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1. — In this article, | propose to study the deformatioracfiomogeneous elastic
sphere whose surface is acted upon in some way, but subict to gravity nor any
other volume forces, when one knows the componentiseoflisplacement or tension at
any point of the surface.

The problem of the deformation of an elastic sphergif@n forces that act upon the
surface was solved for the first time by LAME, who aibed the components of the
displacement of any point of the solid expressed imsef a series. The first solution to
the problem by means of definite integrals was due to BORRID .

Prof. BETTI [“Teoria dell’elasticita,” Nouvo Ciment(®), vol. VII, et seq. started
from the known theorem that is called the “reciptyptheorem” and gave, for the first
time, a general method for the integration of the egoatof equilibrium of an isotropic
elastic body that led to the determination of thetdilan and the components of the
rotation.

CERRUTI applied that method, although simplified soméwl@nd solved the
problem for the solid that was bounded by an indefinite goland for the sphere
[“Ricerche intorno all’equilibrio dei corpi elastigatropi,” R. Accademia dei Lincei (3),
vol. XllI; “Sulla deformazione di una sfera omogene&duovo Cimento (3), vol.
XXXII.

SOMIGLIANA [“Sopra glintegrali delle equazioni dell'isaipia elastica,” Nuovo
Cimento (3), vol. XXXIV] gave another method for igtating the equations of
equilibrium that permitted one to determine the companehthe displacement directly.
He represented those components by means of three nmetiohs that he called
“generating functions” and found that those functionsictde expressed by integral
formulas that were analogous to the one that is dedwoed Green’s Lemma and had
the same significance in the problem of elasticity tiegt latter formula has in the
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Dirichlet problem. He then discussed the nature of timergéing functions in the cases
of solids that were bounded by an indefinite plane amhars.

The problem of the deformation of a spherical solidswalso treated by
MARCOLONGO [“Deformazione di una sfera isotropa,” Am. Mat. (2), vol. XXIII),
and he studied the case in which one knows some comparfahis displacement and
some of the external tensions on the surface.

LAURICELLA solved the problem of the sphere by a procedimat was different
from the ones that Cerruti and Somigliana employed [ilgio dei corpi elastici
isotropic,” Ann. della R. Scuola Norm. Sup. di Pisa, ¥il]. In that same article, the
author presented a method that was analogous to Neumaettiedrfor integrating the
differential equatio\® = 0 and by which, after posing some restrictions orfata and
nature of the solid, he succeeded in representing the cemisoof the displacement by
means of series when one is given their value onutiace.

The method that follows in my article here is bas®dnly upon the property that an
arbitrary function® presents when it satisfies the equatifm? = 0 that it can be
represented by two functiong, x that satisfy the equatioh’ = 0 by means of the
formula:

®=(+y'+Z-R)p+x

in which R is a constant. That formula makes it very simplestiody the various
guestions that refer to the sphere, and in the specialhaay propose to treat.

2. — If the functiong of the variables;, y, z satisfies the equatia’ = 0 and one sets:

0p 0 ¢

CO+ X—+y—+72— =,
¢ 0x yay 0z v

in which ¢ denotes a constant, then the functiarthus-expressed, will also satisfy that
equation as is easy to verify.
Introduce the variables s, t in place of the variables y, z by setting:

r= ’x2+y2+22,
s= arcsin——Y_ (1)

X

t = arcsin
The preceding equation can be written:

99 _
C¢+r6r v
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Now, supposing that the functiéi, which satisfies the equati@f = 0, is given, we
would like to determine the functighin such a way that it satisfies the two equations:

09 _
c¢+ra— ,
(2
AW = 0.

Suppose that the functid¥ is uniform in all of the space to which our consideration
are confined, or in the sphere of radRighose center is the coordinate origin, and that is
also what is required by the functign

One proves that if the constamtis positive then just one functiop that satisfies
those conditions will exist.

In order to prove that more than one cannot exisg #nough to prove that if a
function ¢, is uniform inside the sphere and satisfies the two eaqusatio

C ¢l +r%: O,
or

N ¢ =0

then it will be zero at all points of the sphere.
Let S denote the space that is enclosed by the sphericatsufaradiusR, let o
denote that surface, and ledenote the inward-pointing normal, so one has the known

formula:
08,V (00.) .(08.) | o ¢ , 00,
L{( axj +(6yj +(6yj }dS— J,4. 57 do (3)

However, formula (2) gives:

C ¢l —-R %: 0
on
for the points ofg; or:
09, _cC
on R h1.

