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INTRODUCTION

Here, one must take the wadginamicsin its old sense, namely, the sense of Galilei,
Newton, Lagrange, d’Alembert, Carnot, Lavoisier, and Maye
As H. Poincaré said in his botk valeur de la Sciendgp. 231):

“Perhaps we must all construct a new mechanics thatameonly
glimpse in which inertia increases with velocity so Wedocity of light
will become an impassable obstacle. The simpler ardimechanics will
remain a first approximation, since it will be true fefocities that are not
very large, in such a way that we will again recoverdhl dynamics from
the new one. We should not regret that we beliemetthase principles,
and since very large velocities will never be anythingdxaeptions to the
old formulas, we can even be most certain in prathiaewe can continue
to work as if we still believed them. They are usehugh that they will
still have their place. To wish to exclude them ctatgly would be to
deprive ourselves of a valuable weapon. In conclusibasten to say that
we have not reached that point and that nothing suggests/¢hwill not
leave it victorious and intact.”

The equations that we have in mind then refer to @iesidal mechanics of today. As
we will see, they apply regardless of the nature ef dbnstraints, provided that the
constraints are realized in such a fashion that thergeequation of dynamics is exact.

One will see that in order to obtain those equations, will be obliged to calculate

the energy of acceleration of the syst&m %ZmJZ; l.e., to go to the second order of

derivation with respect to time. If one would liketéde the first order of derivation, like
Lagrange, then one would be led to some very compticatpiations that generalize
those of LagrangeS[7], and that one can call the Euler-Lagrange equatidhst method
was first studied by Volterra in 18983¢] and [39]). One can also consult the papers of
Tzenoff 46] and Hamel 47]. We shall give some applications of it to some gaastof
rational mechanics. However, we hope that those @msattan also be useful to
physicists in the cases where the Lagrange equation andtétds canonical equations,
which are deduced from them, are no longer applicable.

For H. Poincaré: “The mathematician must not be lyirapprovider of formulas to
the physicist. There must be a closer collaboratitwden them.”

Along those lines, it is important to recall that Eddu@uillaume in Bern has applied
the general equations that we shall develop to variousigatyheories ¢3] and 24]).

| agree with Mach (Paris, Librarie Hermann, 1904, traioslaby Emile Betrand, with
a preface by Emile Picard) when he said (pp. 465) that théseno purely-mechanical
phenomena and that all phenomena belong to all brantbégcs:

“The opinion that puts mechanics at the fundamentas tbassall other
branches of physics today, and according to which pHygleenomena
must have anechanicakxplanation is, to me, a prejudice.”
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However, one must seek to explain the most possiblesigdly phenomena
mechanically and then, as one has done up to now, abandon thasenpdea in order to
return to rational mechanics, and in that regard, tgémeral form that one gives to the
equations that embraces more cases than the formistiéiie to Lagrange, which
supposes that the constraints can be expressed in émis;ti.e., in Hertz’'s terminology,
that the constraints considered drelonomic Now, one knows nothing about the
constraints that are realized in the universe. H. Rodnsaid: “It is a machine that is
more complicated than all of those of industry, and atnadl of its parts are hidden
deeply from us.” From the English mathematician Latnitois the principle ofleast
action that seems to have persisted for the longest time.th®mrontrary, the general
form that | shall present is attached to Gauss’s pima@pleast constrain([1], [2], [3],
[4], [5], [45]), which Mach discussed on pages 3dB8seq, in the cited work. Notably,
he said:

“The examples that we just treated show that thisrdrma does not
represent an essentially-new conceptThe equations of motion will be
the same (as they are from a direct applicatiorhefgeneral equation of
dynamics that results from the combination of d’Alentlsgsrinciple with
the equation of virtual work), as one will see, morepwgrtreating the
same problems by d’Alembert’s theorem and then by th@toks.”

| think that the value of Gauss’s principle is found iegiely that identity.
Mach'’s opinion is, moreover, that of Gauss himselfijowsaid in presenting his
theorem in volume 1V of Crelle’s Journal:

“As one knows, the principle of virtual velocitiesrisfiorms any problem
in statics into a question of pure mathematics, and dysarsj in turn,
reduced to statics by d’Alembert’s principle. It resdittam this that no
fundamental principle of equilibrium and motion can beseesally
distinct from the ones that we just cited, and thatthat as it may, one
can always regard that principle as a more or lesseoliate consequence
of the former ones.

One must not conclude from this that any new theoréhb&without
merit. On the contrary, it will always be inteiiagt and instructive to
study the laws of nature from a new viewpoint that mighn allow us to
treat this or that particular question more simply oly a@btain a much
greater precision to the statements.

The great geometer, whose has so brilliantly madestience of
motion rest upon the principle of virtual velocitiesd diot despair to
perfect and generalize Maupertuis’s principle, which relai® least
action, and one knows that this principle is often employedjdymeters
in a very advantageous manner.”

The great geometer that Gauss spoke of is Lagrange. willirfend the works of
Lagrangeon the principle of least actioan page 281 of the first volume of the third
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edition of Mécanique analytiquewhich was edited, corrected, and annotated by J.
Bertrand (Mallet-Bachelier, 1853).

Among the applications of the general equations, | miisttbe ones that Henri
Beghin just made to the Anschitz and Sperry gyrostatic cesnpaa thesis that he
presented to the science faculty in Pa2B jn November 1922.

I. — NATURE OF THE CONSTRAINTS.

1. Essentially holonomic or essentially non-holonomic system@rder of a non-
holonomic system.— Imagine a material system with degrees of freedom that is
composed oh points with masses), (¢ = 1, 2, ...,n) that have rectangular coordinates
Xy, Yu, Zy In @n oriented trinedron of axes, and are animated avitiiotion of uniform,
rectilinear translations with respect to axes that @nsidered to be fixed in classical
mechanics. The displacements, velocities, and actielesathat we consider are
displacements, velocities, and accelerations wipeet to that trihedron.

In order to obtain the most general displacemente§yistem that is compatible with
the constraints that exist at the instanit will suffice to varyk conveniently-chosen
parametersj;, o, ..., gk by arbitrary infinitely-small quantitieggs, &, ..., dk. One
will then have that the virtual displacement of thexpo, is:

ox,=a, 0G+8g,,0q+ +3a,0q,
(1) oy, =b,,0q+h,,0g+ -+ hH,dq,
52# = cﬂ115q+ 9,2502+~-+ 9k5 q,

and for the actual displacement of the same painhd the time intervadit, one has:

dx,=a,, dq+ g, dg+--+ g, dg+ a d
(2) dy,=b,dq+ b, dg+--+ b, dg+ p d
dz, =g, dq+ ¢, dg+---+ ¢ dg+ ¢ d

In those equations, the coefficieats, , b, v, Cyv, 8y, by, c, (W=1,2, ...n;v=1,

2, ...,K) are arbitrary. They depend upon only the pasitbthe system at the instant
and timet. The nature of the coefficients plays no roléhiem general case.

In Hertz’'s terminology, a system is calladlonomicwhen the constraints that are
imposed upon it are expressed by relations witkefirerms between the coordinates that
determine the positions of the various bodies ithatcomposed of. One can choage
02, ---,» Ok to be variables whose numerical values at thamstetermine the position of
the system. The quantitigg b, ..., gcare then the coordinates of the holonomic system
whose position is determined by the figurative pewhose rectangular coordinateskin
dimensional space amg, o, ..., 0k. The coordinates, , Yy, , z, are functions of the,,

02, ..., Ok and timet that are expressible in finite terms, and the trlggnd sides of
equations (2) are total differentials of functimfsa, , b, , ¢, and timet. The equations
of motion will then take the form that was given lbggrange. On the contrary, it can
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happen that the constraints between certain bodiéiseodystem are expressed ripn-
integrabledifferential relations between the coordinates thatpositions of those bodies
depend upon. For example, that is what happens whendairstitie system is bounded
by a surface or line that is subject to rolling withougmhg on a fixed surface or on the
surface of another solid of the system. Indeed, thastcaint is expressed, in the former
case, by writing that the velocity of the materiainbas zeroat the point of contact, and
in the latter, by writing that the velocities of two tedal points are the same at the point
of contact. According to Hertz, one says that théesyss not holonomic in those cases.
Even if one supposes that thg , , b, v, c,, » can be expressed with the aid of only the
variablesq, oy, ..., Ok t, the right-hand sides of formulas (2) are not supposbed &xact
differentials.

