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On surface transfor mations

By A. V. BACKLUND in Lund

Translated by D. H. Delphenich

In recent years, | have posed the question of wheltleee tare, amongst the surface
transformations of a triply-extended space, ones fochymot the contact of first order,
but contact of second order — viz., osculation — playsdhle of an invariant. | have
treated this question in a paper in volume X of the Jatingfisder Universitat Lund
(Sept. 1874), and there | arrived at the result that ttrassformations for which first-
order contact is already an invariant relation — Le’s contact transformations — are
also the only ones that leave contact of higher ordariant. At the same time, a paper
of Lie ) appeared in volume VIII of the Mathematischen Annaienyhich the actual
guestion of osculation transformations was raised. tRatr reason, | would like to
undertake the aforementioned investigation of what | prawadip posed, as well as
examining more closely some of the points were only ltedcupon there. | thus
commence here with the proof of the non-existence my apecial osculation
transformations of planar curves, and will first casuy this proof in a purely geometric
way and then in a purely analytic one (8 1.2). Thus, | dhnall give a more precise
overview of the question that is to be treated later on

§1.

Geometric proof of the absence of any special osculation
transformations of planar curves.

1. The osculation transformations will convert eveuyve in the plane into one or
more, but not infinitely many, curves in that plane, amdhkrmore, any two mutually
osculating curves into two likewise mutually osculgtocurves. Thus, if one applies an
osculation transformation to a figure that consista ctirveC and two infinitely close
curvesC', C" that osculat€ in two neighboring points then what must result caas$
a curvel that is the transform of and two neighboring curvds, I'" that are the
transforms ofC', C" and osculat€& in two neighboring points. Sin€&, C" osculate one
and the same curve in two neighboring points, they nhast tontact each other, and on
the same basis, they must also contéGt . This means that any osculation

") Begriindung einer Invariantentheorie der Beriihrungstranafmnen, by Sophus Lie, pp. 233, note.
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transformation must possess the property that any two infinitely neighbmmags must
be converted into two curves of the same type.

However, as | will likewise show this property belongs to Lie's contact
transformations alone, and thus we achieve the prodhefabsence of any special
osculation transformations.

2. If one has a transformation of the stated typiénf, y) plane, which then takes
any curve in that plane to another curve and any two ielyng¢lose mutually contacting
curves to two likewise infinitely close, mutually caoting curves then i1, A2, A3 are
the parameters of any three-fold system of cuggsy, A1, A2, A3) =0, and if:

(1) ¢(A1, Az, A3, CM]_, CMz, CM3) =0

expresses the condition for two neighboring curvgs (@ + dA) to contact each other,
which are the curves that arise from the curjebly the stated transformation, or, more
briefly, which are the curves that correspond to the c(tyand that can be represented
by an equation:

(2) f(X, Y, /]1, /]2, /]3) =0,

which is so arranged that when one eliminateg p from this equation and the three
following ones:

f' () + pf'(y) =0,

(3) 23—; dA=0,

df'(x) df'(y) 4, —
27gy WPy w0

then one comes back to equation (1). The latter equéhem defines the contact
condition for two consecutive curves)(as well as for two consecutive curves (2), such
that when two infinitely close curvegd)(contact each other, the corresponding curves (2)
must also contact each other.

Conversely, if any two three-fold systems of curves gise to the same differential
equation as the condition of contact then this itselflva the basis for a transformation
that has precisely the aforementioned character.

Having established that, it would give a three-fold systefraurves — perhaps, the
first system 4) — so one will be led to an essential relationship betwthis system and
any other one (2) in the following way:

If the parameterd are the point coordinates of a sp&sewith three dimensions, and
the variablex, y are regarded as arbitrary constants then equation (2segpsea system
of «? surfaces inR; . Equation (1) associates any point Ryf with an elementary
complex cone, and since (1) results from (2) by meangu#t®ns (3), any two infinitely
close surfaces (2) must intersect in a curve whoseédiaments 4, dA) all satisfy
equation (1), so they belong to the elementary compdere (1); in other words, these
intersection curves shall be curves of the complex (&).surfaces (2) go through any
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point of R . Their tangent planes at each point will be enveloped loppne that
coincides in the vicinity of the point with the conettig|agenerated by the line elements
of the intersection curve of any two neighboring suaicethisc® that are determined
by this point. This is, however, precisely the elemgntamplex cone (1) that goes
through the point. Thus:

The surfaceg2) define a solution, with two arbitrary constants x, y, of the partial
differential equation of first order whose elementary complex cenegresented by
equation(1).

Now, two neighboring integrals of the partial diffeiehtequation of first order — |
shall call it® = 0, for brevity — shall always intersect on a chamastic of this equation.
It must then be the curve that is represented by the egsaati

f=0, FO)+pf(y)=0

as a characteristic di* = 0, and indeed each system of valkeg p will correspond to a
definite characteristic); i.e., a simple infinitude of curves (2) that possassommon
element, y, p, corresponding teo’ points (1) that define a characteristic @ = 0. If we

represent theystem of curvesl) by its equation ix, y point coordinates:

(4) ¢/(X, Y, Al, Az, A3) =0

then — wherx, y, A1, A2, A3 is interpreted in the way abovet will be a solution ofd = 0
with x, y as two arbitrary constants, and any family of cumegs.e., curves (4)) that
contact it at one and the same point must then gmneisto a characteristic @ = O.
Now, there are no more thast characteristics o = 0, so, in general, a characteristic
envelopes no family of! characteristics, and thus, conversely, the poiAjsof an
arbitrary characteristic o = 0 must correspond to infinitely many curva$, (hamely,
curves (4), that contact it at one and the same pdiherefore, a simple infinitude of
curves (2) that contact at a point correspond to a sinmmginitude of curvesly that
likewise contact at a point, such that the two faemilof curves correspond to the same
characteristic.