If one substitutes that in formula (3) then one halle:

39\ (9¢,) (06| e C .
L{( axj +[ ayj +(6yj }ds- =[,#ido.

However, ifc is positive then that equality cannot persist unless bios of it are
zero identically. One must then have:
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%: 0, %: 0, a¢1 =0
ox oy
in all of the sphere or:
@1 = const.

and
$=0

on the surface. Thereforg; must be zero at all points of the sphere.
One will arrive at the result by constructing the gehettegral of equation (2). It s,
in fact:

in which the functiork of the variables, t is arbitrary. However, the function must not
become infinite at any point of the sphere. Now, sf.ome suppose, the functith is
uniform inSthen the term:

ricj.orr“LPdr

will remain finite at all points o6 around the center, where it assumes the léc,
whereW, denotes the value that the functidntakes at that point. However, since the
constantc is positive, the termx / r® will become infinite at the center of the sphera. |
order to not have that, it is necessaryAdo vanish for = 0. Howeverg is independent
of r. It must then be zero at all points®f Consequently, what will remain is:

¢:ricj;r°-lwdr, (4)

and that is the only function that is uniformSmand satisfies equation (2).

That proof is obviously valid for any bounding surface andpaceS as long as one
finds the coordinate origin inside of it.

Let us now see whether the function that we foutidfiss the equation? = 0.

When one differentiates formula (2) with respect,tone will get:

0P X0 009 oY
ox r or ox or )4

If one compares that formula with the identity:

00¢ _00¢4 104 x09
ar 0x OxOor rox r?or
then one will get:



Almansi — On the deformation of the elastic sphere 5

(C+ 1)%+ri%: a_LP
ox

or 0x  0x

From a formula that is analogous to (4), one will thawe:

2 _ 1

r¢—dr. 5
ox r? ©)

0 0gx

J-f oW

If one repeats the argument then one will find that:

2
% :riz j;r“ﬂ%;:dr, (6)
as well as analogous expressions%ég, gif Consequently, if one sums then one will
get: ’
N = r°1+2 j;rc*l?;:dr, 7)

and finally sinceA>¥ = 0, by hypothesis, one will also have:
N = 0. (8)

We have then shown that when the constampositive, the two equations:

in which W represents a function that satisfies the equdtfon 0 and is uniform in the
space that is bounded by an arbitrary surface, whilt therefore contain the coordinate
origin, will be satisfied by a unique function thatuniform in that space. That function
is given by the formula:

3. — Now consider another differential equation. [&ge thatd represents a function
that is uniform in a spac8 and satisfies the equatiaX¥ = 0. One would like to
determine the function that satisfies the equation:

2
A¢+Br%+r2%:£(¢_raﬁj, (9)
or or 2 or
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in which A, B are constants, and in addition:

N ¢ =0, (10)
and it is uniform in all space.
In order to do that, set:
A =ab, B=a+b+1.
Equation (9) can be written:

2
abg+(@+b+1) r(g—¢+rZM :E(db—racbj
r

a2 o
or:
0¢ 0 09 1 adaj
+r—|[+r— tr— | == d-r—|.
a(b¢ rarj ar(b¢ arj 2( or

The constanta, b will be given by the formulas:

a=1(B-1)+31y (B-1F - 4A,
b=1(B-1)-1, (B-17 - 4A.

If those constants prove to be real and positiem tequation (11) can be integrated

by applying formula (4). In fact, the functio%(d)—r%—?j, like &, will satisfy the

equatiomA? = 0. One will then have:

b¢+r% :ijrr‘:’l(d)—rai)j dr,
or 2r°o or

and in that way, if one applies the same formulzeanore then:
1 jrdrmb’a’ljrr“(d%raﬁjdr,
2rcJo 0 or
and it will follow from an integration by parts tha
¢= 1 ijrra‘l(da—rai)jdr——%J'rrb’l(db—rai) rl.
2(b-a)| r*-o or r°Jo or

If one observes that one has:
Irr°a£dr =r‘o- jrrHCDdr
0 ar 0

¢:

identically then that formula can also be written:
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1 a+ler . b+1¢r oy }
= re-ddr - r>-ddr |. 12
? 2(b—a)[ re JO r° JO (12)

That function also satisfies the equatin= 0, since it is the sum of two terms that
each satisfy it, as was proved before.
Now, on the other hand, consider the case in wthehconstants, b prove to be
imaginary. Set:
1(B-1)=p,
A-1(B-1 =0,

in whichp, g are real quantities. Let:
a=p+iq, b=p-iq

One can say that in this case, as well, the fang@ithat is given by formula (12) is
the only real function that is uniform in the sp&that satisfies the two equations (9)
and (10).