In the preceding, we, with Hertz, have considered dmyslystems themselves. In
order to distinguish them we say that they essentially holonomior essentially non-
holonomic One can also define the nature of a system fortaicehoice of parameters.
In that regard, one can define tbeder of a non-holonomic system for a choice of
parameters.There will then be two elements that one must addresnely, the material
system and the choice of parameters. One says #stam is holonomic for a certain
choiceqs, o, ..., Gk if the Lagrange equations apply to all the parameténse says the
order of a non-holonomic system for a certain choicearbmetersy;, ¢, ..., g«to mean
the number of parameters to which the Lagrange equationstdapply B3]. In nos.15
and16, we shall see how that order can be determined whed&fines the energy of the

velocitiesT = %Zm V? and the energy of the accelerati@rs %Zm J*for a system.

From that, a system that ron-holonomic of order zerfor a certain choice of
parameters will b@olonomic

The order can remain the same or change when oneesjlee system of parameters
01, Oz, --., Ok With another one.

Example— Here is an example in which the order passes fron20 fbake a system
that is composed of just one point in #@y plane with coordinates y, 0. It is a system
with two degrees of freedom, so it is essentially hotic. That system will be
holonomic when one chooses the parameters for thedioates of the point in an
arbitrary system. For example, if one takes polar coatdsr, & in the plane then one
will have:

X=rcosf y=rsing z=0,

T:g(x’2+y’2+z'2) :g(r'2+r2 5,2)_

Upon calling the component of the forck, (v, 0) along the perpendicular to the
radius vectoP and its component along the prolongation of the ragdgsorQ, one will
have:

XX+Yoy=Prod+Qoa.

The Lagrange equations apply to the parametarsl 8, but in place o, they take
the areasthat is described by the radius vector as their pammet
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oo = 1r* 96, do=1r*d§,
2
T=M 2,89
2 re

)
2P
XOox+Yoy=2do+ Q@

r

Neither of the two Lagrange equations apply, as onBegsimmediately.

For the new choice of variablesind g, the system is then non-holonomic of order 2.

One sees that the order of a non-holonomic systetafined with respect to a certain
choice of parameters and that when one varies thateshone can vary therder.
However, there nonetheless exist$ essential ordethat is attached to that system,
which is theminimum w of the orders that are obtained by varying the choice of
parameters in an arbitrary way. For example an eaflgitolonomic system is a non-
holonomic system of essential order zero.

2. Examples: Top and hoop-— The two favorite toys of children — viz., the top and
the hoop — provide examples of systems that are edsehti'onomic or essentially non-
holonomic. In order to show that, we first define #ite coordinates of an entirely-free
solid body (which is an essentially-holonomic systerhet Oénd be three rectangular
fixed axes. Call the coordinates of the center of gyaviof the solid body with respect
to those axed, 77, { Let 8 ¢, ¢ be the Euler angles that a system of rectangules axe
Gxyzthat are coupled with the body makes with the axés fixed directionsGx; y1 z1
that are parallel to the fixed axes. Those six cooredngtrn, ¢, 6, ¢, ¢, define the
position of a free solid body. The coordinates ofaabitrary point of the body are
functions of those six coordinates. If one imposesstraints on the solid then,
depending upon the case, that will amount to establislartgin relations in finite terms
between the six coordinates or also establishing certamimegrable first-order
differential relations. The number of degrees ofdoer will then be diminished.

1. Top. Essentially-holonomic system with five degrees of freeddmthe absence
of friction or slipping, the top is a ponderous body ebiation whose axis is terminated
by a pointP that slides on a perfectly-polished fixed pld&he If one takes the axi{Szto
be the axis of revolution (when counted to be positivb@nsense that goes frdrto G),
and one leta denote the distandeG then one will have:

{=acosé

which is a constraint equation in finite terms. The fomsiof the top is then defined by
the five coordinates:

69 y.
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The coordinates of an arbitrary point on the top wéspect to the fixed axes are
expressed as functions of those five coordinates. ®peid then anessentially-
holonomicsystem; that system is holonomic for the choicpasbmeters, 1, 6, @, .

2. Hoop. Non-holonomic system with three degrees of freedom and eseestial
two. — A hoop is a solid body of revolution that is boundbgda circular edg€ that is
subject torolling without slippingon a fixed horizontal planB (one neglects friction
while it rolls). The center of gravit§ of the hoop is supposed to be in the plane of the
edgeC. The axe$xyzthat are coupled to the body here will be the axifi®tircleGz
which is perpendicular to the plane of the edge, and tatangular axe&x andGy that
are situated in the plane of the edge; the radius cddbeC is a.

As one will see iraité de Mécaniquby P. Appell (t. Il, no. 462), one will have:

dé—asing sinddfd+ acog/ co8 d/+ a cag =
dn+acosy silddf+ asiy cof d/+ a sigr @ = (
d{ —acosfddd= 0

for the actual displacement and:

o —asing sindof+acog co8dy +a cagdop =
(8) on+acogy sindof+a siy co8oy +a sigop = |
o —acosfofd =0

for the virtual displacement that is compatible with ¢bestraints.
The last of the preceding relations is equivalent taelation in finite terms:

9 J=asing

which is obvious geometrically. However, neither thet twg relations in (8) nor any
linear combination of the relations (8) in which at leas¢ of the first two appears, can
be integrated and written in a finite form. The systeonsidered will then be non-
holonomic. It haghree degrees of freedo(k = 3), because the most general virtual
displacement that is compatible with the constrastsbiained by giving arbitrary values
to o6, o, oY ; O&, on, o are then determined by the relations (8). It remairseéothat
the system ishiolonomic of order two.Indeed, since the position of the hoop around its
center of gravity is defined by the Euler anghe®, ¢, Ferrer already showed@][that the
Lagrange equation can apply to the inclinatébrbut it does not apply t¢ and¢. The
order of the non-holonomic system will then he= 2.

Il. — REALIZING THE CONSTRAINTS. SUBORDINATION.

3. Realizing constraints.— In the foregoing, the constraints were considerewh o
purely-analytical viewpoint that was independent of theigadar manner by which they
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were realized. (BEGHINZ9], Thesis pp. 8). Can one now abstract the manner by which
a constraint is realized? That question has beeoljeet of numerous studies. Here are
some general considerations that are borrowed from Béigieincit) and Delassus Zp|
and R7]). A constraintL on a systenz can be realized with or without the help of an
auxiliary systen®; . Inthe former case, the realization of the c@mst is calledperfect
in the latter case, the realization of the constraistill calledperfectif the introduction
of the auxiliary systenx; does not imply any restriction on the virtual displacetsef
the systenk, which will all remain compatible with the constrainthen. However, it is
imperfectif the introduction of the systerh; does imply restrictions on the virtual
displacements of the system

DelassusZ7] then gave the following example of timperfectconstraintz = a that is
imposed upon a material point with coordinateg, z Imagine a hoop of radiwsthat
rolls without slipping on the planeOy. Suppose that the plane of the hoop (i.e., the
plane of the circular edd@) is kept vertical by means of a tripod that carriesakis of
the hoop and slides without friction on the horizoptahexOy. The material poing, vy,
Zis attached to the centérof the hoopC. That constitutes the system the hoop with
the tripod and the accessories constitutes the sy&tem The apparatus obviously
realizes the constraimt= a. It permits the material point to occupy all of thessible
positions in the planeg = a. However, if one imposes a virtual displacement len t
system that is compatible with the constraints therditi@acement of the material point
in the plane of the edge of the hoop and not an anpitlieection in the plane=a. The
constraint is then realizechperfectly

If, on the contrary, the material point is attachedhe center of a sphere of radais
that is subject to rolling without slipping on the plai@y then that point will be subject
to the same constraint= a, but it will then be realized perfectly.

4. Work done by constraint forces— When one proves the theorem of virtual work
for a system, one appeals to the hypothesis that foviemgl displacement of the system
that is compatible with the constraintise sum of the works done by the constraint forces
is zero. Here, we take that hypothesis to be something that defieeconstraints that we
consider. It is that hypothesis that one then utilimesrder to apply d’Alembert’s
principle by writing that by virtue of the constraintatlexist at the instanthere will be
equilibrium between the forces of inertia and the iappforces.