With this, we have proved:

") The result of this argument is simply the followirigyery ordinary nonlinear differential equation
#(A, dA) = 0 can be replaced in an unbounded number of ways byrvesy(x, y, p, A, Az, As) = 0, X(X, Y,
p, A, A2, A3) = 0O, or else it is, according to Lie, based in aagerturve complex by means ¢4, d1) = 0.
Now, there is just one system of curves in this complexigsh@presentable by a system of equations of the
form:

YUX Y, A1, A, A3) = 0, Yx)+p gy =0.

These are the characteristics of the partial diffesieatiuation of first order that is connected wiiid, dA)
=0.

It might also be remarked that it follows from theabthat any ordinary nonlinear differential equation
#(A, dA) = 0 can be interpreted as the condition for theaminf two neighboring curves of a three-fold
system of curves.
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If a correspondence is established between two three-fold systemses, in such a
way that any two neighboring, mutually contacting curves of the one systesspond
to two such curves in the other system then all curves of the sisensythat contact at a
point must also correspond to a system of such curves in the other one.

As a consequence, the transformation that leads friemcorve system to the other
one is a transformation of line elementsy p). It must further be the case that any two
united elements must go to two other such elementspifurmited line elements always
belong to a (real or imaginary) curve of the one systaechthe corresponding elements
are linked to the corresponding curveEwery transformation of the initially given type is
then a Lie contact transformatiorQ. E. D.

§2.

Analytical proof of the same theorem.

3. Since any curve in the plane possesses a systemuesxay, p, p, ... ), by
which it is conversely completely determined, any curaasformation of two spaces, (
y), (X, Y) — these spaces are thought of as extended over daah-omust, in the first
place, be a transformation of the systems of valugsp, p', ... andX, Y, P, P, ... In
particular, an osculation transformation will take ateyn of valuesx vy, p, p') to a
systemX, Y, P, P'), and naturally all of the systems of values thabhiglto a curve inx
y) must be converted into a system that belongs to a aur@€ Y). Every osculation
transformation will then be defined by equations of thienfo

x=FXY,P,P),

y =Fa( )
P =®y( )
P’ =dy( )

where theF, ..., ®, are determined in such a way that the system of eggation
(a) dy—p dx=0, dp—p dx=0,

always goes to the similar system:

(b) dY-P dX=0, dP-P dX=0.

This is then the analytical condition for two neighbgrelementsy; ..., p'), (x +dx, ...,
p' +dp) that belong to a curve to yield corresponding elemefts.., P'), (X + dX ...,
P' + dP) that likewise belong to a curve.

| now consider the following series ®f consecutive elements, , p, p):

) p=dy/dx p =dp/dx ...
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XO! yO, pOl p’l
Xo, Yo, Po, P' +dp,
Xo, Yo, Po, P’ + 2dp),

If any two of these neighboring elements satisfy eqonat{a) — so one then hds =
dy = dp = 0 — then any two neighboring elements of the corregipge* elementsX, Y,
P, P') must then satisfy equations (b); i.e., thedeelements will be coupled by a curve.
By eliminatingP, P' from the equations:

X0 =F(X Y, P, P),
Yo = Fi( )
Po = ®y( )

it is then self-explanatory that one will obtair tbquation of any curwat corresponds
to the line elemen(ixo, Yo, Po), and in a similar way, the equation of a curvexiryj that
corresponds to the line eleme(X, Y, P). Alternatively, when the quantity?’ is
eliminated from the transformation equation, every @g@ir transformation must lead
to two equations:

(c) fx,y,p, X, Y,P) =0, Xy, p, X Y,P) =0,

that possess a common integral in the variakleg, p, as well as in theX, Y, P.
Conversely, two equations (c) that have stated rekttiprto each other will determine
an osculation transformationassuming thathe equations:

df df df df N
f=0, ¢ =0,—+p—+p—=0, —+P—+P— =0
¢ P g dX dY dP )

for every arbitrary system of valueX, (Y, P, P') [(x, V, p, p'), resp.] yield a system of
values &, vy, p, p) [(X, Y, P, P'), resp.], or some such system of values.

However, | will show that systems of equations with property(c) cannot lead to
all systems of value&, y, p, p') in the plane since any equations in the three-fold
infinitude (X, Y, P) are associated with only a two-fold infinitude of cugyveo by the
calculation described, only the’ elementsX, y, p, p') can appear on these curves. With
that, it is then proved that no special osculationsfiamation can exist.