The fact that equations (9) and (10) are satisfiezbvious and does not depend upon
the nature of the constangs b. In addition, whereas the functiops contains the
imaginary quantities, b, is it real, since switching those two quantitigth each other,
while changingi into — i, will not change that function. Its expressiontheut
imaginaries is easily constructed by replacingghantitiesa, b with their valuegp + iq,

p —ig, and applying the formula:

r*9 = cos (logr) +i sin @ logr).
One then obtains:

¢ =- 1 [{( p+1)cos(qlogr )+ g sin@ logr )jr r’™* sin g logr Yp dr
2qr® °

+{qcos(qglogr)— (p+1)sin( logr )}J'Or r’* cos( log ybdr]

and if one sets:

\
_\/(p+1)+q2:K p+1 q
2q J(p+Y’+q° J(p+Y’+q°

then the formula that was found can be written nsimely as:

=sing¢ = cos¢&

¢:

K
p

. {sin(q Iogr+£).|.0rrp‘l sinQ log Ypdr + cosd log+¢ J‘)Orrp‘l cog( lag d)dr}. (13)
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One can then say that the functigns uniform in all of the spac® when® is also
like that. Indeed, the unique point for which any doubt wouldanens the coordinate
origin. However, if one observes formula (12) thee will easily see that far= 0, the

function ¢ will assume the valueqi, or % where®, is the value that the
2ab 2(p°+q9)

function® takes at that point, and that its derivative wéspect ta will vanish.
Therefore, the functio, which is given by formula (13), will satisfy adif the
required conditions.
We now address the proof that it is the only fiorcthat satisfies them. In order to
do that, it is enough to show that no real andaumffunction will satisfy the differential

equation:
(b¢+ r—fj+ r—(b¢+ r ¢j

The general integral of that equation is:

in which U, V are independent of the varialble
One can also write:
_u \Y
¢= r P*id + r Poid

or

¢=rip(u V).,

In order for that expression to be real, it mugpgen that the quantities, V are
conjugate imaginaries. Set:
U=u+iv, V=u-iv
One will have:
1 iq iq -iq _iq
¢= r—p{u(r +r'9)+v(r r )}
or
2

¢ = r—p{ucos(q logr }+v sin@ logr ).

However, that function will become indeterminatbewr tends to O: It will not
satisfy the required conditions unless one doe$an:

u=0, v=0,
and therefore:

9 =0,
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which is precisely what we wished to prove.

In summary, if® is a function that is uniform in a certain space asisfes the
equationA? = 0 then the only functiom that is real and uniform in that same space and
satisfies the equations:

2
A¢+ Br %.}-rz% = E(cp_raﬁj,
or or 2 or
N¢=0

is the function that is given by the formula:

¢:
rip{sin(q Iogr+£).|.0rrp‘l sin@ log Ypdr + cos( log+¢ I);rp‘l cog( lag d)dr}, (14)

or

p=3(B-1), q=y A-%4(B-17,

(15)
[ 2 2
K:—M, E= arctanp_-*-l_
29 q

4. — We shall now prove the theorem that was stabetegin with, viz., that a
function® that is uniform in a spacgand satisfies the equatidd A = 0 can always be
put into the form:

©=(+y+ 2R

in which ¢, x are functions that are uniform in all space ani$fathe equatio\? = 0.
In order to do that, it is enough to prove tharéhalways exists a functighthat is
uniform in all of space and satisfies the equafids 0, and is such that the difference:

(2 +y + 7R ¢

will also satisfy that equation; i.e., that onel\wave:

Nod-op- 4 x%+y%+ 2 =0,
0x dy 0z

or, if 4¥ denotes the functiof® ®, which satisfies the equatid = 0, then:

Py,

3
—Q+r—=
2¢ or
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However, that is not equation (2) when the positivestamtc equals 3 / 2. One must
then have\? = 0, so one can then apply formula (4) and then olit@iminique functiog
that satisfies all of the required conditions.

The theorem is then proved.