5. Case of subordination— However, one must point out that even if one cosfine
oneself to perfect constraints, there will exist an irtgod category of mechanisms in
which the constraints are found to be realized by metti@dsare different from the ones
that permit the pure and simple application of the gerezrahtion of dynamics. For
those special constraints, one cannot abstract fnenmbde of realization, and one must
be content with their analytical expression. Thosestraints are the ones that one
obtains bysubordination. We say that there isubordinationwhen the corresponding
constraints, rather than being realized in a fashionhish&n some way, passive (such as
the contact between two solids that slide or roll acheother, by way of example), they
are realized by the appropriate use of arbitrary forces, (@ectromagnetic forces, fluid,
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pressure, forces produced by a living entity, etc.). Tisoberdinate forces imply the
constraint forces that Beghi@9] called ones of theecond typand whose virtual work
is generally non-zero, even when the displacememibmpatible with the constraint.
That means that we shall pass over that type of @nstnd refer the study of that case
to Beghin’s thesis, which used the general form of theaBons that we shall indicate.
We shall confine ourselves to the classical constramattswwere defined above (nd).

lll. — EQUATIONS.
6. General equations of motion— We write the general equation of dynamics in
such a way that it will result from d’Alembert’s pripte, combined with the theory of

virtual work. In all of what follows, we shall empldyagrange’s notation of primes to
denote the derivatives with respect to time. The geémeuation of dynamics is then:

(10) S m(%8%+ YOy + 36 D=L ( %S x+ YOy B x=0,

in which the first summation is extended over aditenial points of the system, but the
second one comprises only the material points teiwthe forces are applied. Upon
replacingdx, , oy, , oz, with their values in (1), one will have an equataf the form:

(11) Prdap+Podp+ ... +Pidk— Qg + Qe & + ... + Qi ) = 0.
Sincedq, dp, ..., Ak are arbitrary, equation (11) will reducekequations:
(12) P1=Q, P.=Qz, v Pe=Qx,

which define thé& parameters), Oz, ..., gk as functions of.
In order to write those equations, we remark that:

P, = Zmﬂ(g’l a,tyh,t7%e6).
U
Now, from the relations (2), one will have:

X =8,q4+8,G++3g, §+-+ g Q4+ 2
(13) y;zzb,u,lql+ Q,z d2+"'+ Qv g+"'+ pk g+ p’
Z;zch,l q+ 91,2 db'*'""*' gv g+"'+ f;k g+ ;S:’

so, upon differentiating once with respect to timee will get:

"N 93, da,
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k db,, dh,
Z{ dt q}L dt '
K dc,, dc,
Z{ dt q}L dt -

One concludes that the only term on the right-handtbatecontainsg; is a,, ¢ in

I

the first expressionh,,

I

in the second, and,, ; in the third. One will then have.

a n a a I
aﬂ,v:%’ By, v = aY , Mv:a_zﬁ’
oy o q,

and the expression fét, will be written:

aX" I aé
o= T x5y 2y 55
2 ﬂ[x”aqv 28" ot
If one finally sets:
S=1>m, (X7 + Y+ 27)
H=1
then one will have:

PV:E

o

On the other hand, the te@ has a known value. If one imposes upon the system
the special virtual displacement in which all of diparezerq exceptdy,, then the sum

7, of the virtual works of the applied forces will be prebrs

IZ’V = QV d‘l/ ]
which gives a simple meaning to t@g. One will then have thieequations of motion:

0S _ 0S 0S
oy 0,

which are the desired general equations, which are applicablesystems — holonomic
or not and for all choices of parameters — under thieated restrictions that relate to
subordination. In order to write those equations, one faustthe functionS[19].

7. Energy of acceleration of a system- The semiis viva or kinetic energy:
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(15) T:%Zn_:mﬂ()g+y2 7)) =4y mVv?,

in which V denotes the velocity of the point with masscan be called thenergy of
velocityof the system. The functid®:

(16) s:%imﬂ( PP+ 22) =43 m P,

in which J denotes the acceleration of the point with nmaswill be called theenergy of
accelerationof the system. That terminology was introduced by ASdet-Germain
[20]. In order to write the equations of an arbitraryteys withk degrees of freedom,
with an arbitrary choice of theparameters;, 0, ..., Gk, it will then suffice to form the
energy of the acceleratior$ of that system. In each case, the quarBityill be a
function of second degree of , o, ..., g, . One can then, in turn, write the equations of

motion by a simple differentiation.

One knows that if a system is essentially holomoamd if its position at the instant
depends upok geometrically-independent coordinates then the equationsotbn of
the system can be written in the form that was giwehagrange:

(17) E[G—Tj—a—LQV (v=1,2, ...Kk.

However, that form is not applicable to non-holonomsystems. It is not even
adapted to an arbitrary choice of parameters for holansystems. In order to obtain an
absolutely-general form, one agrees to calculaés was said; i.e., to go to the second
order of differentiation with respect to

8. Case in which the Lagrange equations apply to certain paragters. — The
coefficientP, of &, in the general equation of dynamics (10) is:

pV:Zmﬂ(% a,tyh,*t7%6).

In the case of a holonomic system (which is thly one that Lagrange considered),
that coefficient can be written:

P = d(oT)_oT
““dtlaq ) aq
In any case, one can obviously write:

d
Zm%amvﬂwzwzm[ T &(?td%tj
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dy, oz
oq, ' dq, ' oq

g IR 1)
If one sets:
N s

PV:E(GTJ T (R_ﬂj_
dt| aq, aq 0q

The Lagrange equation will then be applicable to the pateng, if one has:

. 0x :
Now since, from (13),, v, b, v, €4, v are equal to—= , one will have:

~ =

then one will see that:

A=ER, - 6_T_0

dq,
Now, one has:

_p, 0T _ da,, 0%, do, 94 ), ,( 96 9%
(18) A=Rv aov_zﬂ:m‘[x”[ dt aq,j-”é’( dt aq}r%[ dt aqﬂ'

If one replacesx,, y,, z, with their expressions in terms of, q;, ..., g, [eq. (13)]
then one will see tha, _6T is a function of degree two ig;, ¢, ..., .. Inorder to
q,

apply the Lagrange equation to the paramaiernt is necessary and sufficient that that
function must be zero for any positions and velocitiegthe points of the system that are
compatible with the constraints, since at each instahicfwis considered to be initial),
those quantities can be taken arbitrarily.

Particular case— Suppose that the coefficierstg , are functions of the., oo, ...,
Ok, andt, so:

da;u,v — aa‘,u,v qzv q2+ +aap,v q/_*_. + qu q+aqll/ ,
dt oq

ax,u:a,ulqi_*_ p2%+...+ azzv q/_*_“ qzk d‘_*_a%
0q, dq, = dq, 0q, oq

The coefficient ok, in the difference (18) is:
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[6: 6aﬂlj0ﬂ, [6%_6@,zjq,2+,,,+[6%_Mkjwa@v_6%_
g 0dq 0oq, 0dg oq 0dq ot 0¢q

If that coefficient is zero for any, as well as the analogous coefficientsyht z,, then

the quantityR, will be zero. The Lagrange equation will then applyh® parametey, if
one has:

avzaap1 aawzaa}lyz 6%:6% aq,vzag
dg, 0Jq,  0q 94q dq dq ot oagq’
(19) abwzabﬂ,l, aqy:aqyz, aQV:agk’ apV:ap,
og, 0dq, 0oq, 04q oq 0¢q ot dq
oc, _oc,, dc, 0¢c, dg, 0¢, 0¢, Oc
dq, odq,  0q, dq  aq aq ' ot oq

for any /.
One can characterize this case in a different wayhe conditions (19) are assumed
to have been fulfilled then determine the functibips V,,, W, of andt by the formulas:

U/I '[o ,uv V/1 = '[:; b,u,v dq/ ) W/f = '[:; C,u,v dq/ )

in which ¢ denotes @onstant From (19), one has immediately:

ouU q6a jqa

y78 0 = 0
6q1 @ dg, =ay1- 4,

qaq/

in which 32,1 is whata, 1 will become when one replaces with the constantg..
Similarly:

Zz::ayyz—a;z, Zl;khay,k—aﬁ,k’
bt aavf‘b”‘b(“
%—Cﬂp Coo a:;:ﬂ:c/,—cf,.
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If one replacesy, », by, o, Cu p, &y, by, Cu, With their expressions that one infers
from the preceding formulas then formulas (1) will do®e:

ox,=0U,+a,0q+4d ,0q+ -+ 4, Jq,
(20) oy, =0V, +if,dq+H,0q+ -+, Jq,
9z, =0W,+ ¢, 0q+ §,0 g++ £, 0 @

in which &J,, ov,, W, are total differentials that are taken while regag t as

constant, and in whicka;,, , b}, c;, which are the coefficients of thig,, are zero.

Formulas (2) likewise become:

dx,=dU,+d, dq+ g, dg+---+ @  dg
(20) dy, = dV, + 1, dg+ B, dg+--+ b dg
dZy:dW+ Ql dg+ ;2 d9+"'+ Bfk qq

One sees that the Lagrange equation will appthéa, whenox, , oy, , 0z, and
dx,, dy, , dz, can be puinto the form of a total differential, followed layn expression
that contains neither ,gnot &g, nor dg, for any point of the system. One can also saly tha
the Lagrange equation will apply to the parametewhen the other parameteys, gz,
ey Qv-1, Qus1, ..., Ok @re known as functions tfsoq, will become a true coordinate, in
such a fashion tha, , y.,, z, can be expressed in finite form as functiong,cdndt.

