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INTRODUCTION  
_________ 

 
 

 Rolling motions occupy a special place in dynamics, as has been known for some 
time, and mainly by the research of Neumann [Math. Ann. 27 (1886)].  That comes down 
to the fact that the constraint that two solid bodies should roll on each other cannot be 
expressed by equations whose left-hand sides are linear, homogeneous functions of the 
coordinate differentials, because those functions are not exact total differentials.  That 
will imply special difficulties when one wishes to apply the general methods of analytical 
dynamics to those problems.  On the other hand, those motions are encountered 
constantly in applied mechanics: viz., the hoop, the unicycle, the bicycle, the rolling of 
balls are the simplest examples. 
 This booklet has the goal of making known the main methods that are employed to 
treat that class of problems in such a fashion that the reader himself can undertake new 
research. 
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FIRST CHAPTER 
 

GENERAL FORMULAS RELATING TO  
THE MOTION OF A SOLID 

 
 

BOOKS TO CONSULT:  
 

DARBOUX. – Leçons sur la théorie générale des surfaces, t. I, Chap. I and II. 
 
ROUTH. – The Advanced part of a Treatise on the Dynamics of a system of Rigid-
Bodies, Chap. I. 
 
 
 1. Some theorems of kinematics. – First imagine a system of invariable form in 
motion around a fixed point O.  In kinematics, one shows that at each instant t, the 
velocities of the various points of the system are the same as if it turned with a certain 
angular velocity ω around an axis that passes through the fixed point.  One represents that 
rotation, which is called an instantaneous rotation, by a vector Oω of length ω that is 
carried by the rotational axis with a sense such that an observer that has his feet at O and 
his head at ω will see the system turn from his left to his right. 
 Now imagine an invariable system that is animated with an arbitrary motion.  Take a 
point O that is invariably linked with the system, and let V be the velocity of that point.  
One shows that the velocities of the various points of the system are the same as if the 
system were animated by both a translation whose velocity is equal to V and rotation 
whose angular velocity ω around an axis Oω passes through O.  That is to say that the 
velocity of an arbitrary point of the system is the resultant of a vector that is equal to V 
and a vector that is equal to the velocity that the point would have if the system were 
animated by only the rotation ω .  In that representation of the state of the velocities, the 
choice of the point O that is invariably linked with the system is arbitrary.  If, at the same 
instant t, one has made a choice of another point O′ that is invariably linked with the 
system then one will have another velocity V′ of translation, but the rotation will be the 
same. 
 
 
 2. Formulas. – Consider a tri-rectangular trihedron Oxyz in motion.  That trihedron 
constitutes an invariable system.  We suppose that the axes are oriented in such a fashion 
that a rotation of 90o in the positive sense around Oz will take Ox to Oy. 
 At the instant t, let V′ be the velocity of the point O, and let ω′ be the instantaneous 
rotation of the trihedron, and denote the projections of the vectors V′ and ω′ onto the 
moving axes Oxyz by u′, v′, w′ and p′, q′, r′, respectively. 
 When the motion of the trihedron is given, V′ and ω′ will be known at each instant, so 
u′, v′, w′ and p′, q′, r′ will be known functions of time.  Conversely, if those quantities are 
given as functions of time then one can find the motion of the trihedron, as one can see in 
DARBOUX’s Leçons, vol. I, Chapter II. 
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 Velocity of a point. – Let m be a point that is invariably linked with the trihedron: The 
coordinates x, y, z of that point with respect to the trihedron will then be constant.  Let Ve 
denote the velocity of the point m at the instant t, and let Vex , Vey , Vez be its projections 
onto the moving axes.  From the known formulas for rotations: 
 
 Vex = u′ + q′ z – r′ y , 
 
(1)  Vey = v′ + r′ x – p′ z , 
 
  Vez = w′ + p′ y – q′ x . 
 
 If the point m is in motion with respect to the axes Oxyz then its coordinates x, y, z 
will vary with t.  The absolute velocity of the point m will then be the resultant of its 

relative velocity, which has 
dx

dt
, 

dy

dt
, 

dz

dt
 for its projections, and its guiding velocity, 

which has the quantities (1) for its projections.  Upon denoting the absolute velocity of 
the point m by Va and denoting its projections by Vax , Vay , Vaz , one will then have: 
 

 Vax =
dx

dt
+ u′ + q′ z – r′ y , 

 

(2) Vay =
dy

dt
+ v′ + r′ x – p′ z , 

 

 Vaz =
dz

dt
+ w′ + p′ y – q′ x . 

 
 3. Applications: 
 
 1. Expressing the idea that the point m is immobile in space. – It will suffice to write 
down that its absolute velocity is zero: 
 

(3)     
dx

dt
+ u′ + q′ z – r′ y = 0, etc. 

 
 2. Expressing the idea that a line whose direction cosines with respect to the axes 
Oxyz are the quantities α, β, γ has a fixed direction in space. – Upon drawing a segment 
OA of length 1 that is parallel to the given line through the origin, one will get a point A 
whose coordinates are: 

x = α, y = β, z = γ . 
 

 In order for the segment OA to displace parallel to itself, it is necessary and sufficient 
that the points A and O should have the same absolute velocity at each instant; one 
expresses that by writing that Vax = u′, Vay = v′, Vaz = z′.  One will then have the 
conditions: 
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(4)     
d

dt

α
+ γ q′ – β r′ = 0, etc. 

 
 
 4. Acceleration of a point. – Let m be a point in motion with respect to the moving 
axes: Let Va denote its absolute velocity, and let Ja denote its absolute acceleration. 
 Take a point O1 that is absolutely fixed and has coordinates a, b, c with respect to the 
moving axes, and draw a segment O1 m1 through that point that is equal and parallel to 
Va.  From the definition of acceleration, Ja will be equal to the absolute velocity of the 
point m1 .  Now, the coordinates x1, y1, z1 of m1 with respect to the axes Oxyz are: 
 

x1 = a + Vax , y1 = b + Vay , z1 = c + Vaz . 
 

 Upon letting Jax , Jay , Jaz denote the projections of the desired acceleration Ja , one 
will then have: 

 Jax = 1dx

dt
 + u′ + q′ z1 – r′ y1 , …, 

or 

Jax = axdVda

dt dt
+  + u′ + (c + Vez) q′ – (b + Vey)  r′, … 

 
However, if the point O1 is fixed in space then one will have: 
 

 
da

dt
+ u′ + c q′ – b r′ = 0, … 

Thus, one finally has: 

 Jax = axdV

dt
+ q′ Vaz – r′ Vay , 

 

(5) Jay =
aydV

dt
+ r′ Vax – p′ Vaz , 

 

 Jaz = azdV

dt
+ p′ Vay – q′ Vax . 

 
 
 5. Motion of a solid body around a fixed point. – Imagine a solid body that moves 
around a fixed point O under the action of given forces F1 , F2 , F3 , …  Let ω denote the 
instantaneous rotation of the body at the instant t, which is a rotation that is represented 
by a certain vector Oω .  Refer the motion of the body to a trihedron Oxyz whose summit 
O is animated with a known motion.  As above, let ω′ denote the instantaneous rotation 
of the trihedron at time t.  Let p′, q′, r′ denote the projections of ω′ onto the three axes, 
and let p, q, r denote those of ω .  If the point O is fixed then the quantities u′, v′, w′ will 
be zero. 
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 Resultant moment of the quantities of motion. – A molecule m of the body whose 
coordinates are x, y, z will possess an absolute velocity at the instant t whose projections 
onto the moving axes will be: 
 Vax = q z – r y, 
 
(6) Vay = r x – p z, 
 
 Vaz = p y – q x , 
 
from known formulas for rotations. 
 Let us construct the resultant moment Oσ of the quantities of motion of the various 
points of the body with respect to the point O.  The moment of the quantity of motion of 
the point m with respect to O will have the following projections onto the axes: 
 

m (y Vaz – z Vay), …, 
i.e.: 

m [(y2 + z2) p – xy q – xz r], … 
 

 Upon letting σx , σy , σz denote the projections of Oσ onto the axes Ox, Oy, Oz, one 
will then have: 

σx = m∑ [(y2 + z2) p – xy q – xz r], … 

 Set: 
 A = m∑ (y2 + z2), B = m∑ (z2 + x2), C = m∑ (x2 + y2), 

(7) 
 D = m∑ yz,  E = m∑ xz,  F = m∑ xy. 

One will get: 
 σx = A p – F q – E r , 
(8) σy = B q – D r – F p , 
 σz = C r – E p – D q . 
 
 In those formulas, A, B, C are the moments of inertia of the body with respect to the 
axes Oxyz, and D, E, F are the products of inertia with respect to those axes.  Since the 
trihedron Oxyz is supposed to be animated with an arbitrary motion in space and in the 
body, those six quantities will vary with time. 
 
 Vis viva of the body. – The semi-vis viva T = 21

2 amV∑  is given by the formula: 

 
2T = 2 2 2( )ax ay azm V V V+ +∑ , 

so, upon developing: 
 
(9)    2T = A p2 + B q2 + C r2 – 2D qr – 2E rp – 2F pq, 
 
one can verify that one has: 
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(10) σx = 
T

p

∂
∂

,    σy = 
T

q

∂
∂

, σz = 
T

r

∂
∂

. 

 
 Resultant moment of the forces. – Let OS be the resultant moment of the forces that 
are applied to the body with respect to the point O, and let Sx , Sy , Sz  be its projections 
onto the axes.  Those quantities are the sums of the moments of the forces with respect to 
the axes Ox, Oy, Oz, respectively. 
 
 Equations of motion. – From a geometric interpretation of the theorem of moments 
that was given by Resal (see my Traité de mécanique, t. II, Chapter XVIII), the absolute 
velocity of the point σ is equal and parallel to S at each instant t.  We shall write that the 
projections of the absolute velocity of σ onto the axes Oxyz are equal to those of S.  Now, 
the point σ has the coordinates σx , σy , σz , so the projections of its absolute velocity will 
be given by formulas (2), in which one replaces x, y, z with σx , σy , σz and u′, v′, w′ with 
zero.  One will then have the equations of motion: 
 

  xd

dt

σ
+ q′ σz – r′ σy = Sx , 

 

(11)    yd

dt

σ
+ r′ σx – p′ σz = Sy , 

 

  zd

dt

σ
+ p′ σy – q′ σx = Sz . 

 
 In those equations, σx , σy , σz have the values (8), and one must remark that in the 
calculation of dσx / dt , …, one must take into account the fact that the coefficients A, B, 
… vary with t, in general. 
 
 
 6. Special cases: 
 
 1. The reference trihedron Oxyz is attached to the body. – If the trihedron is 
invariably linked with the body then the instantaneous rotation of the trihedron ω′ is 
identical to that of the body.  One will then have: 
 

p′ = p,  q′ = q,  r′ = r. 
 
 In addition, A, B, C, D, E, F are constants.  If one supposes that the reference 
trihedron is composed of the principal axes of inertia of the body relative to O then one 
will see that D, E, F are zero, and one will recover Euler’s equations. 
 
 2. The axis Oz is fixed in the body. The axes Oy and Oz move in the body. − A point 
m that is taken on Oz must have the same absolute velocity whether one regards it as 
moving with the trihedron Oxyz or as moving with the body.  One must then have: 
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q′ z – r′ y = q z – r y, etc. 
 

when one supposes that x and y are zero.  One will then have: 
 

p′ = p,  q′ = q, 
but r′ is different from r. 
 For example, imagine that the ellipsoid of inertia that relates to O is one of revolution.  
Take the axis Oz to be the axis of revolution and the axes Ox, Oy to be two rectangular 
axes in the plane of the equator that move inside the body.  One will then have: 
 

A = B,  D = E = F = 0. 
 
A, B, C are constants, moreover.  In this case, one will have: 
 
 σx = A p, σy = A q, σz = C r, 
 
 p′ = p, q′ = q, r′ ≠ r. 
 
From (11), the equations of motion are then: 
 

 
dp

A
dt

+ (C r – A r′ ) q  = Sx , 

 

(12) 
dq

A
dt

+ (C r – A r′ ) p  = Sy , 

 

  
dr

A
dt

 = Sz . 

 
 
 7. Motion of a free solid body. – Let a free solid body be subjected to forces F1, F2, 
…, Fn .  Refer the motion of the body to a reference trihedron Oxyz that is animated with 
a known motion.  As in no. 2, we then let V′ denote the velocity of O and let ω′ denote 
the instantaneous rotation of the trihedron. 
 Let G be the center of gravity of the body, let ξ, η, ζ be its coordinates with respect to 
Oxyz, and let V be its absolute velocity with projections u, v, w onto Oxyz.  One will have: 
 

 u = 
d

dt

ξ
+ u′ + q′ ζ – r′ η , 

 

 v = 
d

dt

η
+ v′ + r′ ξ – p′ ζ , 

 

 w = 
d

dt

ζ
+ w′ + p′ η – q′ ξ . 
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 Similarly, let J be the absolute acceleration of the center of gravity G, and let Jx , Jy , 
Jz be its projections onto Oxyz.  From (5), one has: 
 

Jx = 
du

dt
 + q′ w – r′ v, … 

 
 Motion of the center of gravity. – The applied forces have a general resultant that has 
X, Y, Z for its projections onto the axes Oxyz.  From the theorem on the motion of the 
center of gravity, that resultant will be equal to MJ, where M denotes the total mass of the 
body.  One will then have the equations M Jx = X, …, or: 
 

  
du

M q w r v
dt

 ′ ′+ − 
 

= X, 

 

(13) 
dv

M r u p w
dt

 ′ ′+ − 
 

= Y, 

 

 
dw

M p v q u
dt

 ′ ′+ − 
 

= Z. 

