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VII. – CONSTRAINTS INVOLVING SERVOS.  
 
 

 470. Servos (†). – In a remarkable treatise that was submitted in November 1922 to 
the Paris Science Faculty and which was entitled Étude théorique des compas 
gyrostatiques ANSCHÜTZ et SPERRY, Henri BEGHIN introduced the new notion of a 
“servo.” 
 There exists an important category of mechanisms that realize their constraints by a 
method that is entirely different from the one that was just examined.  For those 
mechanisms, one cannot abstract from the way that the constraints are realized. 
 The constraints that are realized by these mechanisms can be arbitrary; most often, 
they are holonomic.  However, instead of those realizations being – so to speak – passive, 
such as ones that are obtained by simple contact, they use arbitrary forces (e.g., 
electromagnetic forces, compressed air pressure, etc.) – in a word, auxiliary energy 
sources that come into play automatically and are automatically measured out in such a 
way as to realize this or that constraint at each instant.  One can even imagine an 
animate being that acts by contact and regulates its action in such a manner as to realize 
this or that constraint. 
 Let Σ be a solid body (a disc, for example) that moves around a diameter ∆ under the 
influence of certain given forces.  A solid body Σ1 (a concentric ring, for example) of 
diameter ∆1 moves around ∆ without having any contact with Σ.  The ring Σ1 carries a 
toothed wheel a whose axis is ∆ that meshes with a pinion b that is attached to the shaft 
of a motor M.  It is easy to image an arrangement (1) that would make the motor turn in 
one sense or the other without acting directly on either Σ or Σ1, while Σ and Σ1 are never 
in the same plane.  If α and α1 are the azimuths of Σ and Σ1, respectively, then the 
constraint: 

α = α1 
 

will then be found to be realized in such a way that the ring Σ1 follows the disc Σ in all of 
its motions around ∆ without being driven by it.  It is obvious that the manner in which 
this system behaves has nothing in common with the manner in which would behave if Σ 
were driven by Σ1 by direct contact: For example, if a small spring that is fixed to Σ1 
pushes on Σ then the system will take on a uniformly accelerated motion in the case of a 
servo, while it will obviously remain immobile under the second hypothesis. 
 What are the forces of constraint in the system in the previous example?  If I consider 
the system ΣΣ1 then those forces will be, on the one hand, the reactions along the axis ∆, 
which are ordinary forces of constraint, and the reactions of the pinion b on the gear a.  
                                                
 (†) The French “liaisons par asservissement” literally means “constraints by servitude (or slavery).”  
However, since the standard modern term is “servo constraints,” I will consistently translate 
“asservissement” as “servo.” 
 (1) See the description of the Sperry Compass (The Sperry Gyrocompass, 7).  
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Those reactions, which play a major role in the problem, have an entirely special 
character, because the pinion b (viz., a foreign obstacle) that exerts them is not fixed, nor 
is it in a state of motion that is known in advance as a function of t : It is an obstacle 
whose position is known in advance as a function of the parameters (α, α1, here) upon 
which the system considered ΣΣ1 depends. 
 If I include the rotor R of the motor M in the system considered then the constraint 
forces will be the electromagnetic actions to which the rotor is subject on the part of the 
stator, in addition to the actions of contact between the fixed obstacles and the actions of 
contact R Σ1, which are ordinary constraint forces.  Indeed, those forces have the 
character of constraint forces: They are unknown, but one knows that they have the value 
that is necessary in order to insure the constraint considered. 
 For any elementary constraint that is compatible with the constraint α = α1 , the 
ordinary constraint forces will do zero work.  On the contrary, the other constraint forces 
(whether one means the reactions of the foreign obstacles whose position depends upon 
parameters α, α1 or those electromagnetic actions that are exerted at a distance on the 
rotor) will do non-zero work.  That is how the mechanisms that include a servo are 
distinguished from the other ones. 
 
 General study of the mechanisms that include a servo. D’Alembert’s principle. – Let 
Σ be a material system that presents no source of energy dissipation.  In addition, suppose 
that no part of that system can contract or dilate, with the exception that will be assumed 
below. 
 Upon taking into account the contacts that are imposed upon it, that system will be 
supposed to depend upon a limited number h of parameters q1, q2, …, qh in such a manner 
that the coordinates x, y, z of each element of Σ are functions of those parameters that are 
known in advance, and might also be: 
 
