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INTRODUCTION

Rolling motions occupy a special place in dynamics, as been known for some
time, and mainly by the research of Neumann [Math. 2dr{1886)]. That comes down
to the fact that the constraint that two solid bed&ould roll on each other cannot be
expressed by equations whose left-hand sides are lingaggemeous functions of the
coordinate differentialshecause those functions are not exact total differentidlsat
will imply special difficulties when one wishes to &pthe general methods of analytical
dynamics to those problems. On the other hand, tmesgons are encountered
constantly in applied mechanics: viz., the hoop, theyatec the bicycle, the rolling of
balls are the simplest examples.

This booklet has the goal of making known the main methizatsare employed to
treat that class of problems in such a fashion thatehder himself can undertake new
research.




MAIN BOOKS AND PAPERS TO CONSULT

SLESSER. — Quart. J. Math., 1861.
NEUMANN. — Math. Ann.27 (1886), Ber. Verh. Kon. Sachs. Ges. Wiss. Leipzig, 1888.
ROUTH. —Advanced Rigid DynamicMacMillan and Co., 1884.

VIERKANDT. — “Ueber gleitende und rollende Bewegung,” Mfath. Phys3 (1892),
pp. 47.

HADAMARD. - “Sur les mouvements de roulement,” C. R.a#dc Sci. (1894),
Mémoires de la Société des Sciences physiques et nasudellBordeauk (1895).
That paper is reproduced at the end of this volume.

BOURLET. —Bicycles et Bicyclettes. 1, Equilibre et direction, v. 2, Travail, Gauthier-
Villars. “Etude théorique sur la bicyclette,” Bull. Socatim. France (1899). “Sur les
roulements a billes,” Génie civil (1898). “Pistes de vélodrdrRend. Circ. Mat. di
Palermo (1899).

CARVALLO. — Papers submitted in competition for the Feyron Prize (public
meeting of 'Académie des Sciences, 17 December 1898). pHpatr will appear
next in the J. Ec. poly.

BOUSSINESQ. — Various notes in Comptes rendus, seconesser 1898, first semester
1899, and J. de Math., first fascicle, 1899.

KORTEWEG ¢). — “Ueber eine ziemlich verbreitete unrichtige Behandsweise eines
Problemes der rollenden Bewegung, Uber die Theorie rdiBsgvegung, und
insbesondere Uber kleine rollende Schwingungen um eineeh@&wichtslage,”
Nieuw Achief voor Wisskunde (1899). That paper will be fokkaMby a “Note sur le
mouvement de roulement d’'un corps pesant de révolutionesptah horizontal,”
which will appear in the same journal at the end of 1899.

APPELL. — “Sur lintégration des équations du mouvementndaorps pesant de
révolution roulant par une aréte circulaire sur un plarzontal, cas du cerceau.” To
appear in Rend. Circ. Mat. Palermo, first fascicl@é@3d0.

() 1had no knowledge of this paper when the present vowasepublished.



FIRST CHAPTER

GENERAL FORMULAS RELATING TO
THE MOTION OF A SOLID

BOOKS TO CONSULT:
DARBOUX. —Lecons sur la théorie générale des surfatels Chap. | and L.

ROUTH. — The Advanced part of a Treatise on the Dynamics of a system of Rigid
Bodies Chap. I.

1. Some theorems of kinematics- First imagine a system of invariable form in
motion around a fixed poinD. In kinematics, one shows that at each instanhe
velocities of the various points of the system aresdn®e as if it turned with a certain
angular velocitywaround an axis that passes through the fixed point. €pmesents that
rotation, which is called amstantaneous rotatignby a vectorOw of length w that is
carried by the rotational axis with a sense such thatbaarver that has his feet@tand
his head atvwill see the system turn from his left to his right.

Now imagine an invariable system that is animated artlarbitrary motion. Take a
point O that is invariably linked with the system, and\kbe the velocity of that point.
One shows that the velocities of the various pointhefsystem are the same as if the
system were animated by both a translation whose iteelzcequal toV and rotation
whose angular velocityw around an axi®©w passes throug®. That is to say that the
velocity of an arbitrary point of the system is theuleant of a vector that is equal Yo
and a vector that is equal to the velocity that thetpewuld have if the system were
animated by only the rotatiog@. In that representation of the state of the velegitihe
choice of the poin®© that is invariably linked with the systemagbitrary. If, at the same
instantt, one has made a choice of another pQnthat is invariably linked with the
system then one will have another velodityof translation, but the rotation will be the
same.

2. Formulas. — Consider a tri-rectangular trihedr@xyzin motion. That trihedron
constitutes an invariable system. We suppose that tlseaageriented in such a fashion
that a rotation of 90in the positive sense arou@d will take Ox to Oy.

At the instant, let V' be the velocity of the poird, and letw’ be the instantaneous
rotation of the trihedron, and denote the projectionshefvectorsv’ and w’ onto the
moving axe©xyzby u’, v, w andp’, q’ r’, respectively.

When the motion of the trihedron is givéfi,and &’ will be known at each instant, so
u’, v, w andp’, q r“will be known functions of time. Conversely, ibde quantities are
given as functions of time then one can find the matiotie trihedron, as one can see in
DARBOUX'’s Lecons vol. I, Chapter II.
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Velocity of a point— Letmbe a point that i;wvariably linkedwith the trihedron: The
coordinates, y, z of that point with respect to the trihedron will thes constant. Lév.
denote the velocity of the point at the instant, and letVex, Vey, Ve, be its projections
onto the moving axes. From the known formulas for ratatio

Vex=U'+Qq'z-rYy,
1) Vey=V'+r'x—-pz,
Ve =W +p’'y —gX.

If the pointm is in motion with respect to the ax@xyzthen its coordinates, y, z
will vary with t. The absolute velocity of the point will then be the resultant of its

relative velocity, which ha%, %’ Z—f for its projections, and its guiding velocity,

which has the quantities (1) for its projections. Uporotiag the absolute velocity of
the pointm by V, and denoting its projections By, Vay, Vaz, One will then have:

dx
Vax:a+ u'+q'z-ry,

(2) Vay=%/+v’+r'x—p'z,

dz
Vaz=—+W+p'y—-gXx.
a = Py—q

3. Applications:

1. Expressing the idea that the point m is immobile in spadewill suffice to write
down that its absolute velocity is zero:

3) %+u'+q’z—r’y:0, etc.

2. Expressing the idea that a line whose direction cosines with respéuoe taxes
Oxyz are the quantities, S, yhas a fixed direction in space.Upon drawing a segment
OA of length 1 that is parallel to the given line throulgé origin, one will get a poirk
whose coordinates are:

X=a, y=0 z=y.

In order for the segme@A to displace parallel to itself, it is necessary anfigaht
that the pointsA and O should have the same absolute velocity at each instaet;
expresses that by writing th&x = U’ Vay = V), Vaz = z. One will then have the
conditions:
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(4) (fj—c:+ yq'—Br’'=0, etc.

4. Acceleration of a point.— Letm be a point in motion with respect to the moving
axes: LetV, denote its absolute velocity, and Jedenote its absolute acceleration.

Take a poinD; that is absolutely fixed and has coordinatgls, ¢ with respect to the
moving axes, and draw a segméntm, through that point that is equal and parallel to
V.. From the definition of acceleratiod, will be equal to the absolute velocity of the
pointmy . Now, the coordinates, yi, zz of my with respect to the ax&xyzare:

X1=a+Vax, Y1=b+Va, Z1=C+ V.

Upon lettingJdax , Jay, Jaz denote the projections of the desired acceleratigrone

will then have:
dx
Jox=—= +tu'+q’zz—-r'vy, ...,
a dt q 1 yl
or
da  dV, , , ,
\]axza+T +U'+(C+Ve) Q'—(b+Vey 1 ...

However, if the poinD; is fixed in space then one will have:

%+ u'+cq’-br’=0, ...
dt

Thus, one finally has:

dv.
Jax :d_?x + 9" Vaz—I"Vay,

dVay , ,
(5) 'Jay :F + 1" Vax—pP’ Vaz,

dv.
d'?z +P’"Vay—q" Vax.

Jaz =

5. Motion of a solid body around a fixed point— Imagine a solid body that moves
around a fixed poinD under the action of given forc€s, F,, F3, ... Letwdenote the
instantaneous rotation of the body at the instanthich is a rotation that is represented
by a certain vectoDw. Refer the motion of the body to a trihed@xyzwhose summit
O is animated with a known motion. As above, dédenote the instantaneous rotation
of the trihedron at timé Letp’, q' r” denote the projections @& onto the three axes,
and letp, g, r denote those ab. If the pointO is fixed then the quantitias; v’, w” will
be zero.
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Resultant moment of the quantities of motierA moleculem of the body whose
coordinates arg, y, z will possess an absolute velocity at the instamhose projections
onto the moving axes will be:

Vax=QqzZ -1y
(6) Vay=rX—pz
Vaz=py—-0X%

from known formulas for rotations.

Let us construct the resultant momé&u of the quantities of motion of the various
points of the body with respect to the pait The moment of the quantity of motion of
the pointm with respect t@® will have the following projections onto the axes:

MY Vaz—Z \y), ...,
m(y’+Z)p-xy q—xzlr ...

Upon lettingos , & , ¢; denote the projections @o onto the axe®x, Oy, Oz, one
will then have:

a=Y m(Y+Z)p-xyq-xzr ...

A=Ymy’+7), B=YmEZ+x), C=>m(E+y),

Set:

(7)
D=> myz E=) mxz F =) mxy.
One will get:
oa=Ap-Fqg-E¢
(8) %=Bq-Dr-Fp
g=Cr—-Ep-Dqg
In those formulasA, B, C are the moments of inertia of the body with resped¢hé
axesOxyz andD, E, F are the products of inertia with respect to those agisce the

trihedronOxyzis supposed to be animated with an arbitrary motion inespad in the
body, those six quantities will vary with time.

Vis viva of the body- The semiis viva T= %Zm\/a2 is given by the formula:

2T =) m(\Vo+ Vo + Vo),
so, upon developing:

(9) T=Ap+Bf+Crr—Dqgr— E rp— F pq

one can verify that one has:



Appell — Rolling Motions in Dynamics. 5

(10) o= —, o =—, g, = —.

Resultant moment of the forcesLet OS be the resultant moment of the forces that
are applied to the body with respect to the p@inand letS., S;, S, be its projections
onto the axes. Those quantities are the sums of dingemts of the forces with respect to
the axeOx, Oy, Oz respectively.

Equations of motion— From a geometric interpretation of the theorenmoments
that was given by Resal (see ifaité de mécaniquée. I, Chapter XVIlI), the absolute
velocity of the pointois equal and parallel t8 at each instartt We shall write that the
projections of the absolute velocity gfonto the axe®xyzare equal to those & Now,
the pointo has the coordinates, gy, ¢, so the projections of its absolute velocity will
be given by formulas (2), in which one replageg, zwith a;, ¢y, g; andu’, v/, w’ with
zero. One will then have the equations of motion:

do
x+ 'OQ—I" — ,
at J %=
do.
(11) —FHr'k-p =S,
dt
do

Z+/_/:.
at PR-q =S

In those equationsx , ¢ , g; have the values (8), and one must remark that in the
calculation ofdgy / dt, ..., one must take into account the fact that the icoeftsA, B,
... vary witht, in general.