It then results from this that in a problem that iresin functions that satisfy the
equatiomA? A = 0, one can introducendunctions that satisfy the equatiaf= 0 in their
place. Now, one can show that there are thredinsu, v, w such that the functions
AN?u, A%, A*w are the derivatives with respect xpy, z of the same functior that
satisfies the equatia? = 0O; i.e.:

oK ny=9%

iy AZW - 0K
o0x

Nu = , iy
oy 0z

(16)

The three functions, v, w, which must obviously satisfy the equatithA? = 0, can be
expressed by means of just four functighsl, 4 v, which will satisfy the equatiof® =
0 if one sets:

u= (RC+y+2 - R2) ¢
V= (Y 7 R2>—¢+u
w=(C+y +7 — RZ)%+V

In fact, one will get from those equations:

2 2
A2 = 65¢ 0°¢ ya¢+za¢ ,
ox XX X0y 90Xz

2 2
N = 6a¢ 6¢ 6¢+26¢ :

ay | ayax Yoy Yoz

Nw = 6%+4[x 0’¢ +y 0%, ¢j

0z 020 X 623y %32
or
9 op 0f 04
ANu= "4 x—Z+y-L+ 7227 |+ ,
ax{ Xax yay Zaz 2¢}

rv=2914 x%+y%+z% +20 ¢,
0X dy 0z
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2 _ 0 o 09 _0¢
A —5{4(xa+ya—y+za—zj+2¢}.

When one compares these equations with (16), it vellllteéhat one can set:

4 x%+y%+ z% +29=k+C,
0x dy 0z

in whichC denotes an arbitrary constant, and also:
0¢

s9+r—=3(k+C).

x4 o ;(k+C)

Observe that the functions v, w will not change if one varies the functignby a
constant. That constant can be taken in such a eaythie other constaf disappears
from the preceding equation. One will then have:

)
%¢+ra—f=%fc (18)

One must then haw#¢ = 0. However, as one knows, there always exists ctifumthat
is uniform in the space in which the functianwhich satisfies those two equations, is
like that. When one gets from formula (17), one will get the functiors y, n, which
must necessarily satisfy the equatlsre 0.

The theorem is then proved. What is more, one fiogdst@on (18), which governs
the two functionsp, «.

1. — Consider an isotropic, elastic solid that is bounded byrtaceo. LetE its
modulus of normal elasticity, and letbe its coefficient of contraction. An infinitesiina
forceF dois applied to each elemed of its surface in such a way the solid will submit
to a certain deformation.

Refer the solid to a system of orthogonal a®e&, vy, z) and say that for any of its
points whose coordinates atgy,

$& <

are the components of the displacement, and:

TXX ’ Tyy ’ TZZ ’
TyZ ’ TZX ’ TXy
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are the normal and tangential internal stresses, resp
Write Ty, or Ty, etc., indifferently.
The internal stresses are coupled to the displacereite formulas:

in which one sets:

for simplicity.

2m

2(1+m) Tyx= E| —0O
(LM T (1—2m
2m

2Q1+mTy=El ——0O
( ) yy (1_2m

2 (1+m) Typ= E(Z—me+2ﬁ

1-2m

2(1+m) Ty, =E %+6_/7
dy 0z

2 (1+m) TZX:E(%+%
0z 0x

2(1+m) Ty =E 6_/7+%
ox oy
@_%-}-a_,]-}-%

ox dy 0z

If one sums the first three and sets:

then one will get:

_E =T
1-2m

Therefore, one can also write:

+225

+2->

0§

0X

0§

ay

0z

(19)

2 (1 +m) Ty = ZnT+E(—+—

0é afj

0xX O0X

2 (1+m) Ty = ZnT+E(a—,7+a—,7j,

gy dy

2 (1+m) T,= 20T+ E(—+—

o{ GZJ

0z 0z

12



Almansi — On the deformation of the elastic sphere 13

The six stresses are coupled by the three equations:

aT,  OT, aT,_
XX + XZ - 0,
ox 0y 0z
0T, N T, N aTyz_ 0
ox ody o0z
0T + T,y + o, _ 0,
ox 9y 0z

which represent the equilibrium conditions inside thdomheed solid, under the
hypothesis that no volume forces act upon its elemérts. following equations must be
satisfied on the surface:

Txx COSa + Tyy COSB + Ty, cOSy=—Fy,

Tyx cosa + Tyy cosf + Ty, cosy=-Fy,

T, cosa + T, cosfB+ T, cosy=-F,,

in whichFy , Fy , F; represent the components of the external force,aaifél y are the
angles of the normal, which points insidecof

If we avail ourselves of formulas (19) and express dtiesses in terms of the
components of the displacements in equations (22) tkeemilget:

A25+ LG_G: ,
1-2m 0x

pops L 0O

=0, 23
1-2mdy (23)

pegs L 99

1-2m oz

If one differentiates the first of these with resptox, the second with respect yo
and the third one with respectzand sums then one will get:

A’O=0.