(1)    x = f (q1, q2, …, qh, t) ,  y = …,  z = … 
 
at time t. 
 Some of the foreign obstacles that Σ is in contact with are fixed or depend upon t.  
Others, as a result of the contacts imposed, are supposed to depend upon a certain number 
k of the preceding parameters – namely, q1, q2, …, qk , also possibly t. 
 Those contact conditions are holonomic contact constraints. 
 Suppose, in addition that the system is subject to certain non-holonomic constraints; 
i.e., that the parameters q1, q2, …, qh are coupled by a certain number p of differential 
relations that express the conditions of rolling without slipping or pivoting at certain 
contacts.  Those relations will permit one to express the p elementary variations: 
 

dqn+1 , dqn+2 , …, dqn+p  (n + p = h) 
 
as functions of q1, q2, …, qn , and dt ; they have the form: 
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(2)   (p relations) 
1 1

1 1

0,

0,

..............................................

h h

h h

A dq A dq Adt

B dq B dq B dt

+ + + =
 + + + =



⋯

⋯  

 
Those conditions are non-holonomic contact constraints.  Those are the only two types of 
constraints that one encounters in modern problems. 
 For any elementary displacement that is compatible with the constraints that might 
exist at the instant t (i.e., one for which δ t is zero, and δq1, …, δqn are arbitrary), the 
mutual reactions between the bodies of the system do zero work, as well as the reactions 
of the fixed obstacles or the ones that depend upon t.  I will say that these reactions are 
constraint forces of the first kind. 
 In addition, the system Σ is supposed to be subject to other constraints that I will call 
servo constraints, which are also expressed by finite equations or linear differential 
equations, but are realized by means of forces that are completely different: Those forces, 
which will call generalized constraint forces, or ones of the second kind, are applied to 
the bodies in the system: They can be external or internal. 
 In the first case, they are either actions at a distance, such as electromagnetic ones or 
other kinds, which are regulated automatically in such a manner as to insure the finite or 
differential constraint that they are supposed to realize, or the contact actions with the 
foreign obstacles whose position is supposed to depend upon q1, q2, …, qk , t whose 
motion must regulated automatically in such a manner that certain finite or differential 
equations must be verified at each instant by the parameters q. 
 In the second case – i.e., if those constraint forces of the second kind are internal – 
they will be either actions at a distance, such as electromagnetic ones, or internal stresses 
in the bodies that can contract or dilate (e.g., compressed air, muscles in a living being), 
which are stresses that are regulated automatically – for example, the will of the living 
being – in such a manner as to realize this or that constraint.  Except for that exception, 
the system will not be supposed to be compressible. 
 The system Σ can be composed of an electric motor whose velocity ω is independent 
of the load, which might be, for example a derivative motor (moteur-dérivation), within 
certain limits.  The servo constraint will then be realized in the form: 
 

dθ = ω dt . 
 
 The system can be composed of a cyclist and his machine.  The cyclist can contract 
his muscles, not by a given quantity but by a quantity that is measured out in such a way 
that certain constraints are found to be realized: He will regulate the action of his legs in 
such a manner as to realize a constant angular velocity, or perhaps he will contract the 
muscles of his body in such a way to realize an inclination of the frame as a function of t, 
etc.  The methods that will be described below will permit one to study the variation of 
the unknown parameters. 
 As an application, one can also imagine a ship Σ, with one part σ of the cargo that is 
put into motion automatically by a motor in such a manner as to realize certain 
constraints: For example, as a servo constraint, one might have that the ship must remain 
constantly vertical, which is realized by a roll stabilizer.  A small gyrostatic mechanism 
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that is based upon the principle of the Schlick stabilizer will indicate the true vertical 
onboard the ship.  The servomotor will come into action when that vertical is not in the 
plane of symmetry of the ship.  One can also regulate the motion of σ in such a manner as 
to realize the motion of σ in such a manner as to realize some relation between its 
position and the inclinations of the ship.  One can then change the period of oscillation of 
the ship at will and avoid the synchronism of the hull, when appropriate.  One can 
regulate the motion of σ in such a manner as to realize some condition between its 
position and the angular velocity of the ship that permits one to damp out the oscillations, 
etc.  The forces of constraint of the second kind here will be the mutual actions between 
Σ and σ. 
 A material system that presents constraint forces of the second kind will be said to 
include a servo.  It is obvious that the virtual work that is done by constraint forces of the 
second kind is generally non-zero. 
 Having posed those definitions, imagine that there are r servo relations, one of which 
is finite, while the others are differentials, and have the form: 
 

(3)   (r relations) 1

1 1 2 2

( , , , ) 0, ,

0,
h

h h

g q q t

dq dq dq dtε ε ε ε
=

 + + + + =

… …

⋯ …

 

