Excerpted from P. Appellraité de mécanique rationnell6” ed., v. I, Gauthier-Villars, Paris, 1953. pp.
402-416. Translated by D. H. Delphenich.

VIl. — CONSTRAINTS INVOLVING SERVOS.

470. Servos(T). — In a remarkable treatise that was submitted in hdbeg 1922 to
the Paris Science Faculty and which was entitlettide théorique des compas
gyrostatiquesANSCHUTZ et SPERRY, Henri BEGHIN introduced the new notion of a
“servo.”

There exists an important category of mechanismsréadize their constraints by a
method that is entirely different from the one theds just examined. For those
mechanismspne cannot abstract from the way that the constraints are realized.

The constraints that are realized by these mecharmamdbe arbitrary; most often,
they are holonomic. However, instead of those zatitins being — so to speak — passive,
such as ones that are obtained by simple contact, theyanbsteary forces (e.g.,
electromagnetic forces, compressed air pressure, -etm)a word,auxiliary energy
sources that come into play automatically and are automatically measured suthra
way as to realize this or that constraint at each insta@ne can even imagine an
animate being that acts by contact and regulates isnactisuch a manner as to realize
this or that constraint.

Let 2 be a solid body (a disc, for example) that movesirad a diameteA under the
influence of certain given forces. A solid boBy (a concentric ring, for example) of
diameterA; moves around\ without having any contact with. The ringZ; carries a
toothed whee& whose axis i€\ that meshes with a pinidnthat is attached to the shaft
of a motorM. It is easy to image an arrangeméttifat would make the motor turn in
one sense or the other without acting directly on eifther ,, while = andX; are never
in the same plane. lfr and a1 are the azimuths af andZ%,, respectively, then the
constraint:

a=m

will then be found to be realized in such a way thatringZ; follows the dis& in all of
its motions around\ without being driven by it.It is obvious that the manner in which
this system behaves has nothing in common with the mamméich would behave i
were driven by>; by direct contact: For example, if a small spring tisatixed to;
pushes orx then the system will take on a uniformly acceleratedion in the case of a
servo, while it will obviously remain immobile under thecond hypothesis.

What are the forces of constraint in the systerhenprevious example? If | consider
the systenx; then those forces will be, on the one hand, theticeecalong the axia,
which are ordinary forces of constraint, and the reastiof the piniorb on the geas.

(") The French “liaisons par asservissement” literafigans “constraints by servitude (or slavery).”
However, since the standard modern term is “servo comtsfail will consistently translate
“asservissement” as “servo.”

() Seethe description of the Sperry Compa$kd Sperry Gyrocompasg).
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Those reactions, which play a major role in the probléave an entirely special
character, because the pinioiviz., a foreign obstacle) that exerts them is na&d, nor
is it in a state of motion that is known in advanceadsnction oft : It is an obstacle
whose position is known in advance as a function of the parametess, (here) upon
which the system considered; depends.

If I include the rotoR of the motorM in the system considered then the constraint
forces will be the electromagnetic actions to whichrtiter is subject on the part of the
stator, in addition to the actions of contact betwienfixed obstacles and the actions of
contact R %3, which are ordinary constraint forces. Indeed, thfosees have the
character of constraint forcebhey are unknown, but one knows that they have the value
that is necessary in order to insure the constraint considered.

For any elementary constraint that is compatible i constrainta = o , the
ordinary constraint forces will do zero work. On tantrary, the other constraint forces
(whether one means the reactions of the foreignaclest whose position depends upon
parametersy, a1 or those electromagnetic actions that are exerteddstance on the
rotor) will do non-zero work. That is how the mecharsstinat include a servo are
distinguished from the other ones.

General study of the mechanisms that include a servo. D’Alemberigpte. — Let
2 be a material system that presents no source ajedesipation. In addition, suppose
that no part of that system can contract or dilaith the exception that will be assumed
below.

Upon taking into account the contacts that are imposed itpthat system will be
supposed to depend upon a limited nuntbef parametersgs, Oz, ..., gx in such a manner
that the coordinates y, z of each element & are functions of those parameters that are
known in advance, and might also be:

(1) x=f (0, 2, ..., Oh, 1) , y=..., zZ= ...

at timet.

Some of the foreign obstacles ttais in contact with are fixed or depend upon
Others, as a result of the contacts imposed, are suppmdepend upon a certain number
k of the preceding parameters — nameglygy, ..., Gk, also possibly.

