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8 1.
Introduction.

In a preceding paper)( | developed a system of the electrodynamics of moving
bodies that embraced the modern theorie€0COHN, H. A. LORENTZ, andH.
MINKOWSKI , while conforming to the general principles of the thexfiy] AXWELL
and HERTZ. For the special case MINKOWSKI ’s theory, an expression for the
ponderomotive force resulted that differed from the omat twas given by
MINKOWSKI ; I asserted that the expression satisfied the prinoiplelativity.

In the present article, | will prove that statemeint.8 2, | will present some theorems
that relate to four-dimensional vectors that are dire@ssentially contained in
MINKOWSKI s paper ?) and will be applied in what follows. | consider ithe useful
to give vector analysis a four-dimensional form thatemw adapted to three-dimensional
analysis, will permit one to immediately descend fribve four-dimensional manifold of
space and time to three-dimensional space.

In 8 3, some quantities will be introduced that are cdlbed-dimensional tensors
They are generalizations of the three-dimensional ter@prsvhich characterize, for
example, the state of tension in an elastic bodyhe Ten components of the four-
dimensional tensor that must be considered in electrodgaarantains six components
of electromagnetic pressures, three components of tleegyencurrent, and the
electromagnetic energy density. We will define a fdumensional tensor whose
components are identical with the values of the pressueaergy current, and
electromagnetic energy density that were deduced fronerglermrinciples of the
electrodynamics of moving bodies in my cited paper.

() M. ABRAHAM , “Zur Elektrodynamik bewegter Korper,” Rend. Circ. nfaalermo28 (2™ sem.,
1909), 1-28.

() H. MINKOWSKI , “Die Grundgleichungen fiir die elektromagnetischengéage in bewegten
Kdrpern,” Nach. Kgl. Ges. Wiss. Géttingen (1908), 53-111.

() M. ABRAHAM , “Geometrische GrundbegriffeEnzyklopadie der Mathematischen Wissenschaften
mit Einschluss ihrer Anwendung@#, 2, pp. 3-47.
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It will result that those principles are compatibléhithe postulate of relativity. The
symmetry of the equations of the electromagnetic field empty space, which is
expressed by theORENTZ transformation, can also be given to the electromaag
equations for ponderable bodies either in their MINKOWSKI form or in their
equivalentORENTZ form — without contradicting those principles.

MINKOWSKI already gave a form to the equations of motion fonagerial point
that was invariant und&ftORENTZ transformations. Therefore, he believed that & wa
necessary to add an additional force to the ponderomelctromagnetic force that was
incompatible {) with my system of electrodynamics. In § 4, | willite down equations
of motion that satisfy the principle of relativity Wwaut introducingMINKOWSKI ’s
additional force. On the contrary, we will need sswame that the “rest density” of the
mass is not constant, but increases whenever tbgieleurrent produce3OULE heat in
the matter. That hypothesis was made alread.lgINSTEIN andM. PLANCK in
the context of the principle of relativity.

Therefore, | find it dubious that the very concept of spand time that was
developed byMINKOWSKI (°) might possibly have a basis in rational mechanics.
Rather, the kinematics of rigid bodies tH#t BORN (°) wanted to adapt to the
LORENTZ group offers considerable difficulties, @& HERGLOTZ (’) proved. The
rigid body ofMINKOWSKI ’s “world” cannot be put into rotation.

8 2.
Four-dimensional vectors.

According toMINKOWSKI , a linear transformation of the four coordinateg, z u
that leaves invariant:
X+ + 7+ U

is called aLORENTZ transformation In what follows, | shall confine myself to the
group of orthogonal transformations — i.e., the rotetiof four-dimensional space.
A system of four quantities that transform like therdamatesx, y, z, u are called a

four-dimensional vector of the first kinv,*). If one projects it onto the three-
dimensional space of the y, z then the first three components\4f will constitute a

three-dimensional vectofV®), r, and the fourth oneu) will constitute a three-
dimensional scalais).

(%) Seethe discussion iG. NORDSTROM andM. ABRAHAM , Phys. Zeit10 (1909), 681-687, 737-
741.

() H. MINKOWSKI , Raum und Zejt_eipzig, Teubner, 1909.

() M. BORN, “Die Theorie des starren Elektrons in der Kinematils Relativitatsprincips,” Ann.
Phys. (LeipzigB0(1909), 1-56.

