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I. 
 

 In recent years, I have posed the question of whether there are, amongst the surface 
transformations of a triply-extended space, ones for which, not the contact of first order, 
but contact of second order – viz., osculation – plays the role of an invariant.  I have 
treated this question in a paper in volume X of the Jahresschrift der Universität Lund 
(Sept. 1874), and there I arrived at the result that those transformations for which first-
order contact is already an invariant relation – i.e., Lie’s contact transformations – are 
also the only ones that leave contact of higher order invariant.  At the same time, a paper 
of Lie *) appeared in volume VIII of the Mathematischen Annalen, in which the actual 
question of osculation transformations was raised.  For that reason, I would like to 
undertake the aforementioned investigation of what I provisionally posed, as well as 
examining more closely some of the points were only touched upon there.  I thus 
commence here with the proof of the non-existence of any special osculation 
transformations of planar curves, and will first carry out this proof in a purely geometric 
way and then in a purely analytic one (§ 1.2).  Thus, I shall first give a more precise 
overview of the question that is to be treated later on. 
 
 

§ 1. 
 

Geometric proof of the absence of any special osculation 
transformations of planar curves. 

 
 1.  The osculation transformations will convert every curve in the plane into one or 
more, but not infinitely many, curves in that plane, and furthermore, any two mutually 
osculating curves into two likewise mutually osculating curves.  Thus, if one applies an 
osculation transformation to a figure that consists of a curve C and two infinitely close 
curves C′, C″ that osculate C in two neighboring points then what must result consists of 
a curve Γ that is the transform of C and two neighboring curves Γ′, Γ″ that are the 
transforms of C′, C″ and osculate Γ in two neighboring points.  Since C′, C″ osculate one 
and the same curve in two neighboring points, they must then contact each other, and on 
the same basis, they must also contact Γ′, Γ″.  This means that any osculation 

                                                
 *) Begründung einer Invariantentheorie der Berührungstransformationen, by Sophus Lie, pp. 233, note. 
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transformation must possess the property that any two infinitely neighboring curves must 
be converted into two curves of the same type. 
 However, as I will likewise show, this property belongs to Lie’s contact 
transformations alone, and thus we achieve the proof of the absence of any special 
osculation transformations. 
 
 2.  If one has a transformation of the stated type in the (x, y) plane, which then takes 
any curve in that plane to another curve and any two infinitely close mutually contacting 
curves to two likewise infinitely close, mutually contacting curves then if λ1, λ2, λ3 are 
the parameters of any three-fold system of curves ψ(x, y, λ1, λ2, λ3) = 0, and if: 
 
(1)     ϕ(λ1, λ2, λ3, dλ1, dλ2, dλ3) = 0 
 
expresses the condition for two neighboring curves (λ), (λ + dλ) to contact each other, 
which are the curves that arise from the curve (λ) by the stated transformation, or, more 
briefly, which are the curves that correspond to the curve (λ) and that can be represented 
by an equation: 
(2)     f(x, y, λ1, λ2, λ3) = 0, 
 
which is so arranged that when one eliminates x, y, p from this equation and the three 
following ones: 

(3)     

( ) ( ) 0,

0,

( ) ( )
0,
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df
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d
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′ ′ + =

∑

∑ ∑

 

 
then one comes back to equation (1).  The latter equation then defines the contact 
condition for two consecutive curves (λ), as well as for two consecutive curves (2), such 
that when two infinitely close curves (λ) contact each other, the corresponding curves (2) 
must also contact each other. 
 Conversely, if any two three-fold systems of curves give rise to the same differential 
equation as the condition of contact then this itself will be the basis for a transformation 
that has precisely the aforementioned character. 
 Having established that, it would give a three-fold systems of curves – perhaps, the 
first system (λ) – so one will be led to an essential relationship between this system and 
any other one (2) in the following way: 
 If the parameters λ are the point coordinates of a space R3 with three dimensions, and 
the variables x, y are regarded as arbitrary constants then equation (2) represents a system 
of ∞2 surfaces in R3 .  Equation (1) associates any point of R3 with an elementary 
complex cone, and since (1) results from (2) by means of equations (3), any two infinitely 
close surfaces (2) must intersect in a curve whose line elements (λ, dλ) all satisfy 
equation (1), so they belong to the elementary complex cone (1); in other words, these 
intersection curves shall be curves of the complex (1).  ∞1 surfaces (2) go through any 



Bäcklund - On surface transformations.                                               3 

point of R3 .  Their tangent planes at each point will be enveloped by a cone that 
coincides in the vicinity of the point with the cone that is generated by the line elements 
of the intersection curve of any two neighboring surfaces in this ∞1 that are determined 
by this point.  This is, however, precisely the elementary complex cone (1) that goes 
through the point.  Thus: 
 
 The surfaces (2) define a solution, with two arbitrary constants x, y, of the partial 
differential equation of first order whose elementary complex cone is represented by 
equation (1). 
 
