“Sur une forme générale des équations de la dynamiquejhd.angew. Math. 121 (1900), 310-319.

On a general form of the equations of dynamics
(By Paul Appell at St. Germain-en-Laye)

Translated by D. H. Delphenich

1.

ThelLagrange equations are not applicable when certain constraintsxaressed by
non-integrable differential relations or when oneadtrces parameters that are coupled
with the coordinate non-integrable differential relasio That difficulty has been the
subject of various studies, and one will find a detaileddgbdphy in an article that | just
published in the collectioiscientia(Carré and Naud, editors) that was entitled “Les
mouvements de roulement en dynamique.”

We propose to indicate a general form for the equaifomotion here that is not
subject to the exceptions that we just stated. In doderite the equations in that new
form, it will suffice to calculate the function:

S=1> mJ,

in which m denotes the mass of any of the points of the systewhJ denotes that
absolute acceleration of that point: One sees that timstibn S is composed of the
accelerations in the same way that one-halvib@ivais composed of the velocities.

We have indicated the principle of the method thdoved here in a note that was
published in the Comptes Rendus des Séances de I'Acadéntieidases de Paris on 7
August 1899.

2.

Imagine a system that is subject to constraints shethin order to obtain the most
general virtual displacement that is compatible withdtestraints at the instantit will
suffice to subject tha parameters, gz, ..., 0, to arbitrary variationgq, , &z, ..., .

If we then call the coordinates of any of the poiritthe system with respect to the fixed
axesx, v, z then the virtual displacement of that point will hgrejections onto those
axes that are:

O0X=80q+a0q+-+39gq,

1) oy=hoq+hog+--+Qhdq,
32=GAq+ GIg+-+ (I g,
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in which &, a2, ..., A, are arbitrary. In those formulas, the coefficiemtsay, ..., C,
can depend upon tintethe parameters; , 02, ..., g, andsome other parameters.g,
On+2, ---, On+p Whose variations are coupled with those ofdheq,, ..., . by relations of
the form:

5qn+1 = 0’15q1+0'25q2+-'-+0'n 5q1’

5qn+2 :ﬁ15%+ﬁ25q2+'“+ﬁn 5q1’

5qn+p :A15q1+A25q2+"'+An 5q1’

(2)

in which the coefficientsr, , a», ..., A, likewise depend upoinand the set of parameters
Ji, 02, -y Ons One1, One2, ..., Onep . Under those conditions, the real displacemersat of
system during the timét will be defined by relations of the form:

dx=4q dq+ g dg+---+ g dg+ ad
3 dy=h dg+ b dg+---+ p dg+ bdt
dz=¢ dg+ ¢ dg+---+ ¢ dgt+ cdt
with
dq,, =a,dq+a,dg+---+a, dq+a dt
dq1+2::81dq+:82 d02+"'+:8n dq+,8 dt

dg,., = A dq+4, dg+--+4, dg+y dt

(4)

in which the coefficients, b, ¢, a, 5, ..., A can depend updna, tp, ..., On+p -
One can then obtain the equations of motion as fatlow

The general equation of dynamics, which is deduced fitxtembert’s principle
and the principle of virtual work, is:

(5) DM K+y' H+Z @)=Y XK+YH+ZA@),

in whichx", y", ' are the second derivatives of the coordinates with ce$peaime, and
X, Y, Z are the projections of any of the forces.

That equation can be true for all displacements (1f) aha compatible with the
constraints: They will then decompose into the follmyn equations:

dYm(Xa+yh+ 29=>( Xat Yb Z)
dYm(Xa+yh+ 2= ( Xa+t Ypr ZJ

dm(Xa+yh+ 2= (Xat Yb Zp

(6)
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The right-hand sides of those equations are calculaethey are for thd.agrange
equations. Upon replacing, oy, oz with their values (1), one will have:

DX K+YY+Z @) =Qudp+Q Ao + ... +Qn Ay

for the sum of the virtual works done by applied forcEse quantitie®), Q, ..., Q, are
the right-hand sides of equations (6):

Q=Y (Xa+Yh+Za)