() G. HERGLOTZ, “Uber den vom Standpunkt des Relativitatsprincips ausstds™ zu bezeichnen
den Koérper,” Ann. Phys. (Leipzidl (1910), 393-415.
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A four-dimensional vector of the second kiMf) is a system of six quantities that
transform like the following expressions that are caeséd from the components, yi,
z1, Up andxy, Y, 2, Up of two V,*:

_|w 4‘ _‘21 4‘ _‘ X y‘

a, = ! ay_ v 0= !

W Y % Z % % %
o =% Y| by:‘yl ul‘, bzz‘zl q‘_

X U Y, W Z U

Obviously, if one projects onto three-dimensional spghes the resulting/, will be
composed of twd/>’s that are written:

(1a) a= [‘Cl ‘Cz], b=rv W —1toU

in the symbolism of ordinary vector analysis.
If one is given twov,*:
,u and i, U

then one can composdaur-dimensional scala¢S*) in the following way:
(2) S=xX +yy1 +zz + Uy =trp + ULy .

Conversely, if one is given an arbitrary four-dimenaioscalarg (X, y, z, u) then one
will obtain aV,* by differentiating with respect to the coordinates:

(3) = %, Y = %, = %, = %
0x oy 0z ou
Therefore, the operators:
0.0 0 0
ox dy 0z du

transform like the components of \§*. MINKOWSKI called those operators the

components of the “lor” operator.
One can compose & from fourV,* that determines the space of the parallelepiped

of the four vectors:
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X Yy z u
X Y. & W
X Y5 4 Y

If one applies the operator (3) to tH then one will obtain &/* that is composed of
three otheV,* — namely,t; Uy, t2 Up, t3 Us — whose components will be:

x:%: zl 4 4y Y:%: 4 x {4
X b L U, dy 2 X 4,
S
Z:%: % yl U, U:%:‘ X Y% 2
9z 2 ’ du 2 ’
5 Y U X Y 4
When this is written in a vectorial way, one wilMea
R=uUfe v +ufre] +uf el
(52)
U=-t[r,t)].

If one cancels the index 3 then ¢ that one obtains can be written:

R =u [‘Cl ‘Cz] + [‘C, T U —12 Ul],

U=-rt[r1t].

If one introduces, instead of thé*'s {t1, w} and {r2, W}, the V,' {a, b} that is
composed of them according to the rulg ¢(hen what will result is:

© [ oot

U=-ta;

i.e., aV,* that is composed of\4*and aV,’.
One can obtain anoth&* by permuting thev*’s a andb in the expressions (6). In
order to prove that, form the tw®"’s:

rry + Ul and tro +Ulp.

If one multiplies them by:
—Tt2, — Uz, and —rt1, - U,
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respectively, and sums then one will define fe

R =11 (r 2 +Ulp) —t2 (v vy + UL,

U'=u (tto +Ulp) — U (t tg +Uly),
which can be written:

R' =u (‘Cl -1 Ul) + [‘C [‘Cl ‘Cz],

U=- (‘C, ti U — 12 Ul).

If one introduces th&/,' {a, b}, by means of (3) then the following formula will result,
which is analogous to (6):

© [ et

U'=-rb,

in whicha andb have changed places.

In MINKOW SKI’s electrodynamics, fouN® intervene — i. e., the electric and
magnetic excitation® and®8, and two auxiliary vectoré and$ — that form twoV,*:

B, -1 ¢ and 9,-19.

One will then have theelocityV,*:

(g denotes the three-dimensional velocity vector, wieéerred to the velocity of light.)
If one combines thi¥/* with theV,* {8, — ¢} according to the schemagj@hen one

will obtain theV,*:

€ +[qB] ue= 1a%)

Ji-¢ 1-¢q2

which MINKOWSKI called therest electric force.However, if one combines thé* of
velocityand theV,'{-i $, - ©} according to the schema (6) then one will obtain\¥ie
of therest magnetic force

(8) R

(7) |e =

m_ H—[q9] um= i (9%) .

NEETO 1-¢°




Abraham — On Minkowski’s electrodynamics 6

The “rest electric and magnetic forces” are connebted/*’s that determine the
ponderomotive force on moving electric and magnetic paheswere written a€' and

$H' in the first paper:

9) ¢ =¢+[q Y] 9 =9H-[q9]
Obviously, one will have:

(92) Rme=kte, Ue=ik™*(q &),
(%) RM=k" §, Um=ik™" (q 9),
if one takes:

(90) k=41-¢°.