In order for the Lagrange equations to be appleabthe parameters, gz, ..., Gk it
is sufficient for that condition to be true for= 1, 2, ...,s; i.e., that the virtual
displacement®x, , dy, , 0z, and the actual displacements,, dy, , dz, can be put into
the form:

5Xy: 5Uy + 4y s 5qs+1 + ... +tauk 5qk,

OYu=0V,+ B st100s1+ ... + Bk Ok,
0Z,= OWy, + Yy s+1 OQst1 + ... + Yk Ok,
dx, =dU,+ a0y s+1 dOse1 + ... +apdoe + ay, dt,
dyy =dVy + By s+1 dGses + ... + Sy dge + G dt,
dz, =dW, + Jp, se1 dOses + ... + ) dog + 4, dt,
in which the coefficientsr,, sv1, ..., Oy, Qus Bustis o Buxs Bus Vistis - Yk Vu s

no longer contain the,, gz, ...,ds. The system is then non-holonomic of orkler sfor
the choice of parametegs, 2, ..., Ok-
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IV. — APPLICATIONS.
9. Motion of a point in polar coordinates for the plane— The equations:

x=rcosf y=rsing z=0
give

S= g(x'2 +y2+7%) = g[(r —r @Y+ (r @7+ 2’ 9.

Upon adopting the notations of the example at the émo.dl, one will see that the
equations of motion are:

S _

oS _
ar

—=Pr,
00"
or
m(”-r8”)=Q, m(r8”+2r'g)=P.

Those equations are identical to those of Lagrangeh tNose parametersand &, the
system is holonomic. However, if one takes the ar¢hat is swept out by the radius
vector to be the parameter then one will have:

oo=1 1?98 do=1r*dg,
OX = c0séadr - 23rin«950,
sy =singor +2°Y 5,
2sing cosd

X =coséfr’— o, y':siner’+2
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X5x+Y5y:£50+Q5r.
r
The equations are then:
0S _ oS _ 2P

P v

or upon making things explicit:

_2P

m(l’"—risﬂ'zj:Q, ma.// ;

If the force is central thelR = 0, and the second equation will give:

o”’=0, o'=C,

which expresses the theorem of areas.
Neither of the quantities:

_[d (GTJ aT| aS
Al_ — -, - __l
| dt\ar') or | or"

A :_E(a_Tj_a_T _0s
*“ldtlag ) a0 a0

is zero With the choice of parametarand g, the system has become non-holonomic of
order 2.

10. Motion of a solid body around a fixed point.— We calculate the energy of
acceleratior§ of a solid body that moves around a pdrivhile placing ourselves in the
most general case. For each particular examplellitthen suffice to employ that
functionSwhen it has been calculated once and for all.eRi#e motion of the body to a
tri-rectangular trihedroi®xyzwith its origin atO and which is animated with a known

motion. LetQ be the instantaneous rotation of that trihedren, A, ©, R be the
components of that rotation along the ed@&sOy, Oz Similarly, letwbe the absolute
instantaneous rotation of the solid body, and]et, r be its components along the axes

Oxyz A moleculem of the corps with coordinatesy, z possesses an absolute velogity
with projections:

vV, =qz- 1y,
(21) Vv, =IX= pz
vV, = Py~ Qgx

That molecule possesses an absolute acceleddti@t has projections:
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dv
J =—2X+9Vv.-Rv,
X dt Q z Yy
dv
(22) Jy=—y+va—73vZ,
dt
dv
J =—%2+Rv —-0OV.
‘o dt ymLV:

Those formulas can be written down immediately whesmremarks that the acceleration
J is the absolute velocity of the geometric point thag\i , vy, V; with respect to the
moving axexyz.

Having said that, one will have:

dv, = qd—z—rﬂ/+z q-yr,
dt dt  dt

in which p’, g’ r’ denote the derivatives @f g, r with respect to time. The quantities

dx ﬂ dz are the projections ont@x Oy, Oz of the relative velocitw; of the

dt’ dt’ dt
moleculem with respect to those axes. If one calls the guidielgoity of that same
moleculeve then one will have:

_ (Vi)x = Vi = (Ve)x;
Le..

dx
Z=qz-ry- —R V).
ot qz-ry-(Qz-RY)

One will get%’and Z—f similarly, by permutation. From that, the expressi(1y

for Jy , Jy, J, will take the following form, in which we write onl :

K=q[(P-P)y-@-QX -rlr-R)x-p-P) 4

+zg-yr+Q(Py-gqx-R(x-p3
or, upon rearranging:

S==x(@+r)+y[qP-P)y+pQ-r1-z[r (p-P)+pR +q’].

One will getdy andJ, upon permuting. When one takes the sum of the squares, o
will get J 4, and then the function:

S=1Y m(FE+ X+ J).

The coefficients of the moment of inertia:
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A=>Ym(Y+7Z), B=YmZ+X), C=) m(xX+Y)

enter into that sum, along with the products of inertia:
D=>myz E=) mzx, F=) mxy

with respect to the ax&3xyz In general, those six quantities will vary in timegcs the
axesOxyzdisplace in the body.

At present, the parameters are the angles that diotientation of the body around
the pointO. The quantitiep, g, r contain thdirst derivativesof those parameters with

respect to time. If the trihedrddxyzis animated with a known motion théh Q, R
must be regarded as known functions of time. If théianaf the trihedron is coupled to
that of the body in some fashion tHEnQ, R will depend upon only the first derivatives

of the parameters. The second derivatives of thargdess then enter into only tipg
g, r. From a preceding remark, it will then suffice tdcatate the terms it that
depend upon the accelerations; i.e., ghey’, r’, because only those terms depend upon
second derivatives of the parameters.

Set:

(23) qR-rQ="1, r’—pR=09Q1, POQ-qP=R1,

to abbreviate, and let, b, ¢ denote the sums m ¥, ¥ m ¥, ¥, m Z, for the moment.
One can write:

(24) S=al(@'-01-pnN*+ ([’ -Ri+p 9]
+b[(r'-Ri—qpP*+ (p'-=Pr+q 17
+c[(p’=Pr-ra)’+@'— Qi +rp)

—2D[(F-r) p'+ @ —-Q1+pN (r'—Ri—paq]
- 2E[(rP-p)a’+ ('=Ra+ap (p'=PL—qr)]
—2F [P - '+ P =Pr+ra) @' —Q-rp)]+ ...

We develop this and rearrange the result with respegt+dP;, 9" — Q1, r’'— R,

while noting that:
b+c=A, c+a=B,
b-c=C-B c—-a=A-C

Upon dropping the terms that are independept,af’, r ;, we can write:

(25) S =A(P'-P)* +B (@' Q1)*+C(r'— Ry’
-2D(Q'-Q) (r'—-Ry)—E("-Ry) (p'—P1) —F (p’—P1) (0'— Q1)
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+2[C-Bgr-D(F-r)—Epg+Fpr (p'—P)
+2[A-OQrp-E(*-p)-Fqr +Dqp (q'- Q1)
+2[B=-Apg-F(@E°-q)=Drp+Erq](r'=Ry) + ...

Remark— If the axeOxyzarefixed in spacehenP, Q, R will be zero, and one will
have:

(26) P1= Ql =Ry = 0.
The same fact will be true if the axes &ixed in the bodybecause in that case:
(27) P=p, Q=q, R =r.

Upon making this explicit, one will get the Euler eqoasi, which one establishes
easily.

Similarly, upon suitably specializing the formulas, om#l get the equations of
motion for the classical case in which the ellipsdidhertia relative to the fixed poir®
is one of revolution. One takes the a®zto be the axis of revolution and the ax&s
andOy to be two axes that move in both the body and sgeateate defined as follows:
Let Ox, Oy, Oz be three fixed axes: The aXiy/ is perpendicular to the plaz®z and
the axisOx is perpendicular to the plag®z The angledis then the angle Oz and ¢
is the anglex;0y. The instantaneous rotatiéh of the trihedrorOxyzis the resultant of
two rotations, one of whicd@/ dt = €"is aroundOy, while the othedy / dt = ¢ is
aroundOz . The components of that rotation aro@x] Oy, Oz are then:

(28) P=-¢’sing, Q=20 R =¢’'sin6.