 
 In the particular case where O coincides with G, one will have: 
 

ξ = η = ζ = 0,  u = u′,  v = v′,  w = w′. 
 

 Motion around the center of gravity. – Draw axes G x1 y1 z1 through G that are 
parallel to the axes Oxyz.  The instantaneous rotation of the new trihedron is obviously 
the same as that of the first one, and its projections will again by p′, q′, r′.  The theorem 
of moments applies to the motion around the center of gravity G as if that point were 
fixed.  We can then apply the equations of the preceding number to it.  Let p, q, r be the 
components of the instantaneous rotation ω of the body.  Let Gσ′ be the resultant moment 
with respect to G of the quantities of motion of the body in its motion around G.  Let xσ ′ , 

yσ ′ , zσ ′  denote the projections of the vector Gσ′  onto the axes G x1 y1 z1 or axes parallel 

to Oxyz.  Similarly, let GS′ be the resultant moment of the external forces with respect to 
G, and let xS′ , yS′ , zS′  be the projections of the vector GS′ onto the axes.  Finally, let A1 , 

B1 , C1 , D1 , E1 , F1 be the moments and products of inertia of the body with respect to the 
axes G x1 y1 z1 : 
 A1 = 2 2

1 1( )m y z+∑ , … 

so we will have: 
 xσ ′ = A1 p – F1 q – E1 r, 

(14) yσ ′ = B1 q – D1 r – F1 p, 

 zσ ′ = C1 r – E1 p – D1 q, 
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 x
z y

d
q r

dt

σ σ σ
′ ′ ′ ′ ′+ −  = xS′ , 

 

(15) y
x z

d
r p

dt

σ
σ σ

′
′ ′ ′ ′+ −  = yS′ , 

 

 z
y x

d
p q

dt

σ σ σ′ ′ ′ ′ ′+ −  = zS′ . 

 
 Equations (13) and (15) will be the six equations of motion of the body. 
 
 Relative vis viva. – The vis viva 2T1 of the relative motion around G is given by: 
 

2T1 = A1 p
2 + B1 q

2 + C1 r
2 – 2D1 qr – 2E1 rp – 2F1 pq . 

 
 In those formulas, the quantities A1 , B1 , … generally vary with t.  They remain 
constant when the trihedron G x1 y1 z1 is invariably linked with the body.  It can remain 
constant in other cases; for example, if the ellipsoid of inertia relative to G is a sphere.  
D1, E1, F1 are then zero, while A1, B1, C1 are equal to the same constant. 
 In particular, one can apply the remarks of no. 6 to equations (15). 
 

____________



CHAPTER II 
 

ROLLING  
 
 

 8. Rolling and pivoting of a surface that moves on a fixed surface. – Imagine a 
moving solid body that is bounded by a rigid surface S that is constrained to remain in 
contact with a fixed surface S1 .  At each instant t, a certain point A of the moving surface 
S is found to be in contact with a point A1 of the fixed surface S1 .  If the velocity V0 of 
the contact point A of the moving surface S is not zero at the instant t then that velocity 
will be located in the common tangent plane to the two surfaces at the point of contact: 
Indeed, let B be the point of contact at the instant t + dt, and let A′ be the new position of 
A.  The vectors BA1 and BA′ are in the common tangent place to the two surfaces at B, so 
the same thing will be true of the vector AA′, which is the absolute displacement of A. 

 
S 

C 

C1 A1 

S1 

A 

ω 
ωn 

ωt 

 
Figure 1. 

 
 The velocities of the various points of the moving solid body are the same as if the 
body were animated with a velocity of translation V0 and a rotation Aω around an axis 
that passes through A.  The velocity V0 is the velocity of S slipping on S1 .  One says that 
the surface S rolls and pivots on S1 when the velocity of the contact point A is zero at each 
instant.  In that case, V0 will be zero, so the velocities of the points of the moving solid 
are the same at each instant as if the body were animated with only a rotation Aω around 
an axis that passes through A.  The slipping of S on S1 will then be zero. 
 The locus of Aω in the body S is a ruled surface Σ, and a ruled surface Σ1 in absolute 
space.  The motion is obtained by rolling Σ on Σ1 .  The locus of the point A on S is a 
curve C that is the intersection of Σ with S.  The locus of the point A1 on S1 is a curve C 
of intersection of Σ1 with S1.  Those two curves also roll on each other.  The 
corresponding arcs of those curves are equal. 
 The instantaneous rotation Aω can be decomposed into two more: one of them ωn is 
normal to the two surfaces, which one calls the angular velocity of pivoting, while the 
other Aωt is situated in the tangent plane, which is the angular velocity of rolling, 
properly speaking. 
 In what follows, we shall address rolling and pivoting motions without slipping. 
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 It should be remarked that if one considers a molecule m in the body that is located 
along the normal to the two surfaces at A then the velocity of the molecule will be 
parallel to the common tangent plane at A.  Indeed, that velocity is the geometric sum of 
the velocities that are due to two rotations ωn and ωt .  Since the molecule m is located on 
the normal the velocity due to ωn will be zero.  All that will remain is the velocity due to 
ωt , which is a velocity that is parallel to the tangent plane at A. 
 
 
 9. Physical conditions that determine the rolling and pivoting of a surface that 
moves on a fixed surface. – Imagine a moving solid body S that is subject to remain in 
contact with a fixed solid body S1 .  If the surfaces S and S1 are perfectly polished then the 
reaction of S1 on S will be normal to the surfaces S and S1 at the contact point A.  In that 
case, no force will oppose the slipping of S on S1 , and that slipping will be produced, in 
general. 
 In order for the body S to not slip on S1 – i.e., in order for it to roll and pivot on S1 – it 
is necessary that the surfaces of the two bodies should be rough enough for there to be 
friction between them. 
 Let f denote the coefficient of friction of S on S1 .  The reaction of S on S1 is 
composed of a normal component N that is applied to A and a component F that is 
situated in the common tangent plane to the two surfaces at A.  In order for there to be no 
slipping, it is necessary and sufficient that one must have: 
 

F < f N. 
 

 That is then the condition for the surface S to roll and pivot without slipping on S1 .  If 
F becomes greater than f N at a certain moment then there will be slipping. 
 In summary, in order to study the rolling and pivoting of an unpolished body S on 
another body S1 that is likewise unpolished under the action of given forces, one writes 
down the equations of motion of the solid S by assuming that it rolls and pivots on S1 and 
introducing the normal reaction N and the tangential reaction F of the contacting surfaces 
as auxiliary unknowns.  The motion that is provided by those equations will take place 
effectively as long as the values of F and N that are inferred from the equations verify the 
inequality: 

F < f N. 
 

 On the contrary, if F becomes equal to f N at an instant t1 and then greater than it then 
the body S will slide on S1 starting at that instant.  The motion will enter into a new phase 
in which the preceding equations no longer apply.  In order to get the equations of motion 
for that new phase, one must assume that the body S slides over S1 and introduce 
auxiliary unknowns in the form of a normal component N to the reaction and a tangential 
component that is equal to f N and directed in the opposite sense to the velocity of the 
material point A of the body S that is in contact with S1 .  That will result from the known 
laws of sliding friction. 
 We shall confine ourselves to rolling and pivoting motions here.  We shall neglect the 
friction of rolling and pivoting. 
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 10. Vis viva of a solid body that is animated with a rolling and pivoting motion. – 
Take the reference trihedron to be a trihedron Oxyz whose origin coincides at each instant 
with the geometric contact point of the moving body S and the fixed body S1 .  The origin 
O then displaces in both the body and in space.  As for the directions of the axes Oxyz, 
they can vary according to an arbitrary law. 
 As above, let Oω denote the instantaneous rotation of the body, and let p, q, r be its 
components along the axes Oxyz.  Let A, B, C, D, E, F be the moments and products of 
inertia of the body with respect to those axes.  Since the velocities of the various points of 
the body are the same as if the body were animated with only the rotation ω, the semi-vis 
viva T of the body will be the same as that of a solid body that moves around a fixed 
point O and is animated with an instantaneous rotation ω.  One will then have: 
 

2T = A p2 + B q2 + C r2 – 2D qr – 2E rp – 2 F pq . 
 
 Vis viva theorem. – In the motion of the body, the work done by tangential and 
normal reactions F and N will be zero, because those forces are applied at each instant to 
a material point whose velocity is zero.  Upon applying the vis viva theorem, one will 
then have: 

dT = e∑T , 

 
in which e∑T  denotes the sum of the elementary works done by applied forces. 

 
 
 11. Equations of motion of a body. – One writes the equations of motion by 
applying formulas (13) and (15), with the simplification that if one takes the reference 
trihedron to be the trihedron of the preceding number then the velocity of the material 
point that is placed at O will be zero.  However, the velocity of the origin will be non-
zero. 

 
___________



CHAPTER III 
 

APPLICATIONS  
 
 

 12. – The following applications are borrowed from the book by Routh: Advanced 
part of a Treatise on the Dynamics of Rigid Bodies (London, MacMillan and Co., 1884). 
 
 
 13. Rolling of a sphere on a surface (Routh, pp. 123). – Let a homogeneous sphere 
of radius a and mass 1 be constrained to roll and pivot on a given surface, and let it be 
acted upon by forces that admit a unique resultant that passes through the center. 
 Let G be the center of the sphere.  Take the axis Gz to be the line that joins the 
contact point of the sphere and the surface to the point G and the axes Gx and Gy to be 
two arbitrary perpendicular axes.  The plane xGy will then be parallel to the tangent plane 
to the surface at the contact point. 
 Let V denote the absolute velocity of the point G and let u, v, w be its projections onto 
the moving axes.  Since the velocity V is parallel to the common tangent plane to the 
sphere and the surface on which it rolls, one will have w = 0.  As above, let ω′ be the 
instantaneous rotation of the trihedron Gxyz, and let p′, q′, r′ be its components, while ω 
is that of the sphere, and its components are p, q, r. 
 Let X, Y, Z be the components of the resultant of the applied forces along Gx, Gy, Gz, 
respectively.  The reaction of the surface is composed of a normal force R that is directed 
in the sense of Gz and a tangential force whose components along Gx and Gy we shall 
call F and F′, resp.  Furthermore, let k denote the radius of gyration of the sphere around 

a diameter k = 1
5 10a .  The moments of inertia with respect to the axes Gx, Gy, Gz are: 

 
A = B = C = k2 ; 

 
in addition, D, E, F are zero.  We apply the general equations to this case. 
 
 Motion of the center of gravity. – Since G coincides with the origin of the axes, one 
will have u′ = u, v′ = v, w′ = w.  When one sets M = 1, w = 0, equations (13) will then 
give: 

 
du

dt
− r′ v = X + F, 

 

(16) 
dv

dt
+ r′ u = Y + F, 

 
  p′ v − q′ u = Z + R . 
 
 Motion around G. – For the motion around G, the resultant moment Gσ′ of the 
quantities of relative motion will have projections: 
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xσ ′ = k2 p, yσ ′ = k2 q, zσ ′ = k2 r . 

 
 When one divides formulas (15) by k2 and notes that the force X, Y, Z is applied to the 
point G, they will give terms xS′ , yS′ , zS′  that are provided by moments of the reaction R, 

F, F′ that is applied to the point x = 0, y = 0, z = − a : 
 

 
dp

dt
+ q′ r – r′ q =   

2

a F

k

′
, 

 

(17) 
dq

dt
+ r′ p – p′ r = −

2

a F

k
, 

 

 
dr

dt
+ p′ q – q′ p = 0 . 

 
 Conditions for rolling. – The contact point x = 0, y = 0, z = − a has an absolute 
velocity of zero: 
 
(18)    u – a q = 0, v + a p = 0. 
 
 
 Consequences of those equations. – If we infer p and q from the equations (18) and 
substitute them in (17) , and then eliminate F and F′ from equations (16) and (17) then 
we will have: 

 
du

dt
− r′ v = 

2 2

2 2 2 2

a k
X a p r

a k a k
′+

+ +
, 

(19) 

 
dv

dt
+ r′ u = 

2 2

2 2 2 2

a k
Y a q r

a k a k
′+

+ +
. 

 
Those equations show that the center of gravity moves like the center of gravity of an 
identical sphere that is subject to sliding without friction on the same surface and acted 
upon by: 
 

 1. An applied force at G that has components 
2

2 2

k
a p r

a k
′

+
 and 

2

2 2

k
a q r

a k
′

+
 along 

Gx and Gy, resp. 
 
 2. A force that is equal to the real applied force (X, Y, Z) that has been reduced by 

the ratio 
2

2 2

a

a k+
. 
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 Geometric relations. – The center G of the sphere describes a surface S1 that is 
parallel to S and is obtained by extending the normals to S by a length a.  Suppose that 
the axes Gx, Gy are taken to be tangent to the lines of curvature of that surface S1 .  In 
addition, let ρ1 and ρ2 be the radii of principal curvature of S1 that correspond to the 
principal directions Gx and Gy, resp.  We shall calculate p′, q′, r′.  In order to take the 
reference trihedron from its present position to an infinitely-close one, one can first make 
it turn around a parallel to Gy that is drawn through the center of curvature C1 of the 
normal section that is tangent to Gx, then around a parallel to Gx that is drawn through 
the center of curvature Gz of the normal section that is tangent to Gy, and finally around 
Gz.  Under the first rotation, the arc that is described by G will be u dt, and it is 
also 1 q dtρ ′ ; similarly, v dt = − ρ2 p′ dt.  Therefore: 

 
(20)    u = ρ1 p′, v = − ρ2 p′. 
 