If one composes the twg*:
{R°, U%} and {R" UM}
according to the formula {Lthen one will obtain th¥,":

a=k?[€ 9,

b=ik*{€ (q9)-9 (@ €}=[q[e 9.
If one introduces the'®:
(10) fr=le 9]
then the lasV,’ can be written:

(11) a=k?{, b=ik?[qf]

If one multiplies thev® §' by the velocity of light€) then one will obtain theelative ray
vector in my first papeidc. cit. (), equation 1V].
Finally, one combines th¥,’ that is represented by (11) with the of “velocity”

according to the schema (6). T#¢ that is thus calculated is will be:

R =i K{f +[q[q f1I
U=-k3(@f).

Multiply this by (- i) and addMINKOWSKI s V* of therest rayto it:

" [ nzkrecun
U =ik (qf").
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8 3.
Four-dimensional tensors.

A four-dimensional tensofT %) is a system of ten quantities that transform by
LORENTZ orthogonal transformations as if they were the pradaod squares of the
coordinates, y, z, u:

X VP, 2 Yz, ZX Xy, Xy yu zu; U

If one projects this onto the three-dimensional spacthef, y, 2) then the first six
components will form a three-dimensional tengo?) that transform like the squares and
products of thex y, 2. The following three components of thé constitute &/> while
the tenth one constitutes a sc

The four components of the “lor” operator transfoike the components of4*, so

when one is given a four-dimensional scadahat is a function of thg, y, z, u, one can
deduce & * by differentiating it twice with respect 19y, z, u:

0’p 0°p 0°p 0’ 0’9 0’9 0’9 0’9 09  0°9
ox? ' oy*’ 07° " 0ydz 0zdx Oxdy oOxou dydu 90zou ou®’

If one is given ars* that is a homogeneous quadratic function ofihez, u:

Py, zUW=3¢ X+3 6 ¥+3 ¢ 2
(13) +CZ3yZ+ %l ZX}- (1-:2 Xy
+C, XU+ G, YU G,z ¢, T
then the ten coefficients:
C11, C22, C33, C23, C31, C12, C14, C24, C3a,; Caa
will constitute a four-dimensional tensor.

In the electrodynamics of bodies in motion, ona kige following equations of
impulse and energy

() M. ABRAHAM , loc. cit. (%), equations (6) and (7).
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_0X, . X, L 0X, _dg,
* ox 9y 0z Ot
:an +6Yy +6Yz_a‘gy
Y ox dy 0z ot’
:62X+azy+621_692
 9x 9y 0z Ot
cag+ 008 98, 05, oy
9 ox o9y 0z Ot

R

R
(14)
R

In order to give these four equations a more symmetni, feet:

(15) u=ict, ﬁu:iqﬁﬂ% Us= &

(153) Xn:_ich, Yn:—Ing, Zn:_icgz,

(15) Ui=—+6,, Uy=—L6,, U,=-—16,.
C C C

That will then imply that:

* 9x 9y 0z O0u’
— an aYy aYz aYu
=Z x4 Y4lzg_u
Y 9x o9y 09z o0u
_92,,92, 0z, 07,
 0x 9y 0z Ou
ou, oU, o9U, ouU

ﬁ: X 4 y+ z 4 u.
Y o9x o0y 0z O0u

R

(16)
R

Now, inMINKOWSKI ’ theory, the system of four quantities:
ﬁXl ﬁ)/l ﬁZl ﬁUl

the first three of which are the components &f hthat determines the ponderomotive
force per unit spatial volume, constitut¥ 4. The sixteen quantities;, Xy, ..., Uz, Uy,
from which that system is derived by means of equations (&3t transform in such a
way that the latter condition is satisfied.

We determine those sixteen quantities in the followwag: They reduce to ten:
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(17) { RoZp R B2 57 K A

X,=U,, Y,=U, Z=U, U,

which are the components of &.T
It will then indeed follow from the properties of tharisformation of the components
of aT * and the components of the “lor” operator that the fuantities that are derived
from (16) transform like the coordinatgsy, z u of a point in four-dimensional space;
i.e., like the components of\4*, conforming to the principle of relativity. Hence, the

determination that | chose is not the only one tharesponds to that principle.
MINKOWSKI himself preferred another determination that does notfgathe
conditions of symmetry that are contained in (17). weleer, the determination that |
postulated in my system of electrodynamics of moving badié®e one that is indicated
at the moment.