Those contact conditions dnelonomic contact constraints.

Suppose, in addition that the system is subject toigartan-holonomic constraints;
i.e., that the parametets, O, ..., g» are coupled by a certain numheof differential
relations that express the conditions of rolling withslipping or pivoting at certain
contacts. Those relations will permit one to expteep elementary variations:

dq1+1,dq1+2, ...,dq1+p (n+p:h)

as functions o, oy, ..., gn, anddt ; they have the form:
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Adg+---+ Adgq+ AdEDO,
(2) (o relations) B, dg+---+ B dq+ Bdt0,

Those conditions aneon-holonomic contact constraint3.hose are the only two types of
constraints that one encounters in modern problems.

For any elementary displacement that is compatibll thie constraints that might
exist at the instart (i.e., one for whichdt is zero, andx, ..., A, are arbitrary), the
mutual reactions between the bodies of the system donzetq as well as the reactions
of the fixed obstacles or the ones that depend tipdrwill say that these reactions are
constraint forces of the first kind.

In addition, the syster is supposed to be subject to other constraints thdt ¢aii
servo constraintswhich are also expressed by finite equations or lineffereintial
equations, but are realized by means of forces thatoanpletely different: Those forces,
which will call generalized constraint forcesy ones of the second kindre applied to
the bodies in the system: They carelsgernalor internal.

In the first case, they are either actions at tadce, such as electromagnetic ones or
other kinds, which are regulatadtomaticallyin such a manner as to insure the finite or
differential constraint that they are supposed to reat the contact actions with the
foreign obstacles whose position is supposed to depend ajpaop, ..., 0k, t whose
motion must regulatedutomaticallyin such a manner that certain finite or differential
equations must be verified at each instant by the parasweter

In the second case — i.e., if those constraint $oafehe second kind are internal —
they will be either actions at a distance, suchl@s®magnetic ones, or internal stresses
in the bodies that can contract or dilate (e.g., corsprkair, muscles in a living being),
which are stresses that are regulaaatbmatically— for example, the will of the living
being — in such a manner as to realize this or that @amstrExcept for that exception,
the system will not be supposed to be compressible.

The systenX can be composed of an electric motor whose velagis/ independent
of the load, which might be, for example a derivativeton (moteur-dérivatiol, within
certain limits. The servo constraint will then lealized in the form:

dé= wdt.

The system can be composed of a cyclist and his machihe.cyclist can contract
his muscles, not by a given quantity but by a quantity thaiessured out in such a way
that certain constraints are found to be realizedwileegulate the action of his legs in
such a manner as to realize a constant angular velocifyerhaps he will contract the
muscles of his body in such a way to realize an inchnatif the frame as a function Hf
etc. The methods that will be described below will pene to study the variation of
the unknown parameters.

As an application, one can also imagine a ghipvith one parto of the cargo that is
put into motion automatically by a motor in such a manaerto realize certain
constraints: For example, as a servo constraintyagbt have that the ship must remain
constantly vertical, which is realized by a roll staati A small gyrostatic mechanism
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that is based upon the principle of the Schlick stabihzdlrindicate the true vertical

onboard the ship. The servomotor will come into actden that vertical is not in the
plane of symmetry of the ship. One can also regutetenotion ofoin such a manner as
to realize the motion ot in such a manner as to realize some relation betwsen
position and the inclinations of the ship. One can timamge the period of oscillation of
the ship at will and avoid the synchronism of the hwihen appropriate. One can
regulate the motion otr in such a manner as to realize some condition betwsen
position and the angular velocity of the ship that peronesto damp out the oscillations,
etc. The forces of constraint of the second kind haltebe the mutual actions between
> ando.

A material system that presents constraint forde$e second kind will be said to
include a servo.lt is obvious thathe virtual work that is done by constraint forces of the
second kind is generally non-zero.