 Finally, if G and G′ are the positions of G at the instants t and t + dt then r dt will be 
the angle of the two successive positions of Gx.  Let χ1 and χ2 denote the angles that 
principal normals to the two lines of curvature make with the normal to the surface.  
From Meusnier’s theorem, the curvatures of the lines of curvature will be 1 / (ρ1 cos χ1) 
and 1 / (ρ1 cos χ1), and their geodesic curvatures will be: 
 

1

1

ρ
tan  χ1 and 

2

1

ρ
tan  χ2 , 

resp. 
 In order to take G to G′, first take G to H along one of the lines of curvature and then 
take H to G along the other.  Under the first displacement, Gx will turn through the angle 
(u / ρ1) dt tan χ1 , and under the second, it will turn through (u / ρ2) dt tan χ2 .  One will 
then have: 

(20 cont.)   r′ =
1

u

ρ
tan χ1 +

2

v

ρ
tan χ2 .  

 
 If one deduces p and q from equations (18) and p′ and q′ from equations (20) and 
substitutes them in the third of the relations (17) then one will have: 
 

(21)    
dr

a
dt

 = 
2 1

1 1
uv

ρ ρ
 

− 
 

. 

 
 Those are the equations of the problem. 
 One can write down an integral by applying the vis viva theorem. 
 The moments of inertia relative to three axes parallel to Gxyz that are drawn through 
the contact point of the sphere with the surface will be (a2 + k2), (a2 + k2), and k2.  Since 
the velocities are the same as if the sphere turned around that point, the vis viva will be: 
 

(a2 + k2) (p2 + q2) + k2 r2. 
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 If one then lets Φ denote the force function for (X, Y, Z) then one will have: 
 

(a2 + k2) (p2 + q2) + k2 r2 = 2Φ + h . 
h is an arbitrary constant. 
 
 Remark. – The geometric relations (20) and (20, cont.) are very special cases of the 
formulas of Codazzi and Bonnet, which one will find in the Leçons sur la théorie 
générale des surfaces by Darboux, Part Two, Book V, Chaps. II and III.  We refer to that 
book for the rigorous proofs of the formulas above. 
 
 
 14. Examples. – If the fixed surface on which the sphere rolls is a plane then ρ1 and 
ρ2 will be infinite, so p′ and q′ will be zero.  Therefore: If a homogeneous sphere rolls 
and pivots on a fixed plane under the action of forces that admit a unique resultant that 
passes through its center then the motion of the center will be the same as if the plane 
were perfectly polished and the applied forces reduced to 5 / 7 of their values. (Routh, 
loc. cit., pp. 126) 
 For other examples, we refer to Routh’s treatise, which contains a large number of 
elegant exercises, notably the rolling of a sphere on a sphere, a cylinder, and a cone, and 
small oscillations about a stable equilibrium position or a stable motion. 
 
 
 15. Equations of motion of a heavy solid constraint to roll and pivot on a 
horizontal plane (Routh, loc. cit., pp. 143). – Take the principal axes of inertia relative 
to the center of gravity Gxyz to be the reference trihedron.  Let ϕ (x, y, z) = 0 be the 
equations of the surface that bounds the body with respect to those axes.  Call the 
coordinates of the contact point P of the surface with the horizontal plane x, y, z, and let 
α, β, γ be the direction cosines of the normal to the surface at P : 
 

(N)    

x

α
ϕ∂

∂

=

y

β
ϕ∂

∂

=

z

γ
ϕ∂

∂

= ±
22 2

1

x y z

ϕ ϕ ϕ ∂ ∂ ∂   + +    ∂ ∂ ∂    

, 

 
in which the sign is chosen in such a fashion that the sense of α, β, γ is the normal that is 
directed along the descending vertical.  Suppose that the mass of the body is equal to 1, 
and let X, Y, Z denote the components along Gx, Gy, Gz, resp., of the total reaction of the 
plane (normal and tangential reaction) that is applied to the point P.  Finally, note that the 
projections of the weight along the axes Gxyz are gα, gβ, gγ . 
 
 Motion of the center of gravity. – Let u, v, w denote the velocity of the center of 
gravity on the moving axes Gxyz, and let p, q, r be the components of the instantaneous 
rotation of the body along those axes.  Upon noting that the quantities that are called u′, 
v′, w′, p′, q′, r′ in the general case are presently equal to u, v, w, p, q, r, we will have: 
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du

dt
+ q w – r v = g α + X, 

 

(22) 
dv

dt
+ q u – p w = g β + Y, 

 

 
dw

dt
+ p v – q u = g γ + Z . 

 
 Motion around the center of gravity. – Here, the equations are Euler’s equations: 
 

 
dp

A
dt

+ (C – B) q r = y Z – z Y, 

 

(23) 
dq

A
dt

+ (A – C) r p = z X – x Z , 

 

 
dr

A
dt

+ (B – A) p q = x Y – y X . 

 
 Geometric conditions. – First of all, if the line (α, β, γ) remains vertical (no. 3) then 
one will have: 

 
d

dt

α
+ q γ – r β = 0, 

 

(24) 
d

dt

β
+ r α – p α = 0, 

 

 
d

dt

γ
+ p β – q α = 0 . 

 
 Now, in order to express the rolling, one must write that the absolute velocity of the 
contact point (x, y, z) is zero : 
 u  + q z – r y = 0, 
(25) v  + r x – p z = 0, 
 w + p y – q x = 0, 
 
 One will then have twelve equations in twelve unknowns u, v, w, p, q, r, x, y, z, X, Y, 
Z.  The quantities α, β, γ are known as functions of x, y, z by equations (N). 
 The integral of the vis viva is presently: 
 

u2 + v2 + w2 + A p2 + B q2 + C r2 = 2g (α x + β y + γ z) + h , 
 
because the height of the center of gravity is the projection of GP onto the vertical. 
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 That is easy to verify by appealing to the relation: 
 

α dx + β dy + γ dz = 0, 
 
which results from equations (N). 
 
 
 16. Rolling and pivoting of a heavy body of revolution on a horizontal plane. – 
This problem is likewise treated in Routh.  We shall give a solution that is deduced from 
the preceding general equations and compare it to that of Routh. 
 Imagine a heavy solid body that is subject to the following conditions: 
 
 1. The ellipsoid of inertia relative to the center of gravity G is one of revolution 
around and axis Gz. 
 
 2. The body touches a fixed horizontal plane for a surface of revolution around the 
same axis. 
 
Those conditions are fulfilled for a heavy homogeneous solid of revolution, in particular. 

 

M F 

R 

x 

x2 

P F′ 

z 

ϕ′ 

G 

ψ′ 

z1 

N 

y 
θ′ 

θ 

 
Figure 2. 

 
 Represent the meridian of the surface of revolution along which the body touches the 
fixed plane in (Fig. 2).  The tangent plane at a point P of the meridian is perpendicular to 
the meridian plane zGP, and the trace of the meridian on the tangent plane is PM.  Let ζ 
be the distance GM from the center of gravity to the tangent plane, and let θ be the angle 
between that perpendicular GM and Gz : ζ is a function of θ : 
 

ζ = f (θ), 
 
which will be defined once the meridian is given.  Conversely, one can give the function 

( )f θ  a priori : The corresponding surface will have a curve for its meridian that is the 
envelope of lines PM that verify that condition.  In addition, it is obvious that once the 
meridian is determined, the distance PM is also a known function of θ .  In order to 
determine that function, we remark that the tangent PM has the equation: 
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x sin θ – z cos θ = f (θ) 
 

with respect to the axes Gx an Gz that are situated in the meridian plane. 
 Since the meridian is the envelope of that line when θ varies, one will get the 
coordinates of the contact point P, while associating the preceding equation with its 
derivative with respect to θ : 

x cos θ + z sin θ = f′ (θ). 
 
  The latter equation represents a line that passes through P, which is the normal PR; its 
distance from the point G is equal to MP.  One will then have: 
 

MP = ± f′ (θ). 
 
 In addition, upon solving the two equations above for x and z, one will have the 
coordinates of P: 

 PN = x = f′ (θ) cos θ + f (θ) sin θ, 
(P)  

 GN = z = f′ (θ) sin θ − f (θ) cos θ . 
 
 Having said that, place the solid on a fixed horizontal plane on which it can roll and 
pivot.  Let P be the contact point, and let GM be the distance from the center of gravity to 
the plane.  The vertical M Gz1 makes an angle of θ with Gz, and from the preceding, one 
will have: 

GM = ζ = f (θ) . 
 
 Take the reference trihedron to be the trihedron that is composed of the axis of 
revolution Gz, the axis Gx, which is the perpendicular to Gz in the meridian plane PGz to 
the contact point, and finally the axis Gy, which is perpendicular to the preceding ones.  
The plane zGx is vertical, while the axis Gy is horizontal.  Under those conditions, the 
instantaneous rotation ω′ of the moving trihedron Gxyz is the resultant of two rotations, 
one of which dθ / dt = θ′ is around Gy, while the other one dψ / dt = ψ′  is around Gz1 .  
The components p′, q′, r′ of that rotation along Gx, Gy, Gz are then: 
 
 p′ = − ψ′ sin θ, 
(ω′ ) q′ =    θ′, 
  r′ =    ψ′ cos θ . 
 
 In order to fix the orientation of the solid around the point G, one must know the 
position of the solid with respect to the axes Gxyz.  In order to do that, it is sufficient to 
know the angle ϕ that a line that is fixed in the body in the plane xGy makes with the line 
Gy.  The derivative dϕ / dt = ϕ′ of that angle measures the proper rotation of the body 
around Gz. 
 The instantaneous rotation ω of the body is the resultant of the rotation ω′ of the 
trihedron Gxyz and the proper rotation ϕ′  around Gz.  One will then have sums of the 
projections of ω′  and ϕ′  for the projections p, q, r of ω : 
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 p = p′  = − ψ′ sin θ, 
(ω) q = q′  =    θ′, 
 r = r′  + ϕ′  =    ψ′ cos θ + ϕ′. 
 
 Equations of motions of the center of gravity. – Let u, v, w be the projection onto 
Gxyz of the velocity of the point G, and let A, B, C be the moments of inertia with respect 
to Gx, Gy, Gz (A = B).  Upon taking the mass of the body to be unity, the applied forces 
will be the weight g, whose projections along the axes Gxyz are: 
 

+ g sin θ, 0, − g cos θ, 
 
and the total reaction of the plane that is applied to the point P (viz., the normal reaction 
R and the tangential reaction), which will have the projections: 
 

X, Y, Z . 
 One will then have equations (13): 
 

 
du

dt
 + q w – r′ v = g sin θ + X, 

 

(26) 
dv

dt
 + r′ u – p w = Y, 

 

 
dw

dt
 + p v – q u = − g cos θ + Z . 

 
 In the general equations of no. 7, we replaced q with q′ and p with p′, by using the 
preceding equations that gave ω. 
 
 Motion around G. – Here, we can apply equations (12) of no. 6, since the body is one 
of revolution around Gz.  Upon noting that the coordinates of P are x, 0, z, we will then 
have: 

 
dp

A
dt

 + (C r – A r′ ) q = − z X, 

 

(27) 
dq

B
dt

 − (C r – A r′ ) p = z X – x Z, 

 

 
dr

C
dt

  = x Y . 

 
 Geometric condition. – The absolute velocity of the molecule at the contact point P is 
zero: 
 u  + q z = 0, 
(28) v + r x − q z = 0, 
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 w  − q x = 0. 
 
 When one eliminates the auxiliary unknowns X, Y, Z, u, v, w from equations (26), 
(27), and (28), one will have three second-order equations that define θ, ϕ, ψ . 
 
 Another form of the equations. – In order to compare those equations with Routh’s, 
take three moving axes in the following fashion: One axis Gz1 is vertically ascending, one 
axis Gx1 is horizontal in the plane zGz1 , and finally a perpendicular axis Gy coincides 
with the axis that was employed before.  That system of axes is animated with an 
instantaneous rotation 1ω′  that takes place effectively around Gz1 with the angular 

velocity: 
d

dt

ψ
= ψ′ . 

 One will then have: 

1p′  = 0,  1q′  = 0,  1r ′  = ψ′ 
 

for the components of that rotation along G x1 y1 z1 . 
 As for the instantaneous rotation ω of the body, it will have components along those 
axes that equal: 
 p1 =    p cos θ + r sin θ  = ϕ′ sin θ, 
(ω) q1 =    q  = θ′, 
 r1 = − p sin θ + r cos θ  = ϕ′ cos θ + ψ′. 
 
 If one calls the projections of the velocity of the point G onto those new axes u1 , v1, 
w1 then one will have: 
 
  u1 =    u cos θ + w sin θ, 
  v1 =    v, 
  w1 = − u sin θ + w cos θ . 
 
 Finally, let F, F′, R denote the components of the reaction of the plane along those 
axes, while R is the normal component of that reaction, and the resultant of F, F′ is the 
tangential component, so: 
  F  =    X cos θ + Z sin θ, 
  F′ =    Y, 
  R  = − X sin θ + Z cos θ. 
 
