figure 2.

d) In a coordinate system that has the principal tangential stresses for its
coordinates, the elastic limit appears as a closed curve in the plane that includes the
origin:

(22) n+n+nrn=0.

As is known, one can thank O. Mohr for the fitsbtough examination of the elastic
and fracture limits ). For Mohr, only the largest and smallest of the¢hprincipal
stresses entered in — say,andc . In a coordinate system:

g, +0. g, —0
23 X = 1 2. - 2
(23) 5 y >

=—13,

when one considers not only the work of Mohr, but dle® recent research of von
Karman €), the fracture limit appears as something like Fig. 3. bialifference

4]
A y I3
‘ |
: I
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X T 1 l
J e 7(-"---»--—
Y 4"”" E—
l‘ ,' :
Figure 3 / |

() O. Mohr, Abhandl. a. d. Bebiete der techn. Mechanik,iiBetb06, pp. 187.
(®) Zeitschr. d. Vereines deutscher Ingenieure 1911, pp. 1749.
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between the behavior for positixgtension) and negative(pressure) is based in the fact

that there is tearing when there is tension on alksiog no crushing under pressure that
is the same on all sides. It is not very likely tthe analogous situation also exists for
the limit of elastic behavior. Since we have, morepdealt with states of large mean

pressure, first and foremost, it will be permitted fotausegard the horizontal asymptotes
in Fig. 3 as the essential limit. This notion, whiclalso repeatedly advocated, leads to
the elastic limit:

(24) | | <K, | 2 | =K, | 3| < K.

The cube (24) will be cut by the plane (22) in a reguéatalyon (Fig. 4), such that our
condition d) is fulfilled.

However, we would like to modify Mohr’'s Ansatz in yatother direction. Only the
vertices of the hexagon (22), (24) are established by the attempt instpdint, which
are states for which one of tlrds zero, while the absolute values of the other tveo a
equal. The rectilinear connection arises from the asBamthat the middle principal
stress (the smallest principal tangential stress, raspnot involved at all. This
assumption does not seem very plausible, since onenotayy to replace the hexagon
with a simpler structure, such asiacumscribed circle. In place of the cube (24), one
would then have the cone:

(25) r2+ri+72 = 2K

In any event, (25) would admit a much simpler analyticahtment, except that the
difference compared to (24) would be larger than the sob{he present attempt.

§ 3. Equations of motion.

We let p denote the specific mass of the body, and Adetx;, «; denote the
components of the specific volume force (gravity, etdr) any case, the equations of
motion then read:

du__ op 0o, or, 01,
p— =K, ——+ + + ,
dt oXx o0x o0y o0z
00,
() @:Ky_@#ﬁ” y+ar’<,
dt dy oOx o9y 0z
dw_  dp 071, 01, o0,
— =K, ——+ + + ,
dd * 9z ox a9y 0z
The six stress components, ..., 7; are expressed, from (20) and (5), in terms of the

three velocity quantities, v, w as follows:
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0'; :kau k% _ka_VV

i ox’ oy’ 0z
[ =1k ov_ ow . :%k(aw auj r =1k ou @
oz ay) "’ ox 0z oy 0x

As in hydrodynamics, the elimination pfives the continuity equation:

an v 0
ox oy o0z

Incompressibility is assumed in this, corresponding tetydate b) and the remarks
connected with it, although the more general case lsarba treated in the context of our
theory with no further assumptions.

The Ansatz that is comprised of (I) to (lll) agreesmpletely with that of the viscous
fluid, except that in that theory the quantitys the given viscosity, while for us it is a
reaction quantity that can be first calculated from a knowledfythe motion itself. To
that end, it will suffice to state that the stressiains at the elastic limit during plastic
deformation.

If one chooses the boundary to be a circle in the {@5%h and substitutes the value
(14) into it then one gets:

(26) (0, +0,+0,)° =3(0,0, +0,0,+0,0,)+3(r; +1; +17) = 4",

Then, from the final form of the expression (14), ltdes that one can also replace e
with the ¢. However, if one adds the first three of eq. (II) abhderves (lll) then one
finds:

(27) o to,+0, =0,

such that (26) reduces to:

2

K I I
= 12 +12417-(0,0, 0,0, +0,0)).

(V)

If one substitutes the value from (Il) here there dras the desired equation fir
Equations (1) to (IV) are theomplete system of equations of motion for plastically-
deformable bodies.

Here, one must introduce the boundary conditiohe Tgiven of thevelocity
components u, v, w for each outer surface point. However, this camdplaced with the
given of theouter surface stress on the entire outer surface or a part of it.

In the case of a planar motion, our Ansatz redtedabat ofSaint-Venant. In part,
this is based upon the fact that in the planar taselifference between the elastic limits
obtained from either (24) (hexagon) or (26) (ciyokanishes. One therefore now has
only two principal tangential stresses 7, with:



Von Mises — Mechanics of solid bodies in the pladifed¢formable state. 10

(28) n+n=0,

such thatr? + 72 < 2K* says the same thing ag | <K, | | < K.

One can write eq. (I) to (IV) very simply with the usé vector symbolism. If
vV denotes the velocity vector aid denotes the specific force vector then one has:

(1) 'O(il_Y = K —gradp+0aJ,
(I 7 =KX,
amny divv =0,

= 4K?
(V") - (0),= 3

In this, the symboll in (I') means the differentiation that is performed andiadic that
is determined by (I). The index 2 in ()vshall imply that the second of the orthogonal
invariants that were written down in 8 1, eq. &8)a be taken.

One can easily eliminatg from (I') to (IV'), and one gets:

(@) pz—f =k -gradp+0 k1),
(b) divv =0,
© o 4K

31),

If one scalar multiplies () by v and integrates over the volume then one findsr aft
a corresponding conversion, that the dissipatiotion will be represented by (21), with
which the agreement between the present Ansatp@nédnsatz c) in 8 2 is proved.

Strassburg i. E., 4 October 1913.