4. If P (p, resp.) were eliminated from equations (c) then this ldvgield two
equations:

") Combined, if necessary, with the equations:

dp  dp g _ . dp _dp _ op_
Pyt Pt Pt O

which, due to the connection that exists betweamd ¢, can always be combined with the equations
above.
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(d) p=fxy, XY), P=o(xy. XY)
that completely replace them, and will possess a aomimtegral in the space,(y), as

well as in the spaceX( Y). This relationship between equations (d) will be expresse
algebraically by the relations:

4, 40

, — —0
dx dy dx ¢

from which, by eliminatindg, an equation for the determinationgpémerges:

(d¢ d¢j 5[ P owJ 0
dx\ dx dy df dx d

This can be brought into the form:

( d¢ ¢d¢j (d¢ d@ £dﬁ+¢;¢;:0;
dxLdX "~ dy) | dx dy dy dx' d
e. it 32,92

+ p—— = 0 then one must also have:

dx dy
d dp , . dp
(dx+pdyj( dX o de

The differentials ofg an({ ¢ +¢ ¢j when both regarded as functionsxpfy, shall

then vanish simultaneously, so:

dg, d¢
ax ¢ =X Y, ).

The integral of this equation is of the form:

an arbitrary function of W1(X, Y, @), W2(X, Y, @), X, y) =0
Here, if one set® in place of¢ then one has the second of equations (d). It is only
doubly infinite relative toX, Y, P, so thew® (X, Y, P) will thus be associated with onky®

curves in X, y), and thus, from what we just set down, there isspecial osculation
transformation of the curves in a plane. Q.E.D.
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All of this begs the question: To what extent can asylt that was established for
the plane be extended to spaces of more dimensions?l resalve this question by
generally treating the problem of exhibiting all of the sfanmations of space of + 1
dimensions that take the manifoldsroflimensions — i.e., the surfaces in this space — to
each other. Regarding such transformations, it ig,cegpriori, that there must be two
essentially different classes of them: The one wumes all transformations that take any
surface in a domainz(x, Xz, ..., X5) of space in general into only one surface (some
surfaces, resp.) in the other domadh X1, Xz, ..., X), while the second class subsumes
the ones that make any surface in the one domain coneésp infinitely many of them
in the other one.

| direct my attention, in turn, to spaces of 2 dimensi— viz., plane. Since a curve in
the plane is completely determined by a system of vakies p, p, ...), and since the
condition for this is that two infinitely close syste of values of this type belong to one
and the same curve should be expressed by the followingictgia

(A) dy-p dx=0, dp-p dx=0, ...,

any curve transformation of two domainsyf), (X, Y) must be characterized by equations
betweerx, y, p, p, ..., X, Y, P, P, ... that take the systems of equations (A) to the amil
system:

(B) dY — P dX=0, dP -P dX=0, ...

l. e., in order to exhibit a curve transformation, anest define two arbitrary equations:

©) {X=F(x, Y. p P, B),

Y=FR(xY p P, P)
and, when one satisfies the aforementioned conditioime simultaneous existence of the
systems of equations (A), (B), derives the following eilquatfrom them:

P:(D(X, Y, b ﬁf“)!
(D) P =®,( ),

In general, it will then be the case that equati@)s (D) cannot be solved fot y, p,
P, ..., in which case, the transformation belongs tosgmond class above: It will be a
multi-valuedtransformation. Indeed, any curve K ¥) will, in fact, be converted into
only one curve in the domaiiX(Y), but a curve in the latter domain will correspond to
infinitely many curves in the former, namely, allagtals of a certain differential
equation). However, when equations (C) are chosen in such ahaayhey, along with

") Or possibly, a system of several differential equation
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perhaps the first of equations (D), define a system that can be solved fom, ..., p“?,

such that these equations are also representablefor e

X=f(X, Y, P, ...),
y =fi( )
p=¢( )

then the transformation will belong to the first slabove: It will be &ingle-valuedi.e.,
finitely multi-valued) transformation.  Then, first danforemost, it will be a
transformation of same-named curve segmentyg, @, ..., p*%) and &, Y, P, ..., P*Y),
and furthermore, those segmentsy( p, ..., p™) that unite into a curve correspond to
same-named segments that likewise unite into a curve.

In regard to the transformation of this class, treetsts the theorem that they are
exclusively contact transformations, as Lie definednthe All single-valued curve
transformations are thus transformationsx¥/( p) into (X, Y, P). It was already proved
that no other curve transformation a&f ¢, p, p’) to (X, Y, P, P') exists. In the following
paragraphs, it will also be shown that no special @ritansformations of higher order
exist.

We go on to spaces with an arbitrary numier1 of dimensions. In order to define
a transformation in the most general way that takesualaces¥l,), in turn, to surfaces,
one may take + 1 arbitrary equations:

Z:F(Z )g,...’)s, 9’..., m, 91' 92,...’ Qm;")

X,=F ,
©) = F( )
X, =F( ),

and derive the following ones from them by differentiataond elimination:

R(:¢k(1...,)$<’..., R Ry pdm’...),
P, =0 ,
(Dr) ki kI( )

(k,|,m’...:1,2,... ,n),

such that the system of equations:

(A) dz- Y. ped% =0, dp—2 padx=0, ..adinf.

remains invariant.