In order to calculate the left-hand sides, divide thatioms (3) that define the real
, dy

displacement byt and letx, y’, Z, g, @,, ..., g, denote the total derivativegf[—(, at

d—Z d—ql d_qz d—q“ We have:

dt’ dt’ dt’ 7 dt
X=aq+ag+-+qq+e
y=bq+bd+--+Rhq+k
Z=G Gt G g+
in which the unwritten terms do not contaij, o, ..., q,. However, one will then
obviously have:
al:al", bl:al", Cl:a_z,
oy oy oq;
azzai bzzﬂ, CZ:a_Z
q q

The equations of motion are then written:

X, oX L, ox
m| X +y o+ 22 |=Q
2 ( oY oq ad;} 2

, 0X ox’ oX
Fo

(8)
Zm[xaq;”acr;”adé ’

Now consider the function:

S=1Y m(X?+ Y2+ 29)=13 m
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in whichJ is the absolute acceleration of the pamt The equations of motion (8) take
the form:
0S 0S 0S

9 9S_n, 9S_q, . 9S_qo
®) o O ag X aq O

One sees that in order to write them out, it will ®&fto calculate just the functidand

to express it in such a manner that it no longer congaigther second derivatives than
those of the parametegs, Oy, ..., On, Whose variations are regarded as arbitrary. It can
happen that when this functi@is calculated as a function of the qy, ..., Qnsp, it will
contain their first derivativesy , @, ..., d,,, and the second derivativeg, @, ...,

d..,- When the relations (4) are divided 8 that will give q,,, Q..,, ---, d,., as
linear functions ofg;, o, ..., g,, and when one differentiates them with respect te,tim

n

one will likewise obtaing,,;, Q.,, ---, Oy, as linear functions ofy, ¢;, ..., g;. One

can always do that in such a way that the func8omill no longer contain any other
second derivatives than tlg, q;, ..., g . Furthermore, it will contain those quantities
in the second degree. Once the functamas been prepared in that way, one can write
out equations (9). Those equations, when combined witltcahditions (4), form a
system oh + p equations that defing, qp, ..., 0, as functions of time.

3.

For example, take a solid body that moves around a praut O and calculate the
function S by referring the motion to a system of ak®s, y, z that move along with the
body in space. Le®R denote the instantaneous rotation of the trihed@ryzand letP,
Q, R be its components along the axes. t&udie the rotation of the body, and fetq, r
be its components. A molecufe of the body with coordinates y, z possesses an
absolute velocity whose projections are:

V=0 Z-TY,

That molecule possesses an absolute acceledatbose projections are:
_d

which would result from the fact thak is the absolute velocity of the point whose
coordinates arex, v, V.. Now, upon calling the derivatives pfq, r with respect to
timep’, g’ r’ one will have:

dv, = qd—z—rﬂ/+z q-yr,
dt dt  dt C
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in which dx dy d—Z which are projections of the relative velocity oé timolecule with

dt’dt’ dt
respect to the axd3, x, y, z are:

(11) %:qz—ry—(Qz—Ry...

Indeed, the relative velocity is the geometric défeze between the absolute velocity and
the velocity of the frame. From that, one will hakie following expression fal, which
we arrange with respect 1oy, z:

(12) Je==x(@+r)+y[q-P +pQ-r]+z[r (p—P +pR+q’].
One getly andJ, similarly, and finally:
25=>Y m(E+ %+ 5.

In order to simplify this, we write out that sum by suppgdhat the axe®, x, y, z are
the principal axes of inertia at the po@iand calling the moments of inertia with respect
to those axed, B, C. Upon confining ourselves to the term$ing’, r, we will have:

(13) 2S= Ap’+ B+ CF+2[(C- B qr ArQ qR p
+2[(A-C)rp+B(pR-rB] g+2[( B- A pe¢ € qP pQP "#--

Euler equations: Take the moving axes to be three axes thainaeeiably linkedto
the body and coincide with the three principal axes@ftia. We will then have:

P=p Q=gq, R=r,
2S=Ap*+Bd*+Cr’+2C-Bqrp+2@A-Qrpd+2@-Apqr+...

Call the sums of the moments of the applied forciéls respect to the axds M, N,
and let:
oA, o, ov

be the elementary angles through which the body mustatreund the axes in order to go

from one position to an infinitely-close one. We simadlkeA, u, v play the role of the
parametersy, ¢, ..., g, . One has, on the one hand:

D (XOX+YOy+ ZO =L A+M qu+Ndv,

and on the other hand, the compongmtg, r of the instantaneous rotation of the body
are:
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The functionSis then:
S= %(M”Z_l_Bﬂ”Z_l_CV”Z) + (C— 3#IV,A”+ (A_ Q V,A,ﬂ”+ (B_A)A/ﬂlvﬂ_l_ s
in which the unwritten terms do not contdify 1", v”. The equations of motion are then:

oS _ oS _\, S

ot

For example, the first of them is written:
AA//+ (C_ 3ﬂ//V//:L .