 Now, two neighboring integrals of the partial differential equation of first order – I 
shall call it Φ = 0, for brevity – shall always intersect on a characteristic of this equation.  
It must then be the curve that is represented by the equations: 
 

f = 0,  f′(x) + p f′(y) = 0 
 

as a characteristic of Φ = 0, and indeed each system of values x, y, p will correspond to a 
definite characteristic *); i.e., a simple infinitude of curves (2) that possess a common 
element x, y, p, corresponding to ∞1 points (λ) that define a characteristic of Φ = 0.  If we 
represent the system of curves (λ) by its equation in x, y point coordinates: 
 
(4)      ψ(x, y, λ1, λ2, λ3) = 0 
 
then – when x, y, λ1, λ2, λ3 is interpreted in the way above − it will be a solution of Φ = 0 
with x, y as two arbitrary constants, and any family of curves λ (i.e., curves (4)) that 
contact it at one and the same point must then correspond to a characteristic of Φ = 0.  
Now, there are no more than ∞3 characteristics of Φ = 0, so, in general, a characteristic 
envelopes no family of ∞1 characteristics, and thus, conversely, the points (λ) of an 
arbitrary characteristic of Φ = 0 must correspond to infinitely many curves (λ), namely, 
curves (4), that contact it at one and the same point.  Therefore, a simple infinitude of 
curves (2) that contact at a point correspond to a simple infinitude of curves (l) that 
likewise contact at a point, such that the two families of curves correspond to the same 
characteristic. 
 With this, we have proved: 

                                                
 *) The result of this argument is simply the following: Every ordinary nonlinear differential equation 
ϕ(λ, dλ) = 0 can be replaced in an unbounded number of ways by ∞3 curves ψ(x, y, p, λ1, λ2, λ3) = 0, χ(x, y, 
p, λ1, λ2, λ3) = 0, or else it is, according to Lie, based in a certain curve complex by means of ϕ(λ, dλ) = 0.  
Now, there is just one system of curves in this complex that is representable by a system of equations of the 
form: 

ψ(x, y, λ1, λ2, λ3) = 0, ψ′(x) + p ψ′(y) = 0. 
 

These are the characteristics of the partial differential equation of first order that is connected with ϕ(λ, dλ) 
= 0. 
 It might also be remarked that it follows from the above that any ordinary nonlinear differential equation 
ϕ(λ, dλ) = 0 can be interpreted as the condition for the contact of two neighboring curves of a three-fold 
system of curves. 
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 If a correspondence is established between two three-fold systems of curves, in such a 
way that any two neighboring, mutually contacting curves of the one system correspond 
to two such curves in the other system then all curves of the one systems that contact at a 
point must also correspond to a system of such curves in the other one. 
 
 As a consequence, the transformation that leads from one curve system to the other 
one is a transformation of line elements (x, y, p).  It must further be the case that any two 
united elements must go to two other such elements, if two united line elements always 
belong to a (real or imaginary) curve of the one system and the corresponding elements 
are linked to the corresponding curve. – Every transformation of the initially given type is 
then a Lie contact transformation.  Q. E. D. 
 
 

§ 2. 
 

Analytical proof of the same theorem. 
 

 3.  Since any curve in the plane possesses a system of values x, y, p, p′, … *), by 
which it is conversely completely determined, any curve transformation of two spaces (x, 
y), (X, Y) – these spaces are thought of as extended over each other – must, in the first 
place, be a transformation of the systems of values x, y, p, p′, … and X, Y, P, P′, …  In 
particular, an osculation transformation will take a system of values (x, y, p, p′) to a 
system (X, Y, P, P′), and naturally all of the systems of values that belong to a curve in (x, 
y)  must be converted into a system that belongs to a curve in (X, Y).  Every osculation 
transformation will then be defined by equations of the form: 
 
      x = F(X, Y, P, P′), 
      y = F1(                ), 
      p = Φ1(               ), 
      p′ = Φ2(              ), 
 
where the F, …, Φ2 are determined in such a way that the system of equations: 
 
(a)     dy – p dx = 0,  dp – p′ dx = 0, 
 
always goes to the similar system: 
 
(b)     dY – P dX = 0,  dP – P′ dX = 0. 
 
This is then the analytical condition for two neighboring elements (x, …, p′), (x + dx, …, 
p′ + dp′) that belong to a curve to yield corresponding elements (X, …, P′), (X + dX, …, 
P′ + dP′) that likewise belong to a curve. 
 I now consider the following series of ∞1 consecutive elements (x, y, p, p′): 
 
                                                
 *) p = dy / dx, p′ = dp / dx, … 
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     x0, y0, p0, p′, 
     x0, y0, p0, p′ + dp′, 
     x0, y0, p0, p′ + 2 dp′, 
     … 
 
 If any two of these neighboring elements satisfy equations (a) – so one then has dx = 
dy = dp = 0 – then any two neighboring elements of the corresponding ∞1 elements (X, Y, 
P, P′) must then satisfy equations (b); i.e., these ∞1 elements will be coupled by a curve.  
By eliminating P, P′ from the equations: 
 
     x0 = F(X, Y, P, P′), 
     y0 = F1(               ), 
     p0 = Φ1(              ), 
 
it is then self-explanatory that one will obtain the equation of any curve that corresponds 
to the line element (x0, y0, p0), and in a similar way, the equation of a curve in (x, y) that 
corresponds to the line element (X, Y, P).  Alternatively, when the quantity P′ is 
eliminated from the transformation equation, every osculation transformation must lead 
to two equations: 
(c)    f(x, y, p, X, Y, P) = 0,  ϕ(x, y, p, X, Y, P) = 0, 
 