In general, a multi-valued transformation will beaddished by (Q. It is only when
(C) is a Lie contact transformation — and this theorenh veltreated in paragraph 4 —
that the surface transformation is single-valued (fiyeulti-valued).
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As was remarked, | have previously discussed the questiasnether there are no
other single-valued surface transformations than justigheontact transformations, and
the proof of this character of the latter transfororaiwas presented in a paper in the
Jahresschrift der Universitat Lund for two and threeegisions. At the same time, Lie
addressed the same question in a treatise in the Maibelneat Annalen, and then added
another one: the question of whether partial diffeaéetquations of higher order admit
transformations that are not contact transformatiohe proof of the non-existence of
contact transformations of higher order that was edrour in my previous paper, which
referred to the totality of all surfaces, likewise shdwas Lie communicated to me in a
letter, that no transformations of the sort couldtewristhe totality of integral surfaces of
partial differential equations of a partial differenteduation of higher order; in the
present paper, | have presented this as a corollary sanigr theorem.

In paragraph 5, | will mention a map of a partial ddéfatial equation of first order on
a space of + 1 dimensions to a spaceroflimensions that flows out of the aggregate of
the foregoing paragraphs in order to deduce a conclusion rtHates to the
transformation of equations of first order.

Such a map was already based on a contact transfonmatid it was also deduced
by Lie, as | must infer from a remark in his treatise Igdmeine Theorie partieller
Differentialgleichungen 1. Ordnung,” Abh. der Gesellsthaér Wissenschaften zu
Christiania fur 1874, pp. 218, that was used as an aid torftisetiz investigations.

In conclusion, one finds brief remarks on a classeafarkable transformations of
space of three dimensions.

In addition, I must remark here, as | also in did in eaylier paper, that in the
summer of the previous year | spoke with Felix KleinMuminich on the subject of
osculation transformations of the plane, in particudad that when the problem was not
resolved by these conversations, the solution of itegaentially facilitated by assuming
a new viewpoint that he suggested for regarding the question.

§3.
On thesingle-valued transfor mations of plane curves.

5. | shall first take up the considerations of the sdconmber in a somewhat
extended form. Instead of a three-fold system of cu(¥g | will treat a system witk +
1 arbitrary parameterk
(5) f(X, Y, Al, Az, ceey Ak+1) = 0,

and apply to it the previous process that was used inettend number for system (4).
A, A2, ..., A1 WIll be regarded as point coordinates for a spBge with k + 1
dimensions and, y as arbitrary constants. By eliminatiagy, p from the equations:



Backlund - On surface transformations. 10

f=0, f'(x)+pf'(y)=0,

zg;d)l 0, zdf(x)d)l zdf(”d;l 0,

(6)

the following equation results:

(7 YA dl) =0

which is now the condition for the contact of twaighboring curved, viz., curves (5).
Above all, we might make the following remarks abthis equation: When one sets
X, Y, p, A equal to constants — the value bis then chosen such that the first two of
equations (6) are satisfied — one recognizes frgmatoons (6) that every such system of
values corresponds td2 values ofd/; / dAw1 , and indeed these values are of the form:

dAi = adA® +a,dA®P +...+a _dA*P, (=12, .. . k+1),

where thea are taken arbitrarily. The rays of the cape 0 that belongs to any point
arrange themselves into a singly-infinite familypdéinar pencils ok- 2 dimensions, and
the cone itself shall thus be represented in ptaeedinates bk — 1 equations; let:

wl(Al’ a k+1’7T’ e ’nk+1): O,

= O,
© . )

wk—l( ) = O!

be these&k — 1 equations, which are homogeneousgzinNext, the contact condition (7)
will be replaced by this system of partial diffetiah equations of first order iR .
However, any equation (7) is still not characteticempletely. Namely, one further has
that the surface elements, (7) of the manifolds (5) — which amdy in the spacd.1 —
satisfy equations (8) for the manifold system &paommon solution that possesses two
arbitrary constants, y.

Conversely, any system of- K partial differential equation of first order in/R that
admits a common solution with two arbitrary constants will lead to an exug{iA dA)
= Othat can be interpreted as the contact condition for two neighboring cunaek+df
fold system:

f(X, Y, /]1, cery /]k+1) =0

and when x, y, are considered to merely be arbitrary constants, the@qgoatny such
system of curves will always represent a common complete sodbftithe system of
partial differential equations.

By means of the map (8) of the system of equatwme the plane that comes out of
this, every line elemenk(y, p) in the plane will correspond to a characteridMic; that
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is the intersection manifold &f— 1 dimensions of two infinitely close integrdk , and
any elementx, y, p, p') will correspond to a characteristx-, that is the intersection of
three consecutive integraidy , etc. The points of a characteridilg-; thus correspond
to those curves (5) that contact a point, and the poihts characteristidMy-, thus
correspond to those curves (5) that osculate at a pomt,

Furthermore, as might emerge here especially, wheh sucorrespondence is
established between tvkot 1-fold systems of curves:

f(X, Y, A1, ..., Ak+1) =0,
#( ) =0,

two neighboring mutually contacting curves of the onetesyscorrespond to two
neighboring, likewise mutually contacting, curves of tHeeosystem, so all curvés- 0
must then contact at a point and curges 0 correspond to ones with the same property.
Then, both systems of curves give rise to the sastersyof partial differential equations
(8), and the both families ¢f= 0 (¢ = 0, resp.) that contact at a point correspond & on
and the same characteristidi-1 . What comes out of this is the fact that for all
transformations of the plane for which any two neigifgyrmutually contacting curves
are converted into similar curves, contact of firstesrmust be an invariant relation; thus,
all such transformations are Lie contact transfoionat which was already proved in the
second number.