Having posed those definitions, imagine that there aervo relations, one of which
is finite, while the others are differentials, and heheform:

geeey ,t:O, sy
(3) (r relations) 9(a %1
gdg+e,dg,+---+¢, dg+& dt=0,
The virtual displacements of the system that are petilvle with the contact
constraints that might exist at the instarfgx = 0) are obtained by takirg — p of the

elementary variation&qs, ..., &, arbitrarily; the othep are defined by the relations (1),
which will reduce to:

A S +-+ A5G =0,
(2) (r relations) B og+---+Bdqg, =0,

Among those displacements, there exist ones for wdmiehcan confirna priori that
the work done by the constraint forces of the sedand is zero, without knowing
anything but the way that they act. We shall suppose th®t are the ones that
simultaneously verify therelations:

aoqt---+80¢=0,
4) ( relations) <

D’Alembert’s principle, when it is applied to any obde displacements, is expressed
by the equation:
(5) D m(XIx+ YOz 29 = ) (XIx+YIy+ Z0 3

here, in which the& sign on the left-hand side extends over all elementheofystem,
while m denotes the mass of one of its elements,xand’, Z' denote the projections of
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its acceleration, while thE on the right-hand side extends over all given foXe¥, Z.
Indeed, it is obvious that for those displacements thstcaint forces, which are either of
the first or second kind, will do zero work.

That condition decomposes into— p — j since theh elementary variationsaq, ...,
A, are subject to thp relations (2 and thej relations (4), so onlyn — p — jof those
variations will be arbitrary.

In order to write those equations effectively, we lByghe method of Lagrange
multipliers: Ifx, y, z are expressed as functionsogf ..., g, t by equations (1) then the
left-hand side of equation (5) will be the sunmhdérms of the form:

6) 5q2m( %yay fgazpa‘q,

in whichq denotes any of the parameters. The right-hand side is the suimtefms of
the form:

7 ] VL AL
(7) QZ( + q+ 6qj Qq.

D’Alembert’s equation is written:

(8) P1—Q) dpn+(P2—Qx) A2+ ... + Pn—Qn) dh=0

That equation must be combined with fheelations (2, when multiplied by the
coefficientsA, M, ..., respectively, and therelations (4), when multiplied by, 4, ...,
respectively, where those coefficiemds M, ..., A, 4 ... constitutep + j auxiliary
unknowns. We will get the equation:

(9) > (P-Q+AA+MBi +...+Aa+ub+..) =0,

in whichi represents the indices 1, 2, h., The multipliersA, M, ..., A, 4, ... can be
chosen in such a manner that the coefficientg 6f] of the variationsiy; will be zero,
because the relations'Yand (4) are meant to be independent in the precediggation
(9) must be verified for any of the other— q — jvariationsdg in such a way that the
coefficients of thosé — p — jvariations in equation (9) must also be themselves ze

In summary, the problem comes down to solvingtkeguations:

-Q+ AA+ MB+---+ A g+u h+---=
(10) P-Q+AA+ MB+-+A1 a+u b+ =

to which one must append tipeequations (2) that express the non-holonomic contact
constraints and the servo constraints (3), namely,+ p + r equations irh + p + |
unknowns (Viz.g1, ..., Gn, AL M, .. A 4 L),
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If it happens that is greater thanthen the problem will generally be impossible to
solve; i.e., it will not be possible to realize a numbgservo constraints that is greater
than the number of restrictive conditions that onestmimpose upon the parametgrs
order to annul the virtual work done by forces of the skime.

If r is equal tg then the problem will be solved by equations (2), (3),(@0jl

If r is less than then the motion will be indeterminate: One can imagir@eover,
that if the function that must replace the forcethefsecond kind is not sufficiently well-
defined then their elimination will become impossiblad @hat the motion cannot be
studied unless one is given some of them.

Special cases:

1. Suppose that equations)(2vhich express the idea that the virtual displacements
are compatible with the non-holonomic contact constsaand equations (4), which one
is led to introduce in order to annul the virtual work @dyy constraint forces of the
second kind, are solved for ther j = mvariationsdq, ..., Om :

50& = 'Am+1 5qm+1+' . +Ah5qh’
(11) s

the Lagrange multipliers become superfluous. If onloes thedy , ..., m with these
expressions in (8) then one will get an equation thahésat in sz, ..., Ah, Which
must be verified for any variations, and therefore mequations of the form:

(12) P+ = Qmei + Amii (PL—Qu) + ... + Lini (Pm—Qm) =0,

in whichi denotes one of the numbers 1, 2,h. m.
One must combine these equations withgleguations (2) and theservo equations

(3).

2. Ifthe equations (11) reduce to:
(13) an =0, ey AOm=0
then the equations of motion will reduce to the simpitent
(14) Pre1 = Qmer, ..oy Ph=0Qn.