that possess a common integral in the variables x, y, p, as well as in the X, Y, P.  
Conversely, two equations (c) that have stated relationship to each other will determine 
an osculation transformation – assuming that the equations: 
 

f = 0, ϕ  = 0, 
df df df

p p
dx dy dp

′+ + = 0,  
df df df

P P
dX dY dP

′+ +  = 0   *) 

 
for every arbitrary system of values (X, Y, P, P′) [(x, y, p, p′), resp.] yield a system of 
values (x, y, p, p′) [(X, Y, P, P′), resp.], or some such system of values. 
 However, I will show that systems of equations with the property (c) cannot lead to 
all systems of values (x, y, p, p′) in the plane, since any equations in the three-fold 
infinitude (X, Y, P) are associated with only a two-fold infinitude of curves, so by the 
calculation described, only the ∞3 elements (x, y, p, p′) can appear on these curves.  With 
that, it is then proved that no special osculation transformation can exist. 
 
 4.  If P (p, resp.) were eliminated from equations (c) then this would yield two 
equations: 

                                                
 *) Combined, if necessary, with the equations: 
 

d d d
p p

dx dy dp

ϕ ϕ ϕ′+ + = 0, 
d d d

P P
dX dY dP

ϕ ϕ ϕ′+ + = 0, 

 
which, due to the connection that exists between f and ϕ, can always be combined with the equations 
above. 
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(d)    p = f(x, y, X, Y), P = ϕ(x, y, X, Y) 
 
that completely replace them, and will possess a common integral in the space (x, y), as 
well as in the space (X, Y).  This relationship between equations (d) will be expressed 
algebraically by the relations: 
 

d d
f

dx dy

ϕ ϕ+  = 0, 
df df

dX dY
ϕ+  = 0, 

 
from which, by eliminating f, an equation for the determination of ϕ emerges: 
 

: :
d d d d d d

dx dx dy dY dx dy

ϕ ϕ ϕ ϕϕ   
+   

   
 = 0. 

 
This can be brought into the form: 
 

:
d d d d d d d d

dx dX dY dx dy dy dX dY

ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ    + − ⋅ +    
    

 = 0; 

 

i.e., if 
d d

p
dx dy

ϕ ϕ+  = 0 then one must also have: 

 

  
d d d d

p
dx dy dX dY

ϕ ϕϕ   + +   
  

= 0. 

 

The differentials of ϕ and
d d

dX dY

ϕ ϕϕ + 
 

, when both regarded as functions of x, y, shall 

then vanish simultaneously, so: 
 

d d

dX dY

ϕ ϕϕ+  = ψ(X, Y, ϕ). 

 
The integral of this equation is of the form: 
 

an arbitrary function of  (Ψ1(X, Y, ϕ), Ψ2(X, Y, ϕ), x, y) = 0. 
 

Here, if one sets P in place of ϕ then one has the second of equations (d).  It is only 
doubly infinite relative to X, Y, P, so the ∞3 (X, Y, P) will thus be associated with only ∞3 

curves in (x, y), and thus, from what we just set down, there is no special osculation 
transformation of the curves in a plane.  Q.E.D. 
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II. 
 

 All of this begs the question: To what extent can any result that was established for 
the plane be extended to spaces of more dimensions?  I will resolve this question by 
generally treating the problem of exhibiting all of the transformations of space of n + 1 
dimensions that take the manifolds of n dimensions – i.e., the surfaces in this space – to 
each other.  Regarding such transformations, it is clear, a priori, that there must be two 
essentially different classes of them: The one subsumes all transformations that take any 
surface in a domain (z, x1, x2, …, xn) of space in general into only one surface (some 
surfaces, resp.) in the other domain (Z, X1, X2, …, Xn), while the second class subsumes 
the ones that make any surface in the one domain correspond to infinitely many of them 
in the other one. 
 I direct my attention, in turn, to spaces of 2 dimensions – viz., plane.  Since a curve in 
the plane is completely determined by a system of values (x, y, p, p′, …), and since the 
condition for this is that two infinitely close systems of values of this type belong to one 
and the same curve should be expressed by the following equations: 
 
(A)    dy − p dx = 0,  dp − p′ dx = 0, …, 
 
any curve transformation of two domains (x, y), (X, Y) must be characterized by equations 
between x, y, p, p′, …, X, Y, P, P′, … that take the systems of equations (A) to the similar 
system: 
(B)    dY – P dX = 0,  dP − P′ dX = 0, … 
 
I. e., in order to exhibit a curve transformation, one must define two arbitrary equations: 
 

(C)     
1

( , , , , , ),

( , , , , , ),

k

l

X F x y p p p

Y F x y p p p

′ =
 ′=

⋯

⋯

 

 
and, when one satisfies the aforementioned condition of the simultaneous existence of the 
systems of equations (A), (B), derives the following equations from them: 
 

(D)     1

( , , , , ),

( ),

P x y p p

P

′= Φ
 ′ = Φ



⋯

⋯

 