6. A curve transformation that leaves second-orderambmivariant is, as we already
showed, an ordinary contact transformation. A tiansation that leaves third-order
contact invariant will convert any two neighboring curwah second-order contact into
two similar curves, or, | assert, it should also beaasformation of the class discussed in
the foregoing number that converts two neighboring cuwigs first-order contact into
other similar ones. Namely, whé, C" refer to any two infinitely close curves with
first-order contact, one can always draw @hat is infinitely close td&C', C" and which
osculates these curves at two points that are ¢fee contact points of these curves.
Such a transformation of the stated type will con@rC”, Cintol", I'", I', and of these
curves, the latter shall osculate the former twovatneighboring points. However, since
", " osculates one and the same cuna two neighboring points, they have first-order
contact with each other. Thus, any two neighboringtamding curve£', C" go to two
similar oned™’, I'", which was what we asserted.

However, it was already shown that a transfornmatibthe latter type is a Lie contact
transformation. Thus, there is no other transforomefor which contact of third-order is
an invariant relation.

In the same way, it follows that no special contemmsformations of order 4, 5, ...,
exist. However, as was proved above, any single-value@ ¢ransformation must be a
transformation of same-named curve segmexty,(p, ..., pk), XY, P, .. Pk), and
therefore, a contact transformation of order 1, 2, 3,.4,Thus, we finally haveAny
single-valued transformation of curves in a plane must be a Lie cordastdrmation.
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§84.
On transfor mations of manifolds M, of n dimensionsin a space of n + 1 dimensions.

7. Firstly, | remark that if a surface is to haVkorder contact with aM, with two
infinitely close surface at two infinitely close pam, p' then the latter two surfaces must
have ¢ — 1)™order contact at the poimf. Conversely, when two infinitely close
surfaces haver (- 1f™order contact, it is possible in an unbounded number g§wa
construct surfaces that has®order contact in the vicinity of the contact poirvery
surface transformation that takes surfaces that hesend-order contact to other such
surfaces will then convert any two infinitely close sgds with first-order contact into
two other such surfaces, and on this basis a trandfiormior which contact of third
order remains invariant must convert any two infinitelyghboring surfaces that have
second-order contact into two infinitely neighboring scefs that likewise have second-
order contact. By repeating the reasoning that wasedawrit in the foregoing number —
by constructing a surfac€ that has a second-order contact with two arbitrary
neighboring surfaceS’, C" that have first-order contact at a point in neighborhafdtie
contact point, and which is itself infinitely close this pair of surface€’, C" — one sees
that this transformation also must convert infinitelgse, contacting surfaces into two
surfaces with exactly the same property, etc., in sugbaw that ultimately any two
infinitely close surfaces with first-order contace aronverted into similar ones. Now,
every single-valued surface transformation must beaastormation of same-named
curve segments(Xy, Pk, Puis ---), &, Xk, Pk, Pu, ...), for which contact of some order is
an invariant relation. Thusany single-valued surface transformation must be a
transformation that leaves the first-order contact of two infinitelgse surfaces
invariant.

8. We consider an + 2-fold system of surfaces, say:
(9) f(Z, X1, «eey Xny Al, ceny An+2) =0.

The condition equation for two surfaces that corresporithé parameters, A + dA to
contact each other will be obtained by eliminatiggk, p from the following 2 + 2
equations:
f=0, f'x)+pf(2=0,
df B df'(x.) df'(2 ,, _
(10) zd)ld)l 0, > Y di+pY. 4 d1 =0,
(k:1,2,-~- ’n)’

which gives an ordinary differential equation:

(12) #(A,d) =0
as the desired condition equation.

If one regardg, x as arbitrary constants adg A,, ..., A2 as point coordinates in a
spaceR.+» then equation (11) represents a system of elemeotaes in this space, and
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equation (9) represents ant 1-fold system oM., in the same space, each of which
(from equations (10)) will be cut at each of its points:d}y* neighboringM,.1 along a
manifold of dimension one whose line elements define ohglementary cones (11). As
a result of this, theo" manifolds that go through one and the same pd)niv{ll generate
a cone (11) by means of their surface elements. Thuge ilet® = 0 be the partial
differential equation of first order whose characteri€one (or elementary complex
cone) is exhibited by equation (11) then we recognizealststem of surfacd9) for
which ¢ = 0 is a contact condition defines a complete solution with h arbitrary
constants zx, ..., X, of the partial differential equatios = 0.