3. Suppose that the constraint forces of the secamdl &ie uniquely the contact
actions of an auxiliary systey of moving obstacles whose positions depend upon a
certain subsety, ..., gk of the parameters,, ..., ¢, . In that case, the relations (4) will
be:

(15) aph =0, ey O=0,
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because it is by leaving those obstacles fixed that olh@nviul the work done by their
actions on the given systeln. The multipliersA, 4, ... will become superfluous,
because equation (8) will no longer contém.1, ..., &n. Equations (10) will reduce to
the followingh —k equations:

Pk+1 _Qk+1+ A’°k+1+ M3<+1+"' =0,
(16) L e

R-Q+ AA+ M+ =0,

and as in the general case, one must combine theseheithequations (2) and the
relations (3), so one will have — k+ p + r relations inh + p unknowns. The problem
will be determinate when the number of servo-equatioreqisal to the numbek of
parameters that the auxiliary systgmdepends upon.

4. With the same hypotheses as in the preceding paragraphvé3suppose, in
addition, that the contact constraints on the sysaeenall holonomic{ = 0). The
multipliers A, M, ... will also become superfluous, and equations (10) wdlice to the
following h — kequations:

(17) P11 = Q1 ooy Ph=0n,

and one must append theequations (3), which express the servo. The unknowns are
uniquelyqu, ..., Gh .

Remarks:

1. In systems without servos, the virtual displacement which one applies
d’Alembert’s equation will be the ones that are compatibih all of the constraints. In
the systems that include servos, things will be diffefentsome displacements: There
will then exist analytical reasons for the differeniteat exists between those two
categories of systems, and one can understand all oftdrest that is attached to the
mechanisms that include servos from the industriatgiaint.

2. In the case where the constraint forces of tlw®rsk kind are uniquely the
reactions of the moving obstacles whose positions aretibns of some of the
parametersy (cases 3. and 4.), the solution of the problem will bepaddent of the
inertia of those bodies and the given forces thaappdied to them.

Thus, if one can define two parks Z; of a system that is subject toservo
constraints such that the partial syst&nms not subject to any constraint force of the
second kind, outside of the reactions of the sysiemand if, on the other hand, the
number of parameters that the systendepends upon is equal to the number of servo
conditions then the inertial forces and the given rit&at are applied ta; will not
influence the motion o£ . The method that was indicated in the special casasd34.
will permit one to put the problem into the form of egoiag without introducing either
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inertial forces or given forces. The partial systeiththven play an auxiliary role. That
special case frequently presents itself in the appiosti

Equilibrium in systems that include a servoD’Alembert’s principle will give the
equilibrium conditions when one suppressesRhevhich are the terms that are provided
by the inertial forces in the system considered. Equafii@@s which relate to the
general case, and equations (12), (14), (16) or (17), whicle teldhe special cases that
were studied, will then give the equilibrium equationsne replaces the with zero.
One must combine those equations with the servo equatidnsh are finite. The
differential equations that express non-holonomic waimts, which are either contact
constraints or servo constraints, must obviously r®tappended; they are verified
identically.

Extending the Lagrange equations.With the same general conditions that were
defined at the outset of this discussion, the coordinatgsz of the various elements of
the system considereécan be expressed by finite expressions [eq. (1)] as dunsctf
time t and the parameterg, ..., g, that depend upon the system when one takes into
account only the holonomic contact constraints; rtbe expression:

0x oy 0z
P=>Ym X—+y—=+7—
x ( aq yaq j

aq
p=d(0T) 0T
dtlog ) oq
One will then extend the Lagrange equations to theesysthat include a servo by
replacingPs, ..., Py with their expression in equations (10).
It is essential to remark that thes vivamust be calculated as functions of the ...,

Oh, G, ..., G, t without taking into account the servo constrainishe same thing will
be true for the elementary work:

QLA+ ... +Qn A

will have the value:

done by the given forces. If those forces admitreefdunctions — i.e., i1, ..., Qn are
the derivativeng:, ZTU of a functionU of q1, ..., On, t — then that functiotd will
be calculated without addhressing the servo. It is antheé equations themselves — i.e.,
in the expression®, g—: %(g—;j — that one can take them into account. Meanwhile,

when the derivative odT / dq’ with respect td is taken for the real motion, which is
compatible with the servo constraints, one can carrybuatf the simplifications odT /
0q’that result from those constraints before diffesgimg with respect to¢. In summary:



VII. — Constraints involving servos. 9

One can take the servo into account after concluding the calculation of the thr

. . oT
categories of expression, , —
q dq

Vis viva equation= Since the contact constraints are not supposed todlepent,
in particular, equations (2), which represent the non+tarhic constraints, have no terms

indt (A=B=... =0), because the given forces are supposed to admitrteeféinction
U(a, -.., gn), we multiply equations (10), which give the motiorthe general case, by
dai, ..., dgw, resp., which are elementary variations of the par@mmeinder the real

displacement, and the expression:
Prdaq + ... +Pndg,

will give the work done by the inertial forces, wittetsign changed:
D> m(x" dx+y" dy+2Z' d;

i.e., the differentiatiT of one-half thevis viva
The expression:

Quday + ... +Qnda,

is equal tadU . The multiplierA has the coefficient:
Ardag + ... +Adg,,

which is zero, since the displacement verifies equnat{@). The same thing will be true
for the analogous coefficienks, ...
One will then have the equation:

dT-U+A(@dy + ... +andg,) + (bydoy + ... +bpdgy) + ... =0.

One sees that — U is not constant. Since the termsAny, ... represent the
elementary work done by the constraint forces ofsémmond kind, which is not zero, in
general, the conditions (4) will not be imposed upornréla¢ displacement. According to
its sign, that work will correspond togain or alossof mechanical energfpr the system
> considered.

The same thing will be true in each of the specialscHs® were defined before: The
combination of thevis vivaswill not be given by the expressian(T — U), because only
some of the expressioRs, ..., Pn, Q1, ..., Qn will enter into the equations of motion.

It is interesting to conclude thHte servo can permit one to increase or decrease th
desired mechanical energy of a system, and in@aati, it can damp out the oscillations
of a system that presents no source of dissipafi@mergy.

Application.— Let a platez in a fixed plane articulate with a circular basetgB
that moves around its cent@rat a pointC . A force that is parallel to a fixed lifi@x and
has a constant magnituéies exerted on the plateat a pointA that is located along the
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line that joinsC to the center of gravits. A servomotoiM acts on the base plaig by
way of gears, in such a manner as to constantly ectidez constraint:

(1) a-p=

N Y

[a=(Ox 0C), B=(0Ox, CA),OC=R CA=4a, CG=h].

Since there is just one servo constraint, and onother hand, the base plaig
depends upon just one parametgrthe systent, taken by itself, will belong to the
special case 4 (pp. 7). One can then apply the Lagrangaosgutp just the plat& .
One sees that the mass of the base platall have no influence on the motion. This
vivaof Z is:

2T=M (R a’*+b* B>+ 2Rba’B’cos @—-P) +k B3,

whereMk? denotes the moment of inertia®faboutG.
The virtual work done by the forgeis:

d7 =F o0(Rcosa +acosp),

except that the equation that relategis written:

d(oT) oT _ .
(4) E[Ej_ﬁ =-Fasing.
Now:

g—;: M[b?B + 2R ba’cos @-p) +kB]=M (b*+ k) B,

if one takes the servo constraint into account. @rother hand:

Z_IF MR ba’Bsin (@—f =MR bg"’.

The equation of motion is then:
(5) M (b*+K) B”~MR b’ +F asin=0.

If the constrainty — 8= 77/ 2 is realized by direct contact betweeand; then the
motion will be completely different: It will be reguéd by the equation:

(6) M b+ + ) B” +F (asinB +Rcosp) =0,
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in which 1; denotes the moment of inertia of the base plate abouEquation (5) will
easily give the motion;3’? is obtained by adding a term that is sinusoida® to a term
that is exponential. 5 varies between two limits, one of which can be pdsbet to
infinity. On the contrary, equation (6) will give a petum motion.

The equilibrium positions are obtained by annulling tghtrhand side of equation
(4). One will then find the two positions for whi€lA is parallel to the force. On the
contrary, equation (6) will give the positions for whioA is parallel to the force.

Extending the equations in nd65. — The equations in no. 465 fresent the
following advantages:

1. They can be applied to systems that are subjecbrnehmlonomic constraints
without one having to introduce a system of multipliergaxiliary unknowns.

2. They permit one use auxiliary parameters that angpled with the true
coordinatesy, ..., gx by some differential relations.

Therefore, letz be a system that fulfills the conditions that werdicated at the
beginning of this article (pp. 2). Upon taking into accotiré holonomic contact
constraintsthat are imposed upon its position, which depends bpmarametersy, ...,
0n, and possibly, in such a way that the coordinates of each elememiattkr are finite
functions of the form:

1) x=f(Q, ....,h, 1), y=..., z=...