6. Special cases:

1. The reference trihedron Oxyz is attached to the bedyf the trihedron is
invariably linked with the body then the instantaneous imtabf the trihedronw' is
identical to that of the body. One will then have:

p’=p, a’=q, r=r.

In addition, A, B, C, D, E, F are constants If one supposes that the reference
trihedron is composed of the principal axes of inertishefliody relative t® then one
will see thatD, E, F are zero, and one will recover Euler’s equations.

2. The axis Oz is fixed in the body. The axes Oy and Oz move in the-lFogdgint
m that is taken o®©z must have the same absolute velocity whether orerdegt as
moving with the trihedro®xyzor as moving with the body. One must then have:
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q’'z-ry=qz-ry etc.
when one supposes thaandy are zero. One will then have:

p’=p, q’=q,
butr’is different fronr.

For example, imagine that the ellipsoid of inertiat ttelates t® is one of revolution.
Take the axigzto be the axis of revolution and the ax&s Oy to be two rectangular
axes in the plane of the equator that move insidedtg.bOne will then have:

A =B, D=E=F=0.
A, B, C are constants, moreover. In this case, one anéh
a&=AD a=Aq a=Cr,

P’ =p, q’=aq, r#r.

From (11), the equations of motion are then:

dp

—+(Cr-Ar)g =%,
ot ( )q =S
dg R
dr

A— =S.
dt >

7. Motion of a free solid body.— Let a free solid body be subjected to forlegs,
..., Fn. Refer the motion of the body to a reference thiba Oxyzthat is animated with
a known motion. As in n®, we then letV’ denote the velocity oD and let«w denote
the instantaneous rotation of the trihedron.

Let G be the center of gravity of the body, &t;, {be its coordinates with respect to
Oxyz and letV be its absolute velocity with projectionsv, w ontoOxyz One will have:

d¢

u:_+ul+ 4 _rl ,
ot qQ'¢—r'n

d,7 14 4 4
v=—L4vi+r'é—p,
at §-p'¢

dd

W:_+WI+I _I.
at p'n—-aq¢
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Similarly, letJ be the absolute acceleration of the center of gr&itgnd letdy, Jy,
J; be its projections ont®xyz From (5), one has:

J :% +q'w—rv,
Sl

Motion of the center of gravity- The applied forces have a general resultant that has
X, Y, Z for its projections onto the ax€xyz From the theorem on the motion of the
center of gravity, that resultant will be equaMd, whereM denotes the total mass of the
body. One will then have the equatidisk =X, ..., or:

M (%+q' w-— r’vjzx,
dt
(13) M(%’H'u—p’wj:Y,

dw
M| —+pv-dqu|=2Z
(dt P qj

In the particular case whe@coincides withG, one will have:
é=n=4{=0, u=u, V=V, W =W,

Motion around the center of gravity- Draw axesG x Y1 z throughG that are
parallel to the axe®xyz The instantaneous rotation of the new trihedroobigously
the same as that of the first one, and its projectiatisagain byp’, g/, r. The theorem
of moments applies to the motion around the centeyrafity G as if that point were
fixed. We can then apply the equations of the precedingper to it. Lefp, g, r be the
components of the instantaneous rotatgof the body. LeGo’ be the resultant moment
with respect tds of the quantities of motion of the body in its matiaroundG. Let o, ,
o,, g, denote the projections of the vec@o” onto the axe& x Y1 z or axes parallel

to Oxyz Similarly, letGS’be the resultant moment of the external forceb vaspect to
G, and letS,, S, S, be the projections of the vect@S’ onto the axes. Finally, 1ét ,

B1, C1, D1, E1, F1 be the moments and products of inertia of the bodynegpect to the

axesG X Y121 :

A= m(¥+7Z), ...
so we will have:

o =Ap-Fiq-Eir,
(14) 0,=B1q-Dir-Fip,

0,=Cir—-E1p-D1gq,
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!

da— ! ! 1 ! !
tX+qaz—r g, =S,

da-’ I ! I ! !
(15) dty+r o -po, =9,

do!
z + 10_1 _ 10_1 - Sl )
dt P, a0, z

Equations (13) and (15) will be the six equations of motidhebody.
Relative vis viva= Thevis viva2T; of the relative motion arourd is given by:
2Ti=A p?+By F +Cir? = 2D1 gr— 261 rp — 2F1 pq.

In those formulas, the quantitids , B:, ... generally vary witht. They remain
constant when the trihedrd® x y; z is invariably linked with the body. It can remain
constant in other cases; for example, if the eligh®d inertia relative tdG is a sphere.
Ds, E1, F1 are then zero, whild,, B;, C; are equal to the same constant.

In particular, one can apply the remarks oféhtm equations (15).




CHAPTER I

ROLLING

8. Rolling and pivoting of a surface that moves on a fixed surfac— Imagine a
moving solid body that is bounded by a rigid surf&dhat is constrained to remain in
contact with a fixed surfac® . At each instart, a certain poinA of the moving surface
Sis found to be in contact with a poiat of the fixed surfac&, . If the velocityV, of
the contact poinA of the moving surfac& is not zero at the instahthen that velocity
will be located in the common tangent plane to the swrfaces at the point of contact:
Indeed, leB be the point of contact at the instartdt, and letA’ be the new position of
A. The vector8A; andBA' are in the common tangent place to the two surfacBsso
the same thing will be true of the vectok’, which is the absolute displacementtof

O~
~

aw
|
|
I

a

!

Figure 1.

The velocities of the various points of the movingdsbbdy are the same as if the
body were animated with a velocity of translatinand a rotatiomw around an axis
that passes through The velocityV, is the velocity ofS slipping onS; . One says that
the surfaces rollsandpivotson S, when thevelocity of the contact point A is zembeach
instant. In that cas&/, will be zero, so the velocities of the points of theving solid
are the same at each instant as if the body wereagegunwvith only aotation Acwaround
an axis that passes through The slipping o5 onS; will then be zero.

The locus oAwin the bodySis a ruled surfacg, and a ruled surfacg, in absolute
space. The motion is obtained by rolliRgon%; . The locus of the poih onSis a
curveC that is the intersection &f with S. The locus of the poid; on S is a curveC
of intersection ofX; with §. Those two curves also roll on each other. The
corresponding arcs of those curves are equal.

The instantaneous rotatidtw can be decomposed into two more: one of themns
normal to the two surfaces, which one calls @ngular velocity of pivotingwhile the
other Aw is situated in the tangent plane, which is #wgular velocity of rolling,
properly speaking.

In what follows, we shall address rolling and pivotingtionas without slipping.
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It should be remarked that if one considers a molaoule the body that isocated
along the normalto the two surfaces & then the velocity of the molecule will be
parallel to the common tangent planedatindeed, that velocity is the geometric sum of
the velocities that are due to two rotatiansandaw . Since the moleculm is located on
the normal the velocity due t@ will be zero. All that will remain is the velocigue to
al, which is a velocity that is parallel to the tangeanpl! atA.

9. Physical conditions that determine the rolling and pivotig of a surface that
moves on a fixed surface- Imagine a moving solid bodythat is subject to remain in
contact with a fixed solid body; . If the surfaceS andS, areperfectly polishedhen the
reaction ofS; on Swill be normal to the surfac&sandS, at the contact poirA. In that
case, no force will oppose tkBppingof SonS, and that slipping will be produced, in
general.

In order for the bod$ to not slip orS; — i.e., in order for it to roll and pivot d& — it
is necessary that the surfaces of the two bodieslgheurough enough for there to be
friction between them.

Let f denote the coefficient of friction d on S, . The reaction oS on § is
composed of a normal componeMtthat is applied toA and a componenE that is
situated in the common tangent plane to the two swgfa® In order forthere to be no
slipping, it is necessary and sufficient that one must have:

F<fN.

That is then the condition for the surfé&&®® roll and pivot without slipping o8, . If
F becomes greater th&ailN at a certain moment then there will be slipping.

In summary, in order to study the rolling and pivotingaafunpolished bod$ on
another body5 that is likewise unpolished under the action of giveds, one writes
down the equations of motion of the sdlidhy assuming that it rolls and pivots §nand
introducing the normal reactidw and the tangential reactiénof the contacting surfaces
as auxiliary unknowns. The motion that is provided bydheguations will take place
effectively as long as the valuesfofindN that are inferred from the equations verify the
inequality:

F<fN.

On the contrary, iF becomes equal ioN at an instant; and then greater than it then
the bodySwill slide on$S; starting at that instant. The motion will entepiat new phase
in which the preceding equations no longer apply. In dalget the equations of motion
for that new phase, one must assume that the Bodljdes overS and introduce
auxiliary unknowns in the form of a normal componirib the reaction and a tangential
component that is equal faN and directed in the opposite sense to the velocityhef
material pointA of the bodySthat is in contact witls;, . That will result from the known
laws of sliding friction.

We shall confine ourselves to rolling and pivoting matibere. We shall neglect the
friction of rolling and pivoting.
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10. Visviva of a solid body that is animated with a rolling and pivoting notion. —
Take the reference trihedron to be a triheddogzwhose origin coincides at each instant
with the geometric contact point of the moving b&hnd the fixed bod$g . The origin
O then displaces in both the body and in space. Ath®directions of the axe€3xyz
they can vary according to an arbitrary law.

As above, leDwdenote the instantaneous rotation of the body, ang tgtr be its
components along the ax@xyz LetA, B, C, D, E, F be the moments and products of
inertia of the body with respect to those axes. &the velocities of the various points of
the body are the same as if the body were animatidonly the rotatiorry the semvis
viva T of the body will be the same as that of a solidybthat moves around a fixed
point O and is animated with an instantaneous rotatiorOne will then have:

2T=Ap+Bf+Crr—Dqgr—E rp-2F pq.

Vis viva theorem— In the motion of the body, the work done by tangerarad
normal reaction§ andN will be zerqg because those forces are applied at each instant to
a material point whose velocity is zero. Upon applyingvis vivatheorem, one will
then have:

dT=> 17,

in which Z?; denotes the sum of the elementary works done by apipliees.

11. Equations of motion of a body.— One writes the equations of motion by
applying formulas (13) and (15), with the simplificationttifeone takes the reference
trihedron to be the trihedron of the preceding number thenvelocity of the material
point that is placed & will be zero. However, the velocity of the originlivbe non-
zero.




CHAPTER IlI

APPLICATIONS

12. — The following applications are borrowed from the bookRmuth: Advanced
part of a Treatise on the Dynamics of Rigid Bodlesndon, MacMillan and Co., 1884).

13. Rolling of a sphere on a surfacéRouth, pp. 123). — Let a homogeneous sphere
of radiusa and mass 1 be constrained to roll and pivot on a gueface, and let it be
acted upon by forces that admit a unigue resultant thag¢pts®ugh the center.