Finally, if one eliminates the three functiofis;, { from equations (19) and (23) then
one will get the following six equations:
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2 2
A2Txx:_ 1 a_T’ AZTYZ:_ 1 aT,
1+mox 1+maydz

p27, =L 9T pT= -t 0T (24)

Y 14moy’ “ 1+mazox

2 2
1, oL 0T o7, =t 0T
1+moZ 1+maxoy

The functionT, like @, which differs from it by a constant factor, shgis the
equationA? = 0.

1. — Let an elastic sphere be given whose raditsaad whose center is supposed to
be located at the coordinate origin. The sphellesubmit to a certain deformation under
the action of the tensions that act upon its serfatf the deformation of its surface is
given, or if one knows the components:

éor Noy o

of the displacement at any of its point, then ol like to see how one can determine
the functionsé, i, { for any point of the sphere.
Equations (23) must be satisfied, or the threetfans A%§, A%, A% must be the

derivatives with respect t®, vy, z resp., of the function ©, which satisfies the

1-2m
equationA? = 0. Hence, if one applies the theorem that weseqal before (4) then one
can set:

E:(x2+y2+22—R2)g—f+)l,

/7=(x2+y2+22—R2)%+ﬂ, (25)

(=(C+yY +Z-R) g—f+ V,

in which the functionsg, A, y, v satisfy the equatiod? = 0. The relation that is

expressed by formula (18) must exist between tleftnctionsg, — ﬁ@, or:
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0¢ 1
sP+Hr— == — 26
2/ or 4(1- 2m) (26)
However, if one recalls (20) then the precedingniolas will give:
@:2)££+yg_+£@-ﬁy+gﬁ+ﬂa
0x dy 0z) 0x 0y 0z
or, if one takes:
oA ou dv
ox oy 0z
for the same of simplicity:
= Z%+ ®
or
Therefore, if one substitutes this in equation) (2&n one will have:
%¢+r% :—;(Zr%ﬂbj,
or 4(1- 2m) or
or also:
1—2m¢+r%:_ 1 27)

3-4m’”  ar  2(3-4m)

We shall now address the determination of the fonctionsg, A, 4, v.
On the surface of the sphere, one will have:

f:j, n=u Z:M
SO one must have:
A=&, =N, V={.

However, the functionsl, x4, v satisfy the equatiod? = 0. Therefore, one can
determine those functions for all points of theesphunder certain conditions that the

quantitiesé,, &, {y must satisfy.
Let M be any of its points, so one will have:

1 R - r?
= do,
L (R + - 2Rrcosw 7’25"

2nR

1 I R? - r?

= do, 28
2R (R + F—Zchoqu’z”” (28)

U

V_].I R? - r? ZdU
2R (R+ r—=2Rrcosw 277
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in which &,, &, {, are the components of the displacement of a pdiat g, r is the
distance from the cent& of the sphere to the poim, andwis the anglex MON.
We now move on to the determination of the functignsWe shall get that from
equation (27). Set:
1-2m 1

—_ :C, - = ,
3- 2(3-4m)
for simplicity.
We will have the equation:
cCo+r %: Ad.
or

The constantn is found between 0 and 1/ 2. Therefore, thetems is positive. In
addition, the functior®, like the functionsi, y, v, upon which it depends, must satisfy
the equatio\? = 0. The functionp must also satisfy that equation. One can thetyapp
formula (4) and have:

y :Aric [ ®ar. (29)

We have thus determined all four functions thatiacluded in the right-hand sides of
formulas (25).

2. — In order to calculate the derivatives of thection ¢ with respect to the variables
X, Y, z, we shall first see how to express the function
It is given by the formula:

Take the first of formulas (28):

_ 1 (RP=r*)¢,
A_anL(RH ?—2Rrcom§?