Once the trihedro®xyz has been located, one must define the position of tiee so
with respect to that trihedron. In order to do titawill suffice to know the angl that
a line that is coupled to the body in tt@@y plane makes with the ax@y. The derivative
d¢ / dt = ¢’ of that angle measures the proper rotation of the lawdyndOz The
instantaneous rotatiomw of the body is then the resultant of the rotat@nof the

trihedron and the proper rotatigharoundOz One will then have that the projectigns
g, r of wonto the axe®xyzare:

(29) p=P=-¢’'sin q=Q=6, r=R+¢ =y’'cosf+ ¢’
Upon differentiating with respect tpone will conclude that:
p'=-¢”’siné+ ..., q'=86" r'=¢”"cos@+¢”+ ...

In addition, since the ellipsoid of inertia is one @falution aroundz:
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B=A

When one replacd3andQ with p andq, resp., and remarks that=E =F = 0, since
the moving axes are the principal axes of inertia, tmege expression (25) f& will
be:

(30) S=AP?*+q)+Cr*+2@AR-Cn(pg-qp)+..

For a variationd 6, o ¢, J ¢ of the three angles, the sum of the works done by the
applied forces will take the form:

OH+DIW+WY .

Since the virtual displacement that is obtained byrgetip = oy = 0 is a rotation around
Oy, O is the sumM, of the moments of the forces with respecOto Similarly, ® is the
sumM; of the moments of the forces with respecOm and¥ is the sumM, of the

moments of the forces with respeciQa . The equations are then easy to write out.
One will get them in the definitive form more quicldy introducing (as one can do
in the general case) the three quantifies, vthat are defined by the relations:

(31) 0A=-sin@ oy, ol =6, oV =coséoy+ op

as the parameters, so the actual displacement will be

(32) { p=A'=-sinfy', q=4/=6, 1=V = cody +¢

p':A", q’:ﬂ", r':V".

The quantitiesdd, du, ov are then the elementary rotations arong Oy, Oz, and
one will have:

> (X OX+Y Y +Z32) = My + My du+ M, ov.

The function & that is given by the expression (30) is expressed imnedylias a
function ofA”, 1", v”, and the equations of motion are:

B, Bony, Bow,
o o v

or, sinced”=p’, u”=q’, v’'=r"’:

(33) _MXa _:My, _:MZ-

p aq
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These are the three equations in their simplest foifith the parameters, y, v, the
system will be non-holonomic of order 312].

11. Theorem analogous to that of Koenig= With the applications that follow in
mind, it will be useful to establish a theorem thanalogous to that of Koenig, in order
to abbreviate the calculations. Lety, z be the absolute coordinates of a point in a
certain system with respect to some fixed axes.nLleé the mass of that point, &ts,

{ be the coordinates of the center of gravity of the systetM = > m be the total mass,
and letxy, y1, z1 be the coordinates of the pomtwith respect to the ax&3x; y; z1, which
are drawn througls parallel to the fixed axes. L&t denote the absolute value of the
acceleration of the poirG :

J§ :<(”2+,7//2+le2’

let J denote the absolute value of the acceleration of the po

J 2 :X,,2 +y112 + Z,,2,

and letJ; be its acceleration relative to the ak®s y1 z :

3 =Xy 2n
One has:

x=¢+Xy, Y=n+tyi, z={+z.
The expression:

S=1ym(x"2+y 2427 =13 ml(E+ )P+ (7" + WP+ + DT,
when one takes into account the fact that:

> mx=0, >mxX=0, ..
will become:
S=4M I +1Ym,
which one can write:
S=iMJ} +5,

in which S is the energy of acceleration that is calculatedte relative motion around
G; one will then have the theorem:

The energy of acceleration S of a system is equal to the energy l&ratooe that
one would have if the total mass were concentrated at its centerwatygrplus the
energy of acceleration of the system that is calculated for tlaivwelmotion of the
system around its center of gravity.
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12. Totally-free solid body.— One can obtain the functi@ifor a free solid body by
applying the theorem in nd.l that is analogous to Koenig’'s theorem. The t&ns

%Zme, which relates to the motion of the body around éster of gravity, will be

given by formula (25) , which relates to the motioracfolid around a fixed point. One
will then have:

25'=M J2 + 25, .

That formula is easily applied to the motion of a pondsrbomogeneous body of
revolution that is subject to sliding without friction arfixed plane22].

It will likewise permit one write out the equations motion of a ponderous
homogeneous body of revolution that is subject tongllvithout slipping on a fixed
horizontal plane.

13. Application to a solid body that moves parallel to a fixed phe.— In the study
of the motion of a solid around a fixed point, one essiynsupposes that the point is at
a finite distance. If it is at infinity then thelsbcan move parallel to a fixed plane. Take
the plane of the figure to be the plane of the cuhat ts described by the center of
gravity. Let two axe©x andOy be fixed in the plane, and Iétand# be the coordinates
of G. It will obviously suffice to know the motion of th@ane figure P), which is a
section of the body by the plar®y. Let &denote the angle thé&x makes with a radius
GA that is invariably coupled to that planar figuR®,(while M I is the moment of
inertia of the body with respect to the axis thadriswn throughG perpendicular to the
planexOy.

The motion of the body around the center of gratis a rotation around an axis
that is fixed in the body, while the angular velocityatation is@. One will then have:

M k?
2

S.I. — (6”2 + 612)

for the functionS; that is calculated for the motion of the body an@dG.
Therefore:

S:%[E”2+/7”2+k29”2+ 1

in which it is pointless to write out the termsttda not contain the second derivatives.

On the other hand, if one calls the projectionshefgeneral resultant of the applied
forcesXo, Yo, and letd\, denote the sum of the moments of those forces negpect to
the axis that is drawn throughperpendicular to the plax®ythen one will have:

S (X Ox+ Y3 y+ Z3 3= Xo 3E+ Yo A7+ No 36

If the body is not supposed to be subject to amstraint then the parametefss,
{will be independent, and the equations of motiolh lvei:
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0S 0S 0S
- = x ’ -— = ’ = ’
ag" 0 6,7" 0 ae" ZO

ME =X, Mn’=Yo, MIEEF"=No.
One will then recover the equations that give the igetleeorems immediately.

Suppose that the body is subject to a new constraimth can be expressed by a
relation in finite terms:

f(&n 61)=0,
or by a differential relation:

Adé+Bdp+Cdé+Ddt=0,
Ad+Bdn+Coo+ =0,
in whichA, B, C, D are functions o, 77, 6 t. One can then expregs as a function of

&”and@”, for example, andn as a function obé andd6. As a result, one can calculate
Sas a function of”and 8”and make. (X dx +Y Jy + Z J2) linear and homogeneous

in o and o6, and then equat%?; to the coefficients 0bé and% to that ofdé.

V. — REMARKS OF AN ANALYTICAL ORDER.

14. Some properties of the functionS — In this number, we suppose that the
constraints do not depend upon time:

ay=b,=c,=0,

and that the coefficients, , , b, v, ¢, v depend solely upon tlg, o, ..., gk, and not on
t. The same thing will then be true of the coefficiasftS.
From the expression f&that was given above:

S= %Zm(xﬂz +y,,2 + z”2),
when that function is confined to only the useful teringjll have the following form:
(32) S= (., f) T, G+, -+,

in which ¢ is a quadratic form in thg”:

ACHAR RS I (aj = ay),
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whose coefficientsy; are supposed to depend upon solelygheq., ..., 0, and in
which theys , ¢», ..., ¢ are quadratic forms in the , d,, ..., g, whose coefficients

also depend upon tleg, gz, ..., G-
The semis vivaof the system:

T = %Zm(xllz +y112 + ZI/2)

is a quadratic form in the;, q,, ..., q. whose coefficients are the same as those of the
form ¢, in such a way that:

(34) T=¢(q, &, . G) =D a,d];

that fact results from calculating the two functiddsind T. In order to simplify the
writing, we make:

@, &%, ..., 4)=¢2,
(G, %y s G) = @2,
SO
S:¢2+¢’1 C['H/’z dz+"'+¢’k (i{,

It is easy to verify that one has:

dT S aS S
36 - = d+—ad++—
(36) dt aql"o'1 oo, % ad 4

identically.
Let us see what that identity gives from the forms % andT . It becomes:

q%*%%*“*q%*éﬂlqwmw% 4

(37)

= "%+ '%+...+ ’a¢1+ 6¢1+ a¢1+...+ %
Voq "*aq T Yo T Y9q " aq " ag

The right-hand side of this is the developed expressiodTd dt that would result from
the fact thafl depends uponby the intermediary of, q;,, ..., ., th, G2, ..., Gk. Now,

the first part of the left-hand side of (37) is identitalthe first part on the right-hand
side, from an elementary property of quadratic formke i@entity (37) will then reduce
to:

' ' ,_ 0@, , 09 0¢
38 + + ..+ = A+ g+--+—21(.
( ) 4010;1 quz ¢4<qk aqlql aqz qz aqq
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That relation must be true for aqy, @z, ..., 0k, ¢, G5, ..., G . It will then establish

the necessary relations between the coefficientthefforms¢s , ¢», ..., ¢k and the
coefficientsa; of ¢1. To abbreviate the writing, we denote both sides oidéetity (38)
by a single letter and set:

¢, ., 09 0¢ : : :
39 E=Xtq+2 g+ -+—22q = + + ..t ,
(39) a0, " ag, % aqd* gty q % q,
so the functiork will be a cubic form in they, o, ..., q.