Let G be the center of the sphere. Take the &4g0 be the line that joins the
contact point of the sphere and the surface to that @oand the axe&x andGy to be
two arbitrary perpendicular axes. The plagg will then be parallel to the tangent plane
to the surface at the contact point.

Let V denote the absolute velocity of the pdihand letu, v, w be its projections onto
the moving axes. Since the velocWyis parallel to the common tangent plane to the
sphere and the surface on which it rolls, one will have 0. As above, letv’ be the
instantaneous rotation of the trihedi@ryz and letp’, g, r"be its components, whiley
is that of the sphere, and its componentpacgr.

Let X, Y, Z be the components of the resultant of the applistkfalondsx, Gy, Gz,
respectively. The reaction of the surface is composednoimal forcer that is directed
in the sense o6z and a tangential force whose components aGrgnd Gy we shall
call F andF’, resp. Furthermore, l&tdenote the radius of gyration of the sphere around

a diametek =1a,/10. The moments of inertia with respect to the aBrsGy, Gz are:
A=B=C=K;
in addition,D, E, F are zero. We apply the general equations to this case.

Motion of the center of gravity- SinceG coincides with the origin of the axes, one
will haveu’=u, v'=v, w =w. When one setsl = 1,w = 0, equations (13) will then
give:

du_ rrv=X+F,
dt

(16) i/+r'u:Y+F,
dt

p’v-q'u=2Z+R.

Motion around G.— For the motion arouné, the resultant momerBo’ of the
guantities of relative motion will have projections:
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o=Kp, 0,=Kq  0,=Kr.

When one divides formulas (15) k¥and notes that the forée Y, Z is applied to the
point G, they will give termsS,, S/, S, that are provided by moments of the reacBon

F, F"that is applied to the poirt=0,y=0,z=—-a.:

@+q’r_r’q: aF

dt k?

dg aF
17 —+r’'p-pr=—-—,
(17) el o 2

dr

—+p'g- =0.

at p'a-ap

Conditions for rolling.— The contact poink = 0,y = 0, z = — a has an absolute
velocity ofzera

(18) u-aq=0, v+ap=0.
Consequences of those equationdf we inferp andqg from the equations (18) and

substitute them in (17) , and then elimin&t@andF’ from equations (16) and (17) then
we will have:

du a’ k2

— —r’y= X + ,

dt rv a?+k? a"‘+kZaldr
(19)

dv a’ k?

—+ru= Y+ r.

dt ru a?+k? a’+ kzac1

Those equations show that the center of gravity makesthe center of gravity of an
identical sphere that is subject to sliding without ioicton the same surface and acted
upon by:

2 2
1. An applied force ab that has componen'&gzli—kza pr and ﬁaq’r along

GxandGy, resp.

2. A force that is equal to the real applied forkgY, Z) that has been reduced by

2

. a
the ratio——.
a-+k



Appell — Rolling Motions in Dynamics. 14

Geometric relations— The centeiG of the sphere describes a surf&ethat is
parallel toS and is obtained by extending the normal$Stay a lengtha. Suppose that
the axesGx, Gy are taken to be tangent to the lines of curvatureaifstrfaceS, . In
addition, letp, and o> be the radii of principal curvature & that correspond to the
principal directiongdGx andGy, resp. We shall calculag, q’, r. In order to take the
reference trinedron from its present position to aimitefy-close one, one can first make
it turn around a parallel t&y that is drawn through the center of curvatQxeof the
normal section that is tangent @, then around a parallel ©x that is drawn through
the center of curvatur@z of the normal section that is tangentGg, and finally around
Gz Under the first rotation, the arc that is descrilbydG will be u dt and it is
also p, g’ dt; similarly,v dt=- p, p’dt. Therefore:

(20) u=pmop, V=—pp"

Finally, if G andG’ are the positions d& at the instantsandt + dt thenr dt will be
the angle of the two successive positionsGaf Let y; and > denote the angles that
principal normals to the two lines of curvature make wtitb normal to the surface.
From Meusnier’s theorem, the curvatures of the linesuofature will be 1 /4 cosx1)
and 1/ fp; cosy1), and their geodesic curvatures will be:

1 tan x1 and itan X2,
| P>
resp.

In order to takes to G, first takeG to H along one of the lines of curvature and then
takeH to G along the other. Under the first displacemé&xwill turn through the angle
(u/ p) dttan y1, and under the second, it will turn throughy () dttan .. One will
then have:

(20 cont.) r =4 tan y1 + ¥ tan x:.
o) P>

If one deducep andq from equations (18) and” andq’ from equations (20) and
substitutes them in the third of the relations ({thién one will have:

(21) aﬂ = uv[i—ij.

Those are the equations of the problem.

One can write down an integral by applying vigevivatheorem.

The moments of inertia relative to three axeslfdr® Gxyzthat are drawn through
the contact point of the sphere with the surfadebei @ + k%), (a° + k%), andk’. Since
the velocities are the same as if the sphere tuarmehd that point, thas vivawill be:

@ +I) (p° + ) + 1 12,
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If one then letsb denote the force function foX(Y, Z) then one will have:

@+ PP+ P +KrP=20 +h.
h is an arbitrary constant.

Remark. — The geometric relations (20) and (20, cont.) are spegial cases of the
formulas of Codazzi and Bonnet, which one will find in tbecons sur la théorie
générale des surfacdsy Darboux, Part Two, Book V, Chaps. Il and Ill. We reethat
book for the rigorous proofs of the formulas above.

14. Examples.— If the fixed surface on which the sphere rolls isameltheno, and
22 will be infinite, sop”andq’ will be zero. Thereforef a homogeneous sphere rolls
and pivots on a fixed plane under the action of forces that admit a uniqueant¢sbht
passes through its center then the motion of the center will bgathe as if the plane
were perfectly polished and the applied forces reducedl /t@ of their values(Routh,
loc. cit, pp. 126)

For other examples, we refer to Routh’s treatisieickv contains a large number of
elegant exercises, notably the rolling of a sphere gphare, a cylinder, and a cone, and
small oscillations about a stable equilibrium positioa atable motion.

15. Equations of motion of a heavy solid constraint to roll and pivobn a
horizontal plane (Routh,loc. cit, pp. 143). — Take the principal axes of inertia relative
to the center of gravitfsxyzto be the reference trinedron. Let(x, y, 2 = O be the
equations of the surface that bounds the body with redpetitose axes. Call the
coordinates of the contact poiatof the surface with the horizontal plaxey, z, and let
a, B, ybe the direction cosines of the normal to the surdafe

(N) izﬁzlzi 1
9 09 00 liagV (0pY (0p)
ox o0y o0z (6)() ‘{ayj -{62)

in which the sign is chosen in such a fashion tthatsense o, S, yis the normal that is
directed along the descending vertical. Supposethie mass of the body is equal to 1,
and letX, Y, Z denote the components alo@g, Gy, Gz resp., of the total reaction of the
plane (normal and tangential reaction) that is i@pigio the poinP. Finally, note that the
projections of the weight along the axesyzarega, gg, gy.

Motion of the center of gravity- Let u, v, w denote the velocity of the center of
gravity on the moving axeSxyz and letp, g, r be the components of the instantaneous
rotation of the body along those axes. Upon natinag the quantities that are calle¢l
v, W', p’ g5 r’in the general case are presently equal tow, p, g, r, we will have:
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%+qw—rv:ga+x
dt ’

(22) %+QU—pw=gﬁ+Y,

W pv-qu=gy+z
dt '

Motion around the center of gravity.Here, the equations are Euler’s equations:

P, c-Byqr=yz-zY,
dt
dg

—+ (A-QO)rp=z X-xZ,
o ( )rp

(23)

A%+(B—A)pq:xY—yX.

Geometric conditions= First of all, if the line &, £, )) remains vertical (na3) then
one will have:

da
—+qy-rpB=0,
pm qy-rp
dags
24 ——+ra-pa=0,
(24) ot p
dy
—+ —-qa=0.
at pB-q

Now, in order to express the rolling, one must writ the absolute velocity of the
contact pointX, y, 2) is zero:
u-+qz-ry=0,
(25) vV +rx—pz=0,
w+py-qx=0,

One will then have twelve equations in twelve unknowns w, p, g, r, X, ¥, z X, Y,
Z. The quantitiesr, S, yare known as functions &fy, z by equationsN).
The integral of theis vivais presently:
W+V+W+ApP+Bf+Cr=2Qg(ax+By+y2+h,

because the height of the center of gravity is theeption ofGP onto the vertical.
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That is easy to verify by appealing to the relation:
adx+ Bdy+ ydz=0,
which results from equationl).
16. Rolling and pivoting of a heavy body of revolution on a horizontal plag —
This problem is likewise treated in Routh. We shall giwslation that is deduced from
the preceding general equations and compare it to thaiuthR

Imagine a heavy solid body that is subject to thewatig conditions:

1. The ellipsoid of inertia relative to the centergoévity G is one of revolution
around and axi&z

2. The body touches a fixed horizontal plane for #aserof revolution around the
same axis.

Those conditions are fulfilled for a heavy homogenesmlisl of revolution, in particular.

21 z
i s
6
G Xo
G
y R
I’4
M F’P F
X
Figure 2.

Represent the meridian of the surface of revolutiongawhich the body touches the
fixed plane in (Fig. 2). The tangent plane at a pBiof the meridian is perpendicular to
the meridian planeGP, and the trace of the meridian on the tangent paR&1. Let {
be the distanc&M from the center of gravity to the tangent plane, ahd & the angle
between that perpendicul&M andGz: {is a function ofg:

¢=1(0),

which will be defined once the meridian is given. Conugrsme can give the function
f (@) a priori : The corresponding surface will have a curveit®meridian that is the
envelope of line$M that verify that condition. In addition, it is wibus that once the

meridian is determined, the distane#& is also a known function of. In order to
determine that function, we remark that the tangias the equation:
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xsin@—-zcosf=1 (6

with respect to the ax&ax anGzthat are situated in the meridian plane.

Since the meridian is the envelope of that line wiéewaries, one will get the
coordinates of the contact poiR while associating the preceding equation with its
derivative with respect té':

X cos@+zsin@=1'(6).

The latter equation represents a line that passasgihR) which is the normaPR; its
distance from the poir® is equal taVIP. One will then have:

MP =+ /(8.

In addition, upon solving the two equations above Xand z, one will have the
coordinates oP:
PN=x=f"(6) cosd+f (6 sing,
(P
GN=z=f"(Q sind-f (6 coséb.

Having said that, place the solid on a fixed horizontah@lon which it can roll and
pivot. LetP be the contact point, and IBM be the distance from the center of gravity to
the plane. The verticbll Gz makes an angle @with Gz and from the preceding, one
will have:

GM=7=f(9.