From the values g, q, r, that is precisely one &uler’s equations.

5.

Body of revolution suspended by a poinO on its axis.— Draw a fixed axiOa
through O and take the axi®©z to be the axis of revolution, the ax@y to be the
perpendicular to the plar®Oz and the axi©x to be the perpendicular to the plar@z
When the position of the trihedrddxyzis known, in order to get the position of the
body, it will suffice to know the anglg that Oy makes with a ray that issues fr@mand
is invariably coupled with the body in thkg-plane. The derivative’ of that angle with
respect to time represents the proper rotation of thg bomlindOz The rotationw of
the body is then the resultant of the rotat@mf the trihedron and the rotatighi. One
will then have:

p=P, g=Q, r=R+¢-
SinceA = B, the functionSthat is defined by the expression (13) will then become:
(14) B=AP*+q)+Cr*+2AR-C)(pa'—qp) + ..
Once more, led), du, ov be the elementary angles through which one must herbady

around the axe®x, Oy, Ozin order to take it from one position to a neighbong, and
let L, M, N be the moments of the forces with respect to tlkes,as0 one will have:

p:A"’ q :l[', r - l/"

as above, and the equations of motion will be:
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E: |_’ E: M, E:
aA" aﬂ" aV"

I.e., since the componeRtof the rotatio2 does not depend upadh, u” v”:

Ap'-(AR-Cjq =L,
Ag+(AR-C)hp =M,
Cr’ =N.

6.

Hoop. — In order to calculate the functi@relative to an arbitrary system, one can
employ a theorem that is analogous to on&bgnig for the calculation o¥is viva For
example, take a hoop or a homogeneous disc of neglitpicleness that is subject to roll
in a horizontal plane. Call the radius of the haaggnd call its centeG. Let Ga be the
ascending vertical that is drawn throughand letGz be the normal to the plane of the
hoop; i.e., the axis of revolution of the body. WeQedenote the angle G z

As in the preceding example, take the &isto be the perpendicular to the plane
aGz and theGx to be the perpendicular to the play@@z In that wayGy is a horizontal
in the plane of the hoop, afiék is the line of greatest slope in that plane that sfewim
the pointH where the hoop touches the fixed plane.

Take the mass of the hoop to be unity. Jetlenote the acceleration of the pat
and letJ denote the relative acceleration of a pamon the hoop with respect to some
axes with fixed directions that pass through Upon applying a theorem and is
analogous t&oenig's theorem, one will have:

DI mP=132+1> mP,

which is a formula that we write:

S=1J32+S.

N

The relative motion of the hoop around the pdits the motion of a body of
revolution that is suspended by a point on its axis. Umpmiysg the notations of the
preceding number to that motion, from (14), one will have:

2S'=A(P?+q)+Cr*’+2AR-C) (pa'—qp) + ...

It then remains to calculat&>. In order to do that, lat, v, w denote the projections of

the absolute velocity of the poi@tonto the axe&x, Gy, Gz In order to express the idea
that the hoop rolls, on must write out that the makgmoint on the hoop that is found to
be in contact with the base has a zero velocithatpbintH. Since the velocity of that
point is the resultant of its relative velocity ardua and the velocity of the frame &,
one will then have:
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(15) u=0, v+ra=0, w-qa=0.

The coordinates of the poikt with respect to the axé€axyzare indeed, 0, O.
Since the instantaneous rotation of the trihedbagizis Q, the absolute acceleration
of the pointG will have the following projections onto the ax@s Gy, Gz:

du
—+Qw-R
g QW RY
dv
—+Ru-P
at W
dw
—+Pv-0Qu;
dt Q

i.e., form (15):
q(@Qg+Rr, -—-ar’'—aPq aq’—aPr

and upon forming the sum of the squares and remarking that Q =g, one will have:
J2=a(@?+r)+2ppr-rq)+...,

in which the terms that do not contg@ifiq’, r“are not written out. Finally, one will then
have:

2S=Ap?+A+a)q i+ (C+a)r?+2@AR-C) (pg’'—qp) + 22°p(qr'—rq) + ...

