"Les équations du mouvement d'un fluide parfait déduites de la considération de l'énergie d'accélération," Ann. mat. pura appl. (3) 20 (1913), 37-42.

The equations of motion for a perfect fluid, deduced from the consideration of the energy of acceleration.

By Paul Appell in Paris

Translated by D. H. Delphenich
I. - J. L. Lagrange deduced the equations of hydrostatics from the principle of virtual work in his Mécanique analytique ($3^{\text {rd }}$ edition, I, pp. 173-206; Oeuvres 11, pp. 197-236). As for the equations of hydrodynamics, BASSET, in the work entitled A Treatise on hydrodynamics, Cambridge, 1888, said this on page 32: "As Larmor showed, the equations of motion can be deduced by the use of the principle of least action, combined with Lagrange's method."

I propose to deduce those equations from the following principle:
In a material system with arbitrary constraints without friction (whether holonomic or not) that is subject to forces X, Y, Z that depend upon time, the positions, and the velocities, the components x, y, z of the accelerations of the various points have values at an arbitrary instant that render the function:

$$
R=\sum\left[\frac{m}{2}\left(x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}\right)-\left(X x^{\prime \prime}+Y y^{\prime \prime}+Z z^{\prime \prime}\right)\right]
$$

a minimum.

One will find the proof of that principle in a note that was entitled "Sur les mouvements de roulement; équations du mouvement analogues à celles de Lagrange" [Comptes Rendus de l'Académie des Sciences de Paris 129 (7 August 1899), pp. 317320].

The quantity:

$$
S=\sum \frac{m}{2}\left(x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}\right)
$$

which is analogous to the LAGRANGE function:

$$
T=\sum \frac{m}{2}\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)
$$

has received the name of energy of acceleration.
II. - Having said that, imagine a perfect fluid in motion. Let ρ denote the density of a particle whose coordinates are x, y, z at the instant t, and let X, Y, Z denote the components of the force per unit mass. Use the variables that one calls the Lagrange variables, and let a, b, c denote the initial coordinate of the particle x, y, z at the instant t $=t_{0}$, and let ρ_{0} denote the initial density of that particle. The coordinates x, y, z, and the density ρ are functions of a, b, c, t.

The continuity equation is:

$$
\begin{equation*}
\rho D=\rho_{0}, \tag{1}
\end{equation*}
$$

in which D denotes the functional determinant:

$$
D=\frac{d(x, y, z)}{d(a, b, c)},
$$

and we shall denote minors such as $\frac{\partial y}{\partial b} \frac{\partial z}{\partial c}-\frac{\partial z}{\partial b} \frac{\partial y}{\partial c}$ by $\frac{d(y, z)}{d(b, c)}$. Finally, the derivatives of x, y, z with respect t will be denoted by primes, following LAGRANGE's notation. The function that is analogous to R is presently expressed by a triple integral that is extended over the volume V of the fluid at the instant t :

$$
R=\iiint\left[\frac{1}{2} \rho\left(x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}\right)-\rho\left(X x^{\prime \prime}+Y y^{\prime \prime}+Z z^{\prime \prime}\right)\right] d x d y d z
$$

or, upon taking the integration variables to be a, b, c :

$$
\begin{equation*}
R=\iiint\left[\frac{1}{2} \rho_{0}\left(x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}\right)-\rho_{0}\left(X x^{\prime \prime}+Y y^{\prime \prime}+Z z^{\prime \prime}\right)\right] d a d b d c \tag{2}
\end{equation*}
$$

because one must replace $d x d y d z$ by $D d a d b d c$ or $\left(\rho_{0} / \rho\right) d a d b d c$. In that integral, $x^{\prime \prime}$, $y^{\prime \prime}, z^{\prime \prime}$ are, at the instant t, functions of the a, b, c that are subject to the following relation, which is deduced from the continuity equation (1). Differentiate that equation twice with respect to t; it will become:

$$
\begin{equation*}
D^{\prime \prime}+2 \frac{\rho^{\prime}}{\rho} D^{\prime}+\frac{\rho^{\prime \prime}}{\rho} D=0 \tag{3}
\end{equation*}
$$

In that equation, the terms in $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ are provided by only $D^{\prime \prime}$. Now, one has:

$$
\begin{align*}
& D^{\prime \prime}=\frac{\partial x^{\prime \prime}}{\partial a} \frac{d(y, z)}{d(b, c)}+\frac{\partial y^{\prime \prime}}{\partial a} \frac{d(z, x)}{d(b, c)}+\frac{\partial z^{\prime \prime}}{\partial a} \frac{d(x, y)}{d(b, c)} \\
& +\frac{\partial x^{\prime \prime}}{\partial b} \frac{d(y, z)}{d(c, a)}+\frac{\partial y^{\prime \prime}}{\partial b} \frac{d(z, x)}{d(c, a)}+\frac{\partial z^{\prime \prime}}{\partial b} \frac{d(x, y)}{d(c, a)} \tag{4}\\
& +\frac{\partial x^{\prime \prime}}{\partial c} \frac{d(y, z)}{d(a, b)}+\frac{\partial y^{\prime \prime}}{\partial c} \frac{d(z, x)}{d(a, b)}+\frac{\partial z^{\prime \prime}}{\partial c} \frac{d(x, y)}{d(a, b)} \\
& +. \\
& \text {... }
\end{align*}
$$