 The equations of motion of the center of gravity are then: 
 

 1
1 1 1 1

du
q w r v

dt
′ ′+ − = F, 

 

 1
1 1 1 1

dv
r u p w

dt
′ ′+ − = F′, 
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 1
1 1 1 1

dw
p v q u

dt
′ ′+ − = R – g ; 

 
i.e., from the values of1p′ , 1q′ , 1r ′ : 

 

 1
1

du
v

dt
ψ ′− = F, 

 

(29) 1
1

dv
u

dt
ψ ′+ = F′, 

 

 
2

2

d

dt

ζ
= R – g, 

 
in which the last equation results from the fact that if ζ is the height of the point G then 
one will have w1 = dζ / dt . 
 As for the equations of motion around G, Routh wrote them in the form (27) by 
putting the right-hand sides into the following form: If the coordinates of the contact 
point P with respect to the axes Gx, Gy are called x and z then its coordinates with respect 
to the axes Gx1 , Gz1 will be: 
 
 x1 =    x cos θ + z sin θ =    f′ (θ), 
 z1 = − x sin θ + z cos θ = − f′ (θ) = − ζ . 
 
The right-hand sides of equations (27) are then: 
 
 − z T = − F′ ⋅⋅⋅⋅ GN  = − F | f′ (θ) sin θ − f′ (θ) cos θ |, 
 
 zX – xZ = z1 F – x1 R = − F′ ⋅⋅⋅⋅ GN − R ⋅⋅⋅⋅ MP, 
 
  = − F f (θ) – R f′ (θ), 
 
 x Y = F′ ⋅⋅⋅⋅ PN = F′ | f′ (θ) sin θ + f′ (θ) cos θ | . 
 
 Finally, the geometric conditions (28) can be replaced with the following ones: The 
point P (x1, 0, z1) has a velocity of zero, so upon projecting onto the axes Gx1 y1 z1 , one 
will have: 
 u1  + q1 z1 – r1 y1 = 0, 
 v1  + r1 x1 – p1 z1 = 0, 
 w1 + p1 y1 – q1 x1 = 0 ; 
 
i.e., from the values of p1 , q1 , r1 : 
 
 u1 = − q z1 = q GM = q f (θ) = θ′ f (θ), 
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(28 cont.) v1 = − r1 MP − p1 GM = − r PN + q GN, 
 = − r1 f′ (θ) − p1 f (θ), 
 
 w1 = q x1 = f′ (θ) θ′ . 
 
 The last equation is obvious a priori, because the height ζ of the center of gravity is: 
 

ζ = GM = f (θ) , 
 
so the projection w1 of its velocity onto the vertical will be: 
 

w1 = 
d

dt

ζ
 = f′ (θ) θ′ . 

 
 Vis viva integral. – The differential equations of motion admit the following first 
integral that is provided by the vis viva theorem: 
 

u2 + v2 + w2 + A (p2 + q2) + C r2 = − 2g ζ + h, 
 
which is an equation in which u2 + v2 + w2 is identical to 2 2 2

1 1 1u v w+ + . 

 
 
 17. Applications. – Routh studied the case in which the solid rolls in such a fashion 
that its axis makes a constant angle with the vertical, and then he studied the small 
oscillations around that motion (pp. 141).  He studied the particular case in which the 
solid is a disc or a hoop (pp. 142) of radius a.  In that case, one will have: 
 

z = a sin θ,  f (θ) = a sin θ . 
 
There is not enough space for us to treat those various questions. 
 
 
 18. Carvallo’s research on the hoop. – The motion of the hoop was recently studied 
by Carvallo in a paper that was submitted in competition for the Fourneyron prize and 
presented at a public meeting of the Paris Academy of Sciences (December 1898). 
 If we keep the axes Gxyz that were employed in the preceding general case then we 
will see that Gz is the perpendicular to the plane of the hoop, Gx is the line that joins the 
center to the contact point P, and Gy is the horizontal to the plane of the hoop.  If one 
calls the radius of the hoop a then the coordinates of the point P with respect to the axes 
Gxyz will be: 
 
(P)     x = a,  y = 0,  z = 0. 
 
 The function f (θ) is a sin θ. 
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 If we suppose that the hoop reduces to a material circumference of radius a then we 
will have (the mass of the hoop being 1): 
  

A = B = 21
2 a , C = a2. 

 
 The expressions (28) of u, v, w become: 
 
 u = 0, 
 v + ar = 0, 
 w − aq = 0. 
 
 The equations of motion (26) of the center of gravity then become: 
 
 a (q2 + r r ′ ) =   g sin θ + X, 
 

 − a
dr

dt
− a p q =    Y, 

 

    a dr

dt
− a p r = − g cos θ + Z . 

 
 Finally, the equations of motion (27) around G will become: 
 

 ( )2 21 1
2 2

dp
a a r r q

dt
′+ −  = 0, 

 

 ( )2 21 1
2 2

dq
a a r r p

dt
′− −  = − a Z, 

 

    2 dr
a

dt
  = a Y. 

 
 If we eliminate X, Y, and Z from those equations then we will have the three equations 
of motion: 

 ( )1 1
2 2

dp
r r q

dt
′+ −  = 0, 

 

(30) ( )3 1
2 22

dq
r r p

dt
′− −  = − 

g

a
cos θ, 

 

    2
dr

dt
+ pq  = 0 . 

 Upon remarking that: 
r′ = − p cot θ , 
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one will get equations (30) in the form that Carvallo gave from the formulas that 
determine p, q, r and p′, q′, r′. 
 We refer to his paper for the conclusions that he inferred from those equations in 
regard to the following question: 
 
 Equilibrium conditions for a regime of the hoop. 
 Stability of a regime of equilibrium. 
 Tendency to slip. 
 Discussion of the equilibrium states. 
 
 We shall confine ourselves to making the following remark in regard to the 
integration of the system (30). 
 Upon recalling that q = θ′, one can write those equations as: 
 

 (2 cot )
dp d

r p
dt dt

θθ+ +  = 0, 

 

(30) 
2

2
3 (4 cot )

d
r p p

dt

θ θ− +  = − 
2g

a
cos θ, 

 

    2
dr d

p
dt dt

θ+   = 0 , 

 
and one will see that one will have to integrate a system of three equations that define p, 
r, and θ as functions of t.  The first and the last of them are of order one in p and r and 
will permit one to find p and r as functions of θ. 
 One knows one integral of those equations from the vis viva theorem: 
 

p2 + 4r2 + 3 θ′ 2 = − 
4g

a
sin θ + h . 

 
 Eliminating p from the first and last of equations (3) will give the linear equation: 
 

2

2

d r dr

d dθ θ
+ cot θ – r = 0 

 
for the determination of r as a function of θ, which will reduce to Gauss’s 
hypergeometric series by taking cos2 θ to be the variable.  That equation will give r as a 
function of θ, so one will then have p = − 2 dr / dθ .  Finally, the vis viva integral will 
give t as a function of θ by a quadrature. 
 That method of integration can be extended to the rolling of a body of revolution (1). 
 

                                                
 (1) See an article that will appear in the Rend. Circ. Mat. Palermo after a letter by Korteweg (1900).  
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 19. The bicycle problem. – One of the more important applications of rolling motion 
is the bicycle problem.  There is not enough space for us to treat it here, so we refer to the 
volumes that were published by Bourlet in the Gauthier-VIllar collection (Equilibre et 
direction, Travail), the paper that Bourlet presented to the Academy in December 1898 
(Fourneyron Prize), a paper that was published in Bull. Soc. Math. France in 1899, the 
cited paper by Carvallo, which was likewise submitted to the Academy, in which one 
finds a theory of the unicycle, an English book by Sharp entitled Bicycles and Tricycles, 
and finally, to several notes by Boussinesq that were published in Comptes rendus (2nd 
semester, 1898 and 1st semester, 1899) and in Jordan’s Jour. d. Math. in 1898. 
 

____________



CHAPTER IV 
 

ANALYTICAL MECHANICS. LAGRANGE EQUATIONS.  
 
 

 20. Rolling is a constraint that cannot generally be expressed by equations in 
finite terms. – The position of an entirely-free solid body depends upon six parameters, 
which are, for example, the three coordinates of the center of gravity and the three Euler 
angles.  In order to express the idea that the body rolls and pivots on a fixed surface, one 
must write that the velocity of the molecule at the contact point is zero.  Now, upon 
calling the six parameter q1, q2, q3, q4, q5, q6, that condition will be expressed by relations 
of the form: 
  
(33)    A1 dq1 + A2 dq2 + … + A6 dq6 = 0 
 
whose coefficients are functions of q, q1, q2, …, q6, but whose left-hand side is not an 
exact differential, in general and does not admit an integrating factor. 
 The constraint that is imposed on the body can therefore not be expressed by relations 
in finite terms between the parameters.  This will result in some particular difficulties in 
the application of the theorems of analytical mechanics, the most salient of which is that 
the Lagrange equations cannot be applied when one takes those exceptional constraints 
into account in order to modify the expression for the vis viva T. 
 The difficulties that result from that viewpoint on that type of constraint have been 
pointed out and studied by C. Neumann [“Grundzüge der Analytischen Mechanik,” Ber. 
Kön. Sächs. Ges. Wiss Leipzig (1888), pp. 32], by Vierkandt [“Ueber gleitende und 
rollende Bewegung,” Monats. Math. Phys. 3 (1892)], by Hadamard [“Sur les 
mouvements de roulement,” Soc. Sci. Bordeaux (1895)], and finally by Carvallo in his 
paper that was cited above in the context of problems with the hoop, the unicycle, and 
bicycle, and by Korteweg. 
 For example, take a homogeneous sphere of radius a that is constrained to roll on a 
fixed plane.  Take the fixed axes to be two axes Oξ, Oη in the plane and a perpendicular 
axes Oζ on the side where one finds the sphere.  Let ξ, η, ζ be the coordinates of the 
center G of the sphere with respect to those axes (ζ = a).  Draw three axes Gx1y1z1 
through G that are parallel to the axes Oξηζ and call the components of the instantaneous 
rotation of the sphere around those axes p1, q1, r1.  Upon writing down that the point of 
the sphere that makes contact has a velocity of zero, one will have: 
 

(34)   
d

dt

ξ
 − a q1 = 0, 

d

dt

η
 + a p1 = 0, 

d

dt

ζ
= 0, 

 
 Moreover, if ψ, ϕ, θ are the Euler angles of a system of axes Gxyz that is fixed in the 
sphere with respect to the axes G x1 y1 z1 then from some known formulas (see my Traité 
de mécanique, t. II, pp. 257), one will have: 
 
 p1 = θ′ cos ψ + ϕ′ sin θ sin ψ , 
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 q1 = θ′ sin ψ − ϕ′ sin θ cos ψ , 
 r1 = ψ′ + ϕ′ cos θ . 
 
 The relations (34), which express the idea that the real displacement is a rolling 
motion, are then written: 
 dξ – a sin ψ dθ + a sin θ cos ψ dϕ = 0, 
(35) 
 dη + a cos ψ dθ + a sin θ sin ψ dϕ = 0 . 
 
 Similarly, a virtual displacement that is compatible with the constraint is 
characterized by: 
 δξ – a sin ψ δθ + a sin θ cos ψ δϕ = 0, 
(36) 
 δη + a cos ψ δθ + a sin θ sin ψ δϕ = 0 . 
 
 If the coordinate ζ is constant then the position of the system will depend upon five 
parameters ξ, η, θ, ϕ, ψ that are coupled by the relations (35) whose left-hand sides are 
not exact total differentials. 
 
 
 21. Applying the general equation of dynamics. – The general equation of 
dynamics: 

(37)  
2 2 2

2 2 2

d x d y d z
X m x Y m y Z m z

dt dt dt
δ δ δ

      
− + − + −      

      
∑  = 0 

 
results from d’Alembert’s principle, combined with the theorem of virtual work.  For any 
displacement that is compatible with the constraints, it expresses the idea that the sum of 
the works done by the applied forces (X, Y, Z) and the inertial forces is zero.  That 
equation applies to every constraint that fulfills the following condition: For any virtual 
displacement that is compatible with the constraints, the sum of the works done by the 
forces of constraint is zero.  That results from the classical proof of the virtual work 
theorem, which is reproduced in the first volume of my Traité de mécanique, for 
example.  Now, the constraints that consist of requiring a body to roll and pivot on 
another body fulfill that condition.  The general equation of the dynamics then applies to 
the particular type of problems that we treat here. 
 
 
 22. Use of the Lagrange equations. – Imagine a general system that is first subject 
to some constraints that are expressible by relations in finite terms between the 
coordinates of the various points.  Upon taking those constraints into account, let k be the 
number of independent parameters q1 , q2 , …, qk that fix the system.  When one supposes 
that the constraints are independent of time, one will have: 
 
 x = f (q1 , q2 , …, qk), 
(38) y = ϕ (q1 , q2 , …, qk), 
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 z = ψ (q1 , q2 , …, qk) 
 
for the coordinates of an arbitrary point of the system. 
 One obtains a virtual displacement that is compatible with those constraints by 
varying q1 , q2 , …, qn by δq1 , δq2 , …, δqn , resp.  The equation of dynamics (37) will 
then take the form: 
 
(39)  (P1 – Q1) δq1 + (P2 – Q2) δq2 + … + (Pk – Qk) δqk = 0, 
 
in which: 

Pα = 
d T T

dt q qα α

 ∂ ∂− ′∂ ∂ 
. 