 
 The virtual displacements of the system that are compatible with the contact 
constraints that might exist at the instant t (δt = 0) are obtained by taking h – p of the 
elementary variations δq1, …, δqh arbitrarily; the other p are defined by the relations (1), 
which will reduce to: 

(2′)   (r relations) 
1 1

1 1

0,

0,

......................................

h h

h h

A q A q

B q B q

δ δ
δ δ

+ + =
 + + =



⋯

⋯  

 
 Among those displacements, there exist ones for which one can confirm a priori that 
the work done by the constraint forces of the second kind is zero, without knowing 
anything but the way that they act.  We shall suppose that they are the ones that 
simultaneously verify the j relations: 
 

(4)   (j relations) 
1 1

1 1

0,

......................................

0.

h h

h h

a q a q

l q l q

δ δ

δ δ

+ + =


 + + =

⋯

⋯

 

 
 D’Alembert’s principle, when it is applied to any of those displacements, is expressed 
by the equation: 
 
(5)   ( )m x x y z z zδ δ δ′′ ′′ ′′+ +∑ = ( )X x Y y Z zδ δ δ+ +∑  

 
here, in which the Σ sign on the left-hand side extends over all elements of the system, 
while m denotes the mass of one of its elements, and x″, y″, z″ denote the projections of 
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its acceleration, while the Σ on the right-hand side extends over all given forces X, Y, Z.  
Indeed, it is obvious that for those displacements the constraint forces, which are either of 
the first or second kind, will do zero work. 
 That condition decomposes into h – p – j, since the h elementary variations δq1, …, 
δqh are subject to the p relations (2′) and the j relations (4), so only h – p – j of those 
variations will be arbitrary. 
 In order to write those equations effectively, we employ the method of Lagrange 
multipliers: If x, y, z are expressed as functions of q1, …, qh , t by equations (1) then the 
left-hand side of equation (5) will be the sum of h terms of the form: 
 

(6)    
x y z

q m x y z
q q q

δ  ∂ ∂ ∂′′ ′′ ′′+ + ∂ ∂ ∂ 
∑  = P δq , 

 
in which q denotes any of the h parameters.  The right-hand side is the sum of h terms of 
the form: 

(7)    
x y z

q X Y Z
q q q

δ  ∂ ∂ ∂+ + ∂ ∂ ∂ 
∑  = Q δq . 

 
 D’Alembert’s equation is written: 
 
(8)   (P1 – Q1) δq1 + (P2 – Q2) δq2 + … + (Ph – Qh) δqh = 0 . 
 
 That equation must be combined with the p relations (2′), when multiplied by the 
coefficients A, M, …, respectively, and the j relations (4), when multiplied by λ, µ, …, 
respectively, where those coefficients A, M, …, λ, µ, … constitute p + j auxiliary 
unknowns.  We will get the equation: 
 
(9)   ∑ (Pi − Qi + AAi + MBi + … + λ ai + µ bi + …) δqi = 0, 

 
in which i represents the indices 1, 2, …, h.  The multipliers A, M, …, λ, µ, … can be 
chosen in such a manner that the coefficients of p + j of the variations δqi will be zero, 
because the relations (2′) and (4) are meant to be independent in the preceding.  Equation 
(9) must be verified for any of the other h – q – j variations δqi in such a way that the 
coefficients of those h – p – j variations in equation (9) must also be themselves zero. 
 In summary, the problem comes down to solving the h equations: 
 

(10)  
1 1 1 1 1 1

2 2 2 2 2 2

0,

0,

........................................................................,

P Q AA MB a b

P Q AA MB a b

λ µ
λ µ

− + + + + + + =
 − + + + + + + =



⋯ ⋯

⋯ ⋯  

 
to which one must append the p equations (2) that express the non-holonomic contact 
constraints and the r servo constraints (3), namely, h + p + r equations in h + p + j 
unknowns (viz., q1, …, qh , A, M, …, λ, µ, …). 



VII. – Constraints involving servos. 6 

 If it happens that r is greater than j then the problem will generally be impossible to 
solve; i.e., it will not be possible to realize a number of servo constraints that is greater 
than the number of restrictive conditions that one must impose upon the parameters q in 
order to annul the virtual work done by forces of the same kind. 
 If r is equal to j then the problem will be solved by equations (2), (3), and (10). 
 If r is less than j then the motion will be indeterminate: One can imagine, moreover, 
that if the function that must replace the forces of the second kind is not sufficiently well-
defined then their elimination will become impossible, and that the motion cannot be 
studied unless one is given some of them. 
 