Therefore, if the surfaces are associated with twe Z)-fold systems of surfaces:

(12) f(zZ X1, «oey Xy A1, .oy Ane2) = 0, Dz X1, ooy Xy ALy oovy Ane2) =0,

in such a way that two surfacésl®™) = 0, f(AY) + d1) = 0 that contact each other
correspond to two likewise contacting surfag€d®™) = 0, A® + dA) = 0 then each of
the two equations must be complete solution of one hadsame partial differential
equation® = 0 whengz, x are interpreted as constants and Ales variables. Thus, the
parameter! of thosew® surfaces will be any one of those solutions that conkem at a
point, so they possess a common system of valges, (p) in the spaceR,., of
coordinates for the points of a characteristicdot= 0, and conversely, such that the
system of surfaces (12) that we just wrote down, onbdss of the aforementioned
reciprocal relationship itself, must be coupled to eaitteroin such a way that i’
surfaces of the one system contact each other ahttpen the corresponding surfaces
of the other system likewise contact at a poiftor that reason, the one system of
surfaces must be derivable from the other one by a Lie contactdraragion.

Thus, from what we established in the previous numd®y,single-valued surface
transformation must be a Lie contact transformation.

9. Amongst anrf + k)-fold infinitude of surfaces:
(13) f(z X1, «vey Xoy A1, ooy Ani) =0,

there areo** of them that include a given elementx p). If one regardsy, ..., Anwk as
point coordinates in a spaé&.x then the condition equation for the contact of two
neighboring surfaces (13) will be represented by a differezquation:

WA, dA) =0

that is based in a system o~ 1 equations of first order R,.« that is homogeneous
relative torz

(14) {Lpi(A""1An+k’ni’“"n-n+k): O’

(=12, k-1),

and which admits a common solution witk 1 arbitrary constantsThe equation £ 0 —
in which z, x, figure as arbitrary constants — defines such ammnsolution, along with
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a system ofo"™* manifolds M in the space Ri, for which ¢ = 0 defines the contact
conditions.

There will thus be a relationship between the spaceand the elementsi(7) in the
space that obey the system of equations (14). | willecback to this later.

10. Corollary to the theorem of number-8.For two partial differential equations of
second order in the spaBg:.«, about which it is known, firstly, that each of thaftows
a k-fold system of integraM, (k > n + 2) Kk is large enough that the elemergsx(, px,
p«) of this system will all be elements of the diffai@hequations), and secondly, that
they cannot be derived from each other by an ordinamtacbtransformation, one knows
that no transformation exists that associates @gialM, of the two equations in such a
way that contact of second order remains preserved. &ucmsformation would, in
fact, take any two infinitely close contacting integm@fi®ne of thek-fold systems to two
similar integrals of another one, and, from numbet &puld thus be an ordinary contact
transformation.

11. | will make the following remarks in passing: The facattimo special
transformation exists in the space of three dimensiomslinary point-space — such that
contact of second order is an invariant relation caaXpeessed analytically as follows:
There is no pair of equations:

FzxypagZXYPQ) =0,

D( ) =0,
that is five-fold infinite relative to thez, ..., g, as well as the, ..., Q, and whose
equations possess a single infinitude of common integeddsivie to thez, ..., q as

variables, as well as th# ..., Q.
Indeed, there are unboundedly many pairs of equationgheitatter property; e.g.:

F(o(z x y, p, d), UZ X, Y, P,Q)) =0,
(@, @1, @2, P3, Y, Y1, Yp,yYr) =0,

where g, @, ¢s (¢n, Yo, Yk, resp.) are integrals of the equatigh £) = 0 (¢, ©) = 0),
but on the same grounds, they are not transformatioais surfaces in space. Thus, e.g.,

under the stated equations, just the integrals of the eqaégti= C, (/= C are preserved.

§5.
Some transfor mations of partial differential equations of first order.

12. From number 8, it follows that any partial differahtequation® = 0 of first
order in the spacRB,.x whose characteristic cone is represented by an equgtien...,
Ans1, 041, ..., dAns1) = 0 is mapped to the spa€y(z, xi, ..., X-1) by means of any
complete solutiori(z, xi, ..., X-1, A1, ..., An+1) = 0. Every surface element of this space
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corresponds to a characteristic®f= 0, every surfacél,; in R, ) corresponds to an
integralM,, of ® = 0, and in particular, the™* surface$ = 0 correspond to the conoid of
® = 0; i.e., the integrals that are generated by chaistate that go through one and the
same point.

As a consequence of this map of the partial diffeaeatjuationd = 0 onR, the most
general transformation of this equation into itself thato arranged that it takes integrals
to integrals must be developed from the most generaacurtransformation oR, .
Now, the latter transformation, when it always agges a surface with a surface (ot
surfaces), is necessarily a Lie contact transformat@orresponding to this, we obtain a
transformation that permutes the characteristics of the partial @iffeal equatiorn® = 0
with each other as the most general transformation that takes an intdgtrad equation,
in turn, to an integral (not integrals).

We refer two partial differential equations of firstder ® = 0, ¥ = 0 whose
characteristic cones are each represented by an eqt@time and the same spdge,
and therefore to each otheFhe most general transformation that takes an integral of the
one equation to an integral of the other one is one that exchanges the chstiastef®
= Owith those off = 0. It is the image of the contact transformatibR,, .

