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 1. Introduction. – The following article (1) gives an overview and a considerable extension to 

the matrix theory of statics of elastic structures that the author had developed in an earlier treatise 

(2). 

 Several years ago, we already proved that none of the usual methods of statics were actually 

suitable for determining the stress distribution and compliance matrices of the highly statically-

indeterminate systems of modern aircraft constructions. Similar complications also appear in other 

domains of application of statics. The iteration processes can be useful in certain cases, but in 

general they are too lengthy and have not proved themselves for the membrane-like and shell-like 

aircraft structures. 

 We can overcome those difficulties with the matrix formulation of statics in conjunction with 

electronic digital computers. Not only does the matrix formulation allows us to give a much clearer 

form to the calculations, but it is also the ideal notation for digital computers (3). In addition, the 

theoretical derivations of matrix theory are so transparent and elegant that new and practically-

worthwhile relations that would be impossible (or at least hard) to understand in the usual notation 

would now prove to be quite simple. 

 The theory will be developed for both the force and deformation procedures here. I will show 

that the two methods are dual: Any relation in the one process has a corresponding relation in the 

other process that can be obtained by a simple “translation.” We also refer to the previous work 

(2), in which the advantages and disadvantages of the two methods are treated thoroughly. For 

continuous structures like aircraft shells, the force procedures are to be preferred, in general. 

 In Section 2, the laws of unit loads and unit displacements are recalled, which enable one to 

develop an especially elegant derivation of the force and deformation procedures. Here, we shall 

confine ourselves to small displacements and distortions, for which the usual equilibrium 

conditions and distortion expressions will be valid. On the other hand, the law of elasticity can be 

nonlinear. The laws of units take an especially-simple form for structures. 

 
 (1) Extended version of the lecture by the author at the 1956 Whitsuntide at the Society for Applied Mathematics 

and Mechanics in Stuttgart.  

 (2) J. H. Argyris, Aircraft Engineering 26 (1954), pps. 347, 383, and 27 (1955), pps. 42, 80, 125, 145. See also J. 

H. Argyris and S. Kelsey, Wissenschaftliche Gesellschaft für Luftfahrt, Jahrbuch 1956.  

 (3) P. M. Hunt, Aircraft Engineering 28 (1956), pps. 70, 111, 155. 
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 Section 3 gives an extended formulation of the laws of unit loads and unit displacements for 

the special case of linearly-elastic systems. After that, the compliance and stiffness of a structure 

will be treated thoroughly. The actual static calculation of systems by force and displacement 

procedures will then be developed in Section 4. All types of loading, as well as temperature effects, 

will be considered. It will be shown that we can obtain the compliance (or stiffness) of the structure 

quite simply as the end result of determining the stresses. In order to do that, we have all of the 

information that is needed to carry out the dynamical calculations, and in particular, the 

investigation of natural vibrations. In all cases, it is unnecessary to determine the compliance or 

stiffness separately from the static calculations. With the methods that are given here, it is possible 

in practice to investigate complicated systems like aircraft wings (2,3) and fuselages systematically 

for all static and dynamical cases. It is also self-evident that the treatment of problems for beams 

and frameworks is a simple problem, even when one considers shear deformations. It is noteworthy 

that we will require only three basically-simple matrices and one column matrix of loads in all 

static calculations. 

 The general theory of Section 4 can be applied to any structure, so to one with cutout sections, 

as well. However, the practical calculations with such systems will generally be more complicated 

and less transparent than they will be for the corresponding structure without cutout sections. That 

will obviate a special method (Section 5) that appeared before in the aforementioned work (2), and 

which makes it possible to derive the stress distribution in the structure with cutout sections from 

the static calculations for continuous systems. That procedure is amazingly simple and is also 

suitable for trusses and frameworks whose regular construction is perturbed by only a few missing 

components. 

 In practice, it always happens that individual members in a structure will be modified after 

completing the static calculation. In order to avoid repeating the entire study of elasticity, a method 

will be derived in Section 6 for determining the stress distribution of modified systems from the 

one in the original system. That new procedure is a generalization of the method of Section 5 and 

is much shorter than the direct calculation with the modified structure in most cases. 

 Works on the matrix theory of statics, and the force method in particular, have been published 

before (1). However, it seems that none of those treatises are as general and as simple as the present 

theory. 

 

 

 2. General foundations. – 

 

 a) Introduction. – In this section, we shall treat the 

basic laws of the matrix theory of statics. As we 

mentioned, we shall confine ourselves to the case of small 

displacements and deformations. However, the laws of 

elasticity can still be nonlinear, as long as they are single-

valued (Fig. 1). In order to make the duality between the 

force and deformation procedures especially clear, we 

 
 (1) B. Langfors, Aeronautical Sciences 19 (1952), pp. 451; H. Falkenheiner, La Recherche Aeronautique 17 

(1950).  

Stress 

Extension 

Figure 1. Nonlinear law of elasticity. 
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shall exhibit the laws and their derivations in two corresponding columns, and indeed the left 

column will always describe the force procedures. The law that is dual to each relation can be 

easily derived with the use of the following “dictionary”: 

 

Force procedures Deformation procedures 

    Force (stress)     Displacement (deformation) 

    Displacement (deformation)     Force (stress) 

    Compliance = 
displacement

force
     Stiffness = 

force

displacement
 

 

The duality of compliance and stiffness was already treated thoroughly by C. B. Beizeno and R. 

Grammel (1). 

 The concept of force is taken in its general sense here. Therefore, it can also refer to a group 

of forces or a moment. Similarly, the term displacement can also include a group of displacements 

or a rotation. 

 In a continuum, the stresses and deformations of an element dx dy dz are written as column 

matrices: 

 = {xx, yy, zz, xy, yz, zx} and  = {xx, yy, zz, xy, yz, zx} .  (1) 

 

Observe that {……} will always mean a column matrix. The general notation for matrices will 

involve square brackets [……]. 

 In the following study, which refers to structures, the concept of stress (deformation, resp.) is 

understood in its general sense, and also includes internal forces, moments, etc. (changes in in 

length, rotations, etc.). The notations for stresses and deformations in structures will then be S, v. 

 

 b) The unit laws. 

 

The law of unit load The law of unit displacement 

    We let  denote the state of deformation and 

let r denote an associated displacement of a 

body that results from given loads, temperature 

expansion, or any sort of applied deformations, 

such as ones that are created by, e.g., 

manufacturing defects or support 

displacements (2) (Fig. 2a). 

    The relationship between  and r is a 

kinematical one and can be derived from the 

compatibility conditions. In what follows, we 

    We let  denote the state of stress and let R 

denote an associated force in a body that 

results from given displacements, temperature 

stresses, or any sort of applied constraint 

stresses, such as ones that are created by, e.g., 

manufacturing defects or support 

displacements (2) (Fig. 2b). 

     The relationship between  and R is a static 

one and can be derived from the equilibrium 

conditions. In what follows, we will refer to the 

 
 (1) C. B. Biezeno and R. Grammel, Technische Dynamik, Chap. II, numbers 9 and 10, 1st ed., Berlin 1939.  

 (2) In the following, we shall use the collective notation: given strains for the various types of loads.  
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will refer to the compatibility conditions as 

kinematical compatibility conditions. 