 Special cases: 
 
 1. Suppose that equations (2′), which express the idea that the virtual displacements 
are compatible with the non-holonomic contact constraints, and equations (4), which one 
is led to introduce in order to annul the virtual work done by constraint forces of the 
second kind, are solved for the p + j = m variations δq1, …, δqm : 
 

(11)   
1 1 1

1 1

,

.................................................

;

m m h h

m m m h h

q q q

q q q

δ δ δ

δ δ δ

+ +

+ +

= + +


 = + +

⋯

⋯

A A

L L

 

 
the Lagrange multipliers become superfluous.  If one replaces the δq1 , …, δqm with these 
expressions in (8) then one will get an equation that is linear in δqm+1 , …, δqh , which 
must be verified for any variations, and therefore h – m equations of the form: 
 
(12)  Pm+i – Qm+i + Am+i (P1 – Q1) + … + Lm+i (Pm − Qm) = 0, 

 
in which i denotes one of the numbers 1, 2, …, h – m . 
 One must combine these equations with the p equations (2) and the r servo equations 
(3). 
 
 2. If the equations (11) reduce to: 
 
(13)    δq1 = 0, …, δqm = 0 
 
then the equations of motion will reduce to the simple form: 
 
(14)    Pm+1 = Qm+1 , …, Ph = Qh . 
 
 3. Suppose that the constraint forces of the second kind are uniquely the contact 
actions of an auxiliary system Σ1 of moving obstacles whose positions depend upon a 
certain subset q1, …, qk of the parameters q1, …, qh .  In that case, the relations (4) will 
be: 
 
(15)    δq1 = 0,  …,  δqk = 0, 
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because it is by leaving those obstacles fixed that one will annul the work done by their 
actions on the given system Σ .  The multipliers λ, µ, … will become superfluous, 
because equation (8) will no longer contain δqk+1 , …, δqh .  Equations (10) will reduce to 
the following h – k equations: 
 

(16)  
1 1 1 1 0,

..........................................................,

0,

k k k k

h h h h

P Q AA MB

P Q AA MB

+ + + +− + + + =


 − + + + =

⋯

⋯

 

 
and as in the general case, one must combine these with the p equations (2) and the r 
relations (3), so one will have h – k + p + r relations in h + p unknowns.  The problem 
will be determinate when the number of servo-equations is equal to the number k of 
parameters that the auxiliary system Σ1 depends upon. 
 
 4. With the same hypotheses as in the preceding paragraph (3.), we suppose, in 
addition, that the contact constraints on the system are all holonomic (p = 0).  The 
multipliers A, M, … will also become superfluous, and equations (10) will reduce to the 
following h – k equations: 
 
(17)    Pk+1 = Qk+1 , …, Ph = Qh , 
 
and one must append the r equations (3), which express the servo.  The unknowns are 
uniquely q1, …, qh . 
 
 Remarks: 
 
 1. In systems without servos, the virtual displacements to which one applies 
d’Alembert’s equation will be the ones that are compatible with all of the constraints.  In 
the systems that include servos, things will be different for some displacements: There 
will then exist analytical reasons for the difference that exists between those two 
categories of systems, and one can understand all of the interest that is attached to the 
mechanisms that include servos from the industrial standpoint. 
 
 2. In the case where the constraint forces of the second kind are uniquely the 
reactions of the moving obstacles whose positions are functions of some of the 
parameters q (cases 3. and 4.), the solution of the problem will be independent of the 
inertia of those bodies and the given forces that are applied to them. 
 Thus, if one can define two parts Σ, Σ1 of a system that is subject to r servo 
constraints such that the partial system Σ is not subject to any constraint force of the 
second kind, outside of the reactions of the system Σ1 , and if, on the other hand, the 
number of parameters that the system Σ1 depends upon is equal to the number of servo 
conditions then the inertial forces and the given forces that are applied to Σ1 will not 
influence the motion of Σ .  The method that was indicated in the special cases 3. and 4. 
will permit one to put the problem into the form of equations without introducing either 



VII. – Constraints involving servos. 8 

inertial forces or given forces.  The partial system will then play an auxiliary role.  That 
special case frequently presents itself in the applications. 
 
 Equilibrium in systems that include a servo. – D’Alembert’s principle will give the 
equilibrium conditions when one suppresses the P, which are the terms that are provided 
by the inertial forces in the system considered.  Equations (10), which relate to the 
general case, and equations (12), (14), (16) or (17), which relate to the special cases that 
were studied, will then give the equilibrium equations if one replaces the P with zero.  
One must combine those equations with the servo equations, which are finite.  The 
differential equations that express non-holonomic constraints, which are either contact 
constraints or servo constraints, must obviously not be appended; they are verified 
identically. 
 