In my earlier presentation, | referred to this transftion as Lie’'s contact
transformation of the spacel)( due to the fact that such a transformation can be
expressed by an equation:

F(A1, A2, .oy Aner, A1, A, oy Anet) = 0,

that determines the association of conoili®f the one equation and integrals of another
sort of the other equation. Such a transformatigrsubsumes only the surface elements
(A, 1 of the equation® = 0,¥ = 0, but by no means all surface elements @f Bf the
space(A). Transformations that involve all elements of Re.; and transform the
integralM, of ® = 0 into those of¥ = 0, are formulated analytically in the following
way:

Instead of writingds, A2, ..., Ans1, A1, A2, ..., Ansa fOr the coordinates of the points of
two regions inRy+1, | will write ; zx, ..., X\, ZX, ...,X,; furthermore, | will assume that

@;, W; are determined in such a way that each of the tworagsté¢ equations:

X1=® (24, ..., %n, P1, ---, Pn), Xi=W (ZX, ..., X,y Py -ees PL),

Xo=®1 ( ), Xo=Wq ( )
Z =®, ( ), Z =W, ( )
P1 = ®naq( ), P1=Wha( )

) As well as any manifold of lower dimensions, when @ered to be the totality ob"" surface
elements% x, p).

” ) Regarded as the point

™) The following developments of this number are basamine remarks that Lie communicated to me
on the basis of one of my earlier papers.
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P2 = ®pao( )y Pa=Whio( )

define a contact transformation of the spBgg . The equatio® =0 W = 0, resp.) will
now be mapped to the spaBg : X; = 0 in the aforementioned way by the following
equations:

xl = q)la ey Xn = q)n—l, Z = q)n, P2 = q)n+2, ey Pn = cDZn ’
or.
xl = LIJll ey Xn = l'Pn—l, Z = l'Pn, P2 = l'Pn+2, ERE] Pn = LIJan

resp. The transformation in questionddf 0 toW = 0 is then of the form:
O =Y ... =Y
(@) { )
(o}

n n
n+2:LIJ

n+2""1q)2n :LPZn’

(b) an arbitrary function ofz&, ..., Xn, P1, ..., Pn; ZX, ..o, X,y Py .- P) =0,
(c) and an equation betweénand¥ that makesP vanish wherb is equal to zero.

The number of equations is 2 1, andzx, ..., Xn, P1, ..., Pn Will then be expressed in
terms ofZx, ..., X,, P, ..., p, by them.

This is, in general, not a surface transformation or a Lie contact tramsfoon of
the space R: ). We see this most simply when we write for equatin

Orea =W(ZX, ooy Xy P, e BB,

where @1, W) is non-zero, butd®;, ®,.;) equals zero. A contact transformation would
convert two functionsb;, ®,.; that are in involution into two other such functioasd
thus, by no means, intd;, W.
For the equation (c), we write:
b=y,

and see from this that family of partial differential equation® = C can be converted
into a family of equationd = C by transformations that are not contact transformations
of Ry, but still convert any integral of the equatieh = C into an integral of the
corresponding¥ = 0.

13. The multi-valued surface transformationsRyfare the images of all the other
transformations that, in that way, take a partialedéhtial equation of first order d#.1
to itself (to another equation of the same order orséime space, resp.) such that integral

*

) Cf, on this, a statement of Lie in his paper “Begrimdueiner Invariantentheorie der
Beruhrungstransformationen,” Math. Annalen, Bd. VIII, pp. 223.
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M, will always, in turn, go to integrall, . Each such transformation that takes two
equations of first orde® = 0, W = 0 to each other, makes any integral of the one equation
—e.g.,® = 0 — correspond to an integral of the other equationO, while an integral of
the latter one will correspond to infinitely many igtals of the former.

The foregoing can be carried over to partial diffaegmquations of first order of any
sort onR+1 in an easily understood way, since any two equationfirstforder can
always be taken to each other by a contact transformatio

14. A system ok partial differential equations of first order with+ 1 variables that
admit a common solution with — k +1 ') arbitrary constants will, from number 9, be
related to any common complete solution:

f(z X1, .oy X0k A1y ..oy Ans1) =0

on the spacez( xy, ..., X»-k) of n — k+ 1 dimensions in such a way that any surface
element of thiR,—+1 corresponds to a characteridiig of the system of equations, and
any surface of th&,-x+1 (i.e., anM, in this space) corresponds to an intefalof the
system. Two systems of equations, each of which stsnefk equations, and each of
which possesses"™ ! integralM,, can be mapped to the spaex.1, and thus can be
related to each other. The most general transformatimne system of equations into
the other one that takes any intedvkl of the one system to an integhd} of the other
one will, as a result, be the image of the most @tnseingle-valued surface
transformation of the spad&,«.; . Under any such transformation of the system of
equations to another one, every characteristicof the one system then goes to a
characteristidvik of the other one.

15. In this number, we shall consider, in particular, atesysof four partial
differential equations of first order with seven varéil that possess? integralsMs —
say:

f(z x, ¥y, A1, ..., A7) = 0.

The system of equations will be mapped to the space Thus, every surface
element £, X, y, p, ) will correspond to a characteristit, and every element(x, vy, p,

g, r, s t) will correspond to a characteristdd; that is the intersection of a single
infinitude of neighboring characteristit, that go through one and the same pdint

Every surface oRs; corresponds to an integrils, and this should include aviz
(perhaps, as a cuspidal manifold) that consists’atharacteristidvl; ).

