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The equations of motion for a perfect fluid, deduced from the
consideration of the energy of acceleration.
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Translated by D. H. Delphenich

I. —J. L. Lagrange deduced the equations of hydrostatics f@priticiple of virtual
work in hisMécanique analytiqu(a3rd edition, I, pp. 173-208Deuvresll, pp. 197-236).
As for the equations of hydrodynamics, BASSET, in thekwentitled A Treatise on
hydrodynamics Cambridge, 1888, said this on page 32: “As Larmor showed, the
equations of motion can be deduced by the use of the parmipeast action, combined
with Lagrange’s method.”

| propose to deduce those equations from the followingiptel

In a material system with arbitrary constraints without friction ¢iiter holonomic
or not) that is subject to forces X, Y, Z that depend upon time, tit@pssand the
velocities, the components X, y, z of the accelerations of treusgroints have values at
an arbitrary instant that render the function:

R: zl:g(xrrz+y'12+ 212)_( X )1<+ Y S’/+ Zrz:l
a minimum.

One will find the proof of that principle in a motthat was entitled “Sur les
mouvements de roulement; équations du mouvemenbcares a celles de Lagrange”
[Comptes Rendus de I'Académie des Sciences de P28i¢7 August 1899), pp. 317-
320].

The quantity:

m
S: y X"2+ 12+ 212 ,
Yo+ y e 2
which is analogous to the LAGRANGE function:
m
T=) —(X?+y?+ 2%,
>4y 2)

has received the nameaiergy of acceleration.
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II. — Having said that, imagine a perfect fluid in motiont 2denote the density of a
particle whose coordinates are y, z at the instantt, and letX, Y, Z denote the
components of the force per unit mass. Use the vasabit one calls theagrange
variables and leta, b, c denote the initial coordinate of the partigley, z at the instant
= to, and letoy denote the initial density of that particle. The chaitesx, y, z, and the
densityp are functions o4, b, ¢, t.

The continuity equation is:

PD=m, (1)

in whichD denotes the functional determinant:

p=dxy Z),
d(abo

and we shall denote minors such?e}fsa—z—a_za Yp d(y. 2

dboc odbdc d(b, 0’
X, Y, zwith respect will be denoted by primes, following LAGRANGE's tation. The
function that is analogous ®is presently expressed by a triple integral teaxtended
over the volumé/ of the fluid at the instarit:

Finally, the derivatives of

R=[[[[3p(x7+y?+ 2% =p(X R+ Y §+ 23] dxdy dz
or, upon taking the integration variables toabb, c :
R= J'[J[%pO(XIrZ+Yy2+ 2’2)_,00( X¥+Y g/+ le:' da db dC (2)

because one must replasbedy dzby D da db door (o / p) da db dc In that integralx”,
y', Z' are, at the instanf functions of thea, b, c that are subject to the following relation,
which is deduced from the continuity equation (Djfferentiate that equation twice with
respect td ; it will become:

p'+ 22 p+£p =0, 3)
p P

In that equation, the termsxf, y', Z' are provided by onlp”. Now, one has:

D,,:%d()/,z)+ﬂ dzx 07 dxy
dadlbd dadbo oadby
LoXd(y g 0y dzx 0z dxy
obdicad obdca obdch (4)
LOX'd(y.9 0y dzXx 0% dXxy
oc d(ab odcdab ocdabp
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in which the unwritten terms do not containy”, z'.

Having said that, from LAGRANGE's method for the calsubf variations, upon
denoting an arbitrary function @ b, c, t by A, one must determiné’, y”, ' in such a
fashion that the variation of the integral:

1= [[[[30s (X% +y?+2%)=p( XX+ Y §+ 29+ A D|dadbdc

will be zero wherx", y", Z' are subjected to arbitrary infinitely-small vaigais 0 X", oy,
0Z'. Now:

ol = jjj[po(x"—X)5><'+~-+/15Df'] da db dc
in which, from (4):

sore 0K d(%2,90y dzx, 5% Xy,
da d(bd oJa dbg¢ oa dby

in which we have written only the first line. Wew apply the formula for integration by
parts, which would result from GREEN’s theorem (st example, myTraité de
mécaniquet. 1, Chap. XXVIII) to terms such as:

d(y, 200X
[ 3t C)Kdadb dc (5)

Upon lettingdap denote an element of the bounding surfacef the fluid, and letting
o, [, W denote the direction cosines of the exterior nbtmé, one will have

Il a(gaQ) da db dc= g PQa, do,

for two any function$ andQ, so:

9Q oP
(I p=>da db dc:gPQa0 do, - ﬂngdadb de

The term (5) can then be replaced with:

g/l% oxX' a,do, - m%[/l%jax" da db dc

We treat each of the nine terms that are proviedD ” similarly, and remark that:
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i@d(yi)}i)ldyi)}ipC(y)lj

dal d(bo) o d¢a) 0 dap
_0Ad(y.9,0A Ay 3,04 dy¥
" da d(b o abo(ca GCdab

_pH 04 _ p, 04
ox p X’

as one will see upon writing:
0A _ 04 0x 6/1 ay 04 0z

% 6x6a ayaa 9z0 ¢

We finally have:

51 H[ d(v.2, , dy3, y(,(‘”ij"dao

46,9 Pdca L ab
[ I R (6)
+m[ —iﬂj 5X p, dadbde---- +.

in which we have written only the terms &" in both the partial integral (viz., the
double integral) and the triple integral. Lateg shall see that the partial integratesa
We equate the coefficients 0", oy", 0Z' in the triple integral to zero. We will then
get the classical equations:

_lﬂ =0, y'-— 1@ =0, Z _Z_lﬁ =0,

P 0X ,oay p 0z

-X
in which the pressure is equal tol—

[Il. — It remains for us to see that the partial inhégviz., the double integral) in
formula (6) iszerq as a result of the values k", oy", 0Z' on the boundary surface.

One knows that the fluid particles that are onlbendary surfac& at the initial
instant will remain on the boundary surfé&gat the instant. The elementiop of S will
become an elemediconS One letsa, S, ydenote the direction cosines of the normal
toda. One will then have:

[a d(v.9, , Ay 3, c!y?j don = @ dor. @)

®d(b, 0 d(c a dab

Indeeda, b, ¢ are functions of two parametgrandq onS), and when one sets:
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daop =k dp dgq
one will have:
o= 1 d(b,0 _1d(ca) 16 = 1d(ab)
0— — ; - — ; = — .
kd(p 9 kd(p o kd(p 9

Sincex, y, z are functions op andq by the intermediary cd, b, ¢, one will have:

do=hdpdgq

a

_1d(y.2 zl{d(y,z) dbg, dyz dcp dy)y (d,a)i
hd(pd hldbodpqg deca dph @apd.pd

which is precisely formula (7). The double intddhat figures indl can then be written:

jj(aax" +B3Y +yd7)A W,

in which the integration is extended over the u@f8 of the fluid at the instant.
However, the differential elements will thenZzera Indeed, let:

f(x,y,zt)=0

be the equation of the bounding surfe&&e Upon differentiating with respect toand
following the particlex, y, zin its motion, one will have:

ﬂx’+i>/+ﬂz+£:0,

0x oy 0z ot
and then:

of of of

—X'+—Vy'+—7+...=0, 8

0x ayy 0z ®)

in which the unwritten terms do not contaih y”, Z'. The relation (8) shows that the
variationsox’, oy', dZ' will verify the condition:

9 ses® 5y s¥ 5720
0x oy 0z

on the surface, or when one calls the directioimessof the normad, g, y:
aox' +[Bdoy' +ydoz =0.

Paris, 14 February 1912.