 
    We also introduce: 

 

1  is a (virtual) stress state that results from a 

force R = 1 in the direction of r, but which 

needs to satisfy only the static, but not the 

kinematical, compatibility conditions. The 

stress state is chosen such that no 

displacements of the state  in the direction of 

the forces that are found to be in equilibrium 

with R = 1 are present (Fig. 2a). 

    We refer to 1  as a statically-compatible 

stress state. In all of the following 

developments, quantities with overbars will 

refer to statically-compatible stress 

distributions. 

    The law of unit loads now replaces the 

kinematical relationship between  and r with 

the use of statically-compatible 1 . It is 

written (1): 

1  r = 1 dV  ,              (2.a) 

equilibrium conditions as static compatibility 

conditions. 

 
    We also introduce: 

 

1  is a (virtual) deformation state that results 

from a displacement r = 1 in the direction of R, 

but which needs to satisfy only the 

kinematical, but not the static, compatibility 

conditions. The displacement state is chosen 

such that no forces in the state  act in the 

direction of the displacements that are 

associated with r = 1 (Fig. 2b). 

    We shall refer to 1  as a kinematically-

compatible deformation state. In all of the 

following developments, underlined quantities 

will refer to kinematically-compatible 

deformation distributions. 

    The law of unit displacements now replaces 

the static relation between s and R with the use 

of kinematically-compatible 1 . It is written 

(1): 

1  R = 1 dV  ,              (2.b) 

 

 
 (1) Cf., foonote (2), pp. 1. 

State  

r 

 

R = 1 

Figure 2a. The law of unit load 

State  

R 

 

r = 1 

Figure 2b. The law of unit displacement 
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in which the integration extends over the entire 

volume (1). Equation (2.b) can be derived most 

simply from the principle of virtual forces. 

    Since the law (2.a) replaces only 

kinematical, but not static relations, it is 

actually unnecessary since  is a true 

deformation state. It is sufficient that one has: 

 

 

 =  , 

 

in which   is a kinematically-compatible 

deformation state that results from the given 

strain. 

 

in which the integration extends over the entire 

volume (1). Equation (2.b) can be derived most 

easily from the principle of virtual 

displacements. 

    Since the law (2.b) replaces only static, but 

not kinematical relations, it is actually 

unnecessary, since  is a true stress state. It is 

sufficient that one has: 

 

 =  , 

 

in which   is a statically-compatible stress 

state that results from the given strain. 

 

 c) Application to structures. – Here, we are interested in the application of the matrix theory 

of statics to structures, in particular. Any framework will be decomposed into a finite number of 

elements for practical calculations. We assume that the stresses and deformations in each element 

are determined completely when certain forces or stresses S and displacements or deformations v 

are known on the boundaries of the element. The simplest example of an element is a rod in an 

ideal framework. In that case, it is sufficient to prescribe a stress or deformation in each element 

in order to know the entire stress or deformation field. In a continuous structure, like an aircraft 

shell, we subdivide the system into a net of lines and again refer to the parts of the structure that 

lie between two intersecting pairs of neighboring lines of the net as elements. The points of 

intersection of the lines of the net (2) will be referred to as nodes. It is generally assumed that the 

external forces act at the nodes (3), and that the longitudinal stresses vary linearly between 

neighboring points (3). We cannot go into the details of that procedure here, but simply refer to the 

previous articles (4). 

 We now consider a structure that consists of l elements. External forces R1, …, Rm or 

displacements r1, …, rm can be prescribed at m nodes of the system. 

 The following notations will be introduced: 

 

1

1

1

1

{ , , } external forces,

{ , , } stresses or forces in the  elements that result from ,

{ , , } displacements in the direction of  ,

{ , , } deformations of   elements that result from .

m

m

m

m

R R

S S l

r r

v v l

= 

=


=

=

R

S R

r R

v r







  (3) 

 
 (1) A prime denotes the transpose or reflected matrix.  

 (2) The lines of the net do not need to be orthogonal.  

 (3) These assumptions are not necessary, see Section 4.a). 

 (4) Cf., footnote (2) on pp. 1. 
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When more than one stress or deformation of the element is prescribed, S1, v1, etc., will denote 

submatrices. The displacement state (r, v) and the stress state (R, S) can be independent of each 

other. One sees that R, S, R, and v are column matrices. 

 

The unit load law The unit displacement law 

    If S  is a statically-compatible stress state 

that corresponds to the forces R then we can 

always set: 

    If v  is a kinematically-compatible 

deformation state that corresponds to the 

displacements r then we can always set: 

S  = b R ,                    (4.a) v   = a r                        (4.b) 

in which b  is a rectangular matrix that is 

calculated from merely static relationships (see 

also the definition of 1 ). One sees that (4.a) is 

also valid for nonlinear systems. 

    As an example of a b  matrix, we consider 

the statically-compatible stress state in Fig. 3a. 

Here, we have: 

 

in which a  is a rectangular matrix that is 

calculated from merely kinematical 

relationships (see also the definition of 1 ). 

One sees that (4.b) is also true for nonlinear 

systems. 

    As an example of an a   matrix, we consider 

the kinematically-compatible deformation 

state in Fig. 3b. Here, we have: 

 

b  = 

1 2

1 0 1

1 0 2

0 0 3

2 1 4

0 0 5

0 1 6

2 0 7

0 0 8

0 0 9

102 2

R R

− 
 

−
 
 
 
 
 
 
 
 
 
 
 
 
 − − 

           (5.a) 
a  = 

1 2

0 0

0 0

0 0

0 0

1 0

0 1

1/ 2 0

0 1/ 2

0 1/ 2

0 0

1

2

3

4

5

6

7

8

9

10

r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (5.b) 

2 

2 

1 
1 

l 

l 

 

l 

4 

8 

10 
6 

3 

9 

7 
5 

R2 = 1 R1 = 1 

 

r
2
 = 1 r

1
 = 1 

 

Figure 3a. Example of the calculation of an -matrix. Figure 3b. Example of the calculation 

of a -matrix. 



Argyris – The matrix theory of statics. 7 
 

  

The associated force is given over each 

column. The number in the column next to 

each row refers to the enumeration of the rods 

in Fig. 3. 

    We can now easily show that the unit load 

law (2.a) for structures can be written in the 

following simpler form: 

 

r = b v .                    (6.a) 

 

We can introduce a kinematically-compatible 

state v  in place of v, and with the use of (6.b), 

we will get: 

The associated displacement is given over each 

column. The number in the column next to 

each row refers to the enumeration of the rods 

in Fig. 3. 

    We can now easily show that the unit 

displacement law for structures can be written 

in the following simpler form: 

 

R = a S .                      (6.b) 

 

We can introduce a kinematically-compatible 

state S  in place of S, and with the use of (6.b), 

we will get: 

 

b a  = E = a b ,      (7) 

 

in which E is a unit matrix. The interesting relation (7) can also be derived directly. It is obvious 

that (7) assumes that the number and directions of the forces R in (6.b) and the displacements r in 

(6.a) coincide. We easily confirm that equations (5) fulfill the relation (7). 

 

Statically-determinate structures Kinematically-determinate structures 

    If S are the true stresses that result from R 

then one will always have: 

 

S = b R                        (8.a) 

 
for statically-determinate structures, in which 

the matrix b can be determined from just the 

equilibrium conditions. Therefore, one has: 

 

b   b . 

 

Fig. 4a illustrates an example of a statically-

determinate system. 