If, from theo® elementsZ x, y, p, g, T, S, t) of Rs, o’ of them are distinguished by an
equationF(z, x, y, p, g, I, s, t) = 0 then this is identical to distinguishing characteristics
M; . The search for integral surfaces of the parif&dr@ntial equation of second order
= 0 and the search for integh} of the system of equationsia that are each generated

*

) n>k
”) An integralMs can be laid through eadht,, and just the one characteri¥ig can be laid through an
M; when it is generated by strips.
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by «? of the distinguished characteristic stripd;( are, as a consequence, equivalent
problems.

§ 6.

Some examples of a class of multi-valued surface transformations
of the space of three dimensions.

16. As was shown in the introduction, a surface transéion is completely
determined by any three equations:

X=F(zxypa,
(15) Y = F( ),
Z=F,( )-

It becomes a single-valued transformation in the evsttit satisfies the condition that
the system of equations:

dz=p dx+qdy dp=rdx +sdy dg=sdx +tdy...,adinf.
shall be transformed into the similar one:
dZ=PdX+QdY, dP=RdX+SdY dQ=SdX+TdY...,adinf.

in which the quantitie®, Q likewise include onlyz, x, y, p, g, but not higher differential
guotients; in the other case, when one obtains fromaleellations described:

P=dy(z XV, p,qr,S 1),
Q: ch( )’

the transformation (15) is a multi-valued surface tramséion.

This transformation associates any pokitY, Z) with a family ofe? elementsZ x,

Y, p, ) and every surface elemeit ¥, Y, P, Q) on an elementz(x, y, p, g) that belongs
to each pointX, Y, Z) with a family ofe® systems of values (s, t). Any surface in the
region §, y, 2) will go to a surface in the regioiX(Y, Z) and any surface of the latter
region will go to all integrals of a partial differt#al equation of first ordef(F, F1, F,) =

0.

A partial differential equation of first orde#(Z, X, Y, P, Q) = 0 corresponds to a
partial differential equation of second order that pesse a first integral with two
arbitrary constants, /.

f(F, F, Fo, A, 1)) = 0.).

") The transformation (15) was also mentioned by P. du-Beisnond in his paper: “Beitrage zur
Interpretation der partiellen Differentialgleichungengipzig, 1864, pp. 173.
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The linear partial differential equations of first order the region X, Y, 2)
correspond to partial differential equations of secondrardthe regionX, y, 2) that are
linear inr, s, t, rt — &, and possess a first integral of the form:

f(F, F1, F2) = an arbitrary function of(F, F1, F>).

17. In particular, due to their application to a certdimss of partial differential
equations of second order, | would like to draw attention the following
transformations:

X,
(16)

o}

N < X
I

The remaining equations of this transformation, whiehdarived in the manner that
was set down, become:

P=s,

Q=t,

R=v, d®z d®z d 2
16 v="Z = w="17
(16) S=w ( dedy’  dxdy’ ” dﬁlj

T=w,

etc.

| consider an equation of second order in the regipn @) that is free ok, p, so it
has the form:

Hx vy,qr,st)=0,
or, when solved for:

(17) r=f(xy,qst ),

and define the corresponding figure of the reginY( Z).
By differentiating equation (17) with respectytane obtains:

an equation that has the following linear equation amage in K, Y, 2):

(18) r-gdl _pdf _df df
dP dQ dY " dz

") The equation:

r=fx,y.a,st)+z¢(x) +p X
can be treated in the same way.
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on the basis of equations (16), ‘(16lt will then be the image of all equations:
r =f(x,y, g, s, t) + an arbitrary=(x).
Every surface in the spack, (Y, Z) corresponds to the integral of an equation:

q=F(Xxy),
whose solution has the form:

(19) z=g(x,y) +¥(X),

whereW means an arbitrary function.

Since every integral of equation (18jter alia, must correspond to integrals of
equation (17), one might, whéh= F(X, Y) means an integral surface of (18), determine
the arbitrary functior in (19) in such a way that the latter equation represants
integral of (17), and the equation that served to deterkigéves’) W equal to a well-
defined function ok, F(x), increased bgx + ', wherec, ¢ are completely arbitrary.

The problem of integrating the second-order equatiof) is therefore reduced to the
problem of the integration of the linear equation of second gtk

By the applied transformation, any two integrals of eiquafl?7) that have™ order
contact at a point correspond to two integrals of equdfiéh that haver(— 1" order
contact at a point, and accordingly, characteristicequation (17) will correspond to
characteristics of equation (18).

The theory that was established here defines an extenisibe well-known theory of
Legendre’) of the equations:

F(rs,t)=0"")

that do not contair, y, z p, g. In order to obtain the Legendre form of the correspand
linear equation (18), one would have to appeal, in placeedtrémsformation (16), to an
equation that is derived from it by a reciprocal transfeiona

X =P, Y =Q, Z =PX+QY-Z
namely:
X =5 Y =t, Z =sx+ty—q

The foregoing theory naturally remains essentiallyhanged when an arbitrary
contact transformation is applied to the fundamermahatons (16), (17).

Helsingborg, 18 July 1875.

) By means of a double quadrature.
”) Cf., Boole: Differential Equations, Cambridge, 1859, pp. 369
") I was recently made aware of Legendre’s theory by Li