If X, y, zdenote the coordinates of the pdiht andX, Y, Z denote the coordinates of the
point N then one will have:
r’=xX+y +7,

(30)
Rrcosw=xX+yY+zZ

Therefore, the preceding formula will imply that:

04 _ 1 ; -2x&, (R+r’-2Rrcoww §?- 3R*+ 1’ )R*+ r’- 2R co® X- X §,
= I g — do,
oxX 27RYe (R+r-2Rrcosw

or



Almansi — On the deformation of the elastic sphere

A1 [ GR+r-aRr com e, - R+ I KE,
B .[ > do.
ox  27R%e (R+r-2Rrcoww

If one does the same thing with the other two fda®1(28) and sums then one will get:

o =

S (R’ —r* —4Rr comw J* k&, + 1, + £y ) 3R+ £ )X+ Vi, *+ L, )y (3
>R Vo (R+rP-2Rrcoswj"? .

Now, let k, denote the displacement of a pointaothat has the componengs, 7.,
{s, and letd, € denote the angles that its direction makes wiehdinectionsOM, ON,
resp. One will obviously have:

XSotY No+2Z{s=1 KsCOSJ,

(32)
Xé+Yns+Z{s=RkK,c0s¢.
Hence, formula (31) can be written:
2+ 2 _ /2 _ 2+ 2
®=- 1 ,[ (5R?* + r* - 4Rr cosw §*r cod ?/f}‘ r’n ccszgdU. (33)
2R Yo (R+r-2Rrcosw §
Set:
(5R*+r?—4Rr cosw {or cod- R*+r’R cos_
(R*+r*-=2Rr cosw J'? ’
for simplicity, and get the formula:
1
®=—-———| Hk,do. (34)
2nRJe

Having said that, calculate the derivatives of fhaction ¢ with respect to the
variablesx, y, z As we have seen before2fl.we will have:

dr,

%—A 1 .[Orrcaﬁ

ox  ret ox

However, one gets from formula (34) that:

0P 1 oH
—=-——| —«,do, ..,
)4 2mRY7 9x

and the derivatives of the functidth with respect to the variables y, z are easily
obtained by observing that they are includetfjm cosa r cosd. Indeed, one has:

17
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r* =X +y +7,
r cosw = —;(xx+yY+ z2),
r coso = %(x SotynNat+tzdy).
One will then have:
9__al Irr°drja—HKda,...,
ox rettJo gox 7
as well as:
%:—i c+1'[ aHd KgdU,
0x 2R P70 gx ]
and analogously: i
N s <9 o | dor, (35)
oy 2R Y0 9y |
9 AL M |e.do.
0z 2mRAe "0 gz ]

If one takes:

(R +r’-2Rrcosw )’

for simplicity, then formulas (28) can be written:

RZ_rZ
A= Ké& do,
2R L %
R
u=""C Ky do, @0
R? —r?
V= K¢ do.
2R L <o

Finally, if one substitutes the expressions that faund forg—¢ g—¢ ?9_¢ A W vin
X o0y 0z

formulas (25) then one will get:

_R-r?.[ A 0H
¢= TR L[rcﬂjo a—drﬂr +KE}

18
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2 _ .2 ;
Rt LLA .[Or°%—;|drﬂrg+K/7[, do,

2 ]TR c+l

/7:

R? - r? A ¢ .0OH
= r‘—drx_ +K{_ |do.
¢ 2R L[rm JO 0z . *K<,

The problem is then solved.

V.

1. — We now pass on to the second of the two probksiswe proposed to solve.
We address the determination of the deformatiora cfphere when one knows the

component$y , Fy, F, for any point of its surface.

Consider the three functions:
U :XTxx+yTxy+Z-|;<z,

V=xXTx+yTy+2z Ty, (37)
W:Xsz‘l'ysz'l'ZTZZs

which, when divided by, will give the components of the tension that agten the

sphere of radiusthat is concentric to the given sphere.
Say that the function&®U, A%V, A*W are the derivatives with respectxoy, z, resp.,

of a function that satisfies the equatidh= 0.
One has, in fact:
oT
DU =X NP T +y D2 Ty + zAZsz+2(aTXX o le

ox dy 0z

oT, 0T, 0T
DV =X N Ty +y D Ty + 2N Ty +2) — 24— L4 =2 |

ox dy 0z

ZZ

DW= XN T+ y NPTy + 2N Ty +2) — 2+ :
w Y E Ty “ ox 9y 0z

aT,,  OT, Lo,

or, by virtue of formulas (22) and (24):