in which the unwritten terms do not contain $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$.
Having said that, from LAGRANGE's method for the calculus of variations, upon denoting an arbitrary function of a, b, c, t by λ, one must determine $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ in such a fashion that the variation of the integral:

$$
I=\iiint\left[\frac{1}{2} \rho_{0}\left(x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}\right)-\rho_{0}\left(X x^{\prime \prime}+Y y^{\prime \prime}+Z z^{\prime \prime}\right)+\lambda D^{\prime \prime}\right] d a d b d c
$$

will be zero when $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ are subjected to arbitrary infinitely-small variations $\delta x^{\prime \prime}, \delta y^{\prime \prime}$, $\delta z^{\prime \prime}$. Now:

$$
\delta I=\iiint\left[\rho_{0}\left(x^{\prime \prime}-X\right) \delta x^{\prime \prime}+\cdots+\lambda \delta D^{\prime \prime}\right] d a d b d c
$$

in which, from (4):

$$
\delta D^{\prime \prime}=\frac{\partial \delta x^{\prime \prime}}{\partial a} \frac{d(y, z)}{d(b, c)}+\frac{\partial \delta y^{\prime \prime}}{\partial a} \frac{d(z, x)}{d(b, c)}+\frac{\partial \delta z^{\prime \prime}}{\partial a} \frac{d(x, y)}{d(b, c)}+\ldots+\ldots,
$$

in which we have written only the first line. We now apply the formula for integration by parts, which would result from GREEN's theorem (see, for example, my Traité de mécanique, t. III, Chap. XXVIII) to terms such as:

$$
\begin{equation*}
\iiint \lambda \frac{d(y, z)}{d(b, c)} \frac{\partial \delta x^{\prime \prime}}{\partial a} d a d b d c \tag{5}
\end{equation*}
$$

Upon letting $d \sigma_{0}$ denote an element of the bounding surface S_{0} of the fluid, and letting $\alpha_{0}, \beta_{0}, \gamma_{0}$ denote the direction cosines of the exterior normal to it, one will have

$$
\iiint \frac{\partial(P Q)}{\partial a} d a d b d c=\iint_{S_{0}} P Q \alpha_{0} d \sigma_{0}
$$

for two any functions P and Q, so:

$$
\iiint P \frac{\partial Q}{\partial a} d a d b d c=\iint_{S_{0}} P Q \alpha_{0} d \sigma_{0}-\iiint Q \frac{\partial P}{\partial a} d a d b d c
$$

The term (5) can then be replaced with:

$$
\iint_{S_{0}} \lambda \frac{d(y, z)}{d(b, c)} \delta x^{\prime \prime} \alpha_{0} d \sigma_{0}-\iiint_{\partial}^{\partial a}\left(\lambda \frac{d(y, z)}{d(b, c)}\right) \delta x^{\prime \prime} d a d b d c
$$

We treat each of the nine terms that are provided by $\delta D^{\prime \prime}$ similarly, and remark that:

$$
\begin{aligned}
& \frac{\partial}{\partial a}\left(\lambda \frac{d(y, z)}{d(b, c)}\right)+\frac{\partial}{\partial b}\left(\lambda \frac{d(y, z)}{d(c, a)}\right)+\frac{\partial}{\partial c}\left(\lambda \frac{d(y, z)}{d(a, b)}\right) \\
&=\frac{\partial \lambda}{\partial a} \frac{d(y, z)}{d(b, c)}+\frac{\partial \lambda}{\partial b} \frac{d(y, z)}{d(c, a)}+\frac{\partial \lambda}{\partial c} \frac{d(y, z)}{d(a, b)} \\
&=D \frac{\partial \lambda}{\partial x}=\frac{\rho_{0}}{\rho} \frac{\partial \lambda}{\partial x}
\end{aligned}
$$

as one will see upon writing:

$$
\frac{\partial \lambda}{\partial a}=\frac{\partial \lambda}{\partial x} \frac{\partial x}{\partial a}+\frac{\partial \lambda}{\partial y} \frac{\partial y}{\partial a}+\frac{\partial \lambda}{\partial z} \frac{\partial z}{\partial a},
$$