Our goal is to form & * whose components correspond to the expressions that we
pointed out in my first paper for the special casdMtIKOWSKI ’s theory. Having
done that, it would be obvious that these expressionsdwsatisfy the principle of
relativity.

In order to obtain such &“, one calculates ar8* of the form (13); i.e., a
homogeneous quadratic function of they, z u that is invariant under theORENTZ
transformations:

(18) pXy,zuW=P(xy, 2—iu(f)+ iy

One will obtain the siMAXWELL pressures from th&® that is a second-order
homogeneous function of they, z

(18,) D (XY, 2 =3IXX+ LYy Y+ 1Z, 7 + Y, yz+ Z zx+ X, Xy .

From (15), the V® that is presently denoted Ipygives both the energy curre@t and
the density of electromagnetic impuige

(18,) f=cg=16
C

Finally, the tenth componeny of the T* that is derived from (18) will determine the
density of the electromagnetic energy.

In order to add to a suitable four-dimensional scalaritha homogeneous function
of second order in the coordinatesy, z, u with coefficients that are bilinear in the
components of the electromagnetic vectors, one fimshs the radius vectore{u} in

four-dimensional space according to the scheme (6), anttfreV,' { a, b}, the V*:

R=ua+tb], U=-( a).
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In an analogous way, if one is given anotWé{ a, b} and theV,*{«, a} then one can
compose th&/*:
R=ua+[cb], U'=—(d)

Now, according to the schema (2), one will obtain $he
S=RR +UU’'=%aa’ + uwa[th']+ ua' [th] + [tb][tb'] + (va) (ta'),
which can be written:
(19) S= (va) (ca') = (vb)(xb') + % (ad’) + z v [ab'] + z ¢ [a' b] + U (aa').

As would follow from (@), one can permute with b anda’ with b’ and obtain
anotherS* in a corresponding way:

(19) S’ = (va) (¢b") = (va)(va’) + ? (ad) + uc[ab'] + ut[a' b] + u? (bb").
Set:
46=S-S;
it will result that:
(20) 2 = (ca)(ca’) — 1% (aa’) — (cb)(cb’) +3¢* (bb')
+ucbal+ uc[b a] + 2u¥{(aa’) - (bb')}.

Now, identify the functiory that is homogeneous of second order inxhg z u and

invariant undet ORENTZ transformation with thé&s* that is given in (18), and one will
find the expressions:

(20,) 20 = (ca)(va’) — 11 (aa’) — (tb)(cb") +1 1% (bb"),
(20,) 2f =ifba’l+i[b" a],
(20) 2¢ = (aa’) = (bb").

Introduce theV," of MINKOWSKI ’s electrodynamics, and set:

(21) { a=$9H, b=-i9,

a' =%, b=-ic¢.
If one takes (1§ into account then the following expressions will resul

XX+Y, ¥+ 2 72+2Yy22 7 22 X X

(212) { > ’
= (v€)(xD) — 5t (ED) + (xH)(xB) — 317 (HDB),

(21n) 2f =[€n] +[DD],
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(21,) 20 = €D + HB.

They give the values of thRIAXWELL pressures, and the energy current and
density for empty space, in whi@h is identified with&, and$) is identified with®5. For

ponderable bodies in a state of rest, the valueg &td (21) of the pressures and the
energy density are acceptable, but the valug) (2l be:

D =¢¢, B=u9,

while the energy current will be:

GZC](:(‘S’U-HL

Jete

which will differ from the current that is given bge POYNTING vector:

S =c[¢ 9]
by:
(s,uz—lj cl[e¢ 9].

Therefore, we must subtract anott® that contains the factogg — 1), which will
be zero for empty space, from the invarigrthat is given by equation (20).
In order to obtain such a&*, consider twov,*. The firstV,* is thevelocity:

u=kK"q, u =ik
and then theest radius which is given by equations (12):

R=K§ +K°q(af), U =ik>(af).
Introduce thev?3:
(22) W= (gu— 1K R = (gu—1) K*§ +K"q (af)}-

(su—1) is anS?, so:
t, = (gu—1)R =k207,
Uz = (g —1)U =ik (q 20)
constitute av,*.
Now, compose twd"’s according to the schema (2):

veg +uly = K {(vq) +iu},
tr + Ul = K{(v20) +iu (q20) },
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which are both linear ix, y,z, u, and multiply them. AnS* will then result that is a
second-order homogeneous function inxhg z, u:

(23) 20 = (£q)(x20) + (u v, 2 + q (420)) - (g 20).