15. Correction terms in the Lagrange equations- If the identity (38) is supposed
to be fulfilled, then look for an expression for thedience:

(40) A= d(

_dfoT)_aT _as
dt

oq) oq od’

From the notations of n®, one will have:

oT
A]_:Rl_a.
Since we have sé@t= ¢;, we will have:
2 2 2
E@_T :a¢21qi’+ 6¢1 qg+...+ a¢1 dK’
dt{ oq 0qg, 0q, 04, 0dod
2 2 2
+ 6¢1 qi+ a¢1 q’2+...+iq’
00y~ 0¢0G, 0doq

becausegl, org—z,l depend upohby the intermediary o€, d,, ..., ., th, G2, ..., Ok-
%

Upon specifying the first row and taking into account tkgression forE, one can
write:
d(oT OE _0¢,

a[a_qij = 2(a11q;+a11q"2+"'+a11q<')+a_qi 3, .

On the other hand:
or _ 94,

oy,  0g,
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aS n I U
6_q{' = 2(allq1+011QZ+"'+alldx)+¢’l .

After reduction, the difference (40), which is calleg will then become:

O0E 6¢
N =—-2—"2- .
! 600' 0q, wl

Upon setting:

:i aT —aT—aS:R—a_T
" dtloq ) a9 o4  aq,
one will likewise have:

oq,  0q,

Having said that, the equations of motion can htem:

d( oT oT
42 _ ) — |- —= v AV = 11 21 "'lkl
(42) dt[aq;j 0q, Qu v )

in which the term\, is expressed by the quantity (41) . Those quasti, form what
one call thecorrection termsin the Lagrange equations. One sees that theahggr
equations can apply to the system if those tekmare all identically zero. That will be
the case when the system considered is holonomit the parameters are true
coordinates.

If the system is not holonomic then the motioritedf system is the same as that of a
holonomic system that admits the sawvigviva2T as the first one and is acted upon by
“generalized forces”:

Q1+ A, Q2+, v Qe Ak

The proof of the fact that a non-holonomic systerd a holonomic system can have
the sameT identically can be found in a simple example thatgave in the Journal fur
die reine und angewandte Mathematik (Crelle’s Jallyn. 122 pp. 205.

The order of a non-holonomic system for the choicearameters , Qz, ..., gk IS the
number ofA, that are non-zero.

Equation of vis viva. Verification. — If the constraints are independent of time then
the equation of theis vivawill be:

(43) S =QdrQ Q4.

In order to deduce that equation from equatioy, (dne must multiply the first of
those equations by , the second one by, etc., the last one by, , and add them.
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One will then get equation (43), because one has:
(44) A1%+A2qlz'*""'*'Ak q<:O

identically; in other words, the apparent forces thatchiaracterized b, , Az, ..., Acare
gyroscopi¢ in the terminology of Sir. W. Thomso44).

Indeed, from the expressions (41) for the quantiigand the definition oE, one
will have:

' | , OE . 0E
A1(11'+'A2qz+"'+Akq< =Gt tq -

— -3E.
oq, 0q,

However, sincé is homogeneous of degree threegin q;,, ..., ¢, the right-hand side
will be zero identically, from the theorem on homoggaums functions.

16. General case- If the constraints depend upon time, one can once setre

14

_d(oT)_oT _as
dtloq ) 0q od

The order of the non-holonomic system for the choicparametersy; , ¢z, ..., gc will
again be the number 4f, (n =1, 2, ... K) that are not zerd@p].

VI. - FORMULATING THE EQUATIONS OF A PROBLEM IN DYNA MICS
REDUCES TO THE SEARCH FOR THE MINIMUM OF A SECOND-D EGREE
FUNCTION. GAUSS'’S PRINCIPLE OF LEAST CONSTRAINT.

17. Problem of the minimum of a second-degree functior: If one considers the
functionR :

R=S-Qq-Qd~-Q{.

which one can call the analytical expression forabtwestraint, therfR will be a function

of degree two in they', ;, ..., .. The equations of motion are written:

R_o,  Rog ., Ry

gy 0a 0c,
The values ofg, a;, ..., ¢, that are inferred from those equations will then mialee
maximum or minimum. SincR is a function of degree two in th& , o}, ..., g, whose

second-degree terms constitute a positive-definite farenfunctionR will be aminimum
for the values ofg) that correspond to the motion. It is obvious that care make any
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function that differs fronR by terms that are independent of tfeplay the same role as
R. From the expressions for the, v, , z,, &, I, dz,, that functiorR will have the
same terms iy, o, ..., ¢ as:

S=YIXX+Y Y+ Z%]

or
1> mJ-> FJcosFJ
or

Ro= Y= [(mX~ X7 +(m Y~ Y +( mz FI.
m

One can then say that the accelerations that beksyistem from each instant, which are
characterized by the values qf, q;, ..., g, will makeRy aminimum If the system is

free then that minimum will obviously beera If there are no external forces then
will reduce toS

18. Gauss’s principle of least constraint— From the translation of Gauss’s paper,
the principle of least constraint can be stateidsys:

“The new principle is the following one:

The motion of a system of material points that emepled to each
other in an arbitrary manner and subject to antyitrafluences will, at
each instant, happen with the most perfect agreepessible with the
motion that it would have if its were entirely fraee., with the smallest
constraint possible, by taking the measure of tbestaint that it
experiences during an infinitely-small time intdrt@ be the sum of the
products of the mass of each point with the squdiréhe quantity by
which it deviates from the position that it wouldve taken had it been
free.

Let m, m, m" be the masses of the points, &ta’, a” be their
respective positions, and letb', b", resp., be the positions that they will
occupy after an infinitely-small timdt, by virtue of the forces that act
upon them and the velocities that had had acquait¢lae beginning of that
instant. The preceding statement amounts to sdlgatghe positions, c',
c’, resp., that they will take will be, among alltbé ones that are allowed
by the constraints, the ones for which the sum:

mbc+mbt+ thbc+...
will be a minimum.
Equilibrium is a special case of the general Ihat will be true when
the sum:
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mab +mab +...

is a minimum (since the points have no velocity)inoother words, when
the conservation of the system of points in the rede dscloserto the
free motion that each would tend to take than any pesdisplacement
that one can imagine.”

Here is the proof of that principle:

The preceding equation proves that principle. One agrtisat the equation is its
analytical expression. On page 343 of his bobk],[ Mach, speaking of Gauss’s
principle, considered the expression:

e ol (er) (54

(in which ¢, n, { denote the projections of the acceleration of thatpn), and sought the
conditions that, n, ¢ must fulfill in order forN to be aminimum he then came back to
the general equation of dynamics.

In the German edition of thenzyklopadie der mathematischen Wissenschaitein
on page 84 of his article “Die Prinzipien der rationelleddanik,” A. Voss 2§
proceeded as follows in order to establish Gauss’s pt&cihe positiort of the pointm
has the following abscissa at the instiafAtt :

X"
X+ x’dt + 1—dt2.

The sum that Gauss considered to be the measure adribaint, namely:

mbc +mMbeE+ ..

e RG]

Now, that sum is precisely:

will then be:

1dt'R,.

It will be a minimum among all of the possible motidmecause the accelerations will
makeR, a minimum.



VII. — Applications to mathematical physics. 29

VII. — APPLICATIONS TO MATHEMATICAL PHYSICS.

19. Electrodynamics.— In a volume in th€ollection Scientia“L’électricité déduite
de l'expérience et ramenée au principe des travaux viftuékyvallo studied the
application of the Lagrange equations to electrodynanpteinomena according to
Maxwell's theory. In regard to the Barlow wheel, gented out that those equations are
not always applicable to electrodynamical phenomena,blyota the case of two or
three-dimensional conductors. He observed that the plesmonof the Barlow wheel
depended upon three parametérsy;, (2 whose arbitrary variations define the most
general displacement of the system. He indicated ttizge parameters are not true
coordinates and that the system behaves in regard toithdma same way that a hoop
behaves in regard to the three paramefegs andy (no.2). Under those conditions, the
Lagrange equations will not be applicable, and if one cge o attach the equations of
electrodynamics to those of analytical mechanics th must choose a form for the
equations that will be applicable to all systems, whetbé&nomic or not19].