We finally have:

$$
\begin{align*}
\delta I= & \iint_{S_{0}}\left(\alpha_{0} \frac{d(y, z)}{d(b, c)}+\beta_{0} \frac{d(y, z)}{d(c, a)}+\gamma_{0} \frac{d(y, z)}{d(a, b)}\right) \lambda \delta x^{\prime \prime} d \sigma_{0} \\
& +\cdots+\cdots \tag{6}\\
& +\iiint\left(x^{\prime \prime}-X-\frac{1}{\rho} \frac{\partial \lambda}{\partial x}\right) \delta x^{\prime \prime} \rho_{0} d a d b d c+\cdots+\cdots
\end{align*}
$$

in which we have written only the terms in $\delta x^{\prime \prime}$ in both the partial integral (viz., the double integral) and the triple integral. Later, we shall see that the partial integral is zero. We equate the coefficients of $\delta x^{\prime \prime}, \delta y^{\prime \prime}, \delta z^{\prime \prime}$ in the triple integral to zero. We will then get the classical equations:

$$
x^{\prime \prime}-X-\frac{1}{\rho} \frac{\partial \lambda}{\partial x}=0, \quad y^{\prime \prime}-Y-\frac{1}{\rho} \frac{\partial \lambda}{\partial y}=0, \quad z^{\prime \prime}-Z-\frac{1}{\rho} \frac{\partial \lambda}{\partial z}=0
$$

in which the pressure is equal to $-\lambda$.
III. - It remains for us to see that the partial integral (viz., the double integral) in formula (6) is zero, as a result of the values of $\delta x^{\prime \prime}, \delta y^{\prime \prime}, \delta z^{\prime \prime}$ on the boundary surface.

One knows that the fluid particles that are on the boundary surface S_{0} at the initial instant will remain on the boundary surface S at the instant t. The element $d \sigma_{0}$ of S_{0} will become an element $d \sigma$ on S. One lets α, β, γ denote the direction cosines of the normal to $d \sigma$. One will then have:

$$
\begin{equation*}
\left(\alpha_{0} \frac{d(y, z)}{d(b, c)}+\beta_{0} \frac{d(y, z)}{d(c, a)}+\gamma_{0} \frac{d(y, z)}{d(a, b)}\right) d \sigma_{0}=\alpha d \sigma . \tag{7}
\end{equation*}
$$

Indeed, a, b, c are functions of two parameters p and q on S_{0}, and when one sets:

$$
d \sigma_{0}=k d p d q
$$

one will have:

$$
\alpha_{0}=\frac{1}{k} \frac{d(b, c)}{d(p, q)}, \quad \beta_{0}=\frac{1}{k} \frac{d(c, a)}{d(p, q)}, \quad \gamma_{0}=\frac{1}{k} \frac{d(a, b)}{d(p, q)} .
$$

Since x, y, z are functions of p and q by the intermediary of a, b, c, one will have:

$$
\begin{gathered}
d \sigma=h d p d q \\
\alpha=\frac{1}{h} \frac{d(y, z)}{d(p, q)}=\frac{1}{h}\left[\frac{d(y, z)}{d(b, c)} \frac{d(b, c)}{d(p, q)}+\frac{d(y, z)}{d(c, a)} \frac{d(c, a)}{d(p, q)}+\frac{d(y, z)}{d(a, b)} \frac{d(a, b)}{d(p, q)}\right],
\end{gathered}
$$

which is precisely formula (7). The double integral that figures in δI can then be written:

$$
\iint_{S}\left(\alpha \delta x^{\prime \prime}+\beta \delta y^{\prime \prime}+\gamma \delta z^{\prime \prime}\right) \lambda d \sigma
$$

in which the integration is extended over the surface S of the fluid at the instant t. However, the differential elements will then be zero. Indeed, let:

$$
f(x, y, z, t)=0
$$

be the equation of the bounding surface S. Upon differentiating with respect to t and following the particle x, y, z in its motion, one will have:

$$
\frac{\partial f}{\partial x} x^{\prime}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial z} z^{\prime}+\frac{\partial f}{\partial t}=0,
$$

and then:

$$
\begin{equation*}
\frac{\partial f}{\partial x} x^{\prime \prime}+\frac{\partial f}{\partial y} y^{\prime \prime}+\frac{\partial f}{\partial z} z^{\prime \prime}+\ldots=0 \tag{8}
\end{equation*}
$$

in which the unwritten terms do not contain $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$. The relation (8) shows that the variations $\delta x^{\prime \prime}, \delta y^{\prime \prime}, \delta z^{\prime \prime}$ will verify the condition:

$$
\frac{\partial f}{\partial x} \delta x^{\prime \prime}+\frac{\partial f}{\partial y} \delta y^{\prime \prime}+\frac{\partial f}{\partial z} \delta z^{\prime \prime}=0
$$

on the surface, or when one calls the direction cosines of the normal α, β, γ :

$$
\alpha \delta x^{\prime \prime}+\beta \delta y^{\prime \prime}+\gamma \delta z^{\prime \prime}=0
$$

Paris, 14 February 1912.