 Extending the Lagrange equations. – With the same general conditions that were 
defined at the outset of this discussion, the coordinates x, y, z of the various elements of 
the system considered Σ can be expressed by finite expressions [eq. (1)] as functions of 
time t and the parameters q1, …, qh that depend upon the system when one takes into 
account only the holonomic contact constraints; now, the expression: 
 

P = 
x y z

m x y z
q q q

 ∂ ∂ ∂′′ ′′ ′′+ + ∂ ∂ ∂ 
∑  

will have the value: 

P = 
d T T

dt q q

 ∂ ∂− ′∂ ∂ 
. 

 
 One will then extend the Lagrange equations to the systems that include a servo by 
replacing P1 , …, Ph with their expression in equations (10). 
 It is essential to remark that the vis viva must be calculated as functions of the q1 , …, 
qh , 1q′ , …, hq′ , t without taking into account the servo constraints.  The same thing will 

be true for the elementary work: 
Q1 δq1 + … + Qh δqh 

 
done by the given forces.  If those forces admit a force functions – i.e., if Q1 , …, Qh are 

the derivatives 
1

U

q

∂
∂

, …, 
h

U

q

∂
∂

 of a function U of q1 , …, qh , t – then that function U will 

be calculated without addressing the servo.  It is only in the equations themselves – i.e., 

in the expressions Q, 
T

q

∂
∂

, 
d T

dt q

 ∂
 ′∂ 

 − that one can take them into account.  Meanwhile, 

when the derivative of ∂T / ∂q′ with respect to t is taken for the real motion, which is 
compatible with the servo constraints, one can carry out all of the simplifications on ∂T / 
∂q′ that result from those constraints before differentiating with respect to t.  In summary: 
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One can take the servo into account after concluding the calculation of the three 

categories of expression Q, 
T

q

∂
∂

, 
T

q

∂
′∂
. 

 
 Vis viva equation. – Since the contact constraints are not supposed to depend upon t, 
in particular, equations (2), which represent the non-holonomic constraints, have no terms 
in dt (A = B = … = 0), because the given forces are supposed to admit the force function 
U(q1, …, qh), we multiply equations (10), which give the motion in the general case, by 
dq1, …, dqh , resp., which are elementary variations of the parameters under the real 
displacement, and the expression: 

P1 dq1 + … + Ph dqh 
   
will give the work done by the inertial forces, with the sign changed: 
 

m∑ (x″ dx + y″ dy + z″ dz) ; 

 
i.e., the differential dT of one-half the vis viva. 
 The expression: 

Q1 dq1 + … + Qh dqh 
 
is equal to dU .  The multiplier A has the coefficient: 
 

A1 dq1 + … + Ah dqh , 
 
which is zero, since the displacement verifies equations (2).  The same thing will be true 
for the analogous coefficients M, … 
 One will then have the equation: 
 

d (T – U) + λ (a1 dq1 + … + ah dqh) + µ (b1 dq1 + … + bh dqh) + … = 0 . 
 
 One sees that T – U is not constant.  Since the terms in λ, µ, … represent the 
elementary work done by the constraint forces of the second kind, which is not zero, in 
general, the conditions (4) will not be imposed upon the real displacement.  According to 
its sign, that work will correspond to a gain or a loss of mechanical energy for the system 
Σ considered. 
 The same thing will be true in each of the special cases that were defined before: The 
combination of the vis vivas will not be given by the expression d (T – U), because only 
some of the expressions P1, …, Ph , Q1 , …, Qh will enter into the equations of motion. 
 It is interesting to conclude that the servo can permit one to increase or decrease the 
desired mechanical energy of a system, and in particular, it can damp out the oscillations 
of a system that presents no source of dissipation of energy. 
 
 Application. – Let a plate Σ in a fixed plane articulate with a circular base plate Σ1 
that moves around its center O at a point C .  A force that is parallel to a fixed line Ox and 
has a constant magnitude F is exerted on the plate Σ at a point A that is located along the 
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line that joins C to the center of gravity G.  A servomotor M acts on the base plate Σ1 by 
way of gears, in such a manner as to constantly realize the constraint: 
 

(1)      α – β = 
2

π
 

 
[α = (Ox, OC), β = (Ox, CA), OC = R, CA = a, CG = b]. 