For the Barlow wheel, when one employs Carvall@sations [oc. cit, pp. 76 and
80), the equations of motion will be:

1 0"~ Ka q, =Q,
Lo +K&dq, =E1-raq,
qu; =E,- rquz’

in which the right-hand sides are the generalized fdte@swe have previously denoted
by Q1, Q2, Qs . Now, the left-hand sides of those equations areenrit

95 0s 0
09" aq{” 0q,
if one sets:
S= %[I (9"2+L1q1'2+L2q';2+2Kq"z(é?'q;— dle")+“']i

in which the unwritten terms no longer contain the sdaterivatives of the parameters.
The equations of motion are indeed of the general foainwias studied in that volume,
but it would be important to know whether the functrthus-formed analytically, can

be shown directly to be the energy of accelerat®®n= %ZmJZ by physical
considerations.

20. Extension to the physics of continuous media. Applicatioto the theory of
electrons.— In this number, we shall reproduce almestbatima note by Guillame in
Bern [24].

“One can remark that if a system possesses a pdtengéegyW then
one will have:
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k

YQq=-W+U,

i=1

in which the sum is extended over the parametershbaidtential energy
depends uporl) denotes a term that is independent of ¢heandQ; are

the forces that are derived from the potential. Tdmaining forces will
be called forcesxternalto the system, and we set:

k

E=)>Q,

i=1

in which the sum extends over those forces. If tremee constraint
equationd.; = 0 then one can introduce functiohdy a generalization of
the method of Lagrange multipliers, as Poincaré shawéds Lecons sur

la théorie de I'élasticitein such a fashion thaZ)li L; can be considered
i
to be a supplementary potential energy.
In the particular case where the kinetic energy:

T=1> m(X*+y*+ 2?)
is expressed in Cartesian coordinates, one will have:
T =YmXX+yy+ 29,
EEPNUCER A E DN CSTRAT S

from which, one will deduce that:

o5 _10T"
ox" 20X
The expression:
k
R=S-3Q,¢
v=1
wiil then be replaced by:
(45) R=4iT"+W'+> A L - E

J

If the coordinates are arbitrary then one must$in place of1T".
From that, it will be easy to writR for continuous media. In that case,
instead of the motion of a point, one considers the motion of an element
dr of a certain volumé&/ that is bounded by a surfakEe The functionsS



VII. — Applications to mathematical physics. 31

T, or W become integrals that are extended over the voMm&he term
that relates to the constraint equations will be abthiupon multiplying
the left-hand sides of those equationsipdrz, adding them together, and
integrating over the volum&. The termE can give both a volume
integral and a surface integral. By definitiGhhas the form:

R:m¢0dr+ﬂ¢zoda,

in which ¢y and ¢ can contain the accelerations and their partial
derivatives. One then specifies the accelerationsich & fashion as to
putR into the form:

R:m¢ldr+”¢1da,

in which ¢; and ¢4 are polynomials of degree two or three in the
accelerations. That transformation will be possilbléhe system is
mechanical. Upon varying the accelerations, one wilhftine variation
AR, which must be zero for any variation of the aceatiens. Upon
annulling the coefficients of those variations, ond wbtain the desired
equations.

Application to the theory of electrons. In order to establish a
mathematical link between mechanics and electrical phena, Maxwell
appealed to Lagrange’s equations; he then supposed that the
corresponding systems were holonomic. H. A. Loréa@ reprised and

generalized Maxwell's ideas. In particular, he showesl ftfllowing:
Consider the energy of the magnetic field:

(46) T=4[[[v*dr
to be a kinetic energy, and the energy of the elefi¢i:
(47) W:%H %dr

to be a potential energy, where the vectprand o satisfy the two
constraint equations:

(48) croth—odivo -0 =0,
(49) divh = 0,

in which v denotes the velocity of matter, andlenotes the velocity of
light. One can then establish the fundamental equation
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(50) roto = - %h'

by means of d’Alembert’s principle.

The proof demands certain restrictions that are duthéouse of
guantities of electricity as coordinates and the intradocof all the
virtual displacements. Lorentz was then led to defineew class of
constraints that he calleglasi-holonomicHe supposed that a system of
electrons belongs to that class. Upon starting frieenetxpression (45),
and being given equations (46), (47), (48), (49), one can tstablish
equation (50), by supposing that the system is non-holonamacgeneral
fashion.

Indeed, conforming to the meaningsTo&dndW, the magnetic field

is analogous to a velocity, so its derivatiyewill be analogous to an
acceleration, and the electric field measures the deformation that
produces the potential energy, so its first derivadiverill be the rate of
the variation of that deformation, antl will be its acceleration. Equation
(48) permits one to immediately expr@ssas a function ofy’, in such a
way that one will no longer have an equation of comdtréd9) to
consider. LetF do denote the force that acts on the elentkntso one
has:

R= Hj[%b’2+cbrotb’—2/l’ divty | dr—”]—"h’da+

= [[[[26 +c ' roto+ 20 gradh' [ dr = [[ £ 0 )} + ' +F ] dor+ ...
One infers from the volume integral that:
(51) h' =-crotd—2 gradl’.

In order to determinel’, it suffices to form divh’, while taking
equations (49) into account. One will then findtth” must be constant.
Its gradient will then be zero, and equation (51) reduce to the desired
equation (50). The surface integral permits onddi@rmine the force.
In order to find its significance, it will sufficeo look for the work done
per unit time. One finds that by taking the consH to be equal to zero:

Fh=-cfob]n;
i.e., the Poynting energy flux.

If one starts with the same equations, while remgi in the ether,
then the expression (45) will permit one to detesmequation (48)
without the term that relates to matter. One d&m texhibit the duality
that often observed in electricity in a strikingywa
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The fecundity of the method that was proposed henmgesdrom the
fact that one substitutes virtual accelerations for Jirtligplacements.
The quantities of electricity do not come into playhefle is no need to go
deeper into the mechanism for the phenomenon. The pibgsdf
establishing the expressions and ¢4 for the theory of electrons will
imply the possibility of a mechanical interpretatiar that theory. In
addition to d’Alembert’s principle, one has tried (aboa#, since
Helmholtz) to extended Hamilton’s principle to allpfysics. Now, those
principles apply poorly to the theory of electronsneChas the right to
think that Appell's principle, thus-generalized, can be stied for them
advantageously; at least, in a number of cases.

One can see that the considerations above extetin tmechanics of
Einstein. In it, one introduces the function (41):

UZ
H :_n‘bc"l_?

in order to form the equations of Lagrange and Hamilhdms mechanics.
It is easy to see thét is the analogue of in ordinary mechanics. Indeed,
one has:

10H" _

__'_fl
2 0o

in which F denotes a force. That is the fundamental equatiomotibn in

the new mechanics. The functiBns obtained by replacing” with H” in
the expression (45).”

VIIl. - CONSTRAINTS THAT ARE NONLINEAR IN THE VELOCI TIES.

21. Possibility of non-linear constraints.— In his book on mechanicd(], Hertz
showed that constraints are expressed by linear medatidlowever, it is possible that
when certain masses or certain geometric quantitied te zero, a set of linear
constraints will produce a non-linear constraint thatnigosed on a point of a system in
the limit. One can then apply the preceding generaltemsato the corresponding
motions. That is what | did in 1911 in a note in Comp&slus 25 and then in two
articles in the Rendiconti del Circolo Matematicd?@iermo 25-2].

Delassus, a professor on the Science Faculty at Boxdeledicated some important
notes that were included in Comptes rendus de I'AcaddeseSciences de Parf] in
1911 to a general study of the question and several paparsle'S liaisons et les
mouvements des systémes matériels” that were printethé Annales de I'Ecole
Normale supérieure2ff]. In a letter that he wrote to me in 1911, Professamélan
Brunn (without knowing of the research of Delassus), likevpointed out the difficulties
that present themselves when one passes to the limit.
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Delassus called “the motions studied by Appell” or “abstragtions” the motions
that are obtained by the extending the principle of timenmum of the function:

R= Z[g(x"2+y'2+ 2= (X L+ Y g+ Z’b)}

to nonlinear constraints. In his note to the Casptndus on 16 October 19PH][ he
realized those motions as motions that were limigdneans ofealizations with perfect
tendency For example, i& is the constraint:

(L) X,2+y,2:Z,2.

Delassus considered a linear constrhifthat contained arbitrary constants that gave the
single relation:
X/2 + y/2 — Z,2

betweenx’, y’, z’, but produced some supplementary relations betwegey’, z' that
disappeared in the limit.