 
 In general, it will then be the case that equations (C), (D) cannot be solved for x, y, p, 
p′, …, in which case, the transformation belongs to the second class above: It will be a 
multi-valued transformation.  Indeed, any curve in (x, y) will, in fact, be converted into 
only one curve in the domain (X, Y), but a curve in the latter domain will correspond to 
infinitely many curves in the former, namely, all integrals of a certain differential 
equation *).  However, when equations (C) are chosen in such a way that they, along with 

                                                
 *) Or possibly, a system of several differential equations. 
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perhaps the first k of equations (D), define a system that can be solved for x, y, p, …, pk−1, 
such that these equations are also representable in the form: 
 
      x = f(X, Y, P, …), 
      y = f1(               ), 
      p = ϕ(                 ), 
      ……………….. 
 
then the transformation will belong to the first class above: It will be a single-valued (i.e., 
finitely multi-valued) transformation.  Then, first and foremost, it will be a 
transformation of same-named curve segments (x, y, p, …, pk−1) and (X, Y, P, …, Pk−1), 
and furthermore, those segments (x, y, p, …, pk−1) that unite into a curve correspond to 
same-named segments that likewise unite into a curve. 
 In regard to the transformation of this class, there exists the theorem that they are 
exclusively contact transformations, as Lie defined them.  All single-valued curve 
transformations are thus transformations of (x, y, p) into (X, Y, P).  It was already proved 
that no other curve transformation of (x, y, p, p′) to (X, Y, P, P′) exists.  In the following 
paragraphs, it will also be shown that no special contact transformations of higher order 
exist. 
 We go on to spaces with an arbitrary number n + 1 of dimensions.  In order to define 
a transformation in the most general way that takes all surfaces (Mn), in turn, to surfaces, 
one may take n + 1 arbitrary equations: 
 

(C′)  

1 1 11 12

1 1

( , , , , , , , , , , , ),

( ),

( ),

n n klm

n n

Z F z x x p p p p p

X F

X F

=
 =


 =

⋯ ⋯ ⋯ ⋯

⋯

 

 
and derive the following ones from them by differentiation and elimination: 
 

(D′)  

( , , , , , , , , ),

( ),

( , , , 1,2, , ),

k k k k kl klm

kl kl

P z x p p p

P

k l m n

= Φ
 = Φ


 =

⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯ ⋯

 

 
such that the system of equations: 
 

(A′)  dz − ∑ pk dxk = 0, dpk − ∑ pkl dxl = 0, …, ad inf. 
 
remains invariant. 
 In general, a multi-valued transformation will be established by (C′).  It is only when 
(C′) is a Lie contact transformation – and this theorem will be treated in paragraph 4 – 
that the surface transformation is single-valued (finitely multi-valued). 
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 As was remarked, I have previously discussed the question of whether there are no 
other single-valued surface transformations than just the Lie contact transformations, and 
the proof of this character of the latter transformations was presented in a paper in the 
Jahresschrift der Universität Lund for two and three dimensions.  At the same time, Lie 
addressed the same question in a treatise in the Mathematischen Annalen, and then added 
another one: the question of whether partial differential equations of higher order admit 
transformations that are not contact transformations.  The proof of the non-existence of 
contact transformations of higher order that was carried our in my previous paper, which 
referred to the totality of all surfaces, likewise showed, as Lie communicated to me in a 
letter, that no transformations of the sort could exist for the totality of integral surfaces of 
partial differential equations of a partial differential equation of higher order; in the 
present paper, I have presented this as a corollary to my earlier theorem. 
 In paragraph 5, I will mention a map of a partial differential equation of first order on 
a space of n + 1 dimensions to a space of n dimensions that flows out of the aggregate of 
the foregoing paragraphs in order to deduce a conclusion that relates to the 
transformation of equations of first order. 
 Such a map was already based on a contact transformation, and it was also deduced 
by Lie, as I must infer from a remark in his treatise “Allgemeine Theorie partieller 
Differentialgleichungen 1. Ordnung,” Abh. der Gesellschaft der Wissenschaften zu 
Christiania für 1874, pp. 218, that was used as an aid to his synthetic investigations. 
 In conclusion, one finds brief remarks on a class of remarkable transformations of 
space of three dimensions. 

__________ 
 
 In addition, I must remark here, as I also in did in my earlier paper, that in the 
summer of the previous year I spoke with Felix Klein in Munich on the subject of 
osculation transformations of the plane, in particular, and that when the problem was not 
resolved by these conversations, the solution of it was essentially facilitated by assuming 
a new viewpoint that he suggested for regarding the question. 
 
 

§ 3. 
 

On the single-valued transformations of plane curves. 
 