 
 If there are no other constraints then the δq1 , δq2 , …, δqk will be arbitrary, and 
equation (39) will provide k equations that are the Lagrange equations. 
 However, now suppose that one adds some new constraints that are independent of 
time to the previous constraints, and which are expressed by non-integral differential 
relations between the parameters q1 , q2 , …, qk .  For a virtual displacement that is 
compatible with those constraints, one will have: 
 
 A1 δq1 + A2 δq2 + … + Ak δqk = 0,  
 
 B1 δq1 + B2 δq2 + … + Bk δqk = 0,  
(40) 
 ………………………………….., 
 
 L1 δq1 + L2 δq2 + … + Lk δqk = 0,  
 
in which the left-hand sides are not exact differentials and do not admit integrable 
combinations. 
 Under those conditions, equation (39) must be true for all displacements δq1 , δq2 , …, 
δqk that verify the conditions (40).  From the method of Lagrange multipliers, the 
equations will then be: 
  P1 = Q1 + λ1 A1 + λ2 B1 + … + λp L1 , 
 
  P2 = Q2 + λ1 A2 + λ2 B2 + … + λp L2 , 
(41) 
  ………………………………………, 
 
  Pk = Qk + λ1 Ak + λ2 Bk + … + λp Lk , 
 
in which Pα has the expression above.  Those equations are then combined with the p 
equations: 
 A1 dq1 + A2 dq2 + … + Ak dqk = 0,  
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 B1 dq1 + B2 dq2 + … + Bk dqk = 0,  
(42) 
 ………………………………….., 
 
 L1 dq1 + L2 dq2 + … + Lk dqk = 0,  
 
which expresses the idea that the real displacement is compatible with the constraints that 
determine q1 , q2 , …, qk and λ1 , λ 2 , …, λ p . 
 That method was employed by Routh (loc. cit., pp. 132) and by Vierkandt (loc. cit., 
pp. 47-50). 
 
 
 23. Impossibility of directly applying the Lagrange equations with a minimum 
number of parameters. – We just saw how one could use the Lagrange equations by 
taking into account the relations (40) with the method of multipliers. 
 However, one can try to reduce the parameters to the least-possible number by 
appealing to the relations (40) in order to leave the minimum number of parameters 
remaining in the expression for the virtual displacement and to equations (42) in order to 
leave the minimum number of parameters remaining in the expression for the semi-vis 
viva: 
 

T = 2 2 21
2 ( )m x y z′ ′ ′+ +∑ . 

 
 With those modifications, the Lagrange equations will no longer be applicable.  We 
shall show that rapidly, following the authors that were cited above. 
 A virtual displacement that is compatible with all the constraints imposed on the 
system is defined for the point x, y, z by: 
 

 δx = 1 2
1 2

k
k

f f f
q q q

q q q
δ δ δ∂ ∂ ∂+ + +

∂ ∂ ∂
⋯ , 

 

 δy = 1 2
1 2

k
k

q q q
q q q

ϕ ϕ ϕδ δ δ∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 

 δz = 1 2
1 2

k
k

q q q
q q q

ψ ψ ψδ δ δ∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 
in which δq1 , δq2 , …, δqk are coupled by the p relations (40).  Infer p variations δqk , 
δqk−1 , …, δqk−p+1 from those relations as linear, homogeneous functions of the other ones; 
upon substituting them in δ x, δ y, δ z and setting n = k – p : 
 
 δx = 1 1 2 2 n na q a q a qδ δ δ+ + +⋯ , 

(43) δy = 1 1 2 2 n nb q b q b qδ δ δ+ + +⋯ , 
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 δz = 1 1 2 2 n nc q c q c qδ δ δ+ + +⋯ , 

 
in which δq1 , δq2 , …, δqn are now arbitrary.  If one substitutes those values of δ x, δ y, 
δ z in the general equation of dynamics (37) then one will get a relation in which the 
coefficients δq1 , δq2 , …, δqn must be zero, and one will then have the equations of 
motion: 

 
2 2 2

1 1 12 2 2

d x d y d z
m a b c

dt dt dt

 
+ + 

 
∑  = 1 1 1( )a X b Y c Z+ +∑  = Q1 ,  

 
(44) …………………………………………………………………, 
 

 
2 2 2

2 2 2

d x d y d z
m a b c

dt dt dtν ν ν
 

+ + 
 

∑  = ( )a X b Y c Zν ν ν+ +∑  = Qν ,  

 
(ν = 1, 2, …, n), 

 
in which we have denoted the right-hand sides by Qν . 
 Furthermore, since the real displacement is currently compatible with the constraints, 
one will have, from (13): 
 dx = a1 dq1 + a2 dq2 + … + an dqn , 
 ……………………………………, 
 
or, upon adopting Lagrange’s notation for derivatives: 
 
 x′ = 1 1 2 2 n na q a q a q′ ′ ′+ + +⋯ , 

 y′ = 1 1 2 2 n nb q b q b q′ ′ ′+ + +⋯ , 

 z′ = 1 1 2 2 n nc q c q c q′ ′ ′+ + +⋯ . 

 
 Let us try to follow the method that led to the Lagrange equations with the first of 
equations (44).  To simplify, we suppose that the coefficients a1, b1, c1, …, a2, b2, c2, …, 
an , bn , cn depend upon only q1 , q2 , …, qn .  We can write the first equation (44) (v = 1) 
as: 

(45)    
d

m
dt∑

(a1 x′ + b1 y′ + c1 z′ ) – R1 = Q1 , 

 
in which R1 denotes the quantity: 
 

R1 = 1 1 1da db dc
m x y z

dt dt dt
 ′ ′ ′+ + 
 

∑ . 
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 Now, a1, b1, c1 are obviously equal to 
1

x

q

′∂
′∂
, 

1

y

q

′∂
′∂
, 

1

z

q

′∂
′∂
, resp., so the first term in 

equation (45) will be: 

1

d T

dt q

 ∂
 ′∂ 

, 

 

as in the Lagrange equations; however, the second R1 is not equal to 
1

T

q

∂
∂

, in general.  

Indeed, one has: 

1

T

q

∂
∂

= 
1 1 1

x y z
m x y z

q q q

 ′ ′ ′∂ ∂ ∂′ ′ ′+ + ∂ ∂ ∂ 
∑ . 

 Therefore: 

(46)  R1 − 
1

T

q

∂
∂

= 1 1 1

1 1 1

da db dcx y z
m x y z

dt q dt q dt q

      ′ ′ ′∂ ∂ ∂′ ′ ′− + − + −      ∂ ∂ ∂      
∑ . 

 
 Now, the coefficients a1 , b1 , … are supposed to be functions of q1 , q2 , …, qn , so one 
will have: 

 1da

dt
= 1 1 1

1 2
1 2

n
n

a a a
q q q

q q q

∂ ∂ ∂′ ′ ′+ + +
∂ ∂ ∂

⋯ , 

 

 
1

x

q

′∂
∂

= 1 2
1 2

1 1 1

n
n

aa a
q q q

q q q

∂∂ ∂′ ′ ′+ + +
∂ ∂ ∂

⋯ . 

 

 The coefficient of x′ in the difference R1 – 
1

T

q

∂
∂

 is then: 

 

(47)   31 2 1 1
2 3

2 1 3 1 1

n
n

n

a aa a a a
q q q

q q q q q q

     ∂ ∂∂ ∂ ∂ ∂′ ′ ′− + − + −    ∂ ∂ ∂ ∂ ∂ ∂     
; 

 
it is not zero, in general.  The coefficients of y′ and z′ have analogous forms.  From the 

values of x′, y′, z′ as functions of 1q′ , 2q′ , …, 2q′ , the difference R1 – 
1

T

q

∂
∂

will then be a 

quadratic form of 1q′ , 2q′ , …, 2q′ , in general.  In order for R1 to be equal to 
1

T

q

∂
∂

− i.e., for 

the Lagrange equation to be applicable to the parameter q1 – it is necessary and sufficient 
that that quadratic form should be identically zero for any q and q′.  It results from that 
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analysis that some of the equations that were employed by Lindelof in his paper in Acta 
societatis Scientiarum Fennicae, t. XXI must be modified (1). 
 
 Special cases: 
 1. If the expressions (43) for δ x, δ y, δ z are exact total differentials then all of the 
quantities such as: 

i v

v i

a a

q q

 ∂ ∂− ∂ ∂ 
, i v

v i

b b

q q

 ∂ ∂− ∂ ∂ 
, i v

v i

c c

q q

 ∂ ∂− ∂ ∂ 
  

 
will be zero.  Expressions such as (46) will be zero, and the Lagrange equations will 
apply to all of the parameters.  In that case, one can integrate the expressions (43) and 
express x, y, z in finite form as functions of q1 , q2 , …, qn . 
 
 2. Here is a case in which the Lagrange equation applies to the parameter q1 .  
Suppose that one has: 

 1

2

a

q

∂
∂

= 2

1

a

q

∂
∂

,  1

3

a

q

∂
∂

= 3

1

a

q

∂
∂

, …, 1

n

a

q

∂
∂

= 
1

na

q

∂
∂

, 

 

(48) 1

2

b

q

∂
∂

= 2

1

b

q

∂
∂

,  1

3

b

q

∂
∂

= 3

1

b

q

∂
∂

, …, 1

n

b

q

∂
∂

= 
1

nb

q

∂
∂

, 

 

 1

2

c

q

∂
∂

= 2

1

c

q

∂
∂

,  1

3

c

q

∂
∂

= 3

1

c

q

∂
∂

, …, 1

n

c

q

∂
∂

= 
1

nc

q

∂
∂

. 

 
The quantities such as (47) that define the coefficients of x′, y′, z′ in R1 − ∂T / ∂q1 will 
then be zero, and R1 will be equal to ∂T / ∂q1 .  One can characterize that case differently.  
If the conditions (48) are assumed to be fulfilled then one determines the functions of q1 , 
q2 , …, qn by the conditions: 
 

U1 = 
1

0
1

1 1

q

q
a dq∫ , V1 = 

1

0
1

1 1

q

q
b dq∫ ,  W1 = 

1

0
1

1 1

q

q
c dq∫ , 

 
in which 0

1q  is an arbitrary constant, and the integration is performed over q1 .  From the 

conditions (48), one will find immediately that: 
 

1

2

U

q

∂
∂

= 
1

0
1

1
1

2

q

q

a
dq

q

∂
∂∫ =

1

0
1

2
1

1

q

q

a
dq

q

∂
∂∫ = a2 − 0

2a , 

 

                                                
 (1) Those equations were reproduced in the first examples in Tome II of my Traité de mécanique.  They 
were corrected in the following examples: The end of no. 452 was modified and a no. 452 (cont.) was 
added. 
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in which 0
2a  is what a2 will become when one replaces q1 with the constant 0

1q  in it.  

Similarly: 

1

3

U

q

∂
∂

= a3 − 0
3a , …, 1

n

U

q

∂
∂

= an − 0
na . 

 
 One will have analogous relations for V1 and W1 .  One can then write: 
 
 δ x = δ U1 + 0 0 0

2 2 3 3 n na q a q a qδ δ δ+ + +⋯ , 

 
 δ y = δ V1 + 0 0 0

2 2 3 3 n nb q b q b qδ δ δ+ + +⋯ , 

 
 δ z = δ W1 + 0 0 0

2 2 3 3 n nc q c q c qδ δ δ+ + +⋯ . 

 
Hence, the Lagrange equation will apply to q1 when δ x, δ y, δ z can be put into the form 
of a total differential, followed by a differential expression that does not contain q1 . 
 One can also say that if q2 , q3 , …, qn are known as functions of t then q1 will become 
a true coordinate, because one can express x, y, z as functions of q1 in finite form. 
 In his cited paper, Carvallo elegantly appealed to the Lagrange equations, which he 
modified, as necessary, in order to treat the problems of the hoop, the unicycle, and the 
bicycle: He gave a simple and general method for calculating the terms R1 , R2 , …, Rn .  
In addition, he showed that the Lagrange equation can be applied without modification to 
the parameter that determines the inclination of the hoop over the plane.  As we just said, 
that amounts to the fact that once the other parameters are known as functions of t, the 
inclination will become a true coordinate.  However, before Carvallo, Hadamard went 
even deeper into those questions of analytical mechanics in his research with great 
generality, which is why we shall reproduce the text of that article in the following 
section of this book. 
 
 Use of Hamilton’s principle. – One can conveniently deduce the Lagrange equations 
from Hamilton’s principle.  It is obvious that this proof breaks down in the case of the 
exceptional constraints that we are dealing with.  I have shown that from the viewpoint of 
education and without pretending to add anything to the problem at its basis in a small 
note in the Bull. Soc. Math. France (December, 1898). 
 
 
 24. Equations that can replace those of Lagrange. – Upon differentiating the 
equations that give x′, y′, z′ with respect to time, one will have: 
 
 x″ = 1 1 2 2 n na q a q a q′′ ′′ ′′+ + + +⋯ ⋯  

 …………………………………, 
 
in which the unwritten terms in x″ do not contain the q″.  However, one will then 
obviously have: 
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a1 = 
1

x

q

′′∂
′′∂
, b1 = 

1

y

q

′′∂
′′∂
, c1 = 

1

z

q

′′∂
′′∂
, 

 
and the first of equations (44) can be written: 
 

1 1 1

x y z
m x y z

q q q

 ′′ ′′ ′′∂ ∂ ∂′′ ′′ ′′+ + ′′ ′′ ′′∂ ∂ ∂ 
∑  = Q1 ; 

hence, upon setting: 
S = 2 2 21

2 ( )m x y z′′ ′′ ′′+ +∑  = 21
2 m J∑ , 

 
in which J is the acceleration of the point m, the equation can be written: 
 

1

S

q

∂
′′∂
 = Q1 . 