If one sums theS*’s ¢ and y that are given by (20) and (23), resp., then one will
define a newS*, namely:
(24) f=¢g+yx

Instead ofg, take the following characteristic invariant to detielnthe electromagnetic
pressures and the energy current and density:

fY,zU) =D (XY, 2—iu(f)+iu

Instead of (21, ), one will then have the formulas:

(24) { 20=XX+Y, ¥+ ZZ+2Yyz2 Z 2 X xy

= (¢€)(tD) — t°(€D) + (t)(tB) 3t (HB) + (xq)(+2)
(24) 2f =[€H] +[DB] -W —q (9 20),
(24) 2= ED +HB -2 g W).

These values are identical to the ones that are ederie my system of the
electrodynamics of moving bodies in the first paper f& ¢hse oMINKOWSKI ’s
theory.

In that theory, one will have the relatiorf (

(25) { D=e¢ -[q9], <€=¢-[qD]

B =y +[ae], =9 +q2)
A calculation (which we shall not reproduce) will give:
[DB] - [€H] =K* (g~ 1) [€'H] =K* (g~ 1)
On the other hand, according to (22), one will have:
(26) W—q (g W) =k" (- 1)f"

One will therefore get the relation:

() M. ABRAHAM , loc. cit. (%), equations (36) and (37).
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(265) W —q (q W) = [DB] - [€9],

which is a formula that was found already in the fiaper t9).
Equation (2¢) can then be written:

(26v) f=[€9]-q(q 20)
or
(26c) f=[0B]-20.

Obviously, (2@) and (18) will imply the energy current that is postulated by
POYNTING's theorem in the rest case. The values of the gneugrent and the
impulse density agree with the ones that were fourteirfirst paper’). Furthermore,
the expression (24for the energy density was indicated already (

It remains for us to prove that the electromagnetssures that are determined from
equations (24 are the same as the ones that result in thepfustr.

In order to prove this, we need to introducerdlative pressureshat are defined by

9

Xy =Xt axfx, Xy =Xy +ayfx, X, =X+ qzfx,
Yo =Yxtaxfy, Yy =Yy tayfy, Y, =Yztady,
Z, =Z+axfz, Z, =Zy+ayfz, Z, =Z:*qzfz.

If one takes into account the symmetry conditions:

Y, =2y, Zy =X, Xy =Yy
then one will have:

Yz’_Z;/ =qzfy—ayfz,
Z)’(_ X; :qxfz_quX1
Xy= Y, =ayfx—axfy,

which are relations that the indicated expressionghforelative pressures will satisfy, as
was proved in the first paper. It is therefore enougbreee that if the function:

20" =X, X +Y, ¥+ Z Z+( Y+ Z) yr( ' ¥ A NN
is taken to be equal to:

20" = 20 +XCq fx + Yoy fy + 20z fo + (ay Fo + 9z fy) YZ+ @z Fuc+ ax §2) 2X+ (ax fy + ay £ Xy

. ABRAHAM , loc. cit(), equation (49.

. ABRAHAM |, loc. cit(), equations (40), (4] and (42) .

. ABRAHAM |, loc. cit(), equation (44).

. ABRAHAM , loc. cit(*), equation (10), in which, one must set c q, f =c g.
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or
(27) 2" = 20 + (vq)(xf)

and one introduces the values {2df 2d then one will get an expression that is identical
to the one that resulted from the fundamental forefg) in the first paper. That will
ultimately give:

(27,) 20" = (¢ €)(x D) - 4¢* (D) + (£ H)(x B) - 1¢* (9'B).

The identity of the values (27) and {Rvill be proved as long as the following
relation is satisfied:

28) { (ca) (&) + (ca)(¢B)

=(1,¢ =€) (D) + (r, 9 - H)(tB) - 3t°{€' - ¢ D} +(H' - H B)}.
If one takes (2§ and (25) into account then that can be written as:

(tq)([DB]) =(t[gB) (D) ~(c[gDMN(B 119G 9B -B 9
=t[q, B(D) - D (¢B)] +1*(q [DD)]).