 5.  I shall first take up the considerations of the second number in a somewhat 
extended form.  Instead of a three-fold system of curves (4), I will treat a system with k + 
1 arbitrary parameters λ: 
(5)      f(x, y, λ1, λ2, …, λk+1) = 0, 
 
and apply to it the previous process that was used in the second number for system (4).  
λ1, λ2, …, λk+1 will be regarded as point coordinates for a space Rk+1 with k + 1 
dimensions and x, y as arbitrary constants.  By eliminating x, y, p from the equations: 
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(6)   
0, ( ) ( ) 0,

( ) ( )
0, 0,

f f x pf y

df df x df y
d d p d

d d d
λ λ λ

λ λ λ

′ ′= + =


′ ′ = + =
∑ ∑ ∑

 

 
the following equation results: 
(7)      ψ(λ dλ) = 0, 
 
which is now the condition for the contact of two neighboring curves λ, viz., curves (5). 
 Above all, we might make the following remarks about this equation: When one sets 
x, y, p, λ equal to constants – the value of λ is then chosen such that the first two of 
equations (6) are satisfied – one recognizes from equations (6) that every such system of 
values corresponds to ∞k−2 values of dλi / dλk+1 , and indeed these values are of the form: 
 

dλi = (1) (2) ( 1)
1 2 1

k
i i k id d dα λ α λ α λ −

−+ + +⋯ , (i = 1, 2, …, k + 1), 

 
where the α are taken arbitrarily.  The rays of the cone ψ = 0 that belongs to any point 
arrange themselves into a singly-infinite family of planar pencils of k- 2 dimensions, and 
the cone itself shall thus be represented in plane coordinates by k – 1 equations; let: 
 

(8)    

1 1 1 1 1

2

1

( , , , , , ) 0,

( ) 0,

( ) 0,

k k

k

ψ λ λ π π
ψ

ψ

+ +

−

=
 =


 =

⋯ ⋯

⋯

 

 
be these k − 1 equations, which are homogeneous in π.  Next, the contact condition (7) 
will be replaced by this system of partial differential equations of first order in Rk+1 . 
However, any equation (7) is still not characterized completely.  Namely, one further has 
that the surface elements (λ, π) of the manifolds (5) – which are Mk in the space Rk+1 – 
satisfy equations (8) for the manifold system (5) as a common solution that possesses two 
arbitrary constants x, y. 
 
 Conversely, any system of k − 1 partial differential equation of first order in Rk+1 that 
admits a common solution with two arbitrary constants will lead to an equation ψ(λ dλ) 
= 0 that can be interpreted as the contact condition for two neighboring curves of a k+1-
fold system: 

f(x, y, λ1, …, λk+1) = 0, 
 

and when x, y, are considered to merely be arbitrary constants, the equation of any such 
system of curves will always represent a common complete solution of the system of 
partial differential equations. 
 
 By means of the map (8) of the system of equations onto the plane that comes out of 
this, every line element (x, y, p) in the plane will correspond to a characteristic Mk−1 that 
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is the intersection manifold of k – 1 dimensions of two infinitely close integrals Mk , and 
any element (x, y, p, p′) will correspond to a characteristic Mk−2 that is the intersection of 
three consecutive integrals Mk , etc.  The points of a characteristic Mk−1 thus correspond 
to those curves (5) that contact a point, and the points of a characteristic Mk−2 thus 
correspond to those curves (5) that osculate at a point, etc. 
 Furthermore, as might emerge here especially, when such a correspondence is 
established between two k + 1-fold systems of curves: 
 
      f(x, y, λ1, …, λk+1) = 0, 
     ϕ(                         ) = 0, 
 
two neighboring mutually contacting curves of the one system correspond to two 
neighboring, likewise mutually contacting, curves of the other system, so all curves f = 0 
must then contact at a point and curves ϕ = 0 correspond to ones with the same property.  
Then, both systems of curves give rise to the same system of partial differential equations 
(8), and the both families of f = 0 (ϕ = 0, resp.) that contact at a point correspond to one 
and the same characteristic Mk−1 .  What comes out of this is the fact that for all 
transformations of the plane for which any two neighboring, mutually contacting curves 
are converted into similar curves, contact of first order must be an invariant relation; thus, 
all such transformations are Lie contact transformations, which was already proved in the 
second number. 
 
 6.  A curve transformation that leaves second-order contact invariant is, as we already 
showed, an ordinary contact transformation.  A transformation that leaves third-order 
contact invariant will convert any two neighboring curves with second-order contact into 
two similar curves, or, I assert, it should also be a transformation of the class discussed in 
the foregoing number that converts two neighboring curves with first-order contact into 
other similar ones.  Namely, when C′, C″ refer to any two infinitely close curves with 
first-order contact, one can always draw a C that is infinitely close to C′, C″ and which 
osculates these curves at two points that are close to the contact points of these curves.  
Such a transformation of the stated type will convert C′, C″, C into Γ′, Γ″, Γ, and of these 
curves, the latter shall osculate the former two at two neighboring points.  However, since 
Γ′, Γ″ osculates one and the same curve Γ at two neighboring points, they have first-order 
contact with each other.  Thus, any two neighboring, contacting curves C′, C″ go to two 
similar ones Γ′, Γ″, which was what we asserted. 
 However, it was already shown that a transformation of the latter type is a Lie contact 
transformation.  Thus, there is no other transformation for which contact of third-order is 
an invariant relation. 
 In the same way, it follows that no special contact transformations of order 4, 5, …, 
exist.  However, as was proved above, any single-valued curve transformation must be a 
transformation of same-named curve segments (x, y, p, …, pk), (X, Y, P, …, Pk), and 
therefore, a contact transformation of order 1, 2, 3, 4, …  Thus, we finally have: Any 
single-valued transformation of curves in a plane must be a Lie contact transformation. 
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§ 4. 
 

On transformations of manifolds Mn of n dimensions in a space of n + 1 dimensions. 
 