1 0°T o0°T 0°T
- X +y + 7 ,
1+ml 0¥ ~o0xdy 0z

AU =
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2: 2 2
A2 = — 1 X6T+y6T+ZaT |
1+m| dydx “0y 0yz

2: 2 2
AW = — 1 X6T+y6T+ZaT’
1+m{ 0z0x 0Dy 02

or also:

AU =L G(XGT T 0T j

— | X—ty—+z—-T
1+modx{ ox "0y 0z

Ay L G(XGT T 0T j

—| XY=ty —+z—-T
1+mady| dx "0y 0z

p2w=-—1_ 9 xa—T+ya—T+zﬂ—T.
1+madz\ 0x "0y 0z

The expressiona?U, A%V, AW are therefore the derivatives of the function:

).
1+m\ or

which satisfies the equatia@f = 0, likeT. That was to be proved.

One can then set:

u:(x2+y2+z2—R2)g_f + ),

v:(x2+y2+z2—R2)%+u, (38)

W:(x2+y2+zz—R2)g—f + v,

in which ¢, A, 4, v are functions that satisfy the equati= 0, and from formula (18),

one will have:
09 1 oT
sP+r—=- r—-T1. 39

=/ or 4(1+m)( or j (39)

We then have a first relation between the funstigr.
A second relation is obtained in the following wayfferentiate the first of equations
(37) with respect tx, the second one with respectytcand the third one with respect to

z, and sum them. That will give:
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ou oV  dw
i S
ox 0y 0z
= Tax+ Ty + T2+ X 61“+GTW+6Tﬁ + aTyX+6TW+aTyZ +Z aEX ar aT
ox dy 0z oX 0y 0z ax ay 62
or, from formulas (21) and (22):
ou oV  dwW
4+ =
ox 0y 0z

@-}-a_'u +6_V =0
ox 0y 0z
for simplicity, then one will get:
6_U+6_V+6W 2 _¢+y_¢+z_¢ + O,
ox dy 0z 0x dy 0z

or
U LoV OW_, 0%
oXx 0y 0z or
One will then have:

T=2%.0,
or

and that is the second relation betweesndT.

One gets from this:
oT _ 26¢ o 99 9’ ¢ P

or or or? ar

Hence, when one replac&sandodT / dr with the values that were found in equation (39),
the last equation will become:

1per o1 (Zrzacb ¢_¢j,
6r 4(1+m) ar? or

or, when one multiplies by 2 (1m):

@+me+2@+m)r 6¢ Grf = %(CD— %crbj (41)

Having said that, let us see how one can deterthenéur functionsl, i, v, ¢.
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We have already observed that the functithd r, V / r, W/ r represent the
components of the tension that acts upon the elemeéthie spherical surface of radius
that is concentric tar. Therefore, at any poiit of g, one will have:

U=RFK, V=RF, W=RF,
and therefore:
A:RF)(, ﬂ:RFY1 VZRFZ!

as well, and consequently if one supposes that certaiditions are satisfied by the
guantities and one is given thais the anglex MON then one will have:

2 _ .2
A:i 2 ZR r /ZFXdO-’
2?7 (R + r* - 2Rrcosw ¥

1 R*—r?
=50 2 2 /szdU’
2% (R? + r* - 2Rrcosw ¥

1 R? —r?

V=—— F do
2m9e (R*+r*-2Rrcosw '* °
at any pointM of the sphere. The functiah, or g—i+g—’§ll +%, can be determined by a

procedure that is identical to the one that waevad in the preceding problem. If one
is givenF as the force that is applied to a pdindf oand one let®, £ denote the angles
that its direction makes with the directiodd, ON, resp., then one will get:

Fdo

q)__ij- (5R*-r*-2Rrcosw ¥ cod- F-r° )cas
21 (R* - r*-2Rrcosw ¥'?

at the pointM of the sphere.
We must now find the functiog. It must satisfy the equation:

g  ,0%@ ( 6CDJ
1+m@g+2 @A +m r—+r°—=1 d-r— |,
( )o+2( ) or o2 2 or
along with:

N¢ =0,
and it must be uniform in all of the sphere, iniidd. However, we have seend) that

there exists just one function that satisfies thasaditions, and it was given by formula
(14), or:

¢:r£p{sin(q Iogr+£).|‘0rrp'l sin@ log Ypdr + cosq log+e .ﬁorrp'l cog( lag Cl)dr}. (42)
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In our case, we will have:
A=1+m, B=2(1+m).