(285) {

Now, since:

[0,.B D)2 (tB)]=~[q[c[® B]] =~ (q [DB]) + (vq) [OB],
the second part of equation (2&ill, in fact, give:
(vq)(x [DB]),
so the relation (28) will be satisfied identicallyt therefore follows from formula (2y
that was postulated in our system of electrodynamaisthe values of theIAXWELL
pressures obey the principle of relativity in the spe@skecofMINKOWSKI ’s theory,
in according with the relations (24
§ 4.

The equations of motion.

In MINKOWSKI ’s mechanics, one encounters the so-called “proper tha’point
— i.e., a four-dimensional scalan) that is defined by*():

% H. MINKOWSKI , loc. cit. (%), equation (3), page 48.
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29 = =kl
(29) i =

If one divides the four-dimensional radius vectortlod point with respect ta and
divides by the velocity of lightc) then what will result iISMINKOWSKI ’s “velocity
\VAS

ldx 1dx_dt dt a

— T =q,—=q,k",

cdr cdt o a
Eﬂzéﬂlgg:qy_dt:qyk_l’

(30) cdr cdt o a
Egzéizggt: qz_dt: qzk_l’
cdr cdt o a
ldu_1du_dt . dt

—— = =i—=ik™.

cdr cdt o d

Obviously, the four components of thé of “velocity” satisfy the equation:

cdr cdr cd cd

identically.
Now define the four-dimensional scalar:

(31) p= g I +R, dy ,q 02,4 QU
cdr cdr cd ca

from theV,*’s of “velocity” and “force” according to the schan?).

If one introduces the ponderomotive force of thectteomagnetic field, whose
components are determined by (16) and takes easati®) and (30) into account then
one will find that:

(31) w=-,
C

in whichQ is theJOULE heat that is produced in a unit of time and space.
Now, MINKOWSKI gave the following form to the equations of motiohan
element of matter):

(*®) H. MINKOWSKI , loc. cit. (%), equation (20), page 54.
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d X —R+ Wﬂ
dr cdr
2

viYog s W
dr? cdr’

(32) i g

__ﬁ l.|J_Z
dr? cdr

VE—Q Wﬂ
dr? cdr

in which the S* (v) determines the “rest density” of matter. The idgnt80y), from
which it follows that:

dxdzx dycfy dzélz dud _
dr dr? deT2 Clrd'2 o a2

is satisfied, due to equations (32).
MINKOWSKI called theV® whose components the right-hand sides of the first
three equations of motion (32) the “ponderomotive fordethe electromagnetic field;

i.e., thev?:
(322) R+Wqkt=g- 12

N

That vector is not identical to the force that wlasermined by the impulse theorem
(14), but differs from it by:

_ale

ck? '

Therefore, when th@OULE heat is produced in mattédINKOWSKI mechanics must
add that additional force to the ponderomotive force #haterived from the impulse
theorem.

If one considers how important the impulse theorem electromagnetic mechanics
then one would prefer to preserve that principle in eéletrodynamics of bodies in
motion. One can removMINKOWSKI ’s additional force, which will give the
equations of motion the form that is suggested by the maaidaws of impulse, instead
of (32), namely:



Abraham — On Minkowski’s electrodynamics

i(v% =R,

dr\ dr
2,

(33) dT dr
_(V_Z :ﬁz’
dr\ dr
i(vEJ =R,
dr\ dr

Since rand v are S*’s, both sides of those equations are the compenehia V*;
therefore, those equations agree with the prin@plelativity. The identity (39 will be

| 2
(
d- J

H CRGRC]

If one takes (39, (31), and (33 into account then one will find that:

:ﬁxgm
dr

+ R iz.{-ﬁ _dL.
fdr Y dr

dy

Ydr

dv__¥_Q
dr ¢ ¢k’
or, according to (29):
dv_Q
3 Y-
(3%) dr ¢
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Therefore,v (viz., the “rest density” of mass) must be vamabhd increase whenever
JOULE heat is produced in matter. If one accepts tigapthesis, which was introduced
for the first time byEINSTEIN and PLANCK, then one will avoid the additional

MINKOWSKI force.

One can pass from the equations of motion (33)chwhefer to a unit volume of
extended matter, to the equations of motion of @éena point by the same way that

MINKOWSKI indicated for equations (32).

Milan, 17 January 1910
MAX ABRAHAM