 7.  Firstly, I remark that if a surface is to have r th order contact with an Mn with two 
infinitely close surface at two infinitely close points p, p′ then the latter two surfaces must 
have (r – 1)th-order contact at the point p′.  Conversely, when two infinitely close 
surfaces have (r – 1)th-order contact, it is possible in an unbounded number of ways to 
construct surfaces that have rth-order contact in the vicinity of the contact point.  Every 
surface transformation that takes surfaces that have second-order contact to other such 
surfaces will then convert any two infinitely close surfaces with first-order contact into 
two other such surfaces, and on this basis a transformation for which contact of third 
order remains invariant must convert any two infinitely neighboring surfaces that have 
second-order contact into two infinitely neighboring surfaces that likewise have second-
order contact.  By repeating the reasoning that was carried out in the foregoing number – 
by constructing a surface C that has a second-order contact with two arbitrary 
neighboring surfaces C′, C″ that have first-order contact at a point in neighborhood of the 
contact point, and which is itself infinitely close to this pair of surfaces C′, C″ − one sees 
that this transformation also must convert infinitely close, contacting surfaces into two 
surfaces with exactly the same property, etc., in such a way that ultimately any two 
infinitely close surfaces with first-order contact are converted into similar ones.  Now, 
every single-valued surface transformation must be a transformation of same-named 
curve segments (z, xk, pk, pkl, …), (Z, Xk, Pk, Pkl, …), for which contact of some order is 
an invariant relation.  Thus, any single-valued surface transformation must be a 
transformation that leaves the first-order contact of two infinitely close surfaces 
invariant. 
 
 8.  We consider an n + 2-fold system of surfaces, say: 
 
(9)     f(z, x1, …, xn, λ1, …, λn+2) = 0. 
 
The condition equation for two surfaces that correspond to the parameters λ, λ + dλ to 
contact each other will be obtained by eliminating x, x, p from the following 2n + 2 
equations: 

(10)  

0, ( ) ( ) 0,

( ) ( )
0, 0,

( 1,2, , ),

k k

k
k

f f x p f z

df xdf df z
d d p d

d d d
k n

λ λ λ
λ λ λ

′ ′= + =
 ′ ′ = + =


=

∑ ∑ ∑
⋯

 

 
which gives an ordinary differential equation: 
 
(11)     ϕ(λ, dλ) = 0 
as the desired condition equation. 
 If one regards z, x as arbitrary constants and λ1, λ2 , …, λn+2 as point coordinates in a 
space Rn+2 then equation (11) represents a system of elementary cones in this space, and 
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equation (9) represents an n + 1-fold system of Mn+1 in the same space, each of which 
(from equations (10)) will be cut at each of its points by ∞n−1 neighboring Mn+1 along a 
manifold of dimension one whose line elements define rays of elementary cones (11).  As 
a result of this, the ∞n manifolds that go through one and the same point (λ) will generate 
a cone (11) by means of their surface elements.  Thus, if we let Φ = 0 be the partial 
differential equation of first order whose characteristic cone (or elementary complex 
cone) is exhibited by equation (11) then we recognize that a system of surfaces (9) for 
which ϕ  = 0 is a contact condition defines a complete solution with n + 1 arbitrary 
constants z, x1, …, xn of the partial differential equation Φ = 0. 
 Therefore, if the surfaces are associated with two (n + 2)-fold systems of surfaces: 
 
(12)  f(z, x1, …, xn, λ1, …, λn+2) = 0, ϕ(z, x1, …, xn, λ1, …, λn+2) = 0, 
 
in such a way that two surfaces f(λ(1)) = 0, f(λ(1) + dλ) = 0 that contact each other 
correspond to two likewise contacting surfaces ψ(λ(1)) = 0, ψ(λ(1) + dλ) = 0 then each of 
the two equations must be complete solution of one and the same partial differential 
equation Φ = 0 when z, x are interpreted as constants and the λ as variables.  Thus, the 
parameter λ of those ∞1 surfaces will be any one of those solutions that contact them at a 
point, so they possess a common system of values (z, x, p) in the space Rn+2 of 
coordinates for the points of a characteristic of Φ = 0, and conversely, such that the 
system of surfaces (12) that we just wrote down, on the basis of the aforementioned 
reciprocal relationship itself, must be coupled to each other in such a way that if ∞1 
surfaces of the one system contact each other at a point then the corresponding surfaces 
of the other system likewise contact at a point.  For that reason, the one system of 
surfaces must be derivable from the other one by a Lie contact transformation. 
 Thus, from what we established in the previous number, any single-valued surface 
transformation must be a Lie contact transformation. 
 
 9.  Amongst an (n + k)-fold infinitude of surfaces: 
 
(13)    f(z, x1, …, xn, λ1, …, λn+k) = 0, 
 
there are ∞k−1 of them that include a given element (z, x, p).  If one regards λ1, …, λn+k as 
point coordinates in a space Rn+k then the condition equation for the contact of two 
neighboring surfaces (13) will be represented by a differential equation: 
 

ψ(λ, dλ) = 0 
 
that is based in a system of k – 1 equations of first order in Rn+k that is homogeneous 
relative to π: 

(14)    1 1( , , , , , ) 0,

( 1,2, , 1),
i n k n k

i k

λ λ π π+ +Ψ =
 = −

⋯ ⋯

⋯

 

 
and which admits a common solution with n + 1 arbitrary constants.  The equation f = 0 – 
in which z, x, figure as arbitrary constants – defines such a common solution, along with 



Bäcklund - On surface transformations.                                               14 

a system of ∞n+k manifolds Mn in the space Rn+1, for which ψ = 0 defines the contact 
conditions. 
 There will thus be a relationship between the space Rn+1 and the elements (λ, π) in the 
space that obey the system of equations (14).  I will come back to this later. 
 