Take the reference trihedron to be the trihedron thatomposed of the axis of
revolutionGz the axisGx, which is the perpendicular zin the meridian plan®Gzto
the contact point, and finally the ax8y, which is perpendicular to the preceding ones.
The planezGxis vertical, while the axi&y is horizontal. Under those conditions, the
instantaneous rotatiow’ of the moving trihedroixyzis the resultant of two rotations,
one of whichd@/ dt = @’ is aroundGy, while the other ondy// dt = ¢ is aroundGz .
The componentp’, g, r “of that rotation alongx, Gy, Gzare then:

—y’'sin g,
g,
Y’ cosé.

p/
() q’
r/

In order to fix the orientation of the solid aroun& ghoint G, one must know the
position of the solid with respect to the ax&syz In order to do that, it is sufficient to
know the anglep that a line that is fixed in the body in the plat&y makes with the line
Gy. The derivativedg / dt = ¢’ of that angle measures the proper rotation of the body
aroundGz

The instantaneous rotatia@ of the body is the resultant of the rotatian of the
trihedronGxyzand the proper rotatiog” aroundGz One will then have sums of the
projections ofw and¢’ for the projectiong, q, r of w:
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p=p’ == ¢’sing,
(3] q=q’ = 0,
r=r’+¢’ = (’'cosf+¢"

Equations of motions of the center of gravityLet u, v, w be the projection onto
Gxyzof the velocity of the poinG, and letA, B, C be the moments of inertia with respect
to Gx, Gy, Gz (A = B). Upon taking the mass of the body to be unity, fh@ied forces
will be the weightg, whose projections along the axgsyzare:

+gsiné, 0, —gcoség,

and the total reaction of the plane that is appliedh¢opointP (viz., the normal reaction
R and the tangential reaction), which will have the mtipas:

XY, Z.
One will then have equations (13):
du +tqw-—rv=gsinfg+X,
dt
(26) %H’u—pw:Y,

%V+pv—qu:—gcose+z.

In the general equations of nf.we replaced) with g” andp with p’, by using the
preceding equations that gase

Motion around G- Here, we can apply equations (12) of&csince the body is one
of revolution aroundsz Upon noting that the coordinatesP®arex, 0, z, we will then
have:

dp
— +Cr-Ar)g=-z
ot ( ) d X

dq

(27) Ba—(Cr—Ar')p:zX—xZ
Cﬂ =xY.
dt

Geometric condition= The absolute velocity of the molecule at the cargantP is
zero:
u+qz=0,
(28) v+rx—-qz=0,
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w —qx=0.

When one eliminates the auxiliary unknowXsy, Z, u, v, w from equations (26),
(27), and (28), one will have three second-order equatatgiefined, ¢, ¢ .

Another form of the equations.In order to compare those equations with Routh’s,
take three moving axes in the following fashion: One &xsis vertically ascending, one
axis Gx is horizontal in the planeGz , and finally a perpendicular ax@Sy coincides
with the axis that was employed before. That systdnaxes is animated with an
instantaneous rotatiord that takes place effectively arourtelzz with the angular

velocity:
dy _ .
dt '
One will then have:

U

p, =0, g =0, n =y

for the components of that rotation aloBg« y: z .
As for the instantaneous rotatiemof the body, it will have components along those
axes that equal:
pL= pcos@+rsing =¢’sing,
(o) h= d =8,
rr=—psin@+rcosd =¢’cosf+ y.

If one calls the projections of the velocity of thanb@ onto those new axes , vi,
w; then one will have:

U= ucos@+wsing,
Vi= V,
Wy =—usin@d+wcosé.

Finally, letF, F, R denote the components of the reaction of the plangalwse
axes, whileR is the normal component of that reaction, and tkalt@nt ofF, F’is the
tangential component, so:
= Xcosf@+Zsing,

Y,
=-Xsin@+Zcosé,

F
F 4
R
The equations of motion of the center of gravity aemth

d ! !
d_L,:l+q1Wl_ nvi=F,

dv , ,
d_tl+rlu1_ Py W= F’
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d .
d_V;ﬂ+ plvl_qlul: R-g;

i.e., fromthe values qf, q;, 1, :

duy, ,

— 1 = F,

at X4

dv,
29 —+uY'=F/
(29) L

d¢

=R -
dt? g

in which the last equation results from the fact thatis the height of the poir® then

one will havew; =d{/ dt.

As for the equations of motion arou Routh wrote them in the form (27) by
putting the right-hand sides into the following form: lietcoordinates of the contact
point P with respect to the ax&€3x, Gy are calledk andz then its coordinates with respect
to the axe$x , Gz will be:

X1 = Xcosf@+zsind= f’(9),
zz=-Xsin@+zcosfd=-1f"(6=-¢.

The right-hand sides of equations (27) are then:
-zT=-F'GN =-F|f'(§ sind-1'(6 cosb|,
ZX=xZ=zF-x R =-F’'OGN-R[MP,
=-Ff(§-RF(9,
xXY=F'[PN =F’|f(@sin@d+f"(6 cosO|.

Finally, the geometric conditions (28) can be replacéd the following ones: The
point P (x;, 0, z) has a velocity of zero, so upon projecting ontoakesGx y1z;, one
will have:

U +qrz-riy1=0,
Vi +ri1x—p1z2=0,
Wi +pry1—th X =0;

i.e., from the values qi, qp, r1:

w=-gqga=qGM=qf(§=61(H,



Appell — Rolling Motions in Dynamics. 22

(28 cont.) vi=-riMP-pGM=-rPN+q GN

-t (9 -pf(H

w=gqx=f(6 8.

The last equation is obvioaspriori, because the heigljtof the center of gravity is:

{=GM=1f(6,

so the projectionv; of its velocity onto the vertical will be:

dd
=— =f'( @.
W it (6

Vis viva integral.— The differential equations of motion admit the duling first
integral that is provided by thas vivatheorem:

WH+V+W+AP+) +Crr=-29+h,

which is an equation in whialf + v* +w? is identical tou? + V2 + W,

17. Applications. — Routh studied the case in which the solid rolls irhsaudashion
that its axis makes a constant angle with the vertmadl then he studied the small
oscillations around that motion (pp. 141). He studied th&cplar case in which the
solid is a disc or a hoop (pp. 142) of radausin that case, one will have:

z=asin§g, f(6)=asing.

There is not enough space for us to treat those vagicestions.

18. Carvallo’s research on the hoop- The motion of the hoop was recently studied
by Carvallo in a paper that was submitted in competit@mntlie Fourneyron prize and
presented at a public meeting of the Paris Academy oh&esg(December 1898).

If we keep the axe&xyzthat were employed in the preceding general case then we
will see thatGzis the perpendicular to the plane of the hdgypjs the line that joins the
center to the contact poi, andGy is the horizontal to the plane of the hoop. If one
calls the radius of the hoapthen the coordinates of the poltwith respect to the axes
Gxyzwill be:

P X=a, y=0, z=0.

The functiorf (6) isa sin é.
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If we suppose that the hoop reduces to a material ciecance of radius then we
will have (the mass of the hoop being 1):

A=B=1a? C=4&

Nl

The expressions (28) af v, w become:

u =0,
v+ar =0,
w-aq=0.

The equations of motion (26) of the center of gravity thecome:

a(@®+rr’) = gsin@+X

dr
-a—-a = Y,
at pPq

dr
a—-—apr =—-gcosé+Z7Z.
at p g
Finally, the equations of motion (27) arou@dvill become:

%a2@+a2(r——;r’)q =0,

dt

%az%—az(r——;r’)p =-az

If we eliminateX, Y, andZ from those equations then we will have the three st
of motion:

(30) é%—(Zr——;r')p =- =cosé,
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one will get equations (30) in the form that Carvallo géwen the formulas that
determinep, g, r andp’, q’ r".

We refer to his paper for the conclusions that he efefrom those equations in
regard to the following question:

Equilibrium conditions for a regime of the hoop
Stability of a regime of equilibrium.

Tendency to slip

Discussion of the equilibrium states.

We shall confine ourselves to making the following remarkregard to the

integration of the system (30).
Upon recalling that| = &, one can write those equations as:

dp dg
—X+(2r + pcotd)— =0,
TR

2
(30) 3d f—(4r+pcot€)p :—Ecosa
dt a
2£+ p% :O,
dt dt

and one will see that one will have to integrasystem of three equations that defme
r, and @ as functions of. The first and the last of them are of order onp andr and
will permit one to findp andr as functions o#f.

One knows one integral of those equations fronvih&ivatheorem:

p2+4rz+39'2:—@sine+h.
a

Eliminatingp from the first and last of equations (3) will githee linear equation:

2
d 2+ﬂcot g-r=0
dg® do

for the determination ofr as a function oféd which will reduce to Gauss’s
hypergeometric series by taking €@to be the variable. That equation will givas a
function of 6, so one will then havp = - 2dr /d@. Finally, thevis vivaintegral will
givet as a function of by a quadrature.

That method of integration can be extended tadtieg of a body of revolution'}.

() See an article that will appear in the Rend. Circ.. Matermo after a letter by Korteweg (1900).
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19. The bicycle problem— One of the more important applications of rolling motio
is the bicycle problem. There is not enough space far tredt it here, so we refer to the
volumes that were published by Bourlet in the GauthielaWiéollection Equilibre et
direction, Travai), the paper that Bourlet presented to the Academy iremker 1898
(Fourneyron Prize), a paper that was published in Bull. 8ath. France in 1899, the
cited paper by Carvallo, which was likewise submitted toAbademy, in which one
finds a theory of the unicycle, an English book by Slamitled Bicycles and Tricycles
and finally, to several notes by Boussinesq that were jheblitn Comptes rendus"f2
semester, 1898 and' $emester, 1899) and in Jordan’s Jour. d. Math. in 1898.




CHAPTER IV

ANALYTICAL MECHANICS. LAGRANGE EQUATIONS.

20. Rolling is a constraint that cannot generally be expressday equations in
finite terms. — The position of an entirely-free solid body dependsugw parameters,
which are, for example, the three coordinates of émer of gravity and the three Euler
angles. In order to express the idea that the bodyaotl pivots on a fixed surface, one
must write that the velocity of the molecule at tmntact point is zero. Now, upon
calling the six parameteg, 0z, gz, s, U5, Gs, that condition will be expressed by relations
of the form:

(33) Avdg +Adgp + ... +Asdg =0

whose coefficients are functions @fq:, gz, ..., 0s, but whose left-hand side is not an
exact differential, in general and does not admit an integrating factor.

The constraint that is imposed on the body can finer@ot be expressed by relations
in finite termsbetween the parameters. This will result in soméqodar difficulties in
the application of the theorems of analytical mecharilte most salient of which is that
the Lagrange equations cannot be applied when one takesdkoeptional constraints
into account in order to modify the expression fordiseviva T

The difficulties that result from that viewpoint dmat type of constraint have been
pointed out and studied by C. Neumann [“Grundziige der Analgiisbtechanik,” Ber.
Kon. Séachs. Ges. Wiss Leipzig (1888), pp. 32], by Vierkandeljts gleitende und
rollende Bewegung,” Monats. Math. Phy8. (1892)], by Hadamard [‘Sur les
mouvements de roulement,” Soc. Sci. Bordeaux (1895)], aadlyfiby Carvallo in his
paper that was cited above in the context of problertis the hoop, the unicycle, and
bicycle, and by Korteweg.