 
 One will get other equations similarly. (See a note that was included in Comptes 
rendus, 7 August 1899). 
 

___________ 



ON ROLLING MOTIONS  
 

By J. HADAMARD 
 

PROFESSOR ON THE SCIENCE FACULTY AT BORDEAUX 
 
 

[Extract from the Mémoires of the Société des sciences physiques et naturelles de Bordeaux, (4) 5 (1895)] 
 

___________ 
 
 

 1. – As C. Neumann (1) has remarked, the study of rolling motions occupies a special 
place in dynamics due to the analytical form that the constraint equations are clad in.  
Indeed, the condition that two bodies in a system should roll on each other without 
slipping does not translate into equations in finite terms between the desired parameters, 
but into linear equations in total differentials that are not integrable.  C. Neumann, and 
later Vierkandt (2), have established those equations by adopting a special notation.  Here, 
I shall employ Darboux’s (3) notations, which lead to the same result very easily. 
 Indeed, let S, S(1) be two surfaces of the system that are constrained to be mutually-
tangent, and on each of them, we choose a system of curvilinear coordinates, as well as a 
trihedron that is attached to the surface at each point.  The relative position of the two 
bodies will be defined by the coordinates u, v ; u(1), v(1) of the contact point on S, as well 
as on S(1), and by the angle ϕ that the axes that are attached to S(1) make with the axes that 
are attached to S.  Now, if we would like to express the idea that the two surfaces S, S(1) 
roll on each other without slipping then we must write down that the infinitely-small 
displacements of the contact point between the two surfaces are identical, which will give 
us: 

(1)   
(1) (1) (1) (1) (1) (1) (1) (1)

1 1 1
(1) (1) (1) (1) (1) (1) (1) (1)

1 1 1

( ) cos ( )sin ,

( )sin ( )cos ,

du dv du dv du dv

du dv du dv du dv

ξ ξ ξ ξ ϕ η η ϕ
η η ξ ξ ϕ η η ϕ

 + = + − +
 + = + + +

 

 
in which ξ, ξ1, η, η1 have the same meaning in relation to the surface S that they have in 
Darboux’s Leçons, and ξ (1), (1)

1ξ , η (1), (1)
1η  denote the analogous quantities that relate to 

the surface S(1), which are referred to the curvilinear coordinates  u(1), v(1). 
 
 
 2. – Moreover, there exist some problems in which other equations of an analogous 
form are relevant.  For example, suppose that not only the sliding friction, but the 
pivoting friction, take a considerable value (while the rolling friction is always zero), in 
such a way that pivoting is, in turn, made impossible.  That condition is expressed (as 
always, using Darboux’s notations) by the equation: 
 

                                                
 (1) “Grundzüge der Analytischen Mechanik,” Ber. Verh. Kön. Sächs. Ges. Wiss. Leipzig (1888), pp. 32. 
 (2) “Ueber gleitende und rollende Bewegung,” Monats. Math. Phys. 3 (1892), pp. 47.  
 (3) Leçons sur la théorie générale des surfaces, Book V, Chap. II.  
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(2)    r du + r1 dv + dϕ – R du (1) – R1 dv (1) = 0, 
 
in which R, R1 denote the quantities that are analogous to r, r1, resp., on the second 
surface, and the left-hand side is the value of the normal component of the elementary 
rotation.  Furthermore, the pivoting friction translates into a couple whose axis is normal 
to the two surfaces, while the work that it does will be zero when equation (2) is satisfied, 
which will permit one to apply the principles of analytical dynamics. 
 
 
 3. – In the second place, let a curve and a surface of the system be constrained to 
remain tangent to each other.  Their relative position is defined by: 
 
 1. The coordinates u, v of the contact point on the surface. 
 
 2. The arc length l of the curve that is found between the contact point and a fixed 
origin. 
 
 3. The angle ω that the tangent to curve (taken in the sense of increasing l) makes 
with the x-axis of the trihedron that is attached to the surface. 
 
 4. The angle θ that the osculating plane to the curve makes with the tangent plane to 
the surface. 
 
 The absence of slipping – i.e., the identity of the infinitely-small displacements of the 
contact point – is expressed by the equations: 
 

(3)     1

1

cos ,

sin .

du dv dl

du dv dl

ξ ξ ω
η η ω

+ =
 + =

 

 
 If one would like to write down the absence of pivoting then one must append the 
equation: 

(4)     r du + r1 dv + dω − 
cos

dl
θ

ρ
 = 0 

 
(in which ρ denotes the radius of curvature of the curve) whose left-hand side will be the 
normal component of the rotation. 
 
 
 4. – Problems of that type, in which the parameters q1 , q2 , …, qm+p that define the 
state of the system are coupled by linear equations: 
 

Eh  (h = 1, 2, …, p) 
 



Hadamard – On rolling motions. 37 

in total differentials, are treated (1) by a method that is entirely analogous to the one that 
is employed when the parameters are coupled by equations in finite terms.  After writing 
out the expression Q1 δ q1 + … + Qm+p δ qm+p in which: 
 

Qi = 
i i i

d T T T

dt q q q

 ∂ ∂ ∂− − ′∂ ∂ ∂ 
, 

 
one writes that this expression is zero, not for all values of the δq, but only for all of the 
ones that that satisfy the linear equations Eh . 
 The calculation of the semi-vis viva for the case in which the two surfaces are tangent 
was performed in the previously-cited papers.  It will be easier with the present notation, 
since the known formulas permit one to evaluate the infinitely-small displacements of the 
center of gravity and the elementary rotation. 
 
 
 5. – If the equations Eh result from the differential of an equation in finite terms Eh 

then one can appeal to them in order to replace p of the quantities q with their values as 
functions of the m other ones in the expression for T, because that would basically come 
down to introducing only m parameters (2) into the presentation of the equation, while the 
other p are expressed as functions of the first ones with the aide of the equations E. 

 However, that will no longer be the case when the equations E do not define an 
integral system, and the method supposes essentially (3) that the semi-vis viva T has been 
calculated as if the parameters q were independent. 
 One can propose to verify that by direct calculation up to the point that caution 
becomes indispensible, and that study will lead to some results of an interesting form, as 
we shall see. 
 First take a special case, to fix ideas: m = 2, p = 2.  Write out the equations E when 
they have been solved for the two of the differentials: 
 

(5)     
3 3
1 1 2 2 3
4 4
1 1 2 2 4

0,

0,

a dq a dq dq

a dq a dq dq

 + − =
 + − =

 

or, upon dividing by dt : 
 

                                                
 (1) Vierkandt, loc. cit., pp. 47-50.  
 (2) Granted, the elimination of the parameters qm+1 , …, q m+p from the expression T with the aid of the 
equations E consists of two operations: 

  1. Replacing those parameters with the corresponding differentials of their values that one infers 
from the integral equations E. 
  2. Replacing the corresponding differentials with their values that one infers from the differential 
equations E. 
  However, one easily sees that the first of those operations can be performed after the partial 
differentiations, while the second one has been performed before those differentiations. 
 (3) Cf., Vierkandt, loc. cit., pp. 52-54.  
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(5′)  
3 3

3 1 1 2 2 3
4 4

4 1 1 2 2 4

0,

0.

a q a q q

a q a q q

′ ′ ′ = + − =
 ′ ′ ′= + − =

A

A
 

 
 Algebraically speaking, appealing to the equations A3 = 0, A4 = 0 means combining 

the expression T with another expression of the form λ3 A3 + λ4 A4 , in which λ3 , λ4 are 

arbitrary functions of the q and q′. (In general, there is good reason to take λ3 , λ4  to be 
linear in the q′, so T will be quadratic in the those same quantities.) The addition of such 
an expression will introduce a new term into each expression Qi , namely, the value that 
Qi will take when the form of T has been replaced with λ3 A3 + λ4 A4, and U has been 

replaced with 0, and the addition will be legitimate only if the new term disappears in the 
final result.  We must then write out that the equations of motion reduce to identities for 
the values T = λ3 A3 + λ4 A4 , U = 0. 

 We observe, first of all, that: 
 
 1. If T contains terms of second degree in at least A3, A4 (in other words, if λ3, λ4 

contain terms that are linear combinations of those quantities) then the partial 
differentiation will preserve A3, A4 to degree one, and as a result, those terms will have 

no influence, since one must take equations (5) into account after that differentiation. 
 
 2. For the same reason, all of the weight of partial differentiation must bear upon A3, 

A4, and not upon λ3, λ4 . 

 
 Under those conditions, when one forms the equations of motion, which are: 
 

(6)     
3 4

1 1 3 1 4
3 4

2 2 3 2 4

0,

0,

Q a Q a Q

Q a Q a Q

 + + =
 + + =

 

 
one will see the terms in dλ3 / dt, dλ4 / dt disappear, and when one replaces 3q′ , 4q′  with 

their values that one infers from equations (5′), one will find simply: 
 
 2q′  (λ3 H3 + λ4 H4) = 0, 

(7)      
 1q′  (λ3 H3 + λ4 H4) = 0, 

upon setting: 

 H3 = 
3 3 3 3 3 3

3 3 4 41 2 1 2 1 2
2 1 2 1

2 1 3 3 4 4

a a a a a a
a a a a

q q q q q q

∂ ∂ ∂ ∂ ∂ ∂− + − + −
∂ ∂ ∂ ∂ ∂ ∂

, 

 

 H4 = 
4 4 4 4 4 4

3 3 4 41 2 1 2 1 2
2 1 2 1

2 1 3 3 4 4

a a a a a a
a a a a

q q q q q q

∂ ∂ ∂ ∂ ∂ ∂− + − + −
∂ ∂ ∂ ∂ ∂ ∂

. 
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 The relations H3 = 0, H4 = 0 express the integrability conditions for the system (5). 
 Therefore: 
 
 When equations (5) define an integrable system, and only in that case, one can 
immediately take those equations into account in the calculation of T. 
 
 However, for arbitrary values of the coefficients a, one will see that only the ratios of 
λ3, λ4 are determined, and one take λ3 A3 + λ4 A4 to be an arbitrary multiple of the linear 

combination: 
C = H3 A3 − H 4 A4 . 

 
 One can then appeal to the equation C = 0 before doing any differentiation. 

 
 
 6. – Things can happen quite differently when the number of parameters changes: For 
example, if the coefficients a depend upon a fifth parameter q5 , because equations (5) 
must then be completed with terms in 5q′ .  When those new equations are considered to 

be identities in the q′, they will obviously have an algebraic character that is quite unlike 
the first ones, and will be verified only under very exceptional circumstances that we 
shall not go into. 
 
 
 7. – Now, imagine the general case, and let the differential equations of constraint be: 
 

(8)    Ak = 
1

m
k
h h k

h

a q q
=

′ ′−∑  = 0  (k = m + 1, …, m + p). 

 
 As before, give T the value: 

T = 
1

m p

k k
k m

λ
+

= +
∑ A , 

 
with U = 0.  One will easily see by means of the same remarks as above that: 
 

 Qi = 
1 1 1

( )
km p m p m

k h
k i k h

k m k m k i

ad
a q

dt q
λ λ

+ +

= + = + =

 ∂′−  ∂ 
∑ ∑ ∑  (i = 1, 2, …, m), 

 

 Ql = 
1 1

km p m
l h

k h
k m k i

d a
q

dt q

λ λ
+

= + =

 ∂′−  ∂ 
∑ ∑    (i = m + 1, …, m + p), 

 
and when one develops dai / dt, replaces the kq′  with their values that one infers from 

equations (8), and arranges things with respect to the hq′ , the equations of motion: 
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Qi + l
i l

l

a Q∑  = 0 

can be written: 

(9)    ,

m

h i h
h i

q P
=

′∑ = 0  (i = 1, 2, …, m), 

in which one sets: 

Pi,h = 
1 1

k k k km p m p
l li h h i

k i h
k m l mh i l l

a a a a
a a

q q q q
λ

+ +

= + = +

  ∂ ∂ ∂ ∂− − −  ∂ ∂ ∂ ∂  
∑ ∑ , 

 
so one has, in particular: 
 
(10)     Pi,h = − Ph,i . 
 
 Any system of values for λk that is independent of the q′ and verifies equations (9) 
will correspond to a linear combination C of equations (8) that can be used before any 

differentiation.  Such a system must satisfy the equations: 
 

Pi,h = 0, 
 
and from the relation (10), their number must reduce by 1

2 m (m − 1).  There will also be 

combinations C such that p is greater than 12 m (m − 1) (1), and their number will be at 

least p − 1
2 m (m − 1). 

 In particular, one can infer p − 1
2 m (m − 1) of the differentials q′ as functions of the 

others from those equations, and consequently: 
 
 If the number of independent parameters is m then one can always reduce the form T 
to something that contains only 1

2 m (m − 1) differentials. 

 
 
 8. – For special values of the coefficients a, the number of independent solutions can 
be greater than what we just indicated.  However, one can appeal to all of equations (8) 
only when the coefficients of all λ are zero; i.e., when the system (8) is integrable, as one 
can easily assure oneself. 
 