 
 Since there is just one servo constraint, and on the other hand, the base plate Σ1 
depends upon just one parameter α, the system Σ, taken by itself, will belong to the 
special case 4 (pp. 7).  One can then apply the Lagrange equations to just the plate Σ .  
One sees that the mass of the base plate Σ1 will have no influence on the motion.  The vis 
viva of Σ is: 
 

2T = M (R2 α′ 2 + b2 β′ 2 + 2R b α′ β′ cos (α – β) + k β′ 2), 
 
where Mk2 denotes the moment of inertia of Σ about G. 
 The virtual work done by the force F is: 
 

dT = F δ (R cos α + a cos β), 

 
except that the equation that relates to β is written: 
 

(4)     
d T T

dt β β
 ∂ ∂− ′∂ ∂ 

 = − F a sin β . 

 Now: 
T

β
∂

′∂
= M [b2 β′  + 2R b α′ cos (α – β) + k β′ ] = M (b2 + k2) β′ , 

 
if one takes the servo constraint into account.  On the other hand: 
 

T

β
∂
∂

= MR b α′ β sin (α – β) = MR b β′ 2. 

 
 The equation of motion is then: 
 
(5)    M (b2 + k2) β″ – MR b β′ 2 + F a sin β = 0 . 
 
 If the constraint α – β = π / 2 is realized by direct contact between Σ and Σ1 then the 
motion will be completely different: It will be regulated by the equation: 
 
(6)    [M (b2 + k2 + k2) β″  + F (a sin β  + R cos β) = 0, 
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in which I1 denotes the moment of inertia of the base plate about O.  Equation (5) will 
easily give the motion:  β′ 2 is obtained by adding a term that is sinusoidal in β to a term 
that is exponential.  β varies between two limits, one of which can be pushed out to 
infinity.  On the contrary, equation (6) will give a pendulum motion. 
 The equilibrium positions are obtained by annulling the right-hand side of equation 
(4).  One will then find the two positions for which CA is parallel to the force.  On the 
contrary, equation (6) will give the positions for which OA is parallel to the force. 
  
 Extending the equations in no. 465. – The equations in no. 465 (†) present the 
following advantages: 
 
 1. They can be applied to systems that are subject to non-holonomic constraints 
without one having to introduce a system of multipliers as auxiliary unknowns. 
 
 2. They permit one use auxiliary parameters that are coupled with the true 
coordinates q1, …, qh by some differential relations. 
 
 Therefore, let Σ be a system that fulfills the conditions that were indicated at the 
beginning of this article (pp. 2).  Upon taking into account the holonomic contact 
constraints that are imposed upon its position, which depends upon h parameters q1, …, 
qh , and possibly t, in such a way that the coordinates of each element of matter are finite 
functions of the form: 
 
(1)    x = f (q1, …, qh , t), y = …,  z = … 
 
 Suppose that these parameters are combined with s auxiliary parameters qh+1 , …, qh+s 
that are coupled with the preceding ones by some differential relations that serve as their 
definitions, which are relations that do not, in turn, depend upon any constraint force.  
One counts them with the relations that express the non-holonomic contact constraints, 
because they enter into the formulation of equations in the same way. 
 We then have p differential relations (p ≥ s) of the form: 
 

(2)   (p relations) 
1 1

1 1

0,

0,

....................................................

h s h s

h s h s

A dq A dq Adt

A dq A dq Adt
+ +

+ +

+ + + =
 + + + =



⋯

⋯  

 
 Suppose that the servo constraints are represented by r finite or differential relations: 
 

                                                
 (†) Translator: No. 465 had the title “General form of the equations of motion that is suitable for all 
holonomic and non-holonomic motion,” and was concerned with d’Alembert’s equations, as well as the 
Appell equations. 
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(3)   (r relations) 

1

1 1

( , , , ) 0,

................................,

0,

..................................................

h s

h s h s

g q q t

dq dq dtε ε ε

+

+ +

=


 + + + =


⋯

⋯

 

 
 Finally, the virtual displacements that annul the work done by constraint forces of the 
second kind are the ones that verify the j relations: 
 

(4)   (j relations) 
1 1

1 1

0,

0,

.........................................

h s h s

h s h s

a q a q

b dq b q

δ δ
δ

+ +

+ +

+ + =
 + + =



⋯

⋯  

 
 Having said that, form the expression: 
 

S = 2 2 21
2 ( )m x y z′′ ′′ ′′+ +∑ , 

 
which is called the energy of acceleration.  If we express x″, y″, z″ by means of the 
parameters q1, …, qh , which are functions of t, and the first and second derivatives of the 
parameters q with respect to t then we have seen that the terms P in the d’Alembert 
equation will have the expressions: 
 

P1 = 
1

S

q

∂
′′∂
, …, Ph = 

h

S

q

∂
′′∂

; 

 
hence, one establishes the equations of motion. 
 