For example, take a homogeneous sphere of radihat is constrained to roll on a
fixed plane. Take the fixed axes to be two a®€ésOn in the plane and a perpendicular
axesO( on the side where one finds the sphere. {d.ef, { be the coordinates of the
centerG of the sphere with respect to those ax€s (@). Draw three axe&xyiz:
throughG that are parallel to the ax€£n{ and call the components of the instantaneous
rotation of the sphere around those apg<p, ri. Upon writing down that the point of
the sphere that makes contact has a velocity of aesowill have:

dé dn dd
34 — -—aq=0, — +ap=0, —=0
(34) a @ a o dt

Moreover, ify, ¢, 8 are the Euler angles of a system of a@agzthat is fixed in the
sphere with respect to the axgésq y1 z; then from some known formulas (see Tmgité
de mécaniqud. Il, pp. 257), one will have:

pL =& cosy+ ¢g’sinfdsiny,
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u=8@'sinyg— ¢’sin fcosy,
ri=¢’+¢’'cosé.

The relations (34), which express the idea that the displacement is a rolling
motion, are then written:
dé—asingdf+asinfcosydg =0,
(35)
dn+acosygdf+asinfsinydg=0.

Similarly, a virtual displacement that is compatiblethwthe constraint is
characterized by:
of—asiny df+asin@cosy op =0,
(36)
on+acosyod+asin@sinydop=0.

If the coordinatef is constant then the position of the system will depgrah five
parameter<, 77, 6, ¢, ¢ that are coupled by the relations (3#)ose left-hand sides are
not exact total differentials.

21. Applying the general equation of dynamics— The general equation of
dynamics:

_d%x _d?y o z _
(37) ZKX mFJcFH(Y md?ja y{ z mﬁja}_o

results from d’Alembert’s principle, combined with thedhem of virtual work. For any
displacement that is compatible with the constraihespresses the idea that the sum of
the works done by the applied forces {Y, Z) and the inertial forces igera That
equation applies to every constraint that fulfills fblowing condition: For any virtual
displacement that is compatible with the constitthe sum of the works done by the
forces of constraint is zero.That results from the classical proof of the virtualrkv
theorem, which is reproduced in the first volume of imaité de mécaniquyefor
example. Now, the constraints that consist of maggia body to roll and pivot on
another body fulfill that condition. The general ettpraof the dynamics then applies to
the particular type of problems that we treat here.

22. Use of the Lagrange equations: Imagine a general system that is first subject
to some constraintshat are expressible by relations in finite termstveen the
coordinates of the various point&Jpon taking those constraints into accountk le¢ the
number of independent parametgisaz, ..., gk that fix the system. When one supposes
that the constraints are independent of time, onehante:

x=f(q, G2, ..., Q),
(38) y=¢ @, %, -\ &),
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Z=¢(0n, G2, s OK)

for the coordinates of an arbitrary point of the system.

One obtains a virtual displacement that is compatité those constraints by
varyingti, 92, ..., 0n by &1, &2, ..., &, resp. The equation of dynamics (37) will
then take the form:

(39) P1—Q1) A+ (P2—Q2) A+ ... + Pk—Qu) dk =0,
in which:
_dfoT oT
Pp= —| — |—.
dt\ dq, ) 0q,
If there are no other constraints then thg , &, , ..., d will be arbitrary, and

equation (39) will providé equations that are the Lagrange equations.

However, now suppose that one adds some new constitzttare independent of
time to the previous constraints, and which are exprelsgatbn-integral differential
relations between the parameters,q., ..., O« . For a virtual displacement that is
compatible with those constraints, one will have:

Ardp+Aap+ ... +tACAK=0,

B. dl{1+Bz dﬁ{2+ ... +Bxg qu:O,
(40)

lel{1+L2dl{2+ +Lkdl{k:0,

in which the left-hand sideare not exact differentials and do not admit integrable
combinations.
Under those conditions, equation (39) must be true ffaisdlacementsq; , ay, ...,
) that verify the conditions (40). From the method ofglaage multipliers, the
equations will then be:
P1:Q1+A1A1+A281+ +Ap|_1,

P, :Qz + A A+AHLB+ . +Ap Ly,
(41)
Pi=Qx+ A1 Ak + 2B+ ... +/]p Ly,
in which P, has the expression above. Those equations are ¢omelnined with thep

equations:
AL dql +A2dC{2+ +Adek: 0,
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Bidg +B2dgp + ... +Bydk =0,
(42)

Lidg +Lodgp + ... +Lgdg =0,

which expresses the idea that the real displacemeatrnipatible with the constraints that
determineqs, o, ...,0candAy, Az, ..., Ap.

That method was employed by Roukbc( cit., pp. 132) and by Vierkandtog. cit.,
pp. 47-50).

23. Impossibility of directly applying the Lagrange equations witha minimum
number of parameters.— We just saw how one could use the Lagrange equations by
taking into account the relations (40) with the methoohokipliers.

However, one can try to reduce the parameters tolets-possible number by
appealing to the relations (40) in order to leave the mumnmmumber of parameters
remaining in the expression for the virtual displacemedtta equations (42) in order to
leave the minimum number of parameters remaining irekpeession for the semis
viva:

T=1> m(X*+ y*+ 2%).

With those modifications, thieagrange equations will no longer be applicablé/e
shall show that rapidly, following the authors that evetted above.

A virtual displacement that is compatible with all tbenstraints imposed on the
system is defined for the poirty, z by:

of of of
K= O+~ 00+ +——q,,
5 0% 5 0% Th

0¢ 09 09
@:_5 +_5q +...+—29q,
aq % g, %

oy oy oy
2=Y5q+%%5q +--+2% 5q,
o " og, 0" 2,

in which &g, , a2, ..., &k are coupled by thp relations (40). Infep variationsdgk ,
-1, -.., M—p+1 from those relations as linear, homogeneous functbtise other ones;
upon substituting them idx, dy, dz and settingh =k — p:

X=2800+8dq+ -+ gdq,
(43) y=hbogt+bog+--+hoq,
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&=¢0G+CIG+ -+ Gdq,

in which &, , &2, ..., A, are now arbitrary. If one substitutes those valued»o0y,

o0z in the general equation of dynamics (37) then one willageelation in which the
coefficientsaqy; , &, ..., Ay must be zero, and one will then have the equations of
motion:

d®x o z
Zm(q TALFAL dtzj =2@X+hY+ g2 =Q,

(44)

d?x d? &z
Zm(a’ T dt2y+ G dtzj =>.@X+hY+g 2 =Q,

(v=1, 2, ...,n),

in which we have denoted the right-hand sideQby
Furthermore, since the real displacement is curreottgpatible with the constraints,
one will have, from (13):
dx=a;dg +ta,dgp + ... +a,dq,,

or, upon adopting Lagrange’s notation for derivatives:

xX'=ag+adgt+-+aq,
y’=hq+bd+-+haq,
=G+ G Gt G g
Let us try to follow the method that led to the Lagamquations with the first of
equations (44). To simplify, we suppose that the coefffis@, b1, ci, ..., a, by, C, ...,

an, b, ¢, depend upon only1q gz, ..., g,. We can write the first equation (44)% 1)
as:

d
(45) azm(alx"l' biy’+c1z’)-Ri=Q1,
in whichR; denotes the quantity:

_ da , ,do_ ,dg
Ry Zm(xdt+ydt+zdtj.
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. ox’ , .
Now, a;, by, c; are obviously equal tea—,, —, —, resp., so the first term in
G

d(or
dtl aq )’

as in the Lagrange equations; however, the se&ard not equal tog—T, in general.
G

equation (45) will be:

Indeed, one has:
a_T: m 6_x+ y y + z_
o, 0q, oq  0q )
Therefore:

(46) R - T . m{){d—ai—a—x’j+y[ﬁ—ﬂj+ z[ﬁ—ﬂﬂ
aq1 dt oq dt dq dt dq

Now, the coefficientsy , by, ... are supposed to be functiongef gz, ..., dn, SO one
will have:

d31 03, :+631 L. +aai
ot oﬂql 2% o4 o,
X _0a 08, 08
o0, aoﬂql 6qq2 d, -
. . . oT .
The coefficient ok’ in the differencdR; — a is then:
0a, 0a,| ., (03 _0a da 03,
47 —1 - -3
“n (6% MJ%{M aqj% [aq oq)®

it is not zero, in general.The coefficients oy’ andz’ have analogous forms. From the

values ofx’, y’, z" as functions ofg , d,, ...,d,, the differenceR; — a—Twill then be a

0
. L . oT .
quadratic form ofq , @, ...,q,, in general. In order fdR, to be equal tea—— l.e., for
G

the Lagrange equation to be applicable to the paramgtett is necessary and sufficient
that that quadratic form should be identically zerodoy g andq’. It results from that
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analysis that some of the equations that were emplbyddndelof in his paper icta
societatis Scientiarum Fennigae XXI must be modified™{.

Special cases:
1. If the expressions (43) farx, dy, Oz are exact total differentials then all of the

guantities such as:
93 03| (0 ok ) [0G _0¢
g, dq )" (dg, aq ) (dq, aq

will be zero. Expressions such as (46) will be zero, thedLagrange equations will
apply to all of the parameters. In that case, oneirdagrate the expressions (43) and
express, Y, zin finite form as functions iy, 02, ..., On -

2. Here is a case in which the Lagrange equation appli¢ket parameteq; .
Suppose that one has:

03, _0a,  0a_0da, o3, _ da,
oq, 0q  0q dq 0q, Oq
(48) oh _db,  db _ b, ob _ db,
oo, 0q ~ 0dg, Oq 0g, Oq
a_clz % a_cl - a_c3 a_clz 6Cn
oo, dq ~ Og, Oq  0g, O

The quantities such as (47) that define the coefficiehts, ¢, z"in Ry — T / dqx will
then bezerqg andR; will be equal tadT /dg: . One can characterize that case differently.
If the conditions (48) are assumed to be fulfilled tbea determines the functionsaf,

02, ..., On by the conditions:

Ulzjo?aidql, Vlzjo?bldql, lejo?cldql,

in which ¢ is an arbitrary constant, and the integration is peddroverg; . From the
conditions (48), one will find immediately that:

%: oaa_aid = %6;32

dg =a, - a°,
o, Jioq, * Jeog b o

() Those equations were reproduced in the first examplBsrire Il of myTraité de mécaniqueThey
were corrected in the following examples: The end of4%2 was modified and a n@l52 (cont) was
added.



Appell — Rolling Motions in Dynamics. 33

in which a is whata, will become when one replacegs with the constantg, in it.
Similarly:

AU WUy _ oo g
o v .

One will have analogous relations #randW; . One can then write:
Ox=90U+a dq,+adqg+--+dJIq,
oy=0Vi+ b} oq,+0 dg+---+HIq,
0z=0Wi + C, dq,+C dg+-+ I (.