    If v are the true deformations that result 

from R then one will always have: 

 

v = a r                    (8.b) 

 
for kinematically-determinate structures, in 

which the matrix a can be determined from 

just the compatibility conditions. Therefore, 

one has: 

a   a . 

 

Fig. 4b illustrates an example of a 

kinematically-determinate system. 

  

Figure 4.a. Statically-determinate system. 

R2 R1 

r1 

r2 

Figure 4.b. Kinematically-determinate system. 



Argyris – The matrix theory of statics. 8 
 

 3. Application to linearly-elastic systems. – In this and the following sections, we shall 

confine ourselves to linearly-elastic systems, so ones for which Hooke’s law is valid. 

 

 a) The unit laws. 

 

The unit load law The unit displacement law 

    For linearly-elastic systems, the application 

of the principle of virtual forces leads to a 

second formulation of the unit load law that is 

equivalent to the one in (2.a). We find that: 

 

 

1  r = 1 dV  = 1 dV  ,       (9.a) 

 

in which the first expression was explained for 

the true displacement r in section 2.a), and   

is a deformation state that corresponds to a 

statically-compatible stress state that results 

from the given strain [one can then find   in 

every suitable statically-equivalent – i.e., 

statically-determinate – subsystem (Fig. 5a)], 

and 1 is the true stress state that results from 

R = 1. 

    As in the case of the nonlinear system, (9.a) 

assumes that no displacements that are 

associated with r are found to point in the 

direction of the forces that are in equilibrium 

with R = 1. 

 

 

    For linearly-elastic systems, the application 

of the principle of virtual displacements leads 

to a second formulation of the unit 

displacement law that is equivalent to the one 

in (2.b). We find that: 

 

1  R = 1 dV  = 1 dV  ,       (9.b) 

 

in which the first expression was explained for 

the true force R in section 2.a), and   is a stress 

state that corresponds to a kinematically-

compatible displacement state   that results 

from the given strain [one can then find   in 

every suitable kinematically-equivalent – i.e., 

kinematically-determinate – subsystem (Fig. 

5b)], and 1 is the true stress state that results 

from r = 1. 

    As in the case of the nonlinear system, (9.b) 

assumes that no forces that are in equilibrium 

with R = 1 are found to point in the direction of 

the displacements that are associated with r = 1. 

 
 

 

 

R1 

R2 

State  

r1 r2 

State  
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Figure 5a. The unit load law for linear systems. Figure 5b. The unit displacement law for linear systems. 

 

 b) Application to structures. 

 

The unit load law The unit displacement law 

   If S once more means the stress that results 

from the load R then one will have: 

If v once more means the column matrix of 

deformations that results from the 

displacements r then one will have: 

 

S = b R                       (8.a) 

 

v = a r                       (8.b) 

 

for all linear structures. The unit load law (2.a) 

and (9.a) will now assume the equivalent 

forms: 

r = b v  = b v  = b v ,        (10.a) 

 

in which v  corresponds to the definition of    

The displacements r in the direction of R can 

obviously arise as a result of an arbitrary strain 

as in (9.a). The restriction that was mentioned 

in 3.a) is true for the forces that are found in 

equilibrium with R. 

 for all linear structures. The unit load law (2.b) 

and (9.b) will now assume the equivalent 

forms: 

R = a S  = a S  = a S ,        (10.b) 

 

in which S  corresponds to the definition of    

The displacements R  in the direction of r can 

obviously arise as a result of an arbitrary strain 

as in (9.b). The restriction that was mentioned 

in 3.a) is true for the displacements that are 

associated with r. 

 

 If the forces R in (10.b) and the displacements r in (10.a) act on the same nodes and in the 

same directions then one will have [see (7)]: 

 

b a  = b a  = E = a b  = a b .    (11) 

 

The compliance of the structure The stiffness of the structure 

    We shall denote the stress and deformation of an element p in a structure by Sp and vp , resp. 

The following relations exist: 

 

 vp = fp Sp ,                 (1.2a) Sp = kp vp ,                (12.b) 

in which fp denotes the compliance of the 

element p. If we prescribe more than one stress 

in which kp denotes the stiffness of the element 

p. If we prescribe more than one deformation 

R1 = 1 r1 = 1 r2 = 0 
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and deformation on an element then Sp, vp, fp  

will be matrices. The matrix fp is always 

symmetric [i.e., the Maxwell reciprocity 

theorem (1)]. 

on an element then vp, Sp, kp will be matrices. 

The matrix kp is always symmetric [i.e., the 

dual Maxwell reciprocity theorem (1)]. 

 

 The simplest example of fp and kp is given by a rod in an ideal framework. If Sp is the force in 

the rod and vp is its change in length then: 

 

fp = 
l

E A
,                   (13.a) kp = 

E A

l
,                   (13.b) 

 

in which E, A, l are self-evident notations. The compliance and stiffness of complicated elements 

was examined thoroughly in the previous work (*), which also considered shear deformations. In 

general, the definitions of the stress Sp and deformation vp in an element differ between the force 

and deformation procedures. 

    With the use of (3), we can now set: 

 

v = f S ,                       (12.c) 

in which: 

 

f = 

1 0 0

0

0 0 0 0

0

0 0

p

l

f

f

f

 
 
 
 
 
 
 
 
 
 
 

   (14.a) 

 

is a diagonal matrix. f will be referred to as the 

compliance of the l uncoupled elements of the 

structure. 

  With the use of (3), we can now set: 

 

S = k v ,                      (12.d) 

in which: 

 

k = 

1 0 0

0

0 0 0 0

0

0 0

p

l

k

k

k

 
 
 
 
 
 
 
 
 
 
 

    (14.b) 

 

is a diagonal matrix. k will be referred to as the 

stiffness of the l uncoupled elements of the 

structure. 

 

 If the same stresses (forces) and deformations are prescribed in (12.c) and (12.d) then the 

relation will exist: 

f k = E = k f .      (15) 

 

    An application of equations (10.a) and 

(12.c) will yield the m displacements r that 

result from R in its direction: 

r = b f b R  = b f bR  = b f b  = F R. (16.a) 

    An application of equations (10.b) and 

(12.d) will yield the m forces R that result from 

r in its direction:  

R = a k ar  = a k ar  = a k a r  = K r. (16.b) 

 
 (1) Cf., C. B. Biezeno and R. Grammel, loc. cit., Chap. II, no. 9. 

 (*) See footnote (2) on page 1. 
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In that: 

F = b f b = b f b  = b f b        (17.a) 

 

is the compliance of the structure in the 

prescribed m directions. Equation (17.a) shows 

that the square matrix is symmetric, as the 

Maxwell reciprocity theorem would dictate 

(1). 

In that: 

K = a k a = a k a  = a k a      (17.b) 

 

is the stiffness of the structure in the prescribed 

m directions. Equation (17.b) shows that the 

square matrix is symmetric, as the dual 

Maxwell reciprocity theorem would dictate 

(1). 

 

 The relation (15) generalizes to: 

F K = E = K F            (15.a) 

for a structure. 

    The construction of a structure from its 

various elements results from the matrix b in 

(17.a), which expresses a static relation. In that 

way, we can consider the construction (17.a) to 

be a generalized series connection of springs or 

elements. Fig. 6.a shows a simple example of 

a series connection. 

    The construction of a structure from its 

various elements results from the matrix a in 

(17.b), which expresses a kinematic relation. 