Therefore, from formulas (15), we will have:

p=1+m, q=14% 3-4m?,

K=- 3(1+ m) s—arctanﬂ
V 3-4m® J3-4m

and ifmis less than 1 / 2 then the constamtill be real.

We thus have to calculate the four functidngs, v, ¢, and therefore know the three
functionsU, V, W from formulas (38). If we then replagein formula (40) with the
expression that is found for it then we will have tfunctionT. When the latter is
multiplied by the constant factor (1 @/ E, that will give the dilatatio® at any point
of the sphere.

(43)

2. — Now, recall the formulas:
U=XTx+y Ty+2Z Tk,
V=xXTyx+yTy+z T,
W=XTu+y Ty+2z T,

Replace the stresses with their expressions tae¢ given by formula (19) and ()9
and set:

%{2(1+m)U—2mx‘l}: P,
Ze@smv-amyg=Q (44)

%{2(1+m)W—2mz'E:R,

for simplicity. One will get:

X(%.*.%j.*. y(%.*.a_,?j.*. Z(%.*.%j: P,
ox 0X dy 0x 0z 0X
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0c 08\, [0€ o), [0€ 0)_
(6x+6xj y(6y+6xj+z(az+6xj @ (45)

(%.}.gj y(%.{.a_,?j.{.z(%-{-% =R
oxX 0z dy 0z dz 0

If we already know the functions, V, W, T then the function®, Q, R will be known.
We shall now address the determination of the funct@ng . In order for them to
prove to be determined completely, we shall pose thditon that the translation and
rotation of the material particle that is found at tleater of the sphere is zero, or that for
r =0, we have:

Q(:O, /7:0, Z:O’
o _on_,  0E 0 .,  on_df_
dy 9z 0z 0x 0 ox ady

If one differentiates the second of equations (45) vadpect taz and the third one
with respect toy and subtracts the former from the latter then otfieget:

(2(0¢_n), 2(3¢ _an), 3¢ _an)_3R_2Q
ox\ dy 0z ooy 0z) 0zdy 0 oy 0z’
2(0¢_on)_1(aR_sQ)
oy o0z oy o0z

If one supposes that the componr%%—g—z of the rotation is zero at the center of the

sphere then when one integrates the last equation, ibgety

azanj 9R_0Q)
dy 0z orloy oz)

or

and analogously:

0z or

0& 6( (6P aRj
0z O0X

ox oy X ay

6_/7651 aQaPr
or{ox oy

We will then know the components of the rotatibalapoints of the sphere.
Now observe that the first of equations (45) cambitten:
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Z(Xg'* yﬁ 65j+ y{a—”—%j— {65 6( =P,
0x dy 0z ox 0y dz 0

and one will get the other ones in an analogous manteone takes the preceding
formulas into account then:

2% -pi; ) (G—P a—Rjdr ¥ s AL P (46)
or 0z O0X orl dx o0y

One finds the functionB, Q, R, which have been determined already, in the right-
hand side of these equations. Therefore, if one setadlt the functiond, 77, { must
vanish forr = 0 then one will easily obtain their values afalints of the sphere.

Equation (46) and the analogous ones can be transformbedfare, by setting:

X z
—=cosaq, X = Ccosp, —=cosy
r r

for any point of the sphere and observing that the angle$ y will remain constant
along the same radius. If one divides byt#&n one will have:

9. P 1paffor oR 0Q_0P
{(az I jcosy (ax ayj cosG}dr

We now go back to letting /r, y/r, z/r denote the cosines of the angtess, y,
and set:

OR 0Q_ 0P O0R_ 0Q 0P _

— - Hl ) - — H2 ) — — 3,

dy o0z 0z 0X 0x 6y

in addition.
One has:

of P 1
—=—+= H, - yH,) dr,
or 2r 2 (Z yH,)

If one recalls that the displacement of the ceatéhe sphere is assumed to be zero then
when one integrates, one will finally get the formulas

P.1 ]
&= j[Zr =) (H YHy) dr | dr,

:j[ jo—(xH - zH) dr dr,
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Co[R 141
7= J'O[EJFE o7z (YHL = xH,) dr} dr,

and with that, the problem is solved.
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