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On a general form of the equations of dynamics
and Gauss'’s principle

(By P. Appell at St. Germain-en-Laye)

Translated by D. H. Delphenich

We published a paper “Sur une forme générales des équatidasiglamique” on
pp. 310 in v. 121 of this journal. We now ask permission toeptés/o complementary
remarks in regard to that subject abGaiusss principle of least constraint, one of which
is of a mathematical order, while the other is of didmjpaphic order.

1.

The Lagrange equations are applicable when the constraints on amsystthout
friction can be expressed in finite terms, and when ondogs parameters that are true
coordinates. Suppose, to simplify, that there existreeffunctionU. One can then
write the equations of motion once one knows the egmedor one-half theis viva T
andU as functions of the independent parameters.

On the contrary, if the constraints cannot all be esggd by relations in finite terms
then one can no longer applggrange’'s equations. In order to write out the equations

of motion, it suffices to know and the functiors= %ZmJZ , which is composed from

the accelerations in the same way tlhas composed from the velocities. But is that
necessary?

Might there not exist equations of motion that areenggneral thahagrange’s that
are applicable to all cases and require only that ars¢ kmow the two function andU
in order to write them down? We shall show that suchte@nsado not exist. In order to
do that, we shall indicate two different systems inclhihe functionsT and U are
identically the same, although the equations of motiemat the same.

First system: Imagine a ponderous solid that fulfills the following daions:
1. The solid is bounded by a sharp edge that has the famileK of radiusa.

2. The center of gravit$ of the body is situated at the center of the cikcle
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3. The ellipsoid of inertia that relates to the cemtegravity G is an ellipsoid of
revolution around the perpendicufazto the plane of the circle.

Now suppose that the solid body, thus-constructed, isscubp rolling without
slipping on a fixed horizontal plane and that it touchescircular edg&.

Let Ga be the ascending vertical that is drawn throGghake theGy axis to be the
perpendicular to the plan®sz and theGx to be the perpendicular to the plariez Gy
is then a horizontal to the plane of the cif€leandGx is a line of greatest slope to that
plane that ends at the point where the circle touthedixed plane. Le® denote the
angle betweez and the ascending vertidakr , and lety be the angle betweésy and
a fixed horizontal. Those two angles determine tlentation of the trihedro®xyz In
order for fix the position of the solid body with respéxtthe trihedronGayz it will
suffice to know the anglé that a radius of the circl€, which invariable coupled with
the body, makes with the axiy. The instantaneous rotati@nof the body is then the
resultant of the rotation of the trihedron and a rotatg /dt = ¢’ aroundGz The
component®, g, r of ware then:

p=-¢’sin®, q=0, r=y’ cos@+ ¢’

On the other hand, the condition that the ciKles rolling shows that the square of the
velocity of the center of gravitg will be a? (q° + r?). By definition, if one takes the
mass of the body to be unity and I18&tandC denote the moments of inertia ab@xand
Gy, respectively, then one will have:

2T=a? (P +r) +A(P°+q) +Cr?
S0, one has:
Q) { 2T = AY'%sinf @+ (A+ &) 2+ (C+ &) coD+¢' ¥

U =-gasin®
for the defining expression for the functiohandU.

Second systemlet a second ponderable body have the same formathe sdius
a, and the same mass as before. Imagine that théudligin of the mass is different, in
such a way that if one lefs andC; denote the moments of inertia that are analogous to
A andC, resp., then one will have:

A=A C,=C+a>

Subject the body to the following two constraints: Hoely touches a fixed horizontal
planeP; on which it slides without friction at the circuladgeK. The center of gravity
G of the body slides without friction on a fixed verticecumference whose radiusas
and whose centéD is in the fixed plan®; .

In order to express those constraints, we take thee saoving axe$sxyzand the
same notations as above. kgty;, zz denote the absolute coordinates of the pGimtith
respect to the two ax€¥x; andOy; in the planeP; and an ascending vertic@lz . One
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can suppose that the fixed vertical circumference thdessribed byG is in the plane
x10z . One will then have:

First constraint: z =asinO,

Second one: =0, X+ y’=a’
SO one obviously has:

X1 = a cosO.
Under those conditions, one has:

2Ti= X2+ Y2+ 22 + AL (p* + ) +Cy 17,

or, from the values o1, y1, z1, A1, andC; :
@) 2T, = AP’ sif O+ (A+ &)O' %+ (C+ &)@ coD+¢' ¥
U, =-gasinO.

One sees that the functioisand T;, U and U; are identical. Meanwhile, the
equations of motion are different, sirlcagrange’s equations apply to the second system
and not to the first. That is what we would like towho

One can point out that of the three equations of mptiwo of them can be put into
the same form in the two systems. Indeed, the intedrdne vis vivais obviously the
same for both of them. Moreover, 8&sserhas already shown in an article in the
Quarterly Journal of Mathematics (1873), one has the tagtvrite down thd_agrange
equation that relates ® for the first system, which one can obviously do fa $kcond
one. However, the third equations are different fer tlvo motions: For the second
system, one has the integrat ro , which does not exist for the first one.

It is obvious that the difference between the two nmstiwill appear immediately
when one forms the two functioi®sandS, by applying the formulas in our preceding
paper. (See also Journal de Mathématiques pures et appficgidascicle, 1900.)

2.

Bibliographic notes. At the end of the preceding paper, we gave some verk quic
and very incomplete indications in regard to the aritstatement ofGausss
principle. A. Mayer of Leipzig has been most helpful in providing the follogyi
historical and bibliographic information: The analytichdtement ofsausss principle
was indicated already bJacobi in a lecture that is no longer in print. It was give
independently odacobi, by Scheffler (Volume 11l of Schlomilch’s Zeitschrift, pp. 197).
It was found to be reproduced Mach (Die Mechanik in ihrer Entstehung historisch-
kritisch dargestellt Laipzig, 1883), inHertz, which we have cited, and Boltzmann
(Vorlesungen Uber die Principe der Mechanlleipzig, 1897). FinallyJ. Willard
Gibbs, in a beautiful paper “On the fundamental formulae of Dyica” (American
Journal of Mathematics, vol. Il, 1879), gave the analyStalement oGausss principle
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and some applications to various problems, and notablyetquéstion of the rotation of
solid bodies.