In that way, we can consider the construction 

(17.b) to be a generalized parallel connection 

of springs or elements. Fig. 6.b shows a simple 

example of a parallel connection. 

 

 
 

 Example. – As an application of the compliance and stiffness matrices F and K, resp., we 

consider the natural vibrations of a structure when m masses Mi act at the m nodes. We let: 

 

 
 (1) Cf., footnote (2) on pp. 1.  

b. 

Fa Fb + = F 

   Figure 6a. Example 

of a series connection 

of elements. The 

black pieces of the 

cantilever are each 

assumed to be rigid.   

    Fig. 6b. Example of 

a parallel connection 

of elements. 

a. 

Ka + Kb = K 

a. 



Argyris – The matrix theory of statics. 12 
 

M = 

1 0 0

0

0 0 0 0

0

0 0

i

m

M

M

M

 
 
 
 
 
 
 
 
 
 
 

 

 

the diagonal mass matrix. The m natural frequencies  and the forms r = 
0

i te 
r  of the natural 

vibrations of the structure are calculated from: 

either (1): 

and             
2

02

1
0,

1
0.






− = 




  − =    

FM E

FM E r

      (18.a) 

or (1): 

and            

1 2

1 2

0

0,

0.





−

−

− = 


 − =   

M K E

M K E r
     (18.b) 

 

More general mass distributions can be considered with no further analysis. Since the compliance 

(stiffness) refers to not only forces (displacements), but also to moments (rotations), it is easy to 

substitute the rotational inertia in the calculations. 

 The investigations of vibrations in beams and frames, whose F or K (when one includes shear 

deformations) are simple to ascertain, give interesting practice problems. 

 

 

 4. The calculation of structures. – 

 

    In this section, we shall investigate a series 

of problems in structures whose stresses 

cannot be determined by static considerations. 

We shall refer to such structures as statically-

indeterminate. The undetermined quantities 

are called statically-indeterminate forces or 

stresses. Fig. 7a shows a two-fold statically-

indeterminate framework. 

 

 

 

    In this section, we shall investigate a series 

of problems in structures whose deformations 

cannot be determined by kinematical 

considerations. We shall refer to such 

structures as kinematically-indeterminate. The 

undetermined quantities are called 

kinematically-indeterminate displacements or 

deformations. Fig. 7b shows a six-fold 

kinematically-indeterminate framework. (r1 

and r2 are prescribed, U1 to U6 are unknown.) 

 
 (1) Obviously, the determinant equation in (18.a) [(18.b), resp.] is included in the following matrix equation. 
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 a) Problem I. – 

 

    Let m forces R be given in an n-fold 

statically-indeterminate (1) structure (Fig. 

7a). Determine the statically-indeterminate 

force or stress matrix: 

 

X = {X1, X2, …, Xn}        (19.a) 

 

and the stresses S. 

    The complete force matrix can be written 

as: 

{R X}.                      (20.a) 

 

We can now put the stresses S into the form: 

 

S = b0 R + b1 X = b R ,         (21.a) 

 

in which the matrices b0 and b1 are calculated 

from static considerations, and b is still 

unknown. We shall call the subsystem in 

which one ascertains b0 the fundamental 

static system. 

    In order to determine X, we apply the 

method of unit loads (10.a) to the 

compatibility condition in the direction of X. 

We find that: 

 

1
b v  = 1

b f S  = 1 0 1 1
 +b f b R b f b X  = 0 

or 

X = − D−1 D0 R ,             (22.a) 

    Let m displacements r be given in an n-fold 

kinematically-indeterminate (1) structure (Fig. 

7b). Determine the kinematically-indeterminate 

displacement matrix: 

 

U = {U1, U2, …, Un}        (19.b) 

 

and the deformations v. 

    The complete displacement matrix can be 

written: 

{r U} .                   (20.b) 

 

We can now put the deformations U into the 

form: 

v = a0 r + a1 U = a r ,         (21.b) 

 

in which the matrices a0 and a1 are calculated 

from kinematical considerations, and a is still 

unknown. We shall call the subsystem in which 

one ascertains a0 the fundamental kinematical 

system. 

      In order to determine U, we apply the 

method of unit displacements (10.b) to the 

equilibrium condition in the direction of U. We 

find that: 

 

1
a S  = 1

a k v  = 1 0 1 1
 +a k a r a k a U  = 0 

or 

U = − 1

0

−
C C r ,                 (22.b) 

 
 (1) The number of statically and kinematically-indeterminate quantities in a structure is obviously different in 

general; cf., also sec. 7.a and 7.b.  

R2 R1 

X2 

 

X1 

Figure 7a. Two-fold statically-indeterminate system 

r2 r1 

U2 

 

U5 

Figure 7b. Six-fold kinematically-indeterminate system 

U1 

U3 

 

U4 
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in which: 

 

D = 1 1
b f b      and        D0 = 1 0

b f b .  (23.a) 

 

It will then follow from (21.a) and (22.a) that: 

 

b = b0 – b1 D−1 D0 ,           (24.a) 

 

in which the stresses and deformations in the 

structure are known. 

    In order to determine the displacements r 

in the directions of the forces R, we again 

employ (10.a) and obtain: 

 

r = b v  = b f b R  = F R .    (25.a) 

 

We can replace b  (the statically-compatible 

system) with b0 . Therefore, the compliance 

of the system is: 

 

F = 1

0 0 0

−−F D D D  .       (26.a) 

 

In that, F0 = 0 0
b f b  is the compliance of the 

basic system. 

    It should be observed, in particular, that the 

calculation of the system using the force 

procedure requires only the matrices b0, b1, f, 

and the column R. 

 

    Example. – For the doubly statically-

indeterminate framework in Fig. 7a, 

determine the matrix b and the compliance F 

under the condition that all rods possess the 

same compliance l / E A. 

     The chosen statically-indeterminate 

quantities are given in Fig. 7a. The 

corresponding matrices b0 and b1 follow from 

elementary static considerations. One has: 

 

X = {X1, X2}, 

in which: 

 

C = 1 1
a k a        and         C0 = 1 0

a k a .  (23.b) 

 

It will then follow from (21.b) and (22.b) that: 

 

a = a0 – a1 C−1 C0 ,              (24.b) 

 

in which the stresses and deformations in the 

structure are known. 

   In order to determine the forces R in the 

directions of the displacements r, we again 

employ (10.b) and obtain: 

 

R = a S  = a k ar  = K r .       (25.b) 

 

We can replace a  (the kinematically-

compatible system) a0 . Therefore, the stiffness 

of the system is: 

 

K = 1

0 0 0

−−K C C C .           (26.b) 

 

In that, K0 = 0 0
a k a  is the stiffness of the basic 

system. 

     It should be observed, in particular, that the 

calculation of the system using the displacement 

procedure requires only the matrices a0, a1, k, 

and the column r. 

 

     Example. - For the six-fold kinematically-

indeterminate framework in Fig. 7b, determine 

the matrix a and the stiffness K under the 

condition that all rods possess the same stiffness 

E A / l . 