 10.  Corollary to the theorem of number 8. – For two partial differential equations of 
second order in the space Rn+k , about which it is known, firstly, that each of them allows 
a k-fold system of integral Mn (k > n + 2) (k is large enough that the elements (z, xk, pk, 
pkl) of this system will all be elements of the differential equations), and secondly, that 
they cannot be derived from each other by an ordinary contact transformation, one knows 
that no transformation exists that associates all integral Mn of the two equations in such a 
way that contact of second order remains preserved.  Such a transformation would, in 
fact, take any two infinitely close contacting integrals of one of the k-fold systems to two 
similar integrals of another one, and, from number 8, it would thus be an ordinary contact 
transformation. 
 
 11.  I will make the following remarks in passing:  The fact that no special 
transformation exists in the space of three dimensions – ordinary point-space – such that 
contact of second order is an invariant relation can be expressed analytically as follows: 
There is no pair of equations: 
 
     F(z, x, y, p, q, Z, X, Y, P, Q) = 0, 
     Φ(                                       ) = 0, 
 
that is five-fold infinite relative to the z, …, q, as well as the Z, …, Q, and whose 
equations possess a single infinitude of common integrals relative to the z, …, q as 
variables, as well as the Z, …, Q.   
 Indeed, there are unboundedly many pairs of equations with the latter property; e.g.: 
 
     F(ϕ(z, x, y, p, q), ψ(Z, X, Y, P, Q)) = 0, 
     Φ(ϕ, ϕ1, ϕ2, ϕ3, ψ, ψ1, ψ2,ψ3)        = 0, 
 
where ϕ1, ϕ2, ϕ3 (ψ1, ψ2, ψ3, resp.) are integrals of the equation (ϕ, χ) = 0 ((ψ, Θ) = 0), 
but on the same grounds, they are not transformations of all surfaces in space.  Thus, e.g., 
under the stated equations, just the integrals of the equations ϕ = C, ψ = C are preserved. 
 

§ 5. 
 

Some transformations of partial differential equations of first order. 
 

 12.  From number 8, it follows that any partial differential equation Φ = 0 of first 
order in the space Rn+k whose characteristic cone is represented by an equation ϕ(λ1, …, 
λn+1, dλ1, …, dλn+1) = 0 is mapped to the space Rn(z, x1, …, xn−1) by means of any 
complete solution f(z, x1, …, xn−1, λ1, …, λn+1) = 0.  Every surface element of this space 
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corresponds to a characteristic of Φ = 0, every surface Mn−1 in Rn 
*) corresponds to an 

integral Mn of Φ = 0, and in particular, the ∞n+1 surfaces f = 0 correspond to the conoid of 
Φ = 0; i.e., the integrals that are generated by characteristics that go through one and the 
same point. 
 As a consequence of this map of the partial differential equation Φ = 0 on Rn the most 
general transformation of this equation into itself that is so arranged that it takes integrals 
to integrals must be developed from the most general surface transformation of Rn .  
Now, the latter transformation, when it always associates a surface with a surface (not ∞ 
surfaces), is necessarily a Lie contact transformation.  Corresponding to this, we obtain a 
transformation that permutes the characteristics of the partial differential equation Φ = 0 
with each other as the most general transformation that takes an integral of the equation, 
in turn, to an integral (not ∞ integrals). 
 We refer two partial differential equations of first order Φ = 0, Ψ = 0 whose 
characteristic cones are each represented by an equation to one and the same space Rn , 
and therefore to each other.  The most general transformation that takes an integral of the 
one equation to an integral of the other one is one that exchanges the characteristics of Φ 
= 0 with those of Ψ = 0.  It is the image of the contact transformation of Rn . 
 In my earlier presentation, I referred to this transformation as Lie’s contact 
transformation of the space (λ), due to the fact that such a transformation can be 
expressed by an equation: 
 

F(λ1, λ2, …, λn+1, Λ1, Λ2, …, Λn+1) = 0, 
 
that determines the association of conoids ** ) of the one equation and integrals of another 
sort of the other equation.  Such a transformation *** ) subsumes only the surface elements 
(λ, π) of the equations Φ = 0, Ψ = 0, but by no means all surface elements of Rn+1 of the 
space (λ).  Transformations that involve all elements of the R n+1 and transform the 
integral Mn of Φ = 0 into those of Ψ = 0, are formulated analytically in the following 
way: 
 Instead of writing λ1, λ2, …, λn+1, Λ1, Λ2, …, Λn+1 for the coordinates of the points of 
two regions in Rn+1, I will write ; zx1, …, xn, 1z x′ ′ , …, nx′ ; furthermore, I will assume that 

Φi, Ψi are determined in such a way that each of the two systems of equations: 
 
  X1 = Φ   (zx1, …, xn, p1, …, pn), X1 = Ψ   ( 1z x′ ′ , …, nx′ , 1p′ , …, np′ ), 

  X2 = Φ1  (                                ), X2 = Ψ1  (                                      ), 
………………………………………………………………………….. 