My viewpoint will be different in what follows: lrorder to arrive at the limiting
realization of the constrairt, | will consider a linear constrairit that contains an
arbitrary constanp that does not give any relation betweényx z’, but which produces
the relation(L) in the limitp = 0.

From the mechanical viewpoint, those two concepsquite distinct.

| shall present that passage to the limit in aamge. One will find some examples
of the other viewpoint in the publicatiordgand27].

22. Example.— Imagine a caster that rolls without slipping tbe horizontal plane
xQy. The caster swivels abot. Its wheel turns around a horizontal agisthat is
carried by a forkCD that surrounds the swivel axis with a collar That collar can turn
freely about the swivel axis in such a fashion thiaén one wishes to push the caster in a
certain direction, the wheel will turn around thdeaand will be located in a vertical
plane through the direction of the swivel axis. eTéystem poses no resistance to
displacement in any direction.
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In order to now complete our mechanism, we must supp@dettiere is just one
wheel and just one swiv@l that is constrained to remain vertical by lateral shefat
rest on the floor without friction or sliding. A vesdl shaftTM slides without friction
inside the swivel. It is activated by the wheel witla #id of a mechanism that is easy to
imagine, in such a way that it will be raised or lo@gkby a distance that is proportional
to the angleg through which the wheel has turned, in one sense or tle. otFhe
extremity of that shaft carries a polvtof massm and rectangular coordinatgsy, z on
which an arbitrary forc& acts. That system will give a quadratic constrairthefform:

0Z = I (0% + YD)
in the limit, in whichk denotes a constant when one supposes that:
1. All of the masses, except fidt, first become zero.

2. The distanc#iP from the centelC of the wheel to the sha¥M then tends to
Zero.

Indeed, in that limit, if the wheel turns throug# then its cente€ will experience a
displacement whose projection onto the horizontah@kOy will have component®x,

Oy such that:
JOXP+0y* =adg,

in which a denotes the radius of the wheel. On the other hte,pointM will
experience a vertical displacement that is propaatit;og :

0z=bodg;
one will then have:

07 =1 (0 + OV, kzzb—z.

Before passing to the limit, one will have a systemhwihear constraints with two
parameters andy, to which one can apply the general equations thatstawfswriting
out that under the motion, the values of the accaéteradre the ones that make the
function:

R= Z[g(x"2+y'2+ 27~ (X L+ Y §+ Z’b)}

a minimum. If one writes out those equations aaskps to the aforementioned limit on
the indicated order then one will find equationstfte motion oM that express the idea
that the function:

Im(X?+ Y2+ 25— ( X k+ Y+ 27

is a minimum whem, y, z are coupled by the relation:
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k2 (XIXII+ ylyl) _ZIZII: 0
that is obtained by differentiating the constraint ¢igua
k2 (X/2+y/ )_212: 0.

When one employs the method of Lagrange multiplieder find the minimum, those
equations will be:

mx’=X+AKx,

my’=Y+AKky,

mz'=2-A7.

The force of constraint, whose projections &té x’, A kK’ y’, — A z/, is perpendicular d¢
to the tangent plane to the cone whose sumnvt @1d is defined by the set of all virtual
displacements such that:

07 =1 (0 + OV,

while the plane is tangent along the actual displacethendy, dz

The work done by that constraint force is zero foratteial displacementt will not
be zero for a virtual displacement that is compatible with the constrai

We perform the calculation that we just indicated.the system of the figure: L&t
y, zdenote the coordinates Wi let & 77 denote those of the centérof the wheel, and
will remain constant for that pointo is the distancélP, and @ is the angle betwednP
andOx. One will then have:

x=¢+ pcosé, y=n+psiné.
The virtual displacements are defined by the relations:

o =acosf oy, on =asinf oy,
ox=acosfop—psinfob,
oy=asin8dp +pcosdob,
0z=bop.

The actual displacement is subject to the followingdaions:
&’'=acoséy; n’'=asin@ ¢’
X'=acosf¢g’'—psinb @,
y'=asin@¢’+ pcosf g,

7' = b ¢/,
SO

(52) { " =acosfd¢" -asindg' &

n" =asinf¢"+acobg' g
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X"=@@p”"—p 0% cos- (08 +a¢p’d)siné,
y//: (a¢//_p€/2) sin @+ (p6”+ a¢/€/) COSH,
Z”:b ¢Il’

from which, one infers that:

" _ 2 _ " ;-
(53) { ag"-pd X'cosf+ y' sind

pd' +ag'd =-Xsin@+ y cod .
The energy of accelerati@wof the system is composed of the eneBggf the wheel and
the energys, of the pointM upon neglecting the mass of the shaft and that of geepi
CD: ses s
Now, from the preceding, one will have:

28_]_:m(§(”2+/7”)+Ae”2+B¢”2+

when one calls the total mass of the wheekhile A andB are its principle moments of
inertia relative to its center; hence:

282 =m (an + y//2 + Z"2) )
Sincez’' =b ¢", from (52), one will have:
2S=(ua+B+mp) gP+A G +m(x P +y ) + ..,

or, upon replacing” and 8” with their expressions that are inferred from (53):

5= ,ua+B +mb

2 (X" cos@+Y" sin @+ p 8'%)?

(54)

"2

+ p—A;(x" sin@-y' cos@+ag’ @) +m (X% +y”?) + ...

in which the unwritten terms no longer contain sectegvatives.
Now, make a force act upon the poMt whose projections arX, Y, Z. The
elementary work done by that force under a virtual digplennt is:

XX+Yoy+Zdz
in which:
0z=b op=(dxcosf+ oysinb),

0z=k(dxcosf+9ysing .
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The virtual work is then:
(X+kZcosH ox+ (Y+kZsing Jy.

The equations of motion are then:

a—S":x+chose,
0X

(55)

a—S" =Y +KZsing.
oy

Now, pass to the limit, while making the mas®f the wheel angb go to zero. The
coefficientsB andA will also tend to zero. However, here we see the ardehacy that
Delassus pointed out in the general cas& dfhdp tend to zero at the same time then the
limiting value of S will depend upon the behavior &f/ o2 We shall arrange that in
such a way thah / p? tends tazera Swill then tend to the limit:

S=imK (X' cosf+y" sing’ +m (x> +y'?) + ...
The equations of motion keep the form (55). They are then

m K (X" cos@+Yy" sin@) cosf+mx" =X +k Zcos8,
m K (X" cos@+Yy' sin@) sinf +my' =Y+k Zsiné.

On the other hand, one will then have:

X'=acosf ¢’ y’=asiné ¢’ zZ’=b ¢

!

cosf= ki,, sing= kl,,
z z

when one sets:
Z-mZ _

I

Y4

A.

IX. — REMARKS ON NON-HOLONOMIC SYSTEMS THAT ARE SUBJE CT TO
PERCUSSIONS OR ANIMATED WITH VERY SLOW MOTIONS.

23. Application of Lagrange’s equations in the case of percuess. — Beghin and
Rousseau showed in a paper in the Journal de Mathémat&filebdt the form of the
equations of the theory of percussions, which | have deduwsd the Lagrange
equations for the holonomic systems, further applieadie-holonomic systems, even
though the Lagrange equations will then break down. Onestablish that result by a
method that is analogous to the one that | pointedom i15. Take the equations of an
arbitrary system in the form of na5:
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dfoT )| 0T
56 — — | = v AV = 1, 2, ,k .
(56) dt[aq’,j 2q Qv+ (v )

TheA, are correction terms that depend upon onlygthey, ..., Gk, ¢, @, ..., ¢, and

time. Those correction terms arero if the system is holonomic. However, if the
percussions take place during the very short intérvat, then multiply the two terms in

equation (56) byt and integrate fromty tot; . The integrals ofgldt andA, dt will be
q,

negligible, because theg and g, will remain finite, and the equations will give:

oT oT b
— | |37 =) Qdt
[0%1 (6%1 )

Up to the difference in notations, these are precis@yeguations that one can deduce
from those of Beghin and Roussed8]|

24. Case of very slow motions- One can make a remark of the same type for the
application of the Lagrange equations to the very slowiame of a non-holonomic
system with constraints that are independent of time.

If the motion is very slow then the velocities Mbe very small. Consequently, the
quantitiesq,, @,, ..., ¢, will remain very small. Suppose that one neglectsstheres
and products of those quantities then. The terms that émb equations (56) are
quadratic forms in theq, q,, ..., g., so they arenegligible and the approximate

equations take the form:

in which it will remain for one to suppress the terrhdegree two ing, , o, ..., Q. -

In that case, the Lagrange equations will then provideesapproximate equations of
motion, although that form of equations is not rigoroaglplicable.
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