     The chosen kinematically-indeterminate 

quantities are given in Fig. 7b. The 

corresponding matrices a0 and a1 follow from 

elementary kinematic considerations. One has: 

 

U = {U1, U2, U3, U4, U5, U6} , 

 

a0 = a   from (5.b), since the basic system is an 

identity, 

 

a1 = 
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b0 = 

1 2

1 0

2 1

0 0

1 0

0 0

1 0

2 0

2 2

0 0

0 0

R R

− 
 

− −
 
 
 
 
 
 

− 
 
 
 
 
 
 
 

 , b1 = 

1 2

1/ 2 0

0 1/ 2

1/ 2 0

0 1/ 2

1/ 2 0

1/ 2 1/ 2

1 0

0 1

1 0

0 1

1

2

3

4

5

6

7

8

9

10

R R

 −
 

− 
 

− 
 

− 
 −
 
 − −
 
 
 
 
 
 
 

 

 

(27.a) 

 

1 2 3 4 5 6

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1/ 2 0 0 1/ 2 0 1/ 2

0 1/ 2 0 0 0 0

0 1/ 2 1/ 2 0 1/ 2 0

0 0 0 1/ 2 0 1/ 2

1

2

3

4

5

6

7

8

9

10

U U U U U U

− 
 
 
 −
 
 
 −
 

− 
 

− − 
 
 
 − −
 

−  

 

 

(27.b) 

 

The number in the column next to each matrix refers to the numbering of the rods in Fig. 3 and 

Fig. 8. The associated force or displacement is given over each column. 

 
    The compliance of the unconstrained 

element is: 

F = 10

l

E A
E ,             (28.a) 

  The stiffness of the unconstrained element is: 

 

k = 10

E A

l
E ,             (28.b) 

 

in which the index 10 gives the number of the diagonal element in the unit matrix. 

 

  An application of equation (24.a) gives (1):   An application of equation (24.b) gives (1): 

 
 (1) For the sake of economy of space, the matrices C, C−1, and D, D−1 are not reproduced here.  

Figure 8. Numbering of the rods. 

2 

2 

1 

1 

l 

4 

10 

8 
6 

7 

9 

3 

l 

l 5 
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b = 

1 2

31 3

82 31

24 3

83 24

24 3
1

3 2155

31/ 2 3 / 2

27 / 2 31/ 2

24 / 2 3 / 2

28 / 2 24 / 2

1

2

3

4

5

6

7

8

9

10

R R

− − 
 

− −
 
 −
 
 
 −
 

− 
 
 
 
 
 −
 
− −  

    (29.a) 

 

a =

1 2

45 55

62 21

48 81

81 32

48 81
1

57 159335

45 / 2 55 / 2

31/ 2 157 / 2

48 / 2 81/ 2

12 / 2 104 / 2

1

2

3

4

5

6

7

8

9

10

r r

− 
 

− −
 
 −
 

− 
 −
 

− 
 

− 
 −
 
 −
 

−  

    (29.b) 

For the compliance of the structure, we find 

from (26.a) that: 

 

For the stiffness of the structure, we find from 

(26.b) that: 

F = 
397 136

136 9355

l

E A

 
 
 

 .         (30.a) K = 
93 136

136 397355

E A

l

− 
 

− 
.          (30.b) 

 

We easily confirm that the relations b a = E2 and F K = E2 are fulfilled. 

 

    b)  Problem II. 

 

    Let the displacements r be given in an n-fold 

indeterminate structure. Calculate X and S. 

The forces K are unknown here, but they can 

be calculated from (25.a). One has: 

 

    Let the forces R be given in an n-fold 

indeterminate structure. Calculate U and v. 

The displacements r are unknown here, but 

they can be calculated from (25.b). One has: 

R = F−1 r .                   (31.a) r = K−1 R.                  (31.b) 

In that way, the problem is reduced to Problem 

I. 

In that way, the problem is reduced to Problem 

I. 

 

c) Problem III. 

 

    We refer to the deformations that are given 

to the unconstrained elements as a result of 

temperature changes, manufacturing defects, 

support displacements, and loads on the 

elements, etc., as the initial deformations H. A 

simple example of an initial deformation 

occurs in a framework whose rod p of length lp 

    We refer to the stresses that are given to the 

fixed nodes as a result of temperature changes, 

manufacturing defects, support displacements, 

and loads on the elements, etc., as the 

constraint stresses J. A simple example of 

constraint stress occurs in a framework whose 

rod p of cross-section Ap is exposed to a 
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is exposed to a temperature change p . The 

change in length of the rod will then be: 

 

temperature change p . The constraint force in 

the rod when the nodal endpoints are fixed will 

then be: 

Hp = lp p p , 

 

Jp = − E Ap p p , 

 

in which p is the thermal expansion 

coefficient. When more than one deformation 

is prescribed in the element, Hp will become a 

corresponding column matrix (1) Hp . 

    The construction of the structure from the 

deformed unconstrained elements will 

generally require an additional stress state 

when the system is statically-indeterminate. 

in which p is the thermal expansion 

coefficient. When more than one constraint 

stress is prescribed in the element, Jp will 

become a corresponding column matrix (1) Jp . 

    The freeing of the fixed nodes of the 

structure under constraint stresses will 

generally produce an additional deformation 

state when the system is kinematically-

indeterminate. 

    We shall now examine the following 

problem: Suppose that we are given: 

 

    1)  The matrix of initial deformations of the 

unconstrained elements: 

 

    We shall now examine the following 

problem: Suppose that we are given: 

 

    1)   The matrix of the constraint stresses in 

the elements with fixed nodes: 

H = {H1, …, Hp, …, Hl}      (32.a) 

and 

 

J = {J1, …, Jp, …, Jl}      (32.b) 

and 

    2)  The m forces R = 0 at the nodes.     2)  The m displacements r = 0 of the nodes. 

    Calculate X and S once more. 

    The total deformation of the element is the 

sum of the elastic and applied initial 

deformations. Therefore: 

 

    Calculate U and v once more. 

    The total stress in the elements is the sum of 

the elastic and applied constraint stresses. 

Therefore: 

v = f b1 X + H .              (33.a) 

 

S = k a1 U + J .              (33.a) 

 

Applying (10.a) and (33.a) will yield: 

 

Applying (10.b) and (33.b) will yield: 

 

1
b v  = D X + 1

b H  = 0 1
a S  = C U + 1

a J  = 0 

and and 

X = − 1

1

− D b H .             (34.a) U = − 1

1

− C a J .             (34.b) 

With that, one has: With that, one has: 

and          
1

1 1 1

1

1 1

,

.

−

−

 = = −


= − + 

S b X b D b H

v f b D b H H
   (35.a) and          

1

1 1 1

1

1 1

,

.

−

−

 = = −


= − + 

v a U a C a J

S k a C a J J
     (35.b) 

 
 (1) Cf., footnote (2) on pp. 174.  
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The displacements (1) r of the m nodes that 

result from H are once more calculated from 

(10.a). We find that: 

 

The forces (2) R of the m nodes that result from 

J are once more calculated from (10.b). We 

find that: 

r = 0
b v  = b H ,               (36.a) R = 0

a S  = a J ,               (36.b) 

in which b0 and b were defined in Problem I. 

The second formula (36.a) shows that the 

displacements r that result from the initial 

deformations H can be determined without the 

corresponding stress calculation. It is sufficient 

that the true stresses (so the matrix b) that 

result from the loads R are known in the 

direction of r. 

in which a0 and a were defined in Problem I. 

The second formula (36.b) shows that the 

forces R that result from the constraint stresses 

J can be determined without the corresponding 

deformation calculation. It is sufficient that the 

true deformations (so the matrix b) that result 

from the displacement r are known in the 

direction of R. 

 

 d) Problem IV. 