Hence, the Lagrange equation will applygqiovhendx, dy, oz can be put into the form
of a total differential, followed by a differentialgession that does not contain.q

One can also say thatgf, gs, ..., g,are known as functions othenqg; will become
a true coordinate, because one can exptgsz as functions ofy; in finite form.

In his cited paper, Carvallo elegantly appealed to thedoagr equations, which he
modified, as necessary, in order to treat the probleinise hoop, the unicycle, and the
bicycle: He gave a simple and general method for cainglaébe term®;, Ry, ..., R, .

In addition, he showed that the Lagrange equation capgea without modification to
the parameter that determines the inclination of the lmver the plane. As we just said,
that amounts to the fact that once the other parashate known as functions tfthe
inclination will become a true coordinate. However,obefCarvallo, Hadamard went
even deeper into those questions of analytical mechamidgs research with great
generality, which is why we shall reproduce the text @t tarticle in the following
section of this book.

Use of Hamilton’s principle- One can conveniently deduce the Lagrange equations
from Hamilton’s principle. It is obvious that this proakbks down in the case of the
exceptional constraints that we are dealing with. Elshown that from the viewpoint of
education and without pretending to add anything to the proateits basis in a small
note in the Bull. Soc. Math. France (December, 1898).

24. Equations that can replace those of Lagrange- Upon differentiating the
equations that give’, y’, z’ with respect to time, one will have:

X' = aiq;+az q;+...+ 3 q+

in which the unwritten terms iX" do not contain they”. However, one will then
obviously have:
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and the first of equations (44) can be written:

o oy 07
N B U Y oW
Zm( aou"+yaq;+ aq;j @

hence, upon setting:
S= %Zm(%’ﬂ Y2+ 2% = %Zm 7,

in whichJ is the acceleration of the poim the equation can be written:

S _
a_q: _Ql-

34

One will get other equations similarly. (See a note Was included in Comptes

rendus, 7 August 1899).




ON ROLLING MOTIONS

By J. HADAMARD

PROFESSOR ON THE SCIENCE FACULTY AT BORDEAUX

[Extract from the Mémoires of the Société des scigptgsiques et naturelles de Bordeauxs(@)895)]

1. — As C. Neumann') has remarked, the study of rolling motions occupies eiaipe
place in dynamics due to the analytical form that thestraint equations are clad in.
Indeed, the condition that two bodies in a system lghoall on each other without
slipping does not translate into equations in finite telbetsveen the desired parameters,
but into linear equations in total differentials that ac¢ integrable C. Neumann, and
later Vierkandt ), have established those equations by adopting a spetisibno Here,
| shall employ Darboux’s’} notations, which lead to the same result very easily.

Indeed, letS, SY be two surfaces of the system that are constraineée toutually-
tangent, and on each of them, we choose a systeorwlireear coordinates, as well as a
trihedron that is attached to the surface at each.pdihe relative position of the two
bodies will be defined by the coordinatess ; u®, W of the contact point o8, as well
as onSY, and by the anglé that the axes that are attache@&{domake with the axes that
are attached t& Now, if we would like to express the idea that the surfacess, SV
roll on each other without slipping then we must wdi@wn that the infinitely-small
displacements of the contact point between theswiaces are identical, which will give
us:

" Edu+& dv= (&Y di? + &L dP)cosp - L dP+n,2 diP)sing
ndu+n, dv= (&Y dd” +&P d¥)sing + @ d+7,® d¥)cosp

in which &, &, n, m have the same meaning in relation to the surgitat they have in
Darboux'sLegons and&™, &P, n W, n® denote the analogous quantities that relate to

the surface&s™, which are referred to the curvilinear coordinat&g, vV,

2. — Moreover, there exist some problems in which other expnsabf an analogous
form are relevant. For example, suppose that not thdysliding friction, but the
pivoting friction, take a considerable value (while tb#img friction is always zero), in
such a way that pivoting is, in turn, made impossible. Thatition is expressed (as
always, using Darboux’s notations) by the equation:

) “Grundziige der Analytischen Mechanik,” Ber. Verh. Korct&a Ges. Wiss. Leipzig (1888), pp. 32.

()
(®) “Ueber gleitende und rollende Bewegung,” Monats. Math. Ph§k892), pp. 47.
() Lecons sur la théorie générale des surfa@eok V, Chap. II.
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(2) rdu+ridv+dg—R du® —R dv® =0,

in which R, R; denote the quantities that are analogous, tq, resp., on the second
surface, and the left-hand side is the value of the abcomponent of the elementary
rotation. Furthermore, the pivoting friction transtateto a couple whose axis is normal
to the two surfaces, while the work that it does wellZzero when equation (2) is satisfied,
which will permit one to apply the principles of analytidgnamics.

3. — In the second place, let a curve and a surface ofystem be constrained to
remain tangent to each other. Their relative posisatefined by:

1. The coordinates, v of the contact point on the surface.

2. The arc length of the curve that is found between the contact pamat a fixed
origin.

3. The anglewthat the tangent to curve (taken in the sense of isicigh makes
with thex-axis of the trihedron that is attached to the surface.

4. The anglé/that the osculating plane to the curve makes withahgent plane to
the surface.

The absence of slipping — i.e., the identity of tifenitely-small displacements of the
contact point — is expressed by the equations:

) { &du+¢, dv= dicosw,

ndu+n, dv= disinw.

If one would like to write down the absence of piagtithen one must append the
equation:

(4) Fdu+r.dv+daw- %gdl =0

(in which p denotes the radius of curvature of the curve) wheft-hand side will be the
normal component of the rotation.

4. — Problems of that type, in which the parametgrsq., ..., gmp that define the
state of the system are coupled by linear equations

En h=1,2,..p



Hadamard — On rolling motions. 37

in total differentials, are treated) by a method that is entirely analogous to the one tha
is employed when the parameters are coupled by equatioingentérms. After writing
out the expressio@: 0q; + ... +Qmip OCmsp IN Which:

Q.:Ea_T_ﬂ_ﬂ
' dt\aq ) aq aq’

one writes that this expression is zero, not for allles of thedq, but only for all of the
ones that that satisfy the linear equatigns

The calculation of the semis vivafor the case in which the two surfaces are tangent
was performed in the previously-cited papers. It will &sier with the present notation,
since the known formulas permit one to evaluate theitialy-small displacements of the
center of gravity and the elementary rotation.

5. — If the equationg&;, result from the differential of an equation in fintermsé&,

then one can appeal to them in order to reptaoéthe quantities| with their values as
functions of than other ones in the expression frbecause that would basically come
down to introducing onlyn parameters? into the presentation of the equation, while the

otherp are expressed as functions of the first ones wélattte of the equatiorss

However, that will no longer be the case when theagonsE do not define an
integral system, and the method supposes essentjalhaf the semiis viva Thas been
calculatedas if the parameters q were independent.

One can propose to verify that by direct calculatignto the point that caution
becomes indispensible, and that study will lead to s@s@ts of an interesting form, as
we shall see.

First take a special case, to fix ideas= 2,p = 2. Write out the equatiorts when
they have been solved for the two of the differentials

()
or, upon dividing bydt :

a’dg + & dg- dg=0,
a' dq+ & dg- dg=0,

() Vierkandt,loc. cit, pp. 47-50.
(®) Granted, the elimination of the parametgts , ..., g mp from the expressioit with the aid of the
equationst consists of two operations:
1. Replacing those parameters with the correspondifeyatitials of their values that one infers
from the integral equatiorts
2. Replacing the corresponding differentials with theilues that one infers from the differential
equations.
However, one easily sees that the first of thoserabppas can be performed after the partial
differentiations, while the second one has been peddrpefore those differentiations.
() Cf., VierkandtJoc. cit, pp. 52-54.
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) { A =ald+ a d- ¢,=0,
A =af d+ald- 6,0,

Algebraically speaking, appealing to the equatidas= 0, .44, = 0 means combining
the expressioil with another expression of the forig A3 + A4 A4, in whichAs, A4 are

arbitrary functions of thg andq”. (In general, there is good reason to tdkeAs to be
linear in theq’, soT will be quadratic in the those same quantities.) The iadditf such
an expression will introduce a new term into each expme§gio namely, the value that

Qi will take when the form of has been replaced wity A3 + A4 A4, andU has been

replaced with 0, and the addition will be legitimateyahthe new term disappears in the
final result. We must then write out that the equatmhsiotion reduce to identities for

the valuesl = A3 Az + A4 A4, U =0.
We observe, first of all, that:

1. If T contains terms of second degree in at lekstA4, (in other words, A3, A4
contain terms that are linear combinations of those diem)t then the partial
differentiation will preserveds, A4 to degree one, and as a result, those terms will have
no influence, since one must take equations (5) into acedtentthat differentiation.

2. For the same reason, all of the weight of padiférentiation must bear upo#s,
Ajs, and not uponls, As.

Under those conditions, when one forms the equatibm®tion, which are:

(6) { Q+a Q+d Q=0,
Q+&Q+d Q=0

one will see the terms s / dt, dA4/ dt disappear, and when one replacgs ¢, with
their values that one infers from equation3, &ne will find simply:

q'2 (A3 Hz + A4 Hy) = 0,
(7)
g (AsHz+A4H4) =0,
upon setting:
3 3 3 3 3 3
H3:681_6a2+a§681_a13682+ 108 4682’
0, dq ~0g, 0g ~dg, 0q,

o O _0al, jod od od od
o, 0q "0g 0¢ "0G, " 0G
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The relationdHs = 0, Hs = 0 express the integrability conditions for the sys(B).
Therefore:

When equationg5) define an integrable system, and only in that case, one can
immediately take those equations into account in the calculation of T.

However, for arbitrary values of the coefficieaione will see that only the ratios of
As, A4 are determined, and one takeAs + A4 A4 to be an arbitrary multiple of the linear
combination:
C=Hs .A3 —-Hga .A4

One can then appeal to the equati®nr 0before doing any differentiation.

6. — Things can happen quite differently when the number raipaters changes: For
example, if the coefficienta depend upon a fifth parametgy, because equations (5)
must then be completed with termsdh. When those new equations are considered to
be identities in the’, they will obviously have an algebraic character thguige unlike
the first ones, and will be verified only under very epional circumstances that we
shall not go into.

7.— Now, imagine the general case, and let the diffedegguations of constraint be:
(8) A=Y aid-d =0 k=m+1,...m+p).
h=1

As before, givel the value:

m+p

T= > AA,

k=m+1

with U = 0. One will easily see by means of the same resvaslabove that:

m+p d

m+ p m , a k ]
Q=D —(Aa)- 2, Ak[thij (=12 ...m),
kS At ke m 1 0Q

m+ p m k
QI:M_ ZAK[Z%%} (=m+1,..m+p),
dt S = 09

and when one develop / dt, replaces theg, with their values that one infers from
equations (8), and arranges things with respect tg;théhe equations of motion:
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Q+>aQ=0
|
can be written:
(9) Y% P,=0 (=12 ..m),
h=i
in which one sets:
iy 0 0 , 0 0
o A4l
k=m+1 O I=mH
So one has, in particular:
(10) Pin=—Ph,.