 Case where the differential equations of contact constraint and the definitions (2) are 
solved for the p variations dq. – In order for the equations of motion to appear with their 
full simplicity, it is useful to solve those p equations (2) for p of the h + s = n + p 
variations dq .  On the one hand, one expresses the p derivatives 1nq +′ , …, n pq +′  as 

functions of the 1q′ , …, nq′  by means of relations of the form: 

 

(5)     
1 1 1

1 1

,

...........................................

,

n n n

n p n n

q q q

q q q

α α α

γ γ α

+

+

′ ′ ′ = + + +


 ′ ′ ′= + + +

⋯

⋯

 

 
and on the other hand, the p virtual displacements δqn+p , …, δqn+1 as functions of the δq1, 
…, δqn : 
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(5)     
1 1 1

1 1

,

...........................................

;

n n n

n p n n

q q q

q q q

δ α δ α δ

δ γ δ γ δ

+

+

 = + +


 = + +

⋯

⋯

 

 
the coefficients αi , …, αi are functions of q1, …, qn+p , t.  Of course, those parameters q1, 
…, qn can be chosen from among the true coordinates, as well as from among the 
auxiliary parameters qh+1 , …, qn+s . 
 Having said that, instead of expressing S as a function of the parameters q1, …, qn and 
their first and second derivatives, as we supposed in the preceding paragraph, it can be 
interesting to use equations (5), which replace equations (2).  Upon differentiating them 
with respect to t, we will express the second derivatives 1nq +′′ , …, n pq +′′  as functions of the 

1q′′ , …, nq′′ , and the first and derivatives of the parameters q.  We can then make the p 

second derivatives 1nq +′′ , …, n pq +′′ , disappear from S.  S will become a function of the q1, 

…, qh+s , t, 1q′ , …, h sq +′ , and the n second derivatives 1q′′ , …, nq′′ .  We know that under 

those conditions the virtual work that is done by the inertial forces (with the sign 
changed) will be: 

(7)     1
1

n
n

S S
q q

q q
δ δ

  ∂ ∂+ +   ′′ ′′∂ ∂   
⋯ . 

 
 On the other hand, if one expresses the virtual work done by the given forces in terms 
of the δq1, …, δqn by using only the relations (6) then one will an expression of the form: 
 
(8)     Q1 δq1 + … + Qn δqn 
 
for that work. 
 Those two expressions must be equal for any displacement that annuls the work done 
by constraint forces of the second kind; i.e., one that verifies the j relations (4).  Here 
again, it is interesting to take the relations (6) into account, which will permit one to 
make the δqn+1 , …, δqn+p disappear from equations (4); when those equations are solved 
for j of the remaining variations δq1 , …, δqn , they will be written: 
 

(9)     
1 1 1

1 1

,

................................................

.

j j n n

j j j n n

q q q

q q q

δ δ δ

δ δ δ

+ +

+ +

 = + +


 = + +

⋯

⋯

A A

L L

 

 
 If one replaces δq1 , …, δqj with these values in the expressions (7) and (8) and 
expresses their equality for any of the arbitrary remaining δqj+1 , …, δqn then one will get 
the equations of motion in the form: 
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(10)  

1 1 1 1
1 1

1
1

0,

............................................................................................

j j j j
j j

n n
n

S S S
Q Q Q

q q q

S S
Q Q

q q

+ + +
+

    ∂ ∂ ∂− + − + + − =       ′′ ′′ ′′∂ ∂ ∂    

   ∂ ∂− + − +   ′′ ′′∂ ∂  

⋯

⋯

A L

A 0.n j
j

S
Q

q








 ∂ + − =   ′′∂ 
L

 

 
 Those equations are simpler than the Lagrange equations that one can write for the 
same problem [see eq. (12), pp. 6], because the number of terms in each of the preceding 
equations is j + 1, instead of m + 1 = p + j + 1 in the case of the Lagrange equations.  The 
complication that is thus introduced by the presence of the coefficients A and L is 

provided solely by the relations that express the idea that the work done by constraint 
forces of the second type is zero, and is not at all provided by the non-holonomic 
constraints. 
 One can append the p equations (5) to equations (10), along with the r equations (3) 
that express the servo constraint. 
 
 Case where the displacements that annul the virtual work done by the constraint 
forces of the second kind are defined by j relations of the form: 
 
(11)    δq1 = 0,  …,  δqj = 0 . 
 
