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 We published a paper “Sur une forme générales des équations de la dynamique” on 
pp. 310 in v. 121 of this journal.  We now ask permission to present two complementary 
remarks in regard to that subject about Gauss’s principle of least constraint, one of which 
is of a mathematical order, while the other is of a bibliographic order. 
 
 

1. 
 

 The Lagrange equations are applicable when the constraints on a system without 
friction can be expressed in finite terms, and when one employs parameters that are true 
coordinates.  Suppose, to simplify, that there exists a force function U.  One can then 
write the equations of motion once one knows the expression for one-half the vis viva T 
and U as functions of the independent parameters. 
 On the contrary, if the constraints cannot all be expressed by relations in finite terms 
then one can no longer apply Lagrange’s equations.  In order to write out the equations 
of motion, it suffices to know U and the function S = 21

2 m J∑ , which is composed from 

the accelerations in the same way that T is composed from the velocities.  But is that 
necessary? 
 Might there not exist equations of motion that are more general than Lagrange’s that 
are applicable to all cases and require only that one must know the two functions T and U 
in order to write them down?  We shall show that such equations do not exist.  In order to 
do that, we shall indicate two different systems in which the functions T and U are 
identically the same, although the equations of motion are not the same. 
 
 First system: Imagine a ponderous solid that fulfills the following conditions: 
 
 1. The solid is bounded by a sharp edge that has the form of a circle K of radius a. 
 
 2. The center of gravity G of the body is situated at the center of the circle K. 
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 3. The ellipsoid of inertia that relates to the center of gravity G is an ellipsoid of 
revolution around the perpendicular Gz to the plane of the circle. 
 
 Now suppose that the solid body, thus-constructed, is subject to rolling without 
slipping on a fixed horizontal plane and that it touches the circular edge K. 
 Let Gα be the ascending vertical that is drawn through G, take the Gy axis to be the 
perpendicular to the plane αGz, and the Gx to be the perpendicular to the plane yGz.  Gy 
is then a horizontal to the plane of the circle K, and Gx is a line of greatest slope to that 
plane that ends at the point where the circle touches the fixed plane.  Let Θ denote the 
angle between Gz and the ascending vertical Gα , and let ψ be the angle between Gy and 
a fixed horizontal.  Those two angles determine the orientation of the trihedron Gxyz.  In 
order for fix the position of the solid body with respect to the trihedron Gayz, it will 
suffice to know the angle ϕ that a radius of the circle K, which invariable coupled with 
the body, makes with the axis Gy.  The instantaneous rotation ω of the body is then the 
resultant of the rotation of the trihedron and a rotation dϕ /dt = ϕ′ around Gz.  The 
components p, q, r of ω are then: 
 

p = − ψ′ sin Θ,  q = Θ′,  r = ψ′ cos Θ + ϕ′. 
 

On the other hand, the condition that the circle K is rolling shows that the square of the 
velocity of the center of gravity G will be a2 (q2 + r2).  By definition, if one takes the 
mass of the body to be unity and lets A and C denote the moments of inertia about Gx and 
Gy, respectively, then one will have: 
 

2T = a2 (q2 + r2) + A (p2 + q2) + C r 2, 
so, one has: 

(1)  
2 2 2 2 2 22 sin ( ) ( )( cos )

sin

T A A a C a

U ga

ψ ψ ϕ′ ′ ′ ′ = Θ + + Θ + + Θ +


= − Θ
 

 
for the defining expression for the functions T and U. 
 
 Second system: Let a second ponderable body have the same form, the same radius 
a, and the same mass as before.  Imagine that the distribution of the mass is different, in 
such a way that if one lets A1 and C1 denote the moments of inertia that are analogous to 
A and C, resp., then one will have: 
 

A1 = A,   C1 = C + a2. 
 

Subject the body to the following two constraints: The body touches a fixed horizontal 
plane P1 on which it slides without friction at the circular edge K.  The center of gravity 
G of the body slides without friction on a fixed vertical circumference whose radius is a 
and whose center O is in the fixed plane P1 . 
 In order to express those constraints, we take the same moving axes Gxyz and the 
same notations as above.  Let x1, y1, z1 denote the absolute coordinates of the point G with 
respect to the two axes Ox1 and Oy1 in the plane P1 and an ascending vertical Oz1 .  One 
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can suppose that the fixed vertical circumference that is described by G is in the plane 
x1Oz1 .  One will then have: 
 
 First constraint: z1 = a sin Θ, 
 
 Second one: y1 = 0, 2 2

1 1x y+ = a2, 

so one obviously has: 
x1 = a cos Θ. 

 Under those conditions, one has: 
 

2T1 = 2 2 2
1 1 1x y z′ ′ ′+ +  + A1 (p

2 + q2) + C1 r 
2, 

 
or, from the values of x1 , y1 , z1 , A1 , and C1 : 
 

(2)   
2 2 2 2 2 2

1

1

2 sin ( ) ( )( cos ) ,

sin .

T A A a C a

U ga

ψ ψ ϕ′ ′ ′ ′ = Θ + + Θ + + Θ +
 = − Θ

 

 
 One sees that the functions T and T1, U and U1 are identical.  Meanwhile, the 
equations of motion are different, since Lagrange’s equations apply to the second system 
and not to the first.  That is what we would like to show. 
 One can point out that of the three equations of motion, two of them can be put into 
the same form in the two systems.  Indeed, the integral of the vis viva is obviously the 
same for both of them.  Moreover, as Slesser has already shown in an article in the 
Quarterly Journal of Mathematics (1873), one has the right to write down the Lagrange 
equation that relates to Θ for the first system, which one can obviously do for the second 
one.  However, the third equations are different for the two motions: For the second 
system, one has the integral r = r0 , which does not exist for the first one. 
 It is obvious that the difference between the two motions will appear immediately 
when one forms the two functions S and S1 by applying the formulas in our preceding 
paper. (See also Journal de Mathématiques pures et appliqués, first fascicle, 1900.) 
 
 

2. 
 

 Bibliographic notes. At the end of the preceding paper, we gave some very quick 
and very incomplete indications in regard to the analytical statement of Gauss’s 
principle.  A. Mayer of Leipzig has been most helpful in providing the following 
historical and bibliographic information: The analytical statement of Gauss’s principle 
was indicated already by Jacobi in a lecture that is no longer in print.  It was given, 
independently of Jacobi, by Scheffler (Volume III of Schlömilch’s Zeitschrift, pp. 197).  
It was found to be reproduced in Mach (Die Mechanik in ihrer Entstehung historisch-
kritisch dargestellt, Laipzig, 1883), in Hertz, which we have cited, and in Boltzmann 
(Vorlesungen über die Principe der Mechanik, Leipzig, 1897).  Finally, J. Willard 
Gibbs, in a beautiful paper “On the fundamental formulae of Dynamics” (American 
Journal of Mathematics, vol. II, 1879), gave the analytical statement of Gauss’s principle 
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and some applications to various problems, and notably to the question of the rotation of 
solid bodies. 
 

____________ 
 