Any system of values fallk that is independent of tleg and verifies equations (9)
will correspond to a linear combinatighof equations (8) that can be used before any
differentiation. Such a system must satisfy the equosti

Pin =0,

and from the relation (10), their number must reducé toy(m — 1). There will also be
combinationsC such thatp is greater thakm (m - 1) ®), and their number will be at
leastp — Tm(m-1).

In particular, one can infgg — 2 m (m - 1) of the differential®)’ as functions of the
others from those equations, and consequently:

If the number of independent parameters is m threnoan always reduce the form T
to something that contains onjym (m — 1) differentials.

8. — For special values of the coefficieatshe number of independent solutions can
be greater than what we just indicated. Howeorg can appeal to all of equatio(®)
only wherthe coefficients of all are zero; i.e.when the systeif®) is integrable as one
can easily assure oneself.

9. — In order to see what analytical property charactetizescombination€’, we

shall study how one forms them when one supposes thagjthation& are given in their
general form, but not solved for some of the parameters.
First of all, take the special case that we begalm; \eit:

() From the preceding, one sees that when differentis @to the coefficienta of the equationk,
one must be careful to count the number of parametdieisame way as when the differentials do not
enter into them.
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(11) { A=AG+AGH AGH A G0,
B=B ¢ +B,¢+B 4+ B 4=0,

or

17 Adq+ A dg+ A dg+ 4 dg=0,

) { B dq+ B dg+ B dg+ B dg=0

be the differential equations, and starting wikh= A A + ¢ B, U = 0, form the

expression®); , while always neglecting to write the partial detivas that act onl, v .
Upon multiplying bydt :

_ 3 0A 0A 2 0B 0K
vdt=AdA+Bidyu+ A1) dg | —-—— |+ dg| —-—"1.
Qdt=A a hz O“[aqh aqj ”hz q‘(aqq aq

We must now write down that the expression:

(12) Q1 dn + Q2 &Yz + Qs Az + Qs ) dit

is zero whenever equations (Lare verified by thex, on the one hand, and ttg, on
the other. We see immediately that by virtue of theeations, the ternei, dy will
disappear from the expression (12), which will take thmpk form:

- 9A _9A 1, (98 %8B -
(13) P—;{A(aqh aqu(aq aqﬂ(dqad:l. dg &) -

10. — An initial geometric interpretation will permit us write out the equation that
relatesd andy immediately.

Indeed, considedq, , dop , dgs , dou ; 01, OQz, OQs , O tO represent the
homogeneous coordinates of two points in ordinary space eXpressionslg, & —
dq dq, represent the Pluckerian coordinates of the line thas those two points; i.e.,
(due to the conditions that were imposed ondth@d thed) of the intersection of the two
planes that is represented by equation$).(1it will suffice to substitute the coordinates
in the equatiorB = 0, which is the equation of a linear complex thatlme belongs to,
in order to obtain the desired condition:

(14) ZHM—Mjw[aa—aa‘ﬂmka—/sq B =0,

hyikl dq, 0dq dq, dq

in which the indiced, i, k, | are the indices 1, 2, 3, 4, when they are displaced py an
alternating permutation.
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11.-In the general case, where the p parameters are related pgquations:

A=A+t AL, dy =0,
B = [ +... =0,
(15) qu1+ +B‘n+pqﬂ¢—p
L=l g+ + L, 0y =0,
or
Adg++ A, dg, =0,
d d =0,
(15) B dg+---+B,, dq,,
Ldg L, 4G, =0,

we will have to treat the expression:

(Ql d:{l + ... +Qrm—p d:{rm-p) dt

in the same way, which is formed under the hypothesidikad, T=A A +uB+ ... +
o L, and which will become:

oA 0A B 0B oL dL
(16) P= Z{ [qh qj u[a% 6qj+ +o [6q H(dohciq. —dg &) -

If we suppose thatq,, ..., dgnp, ON the one hand, anly; , ..., &m+p, ON the other,
represent homogeneous coordinates in mn+(p — 1)-dimensional space then the
expressionsig, &g —dg Ao, will be the coordinates of the line that joins the faints
that are defined in that way. For= 2, equations (15represent a line"y, which must,
in turn, belong to the complex that is defined by the egué&® = 0, and form > 2, they

must represent an(— 1)-fold linear multiplicity in which all lines must logig to that
complex. Since such a multiplicity contaigsn (m — 1) lines with linearly-independent

coordinates, we will indeed recover the number of caditthat we obtained before.

12.— Now consider the parameteyshemselves to be the (absolute) coordinates of a
point in an (n + p)-dimensional space. Equations ‘){16an be considered to be the
equations of am-fold planar multiplicity to which all of the curvehkat pass through a
well-defined pointM and satisfy those equations must be tangent. mA&timensional
surface E) that is tangent to that hyperplaneMatwill be the locus of curves that verify
the aforementioned differential equatiaighe point M

() Of course, we shall not speak of the casmef 1, for which equations (15will reduce to ordinary
differential equations.
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We can, to fix ideas, suppose that the differentiadad d are taken along curves that
belong to that surface, and upon denoting a systeamoofvilinear coordinates ox) by
t,uv, ..,w setd= dti, o= dui.

ot ou

Now, upon denoting the first of the differentials i%] by dV, the expressio® will
reduce taldv — AV for:

A=1, u=v=..=0=0.
The equatiomd = 0 will give one of the desired combinations only wh%?qvm_dﬂ/
u

iS zero at the poin¥l.
Hence,a combinationC is characterized by the fact that it is an exadtedential at

an arbitrary point M on the corresponding surfa@g, where we intend that to mean the
conditions that express the integrability of the défgialdV are verified onX), which
was just confirmed by the evaluations that were just eéthisince those conditions are
<+m(m- 1) in number.

In other words, when the integffadlV is taken along a closed curve that is traced on
the surface¥) in the neighborhood of the poiM, it will not be identically zero, but
infinitely-close of higher order in a small (two-dinsonal) surface element that is
bounded by that curve.

13.- The case of two surfaces that roll on each otheesponds ton=3,p=2. No
combinationsC will exist then, in general, and one will immediatege ghat they never

do.

By contrast, the case of two surfaces roll on eabbkrawithout pivoting [which are
conditions that are represented by equations (1) andf¢2)vhichm = 2,p = 3, offers
two such combinations. It is indeed remarkable that thesecombinations are nothing
but the two equations (1which express the absence of slipping.

Indeed, if we employ the geometric interpretationafli then since the quantities:

doy = duy, dop = dv, dgs =du®, dg=d, dog=dg¢

are homogeneous coordinates in four-dimensional space,omeesets:

17) X =¢&Ycosp—-n" sing, X, =& cog-n” sig
Y=¢§9sing+n® cosp, Y =4 sip+n” cog

equations (1) and (2) will be written:
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Adg+ Adg+ Adg+ Adg Adgé dué, dv Xdu- X%v =0,
(15 B,dgq+ B dg+ B dg+ B dg+ B dgnp duwp, dv Ydu ,Y®RIv =0,
C,dq+C dg+ C dg+ G dg+ G dgF rdu rdv RO R@Uv ¢4d0,

which define a line whose coordinates will be the varibei®rminants that one deduces
from the matrix:

§ §-X=-X, 0
/7/71 -y 0
r RRll

Let |h i | denote the determinant that is obtained by suppressingltivarss of rank
h, i and arranging the others in such a fashion that the ofdire five indices thus-
disposed will be derived them in a natural way from an enenber of transpositions, so
the coefficients ofl, i in the expression will become:

(18) Z{GA a“jmu Z{a—B aB”j|h|

hr 00, m\0q, 0q

The coefficients ofdq;, dg depend upon only, g ; those ofdg dgs are
independent of1, gz, and that ofdgs is zero or constant, so the only combinations of
indices that we must consider are:

1,2

3,4
3,5
4,5

respectively, which correspond to the determinants:

|12]=XY1-Y X, |34 |<m-né,
§ & X ¢ & X

135[=n n Y| |45|=1|n n Y],
rrn R r rn R

respectively.
Moreover, the coefficients in equations‘(L5atisfy the differential relations)(

0 0¢ on on,
——-L=pri—-r n, L - A=r &-F¢rq,
ov du mh h ov adu a-ch

() Darboux,loc. cit., pp. 382.
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oX  9X, _ ay oy, _
o g Y RTRY Gt R XR,
a_X:—Y, %:—Yl, a_Y:X, ﬁ:X]_,
09 09 09 0¢

which will give us the following expressions:
—(7ri=rm XYi=-YX)+XR-RX)(m-<Em)

§ a X ¢ & X
-Y(n oo Y (+Yin on Y|,
rrn R r r, R

(& —=Ern)XN-YX)+RX-XR)(m-né&)

§ a X ¢ & X
+Xnomo Y =Xnon Y
rrn R r r R
for the coefficients (18), which vanish identically.

Our conclusion is established then: When there isngplivithout pivoting, the
equations of rolling can be used to calculate

14. - If we form the coefficient that corresponds to tiedt equation similarly then
we will find simply:

o _or vy - [9R_OR _
(au avj(XYl Y %) (au avj(f/h n é1),

which is annulled (sinc¥ Y1 =Y % = EYn®-&Dn®) only if one has:
o _or R _OR

ou 67\/: ou adv :
En-né& VP -n®n®’

i.e., if the two surfaces have equal constant curvatures.

Indeed, equations (1) and (2) will form an integrable systethat case. In order to
realize it, it will suffice to remark that in thesmof rolling without pivoting, the loci of
contact points on the two surfaces have the same gecmesature. Now, the two
surfaces can be mapped to the same sphere here, atwloolimes on that sphere will
correspond to two equal lines. There will then existiiceia (that contain three arbitrary
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constants) between the parametens; uY, Wb of the contact point that define a rotation
(or more precisely, a symmetry) of the sphere. AsHeranglep, which is the angle that
the x-axis of the trihedron that is attached to the sphetbeapoint that is the transform
under symmetry makes with the new position of the aaigaxis, it is expressed as a
function ofu, v and the same constants. The three relations thttemware the integrals
of the differential system.

15. — The fact that a spherical curve is determined when gives the radius of
geodesic curvature as a function of the arc is almogibad®a priori. Moreover, it
comes down immediately to some kinematical consideraitiwith the aid of a tri-
rectangular trihedron that has its summit at the caitthe sphere, one edge terminating
at a point of the curve, and one face that is tantpetite cone that has that curve for its
base and the center for its summit. The spheraémity of the normal edge to the
cone describes the polar spherical curve to the firet and the tangents to the two
curves are parallel. Upon supposing, to simplify, thatéldéus of the sphere is equal to
1, the ratiods/ ds, of the arc lengths of the original curve and the polave will be
equal to the radius of geodesic curvatare Now, if one takes the independent variable
to be the arc lengththen one will see that the instantaneous rotatidghefrihnedron will
haveds, / ds O, 1 for its projections onto the edges. The motiothat trihedron is then
known when one gives the geodesic curvature as a farztite arc.