Suppose that these parameters are combinedsatkiliary parametergq1, ..., On+s
that are coupled with the preceding ones by some difiatealations that serve as their
definitions, which are relations that do not, in turn, depend upon any constraint force.
One counts them with the relations that express ¢imeholonomic contact constraints,
because they enter into the formulation of equatiotisarsame way.

We then have differential relationsi{ = s) of the form:

Adg++ A, dg, + AdEO,
(2) (b relations) Adg+---+ A, dg, .+ AdEDO,

Suppose that the servo constraints are representefihiitg or differential relations:

(") Translator: No. 465 had the title “General formtlé equations of motion that is suitable for all
holonomic and non-holonomic motion,” and was concenvigd d’Alembert’'s equations, as well as the
Appell equations.
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(3) (r relations)

Finally, the virtual displacements that annul the knawne by constraint forces of the
second kind are the ones that verify jtnelations:

ao0q+-+g,,00,,=0,
(4) § relations) bdg+--+h, dqg,. =0,

Having said that, form the expression:
§=3y m(X*+y?+ 2%,

which is called thesnergy of acceleration If we expres”, y', Z' by means of the
parametersy, ..., g, Which are functions df and the first and second derivatives of the
parametersy with respect ta then we have seen that the terfhén the d’Alembert
equation will have the expressions:

PL=—, .., Py=—;

hence, one establishes the equations of motion.

Case where the differential equations of contacist@int and the definition&) are
solved for the p variations dg- In order for the equations of motion to appear withr thei
full simplicity, it is useful to solve thosp equations (2) fop of theh + s=n +p
variationsdg . On the one hand, one expressesphderivatives q,;, ..., ., as

functions of theq , ..., g, by means of relations of the form:

q:1+1:alq’1+”'+an CL'*'O’,
(5) e
q:1+p:y1q1+"'+yn qn+a’

and on the other hand, tpevirtual displacement&n+p , ..., dn+1 @s functions of theéq,,

ey OOn':
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5qn+l :alaq1+”'+an 5q1’
B) e,
5qn+p :y15q1+”'+yn5qn;

the coefficientsx , ..., a; are functions ofy, ..., gn+p, t. Of course, those parametggs
..., On can be chosen from among the true coordinatesyedlsas from among the
auxiliary parametergn+1, ..., Qn+s-

Having said that, instead of express8ws a function of the parametegs ..., g, and
their first and second derivatives, as we suppase¢te preceding paragraph, it can be
interesting to use equations (5), which replaceatigns (2). Upon differentiating them
with respect td, we will express the second derivativgs, ..., q,., as functions of the

n

9, ..., g, and the first and derivatives of the parameteraNe can then make thge
second derivativesy,,, ..., d,,,, disappear frons Swill become a function of the;,

ey Oes, &, O, ..., Q.. and then second derivativesy, ..., g.. We know that under

those conditions the virtual work that is done Ing tinertial forces (with the sign
changed) will be:

0S 0S
7 s .
v (aq:jé‘“ {aq:jaq“

On the other hand, if one expresses the virtuakwone by the given forces in terms
of theaq,, ..., A, by using only the relations (6) then one will apression of the form:

(8) Qi+ ... +Qn

for that work.

Those two expressions must be equal for any displant that annuls the work done
by constraint forces of the second kind; i.e., tmeg verifies thg relations(4). Here
again, it is interesting to take the relations if@p account, which will permit one to
make thedgn:1, ..., An+p disappear from equations (4); when those equatiomsolved
for | of the remaining variationdy , ..., &, they will be written:

50& :-Aj+15qj+1+"'+"4n 5q~|’

(9) Y
5qj _‘C]+15qj+1+ +41 5q1
If one replacesiy , ..., & with these values in the expressions (7) and (8) a
expresses their equality for any of the arbitrayainingdg+1, ..., &»then one will get

the equations of motion in the form:



VII. — Constraints involving servos. 14

610) Y ST

0S 0S 0S
= - - e+ L | —-=-0. |=0.
e )alSea) ”(aq'; QJJ

Those equations are simpler than the Lagrange equdatiansne can write for the
same problemseeeq. (12), pp. 6], because the number of terms in eadte qgifreceding
equations i$ + 1, instead om+ 1 =p + + 1 in the case of the Lagrange equations. The

complication that is thus introduced by the presencehefdoefficientsA and L is

provided solely by the relations that express the ideathtieatvork done by constraint
forces of the second type is zero, and is not at aliiged by the non-holonomic
constraints.