 

    Suppose that one is given: 

 

    1)  The initial deformations: 

 

    Suppose that one is given: 

 

    1)  The constraint stresses: 

 

H = {Hp} J = {Jp} 

as in Problem III, and: 

 

    2) The displacements: 

 

as in Problem III, and: 

 

    2) The forces: 

r = 0 . 

 

R = 0 . 

With the use of Problems I and III, the 

compatibility condition r = 0 will become: 

 

With the use of Problems I and III, the 

equilibrium condition R = 0 will become: 

r = F R + b H = 0 , 

so 

R = − F−1 b H .               (37.a) 

 

R = K r + a J = 0 , 

so 

r = − K−1 a J .               (37.b) 

The stresses S and deformations v are now 

given by (21.a) and (34.a) as: 

 

The deformations v and stresses S are now 

given by (21.b) and (34.b) as: 

 
1 1

1 1[ ] ,

.

− −  = − +


= + 

S b F b b D b H

r f S H
   (38.a) 

1 1

1 1[ ] ,

.

− −  = − +


= + 

v aK a a D a J

S k v J
   (38.b) 

 

 
 (1) Here, it is assumed that the displacements r take place in the directions of the forces R of Problem I. 

 (2) Here, it is assumed that the forces R take place in the directions of the displacements r of Problem I. 
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In general, the forces are prescribed in statics problem, but not the displacements. Therefore, 

Problems I and III (II and IV, resp.) are especially interesting in the application of the force 

(deformation, resp.) method. 

 

 e) Problem V. 

 

    In a highly statically-indeterminate 

structure, it is often advantageous to choose a 

basic system that is itself statically-

indeterminate. We let Z denote the column 

matrix of the statically-indeterminate 

quantities in the basic systems. The complete 

force matrix will then be: 

 

    In a highly kinematically-indeterminate 

structure, it is often advantageous to choose a 

basic system that is itself kinematically-

indeterminate. We let W denote the column 

matrix of the kinematically-indeterminate 

quantities in the basic systems. The complete 

displacement matrix will then be: 

{R Z X} . {r W U} . 

We shall now examine the following 

generalization of Problem I: 

 

    Suppose that we are given: 

 

    1) the forces R and 

    2) the undetermined quantities Z 

 

for every X = 1 and R = 1. Determine X and S. 

 

    We once more assume that the true stresses 

S take the form: 

 

We shall now examine the following 

generalization of Problem I: 

 

    Suppose that we are given: 

 

    1) the displacements r and 

    2) the undetermined quantities W 

 

for every U = 1 and r = 1. Determine U and v. 

 

    We once more assume that the true 

deformations v take the form: 

 

S = b0 R + b1 X = b R ,       (21.a) 

 

v = a0 r + a1 U = a r ,       (21.b) 

in which the matrices b0 and b1 can be 

calculated from static considerations alone, 

since Z is known for every R and X. We also 

introduce the stress matrix S , which only 

needs to be statically compatible with R and X. 

We have: 

 

in which the matrices a0 and a1 can be 

calculated from kinematic considerations 

alone, since W is known for every r and U. We 

also introduce the deformation matrix v , 

which only needs to be kinematically 

compatible with r and U. We have: 

S  = 
0 1+b R b X ,            (39.a) 

 

v  = 0 1+a r a U ,            (39.b) 

in which 
0b  (

1b , resp.) is a stress matrix whose 

columns are each statically-compatible with 

the corresponding R = 1 (X = 1, resp.) and X = 

0 (R = 0, resp.). For example, it is possible to 

find 
0b  (

1b , resp.) in a statically-determinate 

in which 0a  ( 1a , resp.) is a deformation matrix 

whose columns are each kinematically-

compatible with the corresponding r = 1 (U = 

1, resp.) and U = 0 (r = 0, resp.). For example, 

it is possible to find 0a  ( 1a , resp.) in a 
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subsystem, in which case the definition of 
0b  

will coincide with that of b0 in Problem I. 

    With the use of the two alternative forms of 

(10.a), the compatibility condition in the 

direction of X gives: 

statically-determinate subsystem, in which 

case the definition of 0a  will coincide with that 

of a0 in Problem I. 

    With the use of the two alternative forms of 

(10.b), the equilibrium condition in the 

direction of U gives: 

 

1
b v  = 

1
b f S  = 

1 0 1 1
 +b f b R b f b X  = 0 , 

or 

1
b v  = 

1
b f S  = 

1 0 1 1
 +b f b R b f b X  = 0 . 

 

1
a S  = 1

a k v  = 1 0 1 1
 +a k a r a k a U = 0 , 

or 

1
a S  = 1

a k v  = 1 0 1 1
 +a k a r a k a U = 0 . 

 

Therefore, X can again be expressed using 

(22.a): 

Therefore, U can again be expressed using 

(22.b): 

X = − D−1 R0 D ,            (22.a) 

 

U = − C−1 C0 r ,            (22.b) 

in which one now has: 

 

in which one now has: 

 

and  1 1 1 1 1 1

0 1 0 1 0 1 0

,

.

   = = =


  = = = 

D b f b b f b b f b

D b f b b f b b f b
 (40.a) 

 

and  
1 1 1 1 1 1

0 1 0 1 0 1 0

,

.

  = = = 


  = = = 

C a k a a k a a k a

C a k a a k a a k a
 (40.b) 

The stress matrix S and the compliance F are 

now ascertained from (21.a) and (26.a). The 

introduction of the statically-compatible 

matrices 
0b , 

1b  can lead to an appreciable 

simplification in the calculations. 

The deformation matrix v and the stiffness K 

are now ascertained from (21.b) and (26.b). 

The introduction of the kinematically-

compatible matrices 0a , 1a  can lead to an 

appreciable simplification in the calculations. 

 

 In conclusion, we remark that Problems II to IV can be similarly generalized. 

 

 

 5. Application of the force method to systems with cutouts. – For the practical application 

of matrix statics, in conjunction with electronic computers, one of the most important problems is 

that of the careful and repeated verification of the elements (viz., the coefficient matrix) of the 

basic matrices b0, b1, and f. In order to simplify the checking and obtain matrices that are easy to 

understand, it is important to avoid all special cases that require special consideration. One such 

case appears, e.g., in a system that takes the form of a membrane, such as a wing when individual 

elements are missing between the mesh lines (viz., structures with cutouts). One will then find that, 

in general, one must choose a basic system that is more complicated (for the calculation of the b0-

matrix) than it is for the corresponding structure without the cutouts. It is also necessary to 

introduce special statically-indeterminate stress systems X in the neighborhood of the cutout that 

will perturb the otherwise-regular structure of the b1-matrix and make it harder to check. Finally, 

it can happen that some of the diagonal coefficients in the equations for the unknowns X have the 

same order of magnitude as the remaining coefficients in the corresponding equations, and that the 

precise solution of the equations by the digital computer will be made more difficult by that. 
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 In order to avoid that difficulty in structures with cutouts, it is advantageous to apply a gimmick 

that the author developed in the aforementioned work (1). That method is also the ideal procedure 

for finding the new distribution of stresses that results from a subsequent introduction of cutouts 

without needing to repeat the entire static calculation. 