It should be remarked that the equajity= ds/ ds, gives an immediate proof of the
proposition:

When two figures are mutually polar on the sphere of ratljube area of each of
them will be equal to the perimeter of the other one (up to a hemégpheleast if one
counts the arc lengths to be positive or negative according to whégheorresponding
tangents of the two curves have the same or opposite senses, ve§pecti

That is because the integnﬁ?z [[ do will then reduce tof ds .
¢}

16. — A very simple rolling motion is that of an indefinpgane rolling on a fixed
surface in the absence of accelerating forces. Byetine “indefinite plane,” we mean a
plane on which masses are arranged at very large cbisfeom each other in such a
manner that the principal moments of inertia willvegy large. One can even suppose
that the masses are external to the plane and linkidat plane by the condition that
the center of gravity must be on the plane and the alegitipsoid revolves around the
normal to the plane in such a way thamfdenotes the mass of the system then the
principal moments of inertia will beké, mié, andA mK, wherek?® is very large. From
that, we can neglect the terms into whiétdoes not enter as a factor in comparison to
the ones that contain it, and reduce vteviva2T to thevis vivaof rotation around the
center of gravity:
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2 pU+PVP UGV +A (BT U +r V).

(19) e

The equation that relates to the variappkhen reduces to:
(20) g+ru +rv =c

As for the equations that relateuov, by virtue of the constraint equations, which are
written:

1) { Edu+¢, dv= dxcosp - dysing

ndu+n, dv= dwing + dycosp

(x, y denote the coordinates of the contact point in the mgoplane), they will become
linear combinations of the equations that relatg tp However, the left-hand sides of
the latter, which do not contain any ternkfnare negligible. One can then write:

S tp(pu+ 1= [ap i+ 2 j( pli+ pY

+S fa(au+ qv)- (au 2 j( QU+ gy

+AC(£—£UI—% j:O'
(22)

< tp(pu+ i - [—V i+ 2 j( o+ pY

+—[oﬂ(qu+qv)1 (aq' %VVJ(qu+qv')

+A c(%—ﬂu' —% \/j =0.
dt oJv ov

Equations (22), to which one must appenduibevivaintegral, by virtue of equation
(20), determinay, v. They contain only rotations as characteristirednt of the surface;
I.e., elements that depend upon the spherical septation.

As usual, set:

(23) qu+q1\/:?j—fcose, pu+p1\/:—?j—fsin9,

in which o is the arc length of the spherical representatibtihe trace of the rolling of
the surface, and is the angle that the spherical representationemakith thex-axis of
the trihedron of the surface. When ths vivaintegral is simplified with the help of
equation (20), it will reduce to:
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do
24 —=h.
(24) it

On the other hand, the known differential relatioasMeen the rotations permit one

to transform the two equations (22). In the first of theme replacesa&, a—ql %
ou Odu oau
op oq

. . or .
with their valuesa— +rqi—qr, +pr—rps, 6_+ gpL—p G, and upon operating
vV vV

EN
analogously on the second one, those equations widdresented by:

d d
Pa(pu +p1\/)+qa(qu +quV) = Pa—-gqp) Vv (u+rvV-A10),

d d o
pla(p u+p V) +0ﬂa(q UtquV)=-(Pa-gqpu (u+rnv-10),
respectively, or, by an immediate linear combination:

%(puﬂol\/): QU+qV)(Uu +rv-A10),

%(qu +pV)=—(PU+pV) (U +r1vV-10),

which reduce to just:
(25) g+ru +rv=Ac

by virtue of equations (23) and (24).

The left-hand side of this expresses the geodesic curvaturthe spherical
representationyhich is a circlethat describes a uniform motion, from equation (24).

As for the anglep, it is given by the condition that is deduced from alomation of
equations (20), (25) thal — ¢ — i.e., the angle between tkexis of the moving plane
and spherical representation of the trace of theagpthotion — increases in proportion to
time, or rather, that the component of the pivotindiomg’+r u' +r,V is constant.

Finally, equations (21) giveandy by quadratures. The locus of the contact point on
the moving plane can be considered to be defined by it®agthl moreover, which is
the same as that of the surface, and the angle betleeangent and theaxis of the
moving plane, which igv - 6; i.e., the sum ofv — dand a quantity that is proportional to
time.

17. — When the given surface is a sphere, the tracekeofdlling motion on the
moving plane will likewise be circles, since— @is zero and the arc length of the curve
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and the anglew—¢ are both proportional to time. One easily sees thigt cannot
happen for other forms of the given surface.

Can two different surfaces give the same rolling gase the moving plane, in
general? We can see that this is impossible, at lehsh wne demands that the
correspondence between homologous points on the twacearfnust be the same in any
case. Indeed, the two must then be mappable to each oMsea result, a point-like
correspondence must exist between the two sphericabespiagions that preserves areas
and transforms circles into circles. It is cleaatthuch a correspondence can be realized
only by a simple rotation of the sphere, and our twdases can be considered to be
mappable to each other with parallelism of their tangéantes. There will then be two
associated minimal surfaces, which is an inadmissddlgisn in our problem, in which
only convex surfaces can occur.

18. - The case of a line that rolls on a surface is tee odm = 2, p = 2, since the
parameteid does not enter into the equations of constraint. For:

A=&u'+ &V =1’ cosw
B=nu+mv —Il"siny
equation will reduce to:
(Em—n &) (Asinw—pcosa) = 0.

The factoré m — 17 & is essentially non-zero, so the equation that opensiitted to
use is:

(26) Eu+&v)cosw+ (nu'+mv’)sinw—1"=0;
i.e., the one thaéxpresses the absence of longitudinal slipping.

19. — Take the example of a line that is not acted upon byfaog and rolls on a
surface in such a way that the contact point descabesrtain lineL. Let masses be
distributed in arbitrary fashion along that line whose &im, but we can always assume

that the center of gravity correspond$ t00 and the principal moment of inertianig?.
Thevis vivaof rotation around the center of gravity is:

2
mk? (%j =mK{[(pu+pVv’)sinw—@Qu+aqv’)cosad’+ (W +ru’+riv’)3,

in which ¢ denotes the infinitely-small angle through which tme lturns. As for the
velocity of the center of gravity, since we have reewall longitudinal slipping from the
line, we can consider it to consist of:

1. Atransversal velocity:
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| (w+ru'+ryv)+(Eu'+&V)sinw—(Hu'+ 7 v’) cosw.
2. A normal velocity:
[ [(pu+pLv’)sinw—(Qu'+q.v’) cosd.

Its square will then be:

2
Iz[%j +2A (W+ru'+rv) [(fu'+ & v) sinw—(nu'+ mv’) cosd

+[(Eu'+ & V) sinw— (nu’+ mv’) cosd?,

the last term of which can be neglected, since ibmdgeneous of degree two in the left-
hand sides of the equations of constraint. One vélh thave:

T

27) = (K+I{(pu+ pYsinw-(qu+ gYcoswl + @+ rie r )

+2| (o +ru’+rv)[(Efu' +& V) sinw— (U +n,V)cow .

There are two differential equations that one nwste, one of which can be replaced
with thevis vivaequation:

(28) (K2+12){[( pu+ g Vsin w-( qu+ gYcoswF + (@ + ru+ r)°}=a’.

We can take the second equation to be the onedlades tocy for which one only
has one expression to calculate (nanf@lysince the differentiadcw does not enter into

the constraint equations. Upon taking the equatibr= 0, B = 0 into account, we will
then have:

S+ +ru V)]

(29)) —( +1?)[(pu + p V)sinw—(qu+ g Yeosw][( pl+ pYcosv+ (qu g Ysimw
—11"(af +ru’ +rv’) =0,

One must append the equations:

(30) &du+é, dv= dlcpsw,
ndu+n, dv= disinw,

which express the idea tHais nothing but the arc length of the liheandwis the angle
between that line and thxeaxis.
Thevis vivaequation gives us:
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a cosw

JK+12'

(pu+pVv)sinw—(@Qu+qVv’) cosw=

asinw
\ K +1?

in which @wis the angle between the osculating plank &md the normal to the surface.
If we note that the quantity:

wt+ru'+riv'=

(pu+pLv’)cosw+ (Qu' +q1Vv’) sinw

representsg—lt(%v—éj then we will see that equation (29) reduces to:

T

2 cosw k*+1? = 0.

The line then rolls on a planar section of the scé.

20. — If the rolling is constrained to take place with pivoting then the number of
combinationsC will be equal to two. It is almost obvioaspriori (when one considers
the line to be the limit of a surface) that thosambinations are the precisely the
equations of rolling. One verifies that immedigt&lom the form of equations (3) and

(4). Indeed, if one once more ledg O, O3, Gk, Os denote the variables, v, |, @ 6,
respectively, to fix ideas, then one will see thktof the terms in the expressions (18)
contain zero factors.




ON CERTAIN SYSTEMS OF TOTAL DIFFERENTIAL
EQUATIONS

By HADAMARD

(Oral presentation to a session of the Société descas physiques et naturelles de Bordeaux, 1895-1895)

A system op linear total differential equations:
A]_ dq]_ +A2 dq2 + +Am+p dqh+p = 0,

Bldq]_‘l'BquZ‘l' +Bm+pdq'n+p: 0,
C)

leq1+L2dq2+ +Lm+pdq'n+p:0,

in which one considerda, , dp, ..., dgmwp to be homogeneous coordinates nim+« p)-
dimensional space, represents sn-(1)-dimensional planar multiplicity. However, that
multiplicity can also be represented by a systEjro{ n tangential equations, namely, the
conditions that the coefficients (viz., tangentialobnates) of annf + p — 2)-
dimensional hyperplane must fulfill in order for that hypane to contain our
multiplicity. Two linear systems such &) @nd &) can be calledeciprocal systemdor

of
O+ p
will be nothing but the system of linear partial diffetial equations that the integrals of
the system9).

Having said that, when the systef® (epresents the equations of constraint in a
dynamical problem, as was explained in the paper almne,will be led to consider

certain special combinatioid@swithin the system3) whose number is equal to at lepst
<+m(m- 1) and which play a special role in the formatiothefLagrange equations.
Now, if we are dealing with the systel) then the calculations of the combinations
C will come down to a well-known theory. Indeed, ifieowould like to apply Lie’s
method to the systenk) then one must appenfim (m — 1) bracketsk; , Ex) to the

equationsE; , E;, ..., Ey of that system. One will then obtain a new systgiof m+ A
equations [0< A < 4m (m — 1)] on which one must recommence with that same

operation. Here, on the contrary, we shall stop whia system X) and take the
reciprocal §); the latter is composed of precisely the desiredknationsC.

brevity. If one denotes the tangential coordinatesé%y, then the systent]
G
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One will then indeed see why the number of those combinsais at leasp -
+m(m-1)and can b only if the system is integrable.