 With the same hypotheses as before, suppose that the conditions that a displacement 
must fulfill in order to annul the virtual work done by constraint forces of the second kind 
have the simple form (11).  One can, moreover, always place oneself in that case by 
introducing some conveniently-chosen auxiliary parameters, if necessary. 
 In that case – which is, in summary, the general case – if one performs the 
calculations as was just said then equations (10) will be simplified and will take the same 
form as in the case of a system without servos: 
 

(12)    
1j

S

q +

∂
′′∂

= Qj+1 , …, 
n

S

q

∂
′′∂

= Qn . 

 
 One sees that the equations of no. 465 will give a general solution of the question in a 
form that is simpler than the Lagrange equations.  One must combine those n – j 
equations with the p equations (5) and the r servo equations (3).  If r = j then the number 
of equations will be equal to the number of unknowns. 
 
 Application. – A material plane P can slide by translation on a fixed horizontal plane 
xOy.  A sphere Σ of radius R can roll without slipping on that plane.  The motion of the 
plane P is regulated automatically in such a manner that the center of the sphere turns 
uniformly around Oz with the velocity ω with respect to the fixed axes Ox, Oy, Oz.  Let 
us study the motion by means of the equations of no. 465. 
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 Let u, v be the coordinates of a distinguished point A on the plane P with respect to 
the axes Ox, Oy, Oz.  The position of that plane is defined by only those two parameters.  
The position of the sphere is defined by the coordinates ξ, η of its center, and for 
example, the Euler angles ϕ, θ, ψ, which define its orientation. 
 If p, q, r are the projections onto the axes of the instantaneous rotation of the sphere 
then the conditions that express the rolling without slipping will be obtained by writing 
that the material element of the sphere and the material element of the plane, which 
coincide at the instant t, have the same velocity: 
 
(1)     ξ′ – q R = u′, η′ + p R = v′ . 
 
 There are two servo constraints: 
 
(2)    dξ + ωη dt = 0, dh – ωξ dt = 0 . 
 
 Since the number of these relations is equal to the number of parameters that the 
position in the plane P depend upon, one can answer the question by applying the 
equations of no. 465 to just the sphere Σ. 
 Upon taking just the holonomic contact constraints into account, the sphere will be 
considered to depend upon the seven parameters u, v, ξ, η, ϕ, θ, ψ (h = 7). It is interesting 
to combine them with three auxiliary parameters (s = 3) that are coupled with the 
preceding one by the relations: 
 
(3)    dλ = p dt, dµ = q dt, dν = r dt . 
 
 These h + s = 10 parameters are coupled with those three relations and by the two 
relations (1) that express the non-holonomic contact constraints.  Those relations (1) can 
be written: 
 
(1′)    dξ – R dµ = du, dη + R dλ = dν . 
 
 The relations (3) and (1′) are the p differential relations [eq. (2), pp. 11] of the general 
theory (p = 5). 
 We keep h + s – p = n = 5 parameters from the h + s = 10 parameters; we choose u, v, 
ξ, η, ν .  We express the energy of acceleration S of the sphere as a function of the second 
derivatives of those n parameters by using the p = 5 relations (3) and (1′).  Now, the value 
of S is defined by: 

2S = M (ξ″ 2 + η″ 2) + 2
5 M R2 (p′2 + q′2 + r′2), 

or, from (3) and (1′): 
 

2S = M (ξ″ 2 + η″ 2) + 2
5 M R2 [(v″ − η″ )2 + (ξ″ − u″)2 + R2ν″ 2] . 

 
 The virtual displacements annul the work done by constraint forces of the second 
kind are defined by the j = 2 conditions: 
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(5)     δu = 0,  δv = 0, 
 
since those forces are the reactions of the plane on the sphere.  Those conditions have the 
form indicated in the preceding paragraph [eq. (11)], in such a way that the equations of 
motion have the form [eq. (12)]: 
 

(6)    
S

ξ
∂

′′∂
= Ξ , 

S

η
∂

′′∂
= Η , 

S

ν
∂

′′∂
= Ν . 

 
The right-hand sides are zero, since the given forces (viz., weight of the sphere) do zero 
work, and we get the equations: 
 
(7)    7ξ″ = 2u″, 7η″ = 2v″, ν″ = 0, 
 
which will answer the question when they are combined with the servo equations (2).  
Those five equations can be integrated immediately and will show that the point A 
describes a cycloid.  The formulas (1′) show that the instantaneous rotation vector will 
remain parallel to the generators of an oblique cone whose base is a horizontal circle that 
describes the angular velocity ω . 
 

________ 
 