Once more, let:
oA, o, ov

denote the infinitely-small angles through which one nuist the hoop around the axes
Gx, Gy, Gz resp., in order to move it from one position to amitdly-close one. Those

guantities are arbitrary and determined completely by s$@atiement of the hoop. We
takeA, y, vto be the parametegs, ¢, ..., gr, and we will once more have:

pI:A", qI:ul, rI: V,,.

We can then write the left-hand sides of the equstmihnmotion such as (9). It
remains for us to calculate the right-hand sides. rdieroto do that, one can calculate the
sum of the works done by the applied forces:

S (X Ox+ YO y+ 25 3

and put it into the form:
Li N +M15/J+N15V.

L1, Mz, N1 will be the right-hand sides of the equations. Thpsantities have a simple
meaning: Draw three axéb, Hxe, Hxs through the point of contakt with the base that
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are parallel to the axdsx, Gy, Gz resp. L;, M1, N; will be the sums of the moments of
the applied forces with respect to those new axes, ciagply. Indeed, the velocity of
the molecule that is placed Htis zero for a displacement that is compatible wité t
constraints, so the infinitely-small displacementhe hoop is the resultant displacement
of the three elementary rotatiodd, Jdu, Jv around the axeblx; , Hx; , Hxs, resp.,
without displacingH. That proves the proposition.

If the only applied force is the weigbtapplied toG then one will obviously have:

L]_:O, leol

M; =-g acoso.
The equations of motion are then:

EzO, a—S,,:—gacosG), —=0;
04" ou

i.e., from the value 0%:
Ap’-(AR-Cjhq=0,

(A+a®)q’+(AR-Cjp-a’pr=-gacoso,
(C+ad)r’+a’pq=0.

Korteweg and myself have pointed out (almost at the same) tiheg integrating
those equations comes down to integra@ayisss hypergeometric equation that follows
from one quadrature. (See an article in the RendiadeitiCircolo Matematico di
Palermo, which is followed by a letter Kprteweg, in the first fascicle of 1900.)

7.

In the preceding, we have deduced equations (9) &&tembert’s principle, along
with the principle of virtual work. One can also attdicto Gausss principle of least
constraint (Crelle’s Journal, t. 1V). Furthermorgings could not be otherwise, since, as
Gauss pointed out, all principles of equilibrium and motidrat are equivalent to the
principle of virtual velocities and’Alembert’s principle must necessarily be equivalent
to each other.

If one forms the function:

R=S- (qull*'Qz dé+"'+ Q q)’

which contains the symbol$” in degree two, then one will see that the equations of
motion (9) can be written:
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(16) R_o, Rog .., R
g g, 0q,

Those are the equations that one has to write dowrdier to find the values of, o,
..., g, that makeR aminimum Conversely, the values gf that one infers from those

equations will makeR a minimum, because the termsRnthat are homogeneous of
degree two will come fror® and constitute a positive-definite quadratic form. Sthee
values ofg” determine the acceleration, one can interpret tisafltrey saying thathe
values of the acceleration at each instant will make R a minimum.

One can replace the functiéhin that statement with any other function that differs
from it only by terms that are independent of the acagéns; for example, by the
following two functions:

I mX2+ Y2+ 2= (X &+ Y+ 277,

ST (MR =7+ (Y= Yo o( miz P,

The fact that the accelerations make the lattertimmca minimum is an immediate
consequence of th&ausss principle of least constraint, a. Mayer showed in an
interesting article that was entitled “Ueber die Aellsing der Differentialgleichungen
der Bewegung fur reibungslose Punktsysteme, die Bedingengsghgen unterworfen
sind,” and “Zur Regulierung der Stdsse in reibungslosenkiBystemen, die dem
Zwange von Bedingungsgleichungen unterliegen.” Printedthe Berichten der
mathematisch-physikalischen Klasse der Konigl. Sachs.ll€dsst der Wissenschaft zu
Leipzig. Session in 2 July 1899. That statemei@andisss principle that | gave, for my
own part, followingMayer, in the Comptes Rendus in 11 September 1899, is already
found in volume 11l of the works dfiertz, page 224 (Leipzig, 1894).