 
 9. – In order to see what analytical property characterizes the combinations C, we 

shall study how one forms them when one supposes that the equations E are given in their 
general form, but not solved for some of the parameters. 
 First of all, take the special case that we began with; let: 

                                                
 (1) From the preceding, one sees that when differentials enter into the coefficients a of the equations E, 
one must be careful to count the number of parameters in the same way as when the differentials do not 
enter into them. 
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(11)   1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

0,

0,

A q A q A q A q

B q B q B q B q

′ ′ ′ ′= + + + =
 ′ ′ ′ ′= + + + =

A

B
 

or 

(11′)   1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

0,

0

A dq A dq A dq A dq

B dq B dq B dq B dq

+ + + =
 + + + =

 

 
be the differential equations, and starting with T = λ A + µ B, U = 0, form the 

expressions Qi , while always neglecting to write the partial derivatives that act on λ, µ .  
Upon multiplying by dt : 
 

Qi dt = Ai dλ + Bi dµ + 
4 4

1 1

i h i h
k k

h hh i h i

A A B B
dq dq

q q q q
λ µ

= =

   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   
∑ ∑  . 

 
 We must now write down that the expression: 
 
(12)   (Q1 δq1 + Q2 δq2 + Q3 δq3 + Q4 δq4) dt  
 
is zero whenever equations (11′) are verified by the δq, on the one hand, and the dq, on 
the other.  We see immediately that by virtue of those equations, the terms dλ, dµ will 
disappear from the expression (12), which will take the simple form: 
 

(13)  P = 
,

i h i h

h i h i h i

A A B B

q q q q
λ µ
    ∂ ∂ ∂ ∂− + −    ∂ ∂ ∂ ∂    

∑ (dqh δqi – dqi δqh) . 

 
 
 10. – An initial geometric interpretation will permit us to write out the equation that 
relates λ and µ immediately. 
 Indeed, consider dq1 , dq2 , dq3 , dq4 ; δ q1 , δ q2 , δ q3 , δ q4 to represent the 
homogeneous coordinates of two points in ordinary space.  The expressions dqh δqi –

i hdq qδ  represent the Plückerian coordinates of the line that joins those two points; i.e., 

(due to the conditions that were imposed on the d and the δ) of the intersection of the two 
planes that is represented by equations (11′).  It will suffice to substitute the coordinates 
in the equation B = 0, which is the equation of a linear complex that our line belongs to, 

in order to obtain the desired condition: 
 

(14)  
, , ,

i h i h

h i k l h i h i

A A B B

q q q q
λ µ
    ∂ ∂ ∂ ∂− + −    ∂ ∂ ∂ ∂    

∑ (Ak Bl – Al Bk) = 0, 

 
in which the indices h, i, k, l are the indices 1, 2, 3, 4, when they are displaced by any 
alternating permutation. 
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 11. – In the general case, where the m + p parameters are related by p equations: 
 

(15)   

1 1

1 1

1 1

0,

0,

..............................................,

0,

m p m p

m p m p

m p m p

A q A q

B q B q

L q L q

+ +

+ +

+ +

′ ′= + + =
 ′ ′= + + =


 ′ ′= + + =

⋯

⋯

⋯

A

B

L

 

or 

(15′)   

1 1

1 1

1 1

0,

0,

..........................................,

0,

m p m p

m p m p

m p m p

A dq A dq

B dq B dq

L dq L dq

+ +

+ +

+ +

+ + =
 + + =


 + + =

⋯

⋯

⋯

 

 
we will have to treat the expression: 
 

(Q1 δq1 + … + Qm+p δqm+p) dt 
 
in the same way, which is formed under the hypothesis that U = 0, T = λ A + µ B + … + 

σ L, and which will become: 

 

(16) P = 
,

i h i h i h

h i h i h i h i

A A B B L L

q q q q q q
λ µ σ
      ∂ ∂ ∂ ∂ ∂ ∂− + − + + −      ∂ ∂ ∂ ∂ ∂ ∂      

∑ ⋯ (dqh δqi – dqi δqh) . 

 
 If we suppose that dq1 , …, dqm+p , on the one hand, and δq1 , …, δqm+p , on the other, 
represent homogeneous coordinates in an (m + p – 1)-dimensional space then the 
expressions dqh δqi – dqi δqh will be the coordinates of the line that joins the two points 
that are defined in that way.  For m = 2, equations (15′) represent a line (1), which must, 
in turn, belong to the complex that is defined by the equation P = 0, and for m > 2, they 

must represent a (m – 1)-fold linear multiplicity in which all lines must belong to that 
complex.  Since such a multiplicity contains 1

2 m (m – 1) lines with linearly-independent 

coordinates, we will indeed recover the number of conditions that we obtained before. 
 
 
 12. – Now consider the parameters q themselves to be the (absolute) coordinates of a 
point in an (m + p)-dimensional space.  Equations (15′) can be considered to be the 
equations of an m-fold planar multiplicity to which all of the curves that pass through a 
well-defined point M and satisfy those equations must be tangent.  An m-dimensional 
surface (Σ) that is tangent to that hyperplane at M will be the locus of curves that verify 
the aforementioned differential equations at the point M. 

                                                
 (1) Of course, we shall not speak of the case of m = 1, for which equations (15′) will reduce to ordinary 
differential equations.  
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 We can, to fix ideas, suppose that the differentials d and δ are taken along curves that 
belong to that surface, and upon denoting a system of m curvilinear coordinates on (Σ) by 

t, u, v, …, w, set d = dt
t

∂
∂

, δ = du
u

∂
∂

. 

 Now, upon denoting the first of the differentials in (15′) by dV, the expression P will 

reduce to dδV – δdV for: 
λ = 1, µ = ν = … = σ = 0. 

 

 The equation A = 0 will give one of the desired combinations only when 
d V dV

dt du

δ δ−
 

is zero at the point M. 
 Hence, a combination C is characterized by the fact that it is an exact differential at 

an arbitrary point M on the corresponding surface (Σ), where we intend that to mean the 
conditions that express the integrability of the differential dV are verified on (Σ), which 
was just confirmed by the evaluations that were just obtained, since those conditions are  
1
2 m (m – 1) in number. 

 In other words, when the integral ∫ dV is taken along a closed curve that is traced on 
the surface (Σ) in the neighborhood of the point M, it will not be identically zero, but 
infinitely-close of higher order in a small (two-dimensional) surface element that is 
bounded by that curve. 
 
 
 13. – The case of two surfaces that roll on each other corresponds to m = 3, p = 2.  No 
combinations C will exist then, in general, and one will immediately see that they never 

do. 
 By contrast, the case of two surfaces roll on each other without pivoting [which are 
conditions that are represented by equations (1) and (2)], for which m = 2, p = 3, offers 
two such combinations.  It is indeed remarkable that those two combinations are nothing 
but the two equations (1), which express the absence of slipping. 
 Indeed, if we employ the geometric interpretation of no. 11 then since the quantities: 
 

dq1 = du, dq2 = dv, dq3 = du(1), dq4 = dv(1), dq5 = dϕ 
 
are homogeneous coordinates in four-dimensional space, when one sets: 
 

(17)   
(1) (1) (1) (1)

1 1 1
(1) (1) (1) (1)

1 1 1

cos sin , cos sin ,

sin cos , sin cos ,

X X

Y Y

ξ ϕ η ϕ ξ ϕ η ϕ
ξ ϕ η ϕ ξ ϕ η ϕ

 = − = −
 = + = +

 

 
equations (1) and (2) will be written: 
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(15″)

(1) (1)
1 1 2 2 3 3 4 4 5 5 1 1

(1) (1)
1 1 2 2 3 3 4 4 5 5 1 1

(1) (1)
1 1 2 2 3 3 4 4 5 5 1 1

0,

0,

0,

A dq A dq A dq A dq A dq du dv X du X dv

B dq B dq B dq B dq B dq du dv Y du Y dv

C dq C dq C dq C dq C dq r du r dv R du R dv d

ξ ξ
η η

ϕ

 + + + + = + − − =
 + + + + = + − − =
 + + + + = + − − + =

 

 
which define a line whose coordinates will be the various determinants that one deduces 
from the matrix: 

1 1

1 1

1 1

0

0

1

X X

Y Y

r r R R

ξ ξ
η η

− −
− −
− −

 . 

 
 Let | h i | denote the determinant that is obtained by suppressing the columns of rank 
h, i and arranging the others in such a fashion that the order of the five indices thus-
disposed will be derived them in a natural way from an even number of transpositions, so 
the coefficients of λ, µ in the expression will become: 
 

(18)   
,

| |i h

h i h i

A A
hi

q q

 ∂ ∂− ∂ ∂ 
∑ ,  

,

| |i h

h i h i

B B
hi

q q

 ∂ ∂− ∂ ∂ 
∑ . 

 
 The coefficients of dq1, dq2 depend upon only q1, q2 ; those of dq3 dq4 are 
independent of q1, q2, and that of dq5 is zero or constant, so the only combinations of 
indices that we must consider are: 

h, i = 

1,2

3,4

3,5

4,5








, 

 
respectively, which correspond to the determinants: 
 
 | 1 2 | = X Y1 – Y X1 , | 3 4 | = ξ η1 – η ξ1 , 
 

 | 3 5 | = 
1 1

1 1

1 1

X

Y

r r R

ξ ξ
η η , | 4 5 | = − 

1

1

1

X

Y

r r R

ξ ξ
η η , 

respectively. 
 Moreover, the coefficients in equations (15″) satisfy the differential relations (1): 
 

 1

v u

ξξ ∂∂ −
∂ ∂

= η r1 – r η1 , 1

v u

ηη ∂∂ −
∂ ∂

= r ξ1 – ξ r1 , 

 

                                                
 (1) Darboux, loc. cit., pp. 382.  



Hadamard – On rolling motions. 45 

 1
(1) (1)

XX

v u

∂∂ −
∂ ∂

= Y R1 – R Y1 , 1
(1) (1)

YY

v u

∂∂ −
∂ ∂

= R X1 – X R1 , 

 

 
X

ϕ
∂
∂

= − Y, 1X

ϕ
∂
∂

= − Y1 , 
Y

ϕ
∂
∂

= X, 1Y

ϕ
∂
∂

= X1 , 

 
which will give us the following expressions: 
 
 − (η r1 – r η1) (X Y1 – Y X1) + (X R1 – R X1) (ξ η1 – ξ η1) 
 

 − 
1 1 1

1 1 1 1

1 1 1

X X

Y Y Y Y

r r R r r R

ξ ξ ξ ξ
η η η η+ , 

 
 − (r ξ1 – ξ r1) (X Y1 – Y X1) + (R X1 – X R1) (ξ η1 – η ξ1) 
 

 + 
1 1 1

1 1 1 1

1 1 1

X X

X Y X Y

r r R r r R

ξ ξ ξ ξ
η η η η−  

for the coefficients (18), which vanish identically. 
 Our conclusion is established then: When there is rolling without pivoting, the 
equations of rolling can be used to calculate T. 
 
 
 14. – If we form the coefficient that corresponds to the third equation similarly then 
we will find simply: 
 

1r r

u v

∂ ∂ − ∂ ∂ 
(X Y1 – Y X1) − 1R R

u v

∂ ∂ − ∂ ∂ 
(ξ η1 – η ξ1), 

 
which is annulled (since X Y1 – Y X1 = (1) (1) (1) (1)

1 1ξ η ξ η− )  only if one has: 

 

1

1 1

r r

u v
ξ η η ξ

∂ ∂−
∂ ∂

−
= 

1

(1) (1) (1) (1)
1 1

R R

u v
ξ η η η

∂ ∂−
∂ ∂

−
; 

 
i.e., if the two surfaces have equal constant curvatures. 
 Indeed, equations (1) and (2) will form an integrable system in that case.  In order to 
realize it, it will suffice to remark that in the case of rolling without pivoting, the loci of 
contact points on the two surfaces have the same geodesic curvature.  Now, the two 
surfaces can be mapped to the same sphere here, and our two lines on that sphere will 
correspond to two equal lines.  There will then exist relations (that contain three arbitrary 
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constants) between the parameters u, v ; u(1), v(1) of the contact point that define a rotation 
(or more precisely, a symmetry) of the sphere.  As for the angle ϕ, which is the angle that 
the x-axis of the trihedron that is attached to the sphere at the point that is the transform 
under symmetry makes with the new position of the original x-axis, it is expressed as a 
function of u, v and the same constants.  The three relations thus-written are the integrals 
of the differential system. 
 
 
 15. – The fact that a spherical curve is determined when one gives the radius of 
geodesic curvature as a function of the arc is almost obvious a priori.  Moreover, it 
comes down immediately to some kinematical considerations with the aid of a tri-
rectangular trihedron that has its summit at the center of the sphere, one edge terminating 
at a point of the curve, and one face that is tangent to the cone that has that curve for its 
base and the center for its summit.  The spherical extremity of the normal edge to the 
cone describes the polar spherical curve to the first one, and the tangents to the two 
curves are parallel.  Upon supposing, to simplify, that the radius of the sphere is equal to 
1, the ratio ds / ds1 of the arc lengths of the original curve and the polar curve will be 
equal to the radius of geodesic curvature ρs .  Now, if one takes the independent variable 
to be the arc length s then one will see that the instantaneous rotation of the trihedron will 
have ds1 / ds, 0, 1 for its projections onto the edges.  The motion of that trihedron is then 
known when one gives the geodesic curvature as a function of the arc. 
 It should be remarked that the equality ρg = ds / ds1 gives an immediate proof of the 
proposition: 
 
 When two figures are mutually polar on the sphere of radius 1, the area of each of 
them will be equal to the perimeter of the other one (up to a hemisphere), at least if one 
counts the arc lengths to be positive or negative according to whether the corresponding 
tangents of the two curves have the same or opposite senses, respectively. 
 

 That is because the integral 
g

ds

ρ∫
= dσ∫∫  will then reduce to 1ds∫ . 