 The principle of the procedure us simple. In order to obtain a regular (continuous) construction 

and corresponding regular schema of elements for the basic matrices, we introduce as many 

additional elements as are necessary in the system. Although the dimensions (cross-sections or 

thicknesses) of those new elements are arbitrary, it is recommended that they should be consistent 

with those of the surrounding parts of the structure. Of course, the original system and the new 

(continuous) system will exhibit different stresses for the same strain. However, it is possible to 

achieve identical stresses in the two structures when we impose initial deformations on the new 

(i.e., fictitious) elements of the continuous system such that the total stresses (that result from the 

given strain and initial deformation) will reduce to zero in those elements. In that way, the new 

elements will, in fact, be eliminated, although the regular schema of the matrices and equations 

will remain preserved. That also shows that the matrix formulation allows us to derive the 

necessary initial deformations, and what is even more important, the associated stresses, very 

simply from the stress calculation of continuous systems under the exclusive action of the given 

strains. The true stresses in the original system can now be determined very simply from the stress 

analysis of the new system by superimposing the stresses that result from the given strain and the 

initial deformations. One observes that only a statically-indeterminate calculation is necessary, 

namely, that of the continuous system under the given strain. Fig. 9 explains the principle that is 

applied. 

 A simple argument will show that the dual method to this force procedures, which is the 

method of the deformation procedure, will yield the calculation for a structure with some elements 

that are (infinitely) rigid. In this section, we shall develop only the force procedure, which is more 

important in practice, but refer to the next section for the results of the dual procedure. 

 The original structure might have h cutouts that are filled in by the introduction of 

corresponding elements. Now, let S be the stress matrix in the continuous system that results from 

 
 (1) See footnote (2) on pp. 1.  

rod h to be eliminated 

R2 R1 

initial deformation H of only element h 

+ = 

structure without element h 

R2 R1 

Figure 9. Calculating a structure with cutouts. 
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the given strain. The total stresses Sa , including the stresses that result from the initial deformations 

H of the h elements, are determined from (21.a) and (39.a) to be: 

 

Sa = 1

1 1h

− −S b D b H ,            (41) 

 

in which b1h is the submatrix of b1 that corresponds to the h elements. We now get the condition 

for the total stress in the h elements to vanish as: 

 

Sah = 1

1 1h h h

− −S b D b H  = 0 

or 

H = 1 1

1 1[ ]h h h

− −b D b S  .          (42) 

 

Therefore, the stresses in the original system with the cutouts will be: 

 

Sa = 1 1 1

1 1 1 1[ ]h h h h

− − − −S b D b b D b S .                 (43) 

 

It should be noted that we need to invert the matrix: 

 
1

1 1[ ]h h

− b D b  

 

with this method. The number r of rows or columns in that matrix is equal to the number of stresses 

(1) S (and therefore the initial deformations H, as well) in the elements h. That is why in a highly 

statically-indeterminate system like an airplane wing, one should expect that r will generally be 

much smaller than the number of unknowns in the original system. That also shows that in the case 

of a subsequent introduction of cutouts into a construction that was already calculated, the new 

procedure can be much faster than the direct investigation of the system with cutouts. 

 When the structure is affected by only forces R, we can put (43) into the form: 

 

Sa = ba R ,      (44) 

in which we have: 

ba = 1 1 1

1 1 1 1[ ]h h h h

− − − −b b D b b D b b .    (44.a) 

 

 The procedure also admits a simple derivation of the compliance Fa of the original system 

when the compliance of the continuous system is known already. In fact, an application of (25.a) 

and (36.a) to both structures (ra are the displacements of the former system) will give: 

 

ra = Fa R = h
+r b H  = 1 1

1 1[ ]h h h h

− − +FR b b D b b  

 
 (1) Strictly speaking, we must only set those stresses S in the elements h equal to zero that are linearly independent. 

Otherwise, the matrix above would be singular. The number r of rows would then be equal to the number of linearly-

independent S is the elements h. 
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or 

Fa = F + F .       (45) 

In that: 

F = 1 1 1

1 1[ ]h h h h

− − − b b D b b R             (45.a) 

 

is the increment in the compliance that results from the cutout. 

 Of course, the introduction of elements into the cutouts means that one is raising the degree of 

static indeterminacy of the system. However, that is irrelevant when one uses an electronic digital 

computer. The method has proved to be very simple and expeditious in practice. 

 

 Example. – For the framework that is illustrated in Fig. 3a, determine the stress matrix b and 

the compliance F for the loads R1 and R2 when rod 4 is missing (see also Fig. 8). All of the 

remaining rods shall again possess the same compliance l / E A. 

 

 The continuous framework with the element h (4) included was calculated in Section 4.a. We 

infer equations (27.a) and (27.b): 

 

b1h = [0, 1/ 2]− , bh = 
1

[83,24]
55

 .    (46) 

 

With the use of the matrix D−1 that was determined in 4 a), we will find that: 

 

1 1

1 1[ ]h h

− −b D b = 
55

8

l

E A
.     (47) 

 

In conclusion, we determine ba and F from (44.a) and (46.a): 

 

ba =  

1 2

20.625 0

165.0 55

34.375 0

0 0

34.375 0
1

75.675 055

20.675 2 0

110 2 55 2

34.375 2 0

55 2 0

1

2

3

4

5

6

7

8

9

10

R R

− 
 

− −
 
 
 
 
 
 

− 
 

 
  
 
 − 
 

  

 ,  F = 
861 249

249 7255

l

E A

 
 
 

 ,  (48) 
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The compliance Fa is obtained from (45) with the use of (30.a) for F. Of course, the direct 

investigation of the single-indeterminate framework in Fig. 8 is trivially simple. The calculation 

above is also understood to mean only an explanation of the procedure. 

 
 

 

 6. Calculating modified systems. – We shall now generalize the method of Section 5 to the 

calculation of modified structures. We understand a modified structure to mean a system that is 

obtained from an original system by changing the compliance or stiffness of individual elements. 

We shall then treat the following problem here: Under the assumption that the stress distribution 

in a structure results from a given strain that was determined already, determine the stresses when 

individual elements are subsequently modified. The solution to that problem by the force 

procedure results in the same way that it did in Section 5. Therefore, the elements to be modified 

will be given initial deformations H in such a way that the total deformation will result from the 

given strain and H in the same way as it would in the modified system under the given strain alone. 

In what follows, the deformation procedure will also be applied to the same problem, and Secs. 

10.a and 10.b explain the physical principle of the solution by the two dual procedures. The 

mathematical development will confirm that the method of Section 5 is only a special case of the 

new method. 

 We assume that the original system has g + h elements, h of which are subsequently modified. 

The index m will refer to quantities in the modified system. 

 

The force procedure The deformation procedure 

    The compliance of the unconstrained 

element is: 

    The stiffness of the unconstrained element 

is: 

Stress 

R 

S 

Sm 

H Deformation 

f 

f + f 

M 

A 

R 

J 
Deformation 

k 

k + k 

A 

M 

vm v 

Figure 10a. Calculating a modified system by the 

force procedure. 

Figure 10b. Calculating a modified system by the 

deformation procedure. 
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f = 
0

0

g

h

 
 
 

f

f
                  (49.a) 

 

k = 
0

0

g

h

 
 
 

k

k
                  (49.b) 

in the original system and: 

 

in the original system and: 

fm = 
0

0

g

h h

 
 

+  

f

f f
          (50.a) 

 

km = 
0

0

g

h h

 
 

+  

k

k k
             (50.b) 

in the modified structure. in the modified structure. 