One can append theequations (5) to equations (10), along with trexjuations (3)
that express the servo constraint.

Case where the displacements that annul the virtual work done by thegagdns
forces of the second kind are defined by j relations of the form:

(11) & =0, .y =0,

With the same hypotheses as before, suppose thatrbéi@oes that a displacement
must fulfill in order to annul the virtual work done bynstraint forces of the second kind
have the simple form (11). One can, moreover, alwdAgese oneself in that case by
introducing some conveniently-chosen auxiliary parameifenscessary.

In that case — which is, in summary, the general easé one performs the
calculations as was just said then equations (10) willplidied and will take the same
form as in the case of a system without servos:

(12) 6—?:Qj+l, a—S":Qn.
0}, oa,

One sees that the equations of no. 465 will give a geselaion of the question in a
form that is simpler than the Lagrange equations. Onst mombine those& — |
equations with the equations (5) and theservo equations (3). tf=] then the number
of equations will be equal to the number of unknowns.

Application.— A material pland® can slide by translation on a fixed horizontal plane
xOy. A spherex of radiusR can roll without slipping on that plane. The motidrttee
planeP is regulated automatically in such a manner that theecef the sphere turns
uniformly aroundOz with the velocitycw with respect to the fixed ax€x, Oy, Oz Let
us study the motion by means of the equations of no. 465.
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Let u, v be the coordinates of a distinguished p@iran the pland® with respect to
the axe®©x, Oy, Oz The position of that plane is defined by only those pamameters.
The position of the sphere is defined by the coordindteg of its center, and for
example, the Euler angles 6, ¢, which define its orientation.

If p, g, r are the projections onto the axes of the instanteneatation of the sphere
then the conditions that express the rolling withoippstg will be obtained by writing
that the material element of the sphere and the riabement of the plane, which
coincide at the instant have the same velocity:

1) f—qR=U, n'+pR=Vv.
There are two servo constraints:
(2) dé+ andt=0, dh—awfdt=0.

Since the number of these relations is equal to timebau of parameters that the
position in the plané® depend upon, one can answer the question by applying the
equations of no. 465 to just the sph&re

Upon taking just the holonomic contact constrainte mtcount, the sphere will be
considered to depend upon the seven parameters, 77, @, 6, ¢ (h= 7). It is interesting
to combine them with three auxiliary parametess=(3) that are coupled with the
preceding one by the relations:

(3) dl=pdt du=qdt dv=rdt.

Theseh + s = 10 parameters are coupled with those three relatiohdw the two
relations (1) that express the non-holonomic cortanstraints. Those relations (1) can
be written:

(1) df—R du=du, dn+Rdi=dv.

The relations (3) and ([lare thep differential relations [eq. (2), pp. 11] of the general
theory o = 5).

We keeph + s—p =n =5 parameters from the+ s= 10 parameters; we choasey,
& n, v. We express the energy of acceleraBarf the sphere as a function of the second
derivatives of thosa parameters by using tlpe= 5 relations (3) and (1 Now, the value
of Sis defined by:

2S=M (5”2_'_,7”2) +%M RZ(prZ_l_qu_l_rr )’
or, from (3) and (3:

2S=M (5”2 + ,7//2) + %M R2 [(V//_ ,7//)2 + (g(//_ un)2 + RZV// ] )

The virtual displacements annul the work done by constfarces of the second
kind are defined by the= 2 conditions:
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(5) au=0, o =0,

since those forces are the reactions of the plartbeosphere. Those conditions have the
form indicated in the preceding paragraph [eq. (11)], in suehyathat the equations of
motion have the form [eq. (12)]:

(6) a_S":E, a_S":H, a_S":
o on v

The right-hand sides are zero, since the given fanaes weight of the sphere) do zero
work, and we get the equations:

(7) 75//: a'l//’ 7,7//: a///’ V//: 0’

which will answer the question when they are combined tighservo equations (2).
Those five equations can be integrated immediately andsiwdw that the poin®A
describes a cycloid. The formulas)(&how that the instantaneous rotation vector will
remain parallel to the generators of an oblique cone whase is a horizontal circle that
describes the angular velocity.