 
 
 16. – A very simple rolling motion is that of an indefinite plane rolling on a fixed 
surface in the absence of accelerating forces.  By the term “indefinite plane,” we mean a 
plane on which masses are arranged at very large distance from each other in such a 
manner that the principal moments of inertia will be very large.  One can even suppose 
that the masses are external to the plane and linked with that plane by the condition that 
the center of gravity must be on the plane and the central ellipsoid revolves around the 
normal to the plane in such a way that if m denotes the mass of the system then the 
principal moments of inertia will be mk2, mk2, and λ mk2, where k2 is very large.  From 
that, we can neglect the terms into which k2 does not enter as a factor in comparison to 
the ones that contain it, and reduce the vis viva 2T to the vis viva of rotation around the 
center of gravity: 
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(19)  
2

2T

mk
= (p u′ + p1 v′)2 + (q u′ + q1 v′)2 + λ (ϕ + r u′ + r1 v′)2 . 

 
 The equation that relates to the variable ϕ then reduces to: 
 
(20)    ϕ + r u′ + r1 v′ = c. 
 
 As for the equations that relate to u, v, by virtue of the constraint equations, which are 
written: 

(21)   1

1

cos sin ,

sin cos

du dv dx dy

du dv dx dy

ξ ξ ϕ ϕ
η η ϕ ϕ

+ = −
 + = +

 

 
(x, y denote the coordinates of the contact point in the moving plane), they will become 
linear combinations of the equations that relate to x, y.  However, the left-hand sides of 
the latter, which do not contain any term in k2, are negligible.  One can then write: 
 

(22) 

1
1 1

1
1 1

1

1
1 1 1

1 1

[ ( )] ( )

[ ( )] ( )

0,

[ ( )] ( )

[ ( )]

pd p
p pu p v u v pu p v

dt u u

qd q
q qu q v u v qu q v

dt u u

rdr r
c u v

dt u u

pd p
p pu p v u v pu p v

dt v v

d q
q qu q v u

dt v

λ

∂∂ ′ ′ ′ ′ ′ ′+ − + + ∂ ∂ 

∂∂ ′ ′ ′ ′ ′ ′+ + − + + ∂ ∂ 

∂∂ ′ ′+ − − = ∂ ∂ 

∂∂ ′ ′ ′ ′ ′ ′+ − + + ∂ ∂ 

∂′ ′ ′+ + − +
∂

1
1

1 1

( )

0.

q
v qu q v

v

dr rr
c u v

dt v v
λ















 ∂  ′ ′ ′+  ∂ 
 ∂∂  ′ ′+ − − =  ∂ ∂ 

 

 
 Equations (22), to which one must append the vis viva integral, by virtue of equation 
(20), determine u, v.  They contain only rotations as characteristic element of the surface; 
i.e., elements that depend upon the spherical representation. 
 As usual, set: 

(23) q u′ + q1 v′ = 
d

dt

σ
cos θ , p u′ + p1 v′ = − d

dt

σ
sin θ , 

 
in which σ is the arc length of the spherical representation of the trace of the rolling of 
the surface, and θ is the angle that the spherical representation makes with the x-axis of 
the trihedron of the surface.  When the vis viva integral is simplified with the help of 
equation (20), it will reduce to: 
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(24)     
d

dt

σ
= h. 

 
 On the other hand, the known differential relations between the rotations permit one 

to transform the two equations (22).  In the first of them, one replaces 1p

u

∂
∂

, 1q

u

∂
∂

, 1r

u

∂
∂

 

with their values 
p

v

∂
∂

+ r q1 – q r1 , 
q

v

∂
∂

+ p r1 – r p1 , 
r

v

∂
∂

+ q p1 – p q1 , and upon operating 

analogously on the second one, those equations will be represented by: 
 

 
d

p
dt

(p u′ + p1 v′) + d
q

dt
(q u′ + q1 v′)  =   (p q1 – q p1) v′ (r u′ + r1 v′ – λ c), 

 

 1

d
p

dt
(p u′ + p1 v′) + 1

d
q

dt
(q u′ + q1 v′) = − (p q1 – q p1) u′ (r u′ + r1 v′ – λ c), 

 
respectively, or, by an immediate linear combination: 
 

 
d

dt
(p u′ + p1 v′) =    (q u′ + q1 v′) (r u′ + r1 v′ – λ c),  

 

 
d

dt
(q u′ + q1 v′) = − (p u′ + p1 v′) (r u′ + r1 v′ – λ c), 

 
which reduce to just: 
 
(25)    θ′ + r u′ + r1 v′ = λ c, 
 
by virtue of equations (23) and (24). 
 The left-hand side of this expresses the geodesic curvature of the spherical 
representation, which is a circle that describes a uniform motion, from equation (24). 
 As for the angle ϕ, it is given by the condition that is deduced from a combination of 
equations (20), (25) that θ – ϕ – i.e., the angle between the x-axis of the moving plane 
and spherical representation of the trace of the rolling motion – increases in proportion to 
time, or rather, that the component of the pivoting motion ϕ′ + r u′ + r1 v′  is constant. 
 Finally, equations (21) give x and y by quadratures.  The locus of the contact point on 
the moving plane can be considered to be defined by its arc length, moreover, which is 
the same as that of the surface, and the angle between the tangent and the x-axis of the 
moving plane, which is ω − θ ; i.e., the sum of ω − θ and a quantity that is proportional to 
time. 
 
 
 17. – When the given surface is a sphere, the traces of the rolling motion on the 
moving plane will likewise be circles, since ω − θ is zero and the arc length of the curve 
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and the angle ω − ϕ are both proportional to time.  One easily sees that this cannot 
happen for other forms of the given surface. 
 Can two different surfaces give the same rolling traces on the moving plane, in 
general?  We can see that this is impossible, at least when one demands that the 
correspondence between homologous points on the two surfaces must be the same in any 
case.  Indeed, the two must then be mappable to each other.  As a result, a point-like 
correspondence must exist between the two spherical representations that preserves areas 
and transforms circles into circles.  It is clear that such a correspondence can be realized 
only by a simple rotation of the sphere, and our two surfaces can be considered to be 
mappable to each other with parallelism of their tangent planes.  There will then be two 
associated minimal surfaces, which is an inadmissible solution in our problem, in which 
only convex surfaces can occur. 
 
 
 18. – The case of a line that rolls on a surface is the case of m = 2, p = 2, since the 
parameter θ does not enter into the equations of constraint.  For: 
 
 A = ξ u′ + ξ1 v′  – l′  cos ω, 

 B = η u′ + η1 v′  – l′  sin ω, 

equation will reduce to: 
(ξ η1 – η ξ1) (λ sin ω – µ cos ω) = 0. 

 
 The factor ξ η1 – η ξ1 is essentially non-zero, so the equation that one is permitted to 
use is: 
 
(26)   (ξ u′ + ξ1 v′ ) cos ω + (η u′ + η1 v′ ) sin ω – l′ = 0 ; 
 
i.e., the one that expresses the absence of longitudinal slipping. 
 
 
 19. – Take the example of a line that is not acted upon by any force and rolls on a 
surface in such a way that the contact point describes a certain line L.  Let masses be 
distributed in arbitrary fashion along that line whose sum is m, but we can always assume 
that the center of gravity corresponds to l = 0 and the principal moment of inertia is mk2. 
 The vis viva of rotation around the center of gravity is: 
 

2
2 d

mk
dt

ε 
 
 

= mk2 {[( p u′ + p1 v′ ) sin ω – (q u′ + q1 v′ ) cos ω]2 + (ω′ + r u′ + r1 v′ )2}, 

 
in which ε denotes the infinitely-small angle through which the line turns.  As for the 
velocity of the center of gravity, since we have removed all longitudinal slipping from the 
line, we can consider it to consist of: 
 
 1. A transversal velocity: 
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l (ω′ + r u′ + r1 v′) + (ξ u′ + ξ1 v′ ) sin ω – (η u′ + η1 v′ ) cos ω . 
 
 2. A normal velocity: 
 

l [(p u′ + p1 v′ ) sin ω – (q u′ + q1 v′ ) cos ω]. 
 
 Its square will then be: 
 

2
2 d

l
dt

ε 
 
 

+ 2l (ω′ + r u′ + r1 v′ ) [(ξ u′ + ξ1 v′ ) sin ω – (η u′ + η1 v′ ) cos ω] 

+ [(ξ u′ + ξ1 v′ ) sin ω – (η u′ + η1 v′ ) cos ω]2 , 
 
the last term of which can be neglected, since it is homogeneous of degree two in the left-
hand sides of the equations of constraint.  One will then have: 
 

(27) 
2 2 2 2

1 1 1

1 1 1

2
( ){[( )sin ( )cos ] ( ) }

2 ( )[( )sin ( )cos ].

T
k l pu p v q u q v r u r v

m
l r u r v u v u v

ω ω ω

ω ξ ξ ω η η ω

 ′ ′ ′ ′ ′ ′ ′= + + − + + + +

 ′ ′ ′ ′ ′ ′ ′+ + + + − +

 

 
There are two differential equations that one must write, one of which can be replaced 
with the vis viva equation: 
 
(28)  2 2 2 2

1 1 1( ){[( )sin ( )cos ] ( ) }k l p u p v q u q v r u r vω ω ω′ ′ ′ ′ ′ ′ ′+ + − + + + + = α2 . 

 
 We can take the second equation to be the one that relates to ω, for which one only 
has one expression to calculate (namely Q), since the differential dω does not enter into 
the constraint equations.  Upon taking the equations A = 0, B = 0 into account, we will 

then have: 
 

(29)

2 2
1

2 2
1 1 1 1

1

[( )( )]

( )[( )sin ( )cos ][( ) cos ( )sin ]

( ) 0.

d
k l r u r v

dt
k l pu p v qu q v pu p v qu q v

l l r u r v

ω

ω ω ω ω
ω

 ′ ′ ′+ + +
 ′ ′ ′ ′ ′ ′ ′ ′− + + − + + + +
 ′ ′ ′ ′− + + =



 

 
 One must append the equations: 
 

(30)    1

1

cos ,

sin ,

du dv dl

du dv dl

ξ ξ ω
η η ω

+ =
 + =

 

 
which express the idea that l is nothing but the arc length of the line L, and ω is the angle 
between that line and the x-axis. 
 The vis viva equation gives us: 
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(p u′ + p1 v′ ) sin ω – (q u′ + q1 v′ ) cos ω = 
2 2

cos

k l

α ϖ
+

, 

 

ω + r u′ + r1 v′ = 
2 2

sin

k l

α ϖ
+

, 

 
in which ϖ is the angle between the osculating plane to L and the normal to the surface.  
If we note that the quantity: 
 

(p u′ + p1 v′ ) cos ω + (q u′ + q1 v′ ) sinω 
 

represents 
1dl d

dt dl

ϖ
τ

 − 
 

 then we will see that equation (29) reduces to: 

 

2 cos ϖ 2 2k l+  = 0. 

 
 The line then rolls on a planar section of the surface. 
 
 
 20. – If the rolling is constrained to take place without pivoting then the number of 
combinations C will be equal to two.  It is almost obvious a priori (when one considers 

the line to be the limit of a surface) that those combinations are the precisely the 
equations of rolling.  One verifies that immediately from the form of equations (3) and 
(4).  Indeed, if one once more lets q1, q2, q3, q4, q5 denote the variables u, v, l, ω, θ, 
respectively, to fix ideas, then one will see that all of the terms in the expressions (18) 
contain zero factors. 
 

___________ 
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 A system of p linear total differential equations: 
 
 A1 dq1 + A2 dq2 + … + Am+p dqm+p = 0, 
 
    B1 dq1 + B2 dq2 + … + Bm+p dqm+p = 0, 
(S) 
  ………………………………………. 
 
  L1 dq1 + L2 dq2 + … + Lm+p dqm+p = 0, 
 
in which one considers dq1 , dq2 , …, dqm+p to be homogeneous coordinates in (m + p)-
dimensional space, represents an (m – 1)-dimensional planar multiplicity.  However, that 
multiplicity can also be represented by a system (Σ) of n tangential equations, namely, the 
conditions that the coefficients (viz., tangential coordinates) of an (m + p – 2)-
dimensional hyperplane must fulfill in order for that hyperplane to contain our 
multiplicity.  Two linear systems such as (S) and (Σ) can be called reciprocal systems, for 

brevity.  If one denotes the tangential coordinates by 
1

f

q

∂
∂

, …, 
m p

f

q +

∂
∂

 then the system (Σ) 

will be nothing but the system of linear partial differential equations that the integrals of 
the system (S). 
 Having said that, when the system (S) represents the equations of constraint in a 
dynamical problem, as was explained in the paper above, one will be led to consider 
certain special combinations C within the system (S) whose number is equal to at least p − 
1
2 m (m – 1) and which play a special role in the formation of the Lagrange equations. 

 Now, if we are dealing with the system (Σ) then the calculations of the combinations 
C will come down to a well-known theory.  Indeed, if one would like to apply Lie’s 

method to the system (Σ) then one must append 1
2 m (m – 1) brackets (Ei , Ek) to the 

equations E1 , E2 , …, Em of that system.  One will then obtain a new system (Σ′) of m + λ 
equations [0 ≤ λ ≤ 1

2 m (m – 1)] on which one must recommence with that same 

operation.  Here, on the contrary, we shall stop with the system (Σ) and take the 
reciprocal (S′); the latter is composed of precisely the desired combinations C. 
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  One will then indeed see why the number of those combinations is at least p − 
1
2 ( 1)m m− and can be p only if the system is integrable. 

 
_____________ 

 
 

 