 

The static analysis of the original system 

 

    Let the known stresses in the original system 

result from the given strain be denoted by S. In 

addition, initial deformations H will act on the 

unconstrained elements h. The total stress is 

calculated as in Problems I and III [see (41), as 

well]: 

    Let the known deformations in the original 

system result from the given strain be denoted 

by v. In addition, constraint stresses J will act 

on the elements h with fixed nodes. The total 

deformations is calculated as in Problems I and 

III: 

Sm = 1

1 1h

− −S b D b H .         (51.a) vm = 1

1 1h

− −v a C a J .          (51.b) 

The total deformation in the elements h are 

then: 

 

The total stresses in the elements h are then: 

vh = fh Smh + H = 1

1 1[ ]h h h h

− − +f S b D b H H  

(52.a) 

Sh = kh vmh + J = 1

1 1[ ]h h h h

− − +k v a C a J J  

 (52.b) 

 

The static analysis of the modified system 

 

    Since we prescribe that the stresses and 

deformations in the modified elements h under 

the given strain alone should be identical to 

(51.a) [(52.a), resp.], that will imply that: 

 

    Since we prescribe that the deformations 

and stresses in the modified elements h under 

the given strain alone should be identical to 

(51.b) [(52.b), resp.], that will imply that: 

vhm = 1

1 1[ ][ ]h h h h h

− +  −f f S b D b H = vh 

(53.a) 

Shm = 1

1 1[ ][ ]h h h h h

− +  −k k v a C a J = Sh 

 (53.b) 

With the use of (52.a), it will then follow that: 

 

With the use of (52.b), it will then follow that: 

 

H = P−1 Sh ,                  (54.a) J = Q−1 vh ,                  (54.b) 

where: where: 

P = 1 1

1 1[ ]h h h

− − + b D b f .        (55.a) Q = 1 1

1 1[ ]h h h

− − + a C a k .        (55.b) 

One observes that the number of rows in the 

matrix P is equal to the number of stresses S in 

One observes that the number of rows in the 

matrix Q is equal to the number of 
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the h elements (cf., pp. 22). Upon substituting 

(54.a) in (51.a), we will get: 

 

deformations v in the h elements. Upon 

substituting (54.b) in (51.b), we will get: 

 
1 1

1 1 ,

.

m h h

m m m

− − = −


= 

S S b D b P S

v f S
     (56.a) 

1 1

1 1 ,

.

m h h

m m m

− − = −


= 

v v a C a Q v

S k v
     (56.b) 

In that way, the stresses and deformations of 

the modified systems will be expressed in 

terms of merely the stress distribution in the 

original system. 

    If the stresses S are due to only the loads R 

(S = b R) then the modified matrix bm (Sm = bm 

R) will become: 

 

In that way, the deformations and stresses of 

the modified systems will be expressed in 

terms of merely the stress distribution in the 

original system. 

    If the deformations v are due to only the 

displacements r (v = a r) then the modified 

matrix am (vm = am r) will become: 

 

bm = 1 1

1 1h h

− −−b b D b P b .          (57.a) am = 1 1

1 1h h

− −−a a C a Q a .         (57.b) 

 

Compliance of the modified system 

 

    The application of (25.a) and (36.a) to the 

original and modified system under the load R 

will yield: 

 

    The application of (25.b) and (36.b) to the 

original and modified system under the 

displacement r will yield: 

 

Fm = F + F,                   (58.a) 

F = 1

1h h

−b P b .               (58.a) 

 

Km = K + K,                  (58.b) 

K = 1

1h h

−a Q a .               (58.b) 

 

    F is the increment (positive or negative) of 

the compliance that results from the 

modifications. 

    K is the increment (positive or negative) of 

the stiffness that results from the 

modifications. 

 

Special cases 

 

    1)  Eliminating the h elements (cutouts): 

One has: 

 

    1)  Rigidifying the h elements: One has: 

 

fh →       and      P = 1

1 1h h

− b D b .  (60.a) kh →       and      Q = 1

1 1h h

− a C a .  (60.b) 

That case was treated in Section 5 and 

correspond to point A in Fig. 9a. 

 

    2)   Rigidifying the h elements: One has: 

 

That case is dual to the method of Section 5 

and corresponds to point R in Fig. 9b. 

 

    2) Eliminating the h elements: One has: 

fh = − fh    and    P = 1 1

1 1h h h

− − −b D b f .  (61.a) kh = − kh   and   Q = 1 1

1 1h h h

− − −a C a k .  (61.b) 

That case corresponds to point R in Fig. 9a. 

 

That case corresponds to point A in Fig. 9b. 
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    Example. – For the framework that is 

illustrated in Fig. 3a, determine the stress 

matrix bm and the compliance Fm for the loads 

R1 and R2 . The compliance of rod 10 is 

/ 6l E A , but for all of the remaining rods, it is 

l / E A. We consider the framework in 4 a) with 

the same compliances for the rods as in the 

original system, and subsequently modify rod 

10. We then get from (27.a) and (29.a): 

 

    Example. – For the framework that is 

illustrated in Fig. 3b, determine the 

deformation matrix am and the stiffness Km for 

the loads r1 and r2 . We consider the framework 

in 4 a) with the same stiffnesses for the rods as 

in the original system, and subsequently 

modify rod 10. We then get from (27.b) and 

(29.b): 

1

1
55

[0,1],

[ 28 2, 24 2],

5
.

6 6

h

h

h

l l l

E A E A E A


=


= − − 

 = − = −


b

b

f

    (62.a) 

 

1

1
335

[0, 0,0,0,1 2, 1 2],

[12 2, 104 2],

6
5 .

h

h

h

E A E A E A

l l l


= − 


= − 


 = − =


a

a

k

    (62.b) 

With the use of the matrix D−1 that was 

determined in 4 a), we will find that: 

 

With the use of the matrix C−1 that was 

determined in 4 b), we will find that: 

 

P−1 = − 
55

50

l

E A
,                 (63.a) Q−1 = 

355

226

E A

l
,                 (63.b) 

and therefore: and therefore: 

bm = 

1 2

32.12 3.96

73.04 23.92

22.88 3.96

91.96 31.68

22.88 3.96
1

4.84 27.72
55

32.12 2 3.96 2

18.04 2 23.32 2

22.88 2 3.96 2

36.96 2 31.68 2

1

2

3

4

5

6

7

8

9

10

R R

− − 
 

− −
 
 −
 
 
 −
 
 
 
 
 
 
 −
 

− −  

, 

 

F = − 
31.4 26.9

26.9 23.155

l

E A

 
 
 

.      (64.a) 

 

am = 

1 2

44.47 50.40

62.85 13.64

49.81 96.65

72.93 37.95

49.81 96.65
1

65.81 235.39
355

44.47 2 50.40 2

31.42 2 160.68 2

49.81 2 96.65 2

3.56 2 30.83 2

1

2

3

4

5

6

7

8

9

10

r r

− 
 

− −
 
 −
 
 
 −
 

− 
 

− 
 −
 
 −
 

−  

 , 

 

K = 
1.3 11.1

11.1 95.8335

E A − 
 
− 

.      (64.b) 

We ascertain Fm from (58.a). We ascertain Km from (58.b). 
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 We again confirm that m m
b a  = E2 is fulfilled. 

 The influence of the increased stiffness in rod 10 on the stress distribution is relatively minor, 

which was to be expected. 
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