  Xn = Φn−1(                                ), Xn = Ψn−1(                                      ), 
  Z   = Φn  (                                ), Z   = Ψn  (                                      ), 
  P1 = Φn+1(                                ), P1 = Ψn+1(                                      ), 

                                                
 *) As well as any manifold of lower dimensions, when considered to be the totality of ∞n−1 surface 
elements (z, x, p). 
 **  ) Regarded as the point λ. 
 *** ) The following developments of this number are based in some remarks that Lie communicated to me 
on the basis of one of my earlier papers. 
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  P2 = Φn+2(                                ), P2 = Ψn+2(                                      ), 
…………………………………………………………………………. 

  Pn = Φ2n  (                                ), Pn = Ψ2n  (                                      ), 
 

define a contact transformation of the space Rn+1 .  The equation Φ = 0 (Ψ = 0, resp.) will 
now be mapped to the space Rn : X1 = 0 in the aforementioned way by the following 
equations: 
 

X1 = Φ1, …, Xn = Φn−1, Z = Φn,  P2 = Φn+2, …,  Pn = Φ2n , 
or: 

X1 = Ψ1, …, Xn = Ψn−1, Z = Ψn, P2 = Ψn+2, …,  Pn = Ψ2n , 
 
resp.  The transformation in question of Φ = 0 to Ψ = 0 is then of the form: 
 

(a)     1 1

2 2 2 2

, , ,

, , ,
n n

n n n n+ +

Φ = Ψ Φ = Ψ
Φ = Ψ Φ = Ψ

⋯

⋯

 

 
(b) an arbitrary function of (zx1, …, xn, p1, …, pn; 1z x′ ′ , …, nx′ , 1p′ , …, np′ ) = 0, 

(c) and an equation between Φ and Ψ that makes Ψ vanish when Φ is equal to zero. 
 
 The number of equations is 2n + 1, and zx1, …, xn, p1, …, pn will then be expressed in 
terms of 1z x′ ′ , …, nx′ , 1p′ , …, np′  by them. 

 This is, in general, not a surface transformation or a Lie contact transformation of 
the space Rn+1 

*).  We see this most simply when we write for equation (b): 
 

Φn+1 = W( 1z x′ ′ , …, nx′ , 1p′ , …, np′ ), 

 
where (Ψ1, W) is non-zero, but (Φ1, Φn+1) equals zero.  A contact transformation would 
convert two functions Φ1, Φn+1 that are in involution into two other such functions, and 
thus, by no means, into Ψ1, W. 
 For the equation (c), we write: 

Φ = Ψ, 
 

and see from this that a family of partial differential equations Φ = C can be converted 
into a family of equations Ψ = C by transformations that are not contact transformations 
of Rn+1, but still convert any integral of the equation Φ = C into an integral of the 
corresponding Ψ = 0. 
 
 13.  The multi-valued surface transformations of Rn are the images of all the other 
transformations that, in that way, take a partial differential equation of first order on Rn+1 
to itself (to another equation of the same order on the same space, resp.) such that integral 

                                                
 *) Cf., on this, a statement of Lie in his paper “Begründung einer Invariantentheorie der 
Berührungstransformationen,” Math. Annalen, Bd. VIII, pp. 223. 
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Mn will always, in turn, go to integral Mn .  Each such transformation that takes two 
equations of first order Φ = 0, Ψ = 0 to each other, makes any integral of the one equation 
– e.g., Φ = 0 – correspond to an integral of the other equation Ψ = 0, while an integral of 
the latter one will correspond to infinitely many integrals of the former. 
 The foregoing can be carried over to partial differential equations of first order of any 
sort on Rn+1 in an easily understood way, since any two equations of first order can 
always be taken to each other by a contact transformation. 
 
 14.  A system of k partial differential equations of first order with n + 1 variables that 
admit a common solution with n – k + 1 *) arbitrary constants will, from number 9, be 
related to any common complete solution: 
 

f(z, x1, …, xn−k, λ1, …, λn+1) = 0 
 

on the space (z, x1, …, xn−k) of n – k + 1 dimensions in such a way that any surface 
element of this Rn−k+1 corresponds to a characteristic Mk of the system of equations, and 
any surface of the Rn−k+1 (i.e., an Mn−k in this space) corresponds to an integral Mn of the 
system.  Two systems of equations, each of which consists of k equations, and each of 
which possesses ∞n−k+1 integral Mn, can be mapped to the space Rn−k+1, and thus can be 
related to each other.  The most general transformation of one system of equations into 
the other one that takes any integral Mn of the one system to an integral Mn of the other 
one will, as a result, be the image of the most general single-valued surface 
transformation of the space Rn−k+1 .  Under any such transformation of the system of 
equations to another one, every characteristic Mk of the one system then goes to a 
characteristic Mk of the other one. 
 
 15.  In this number, we shall consider, in particular, a system of four partial 
differential equations of first order with seven variables λ that possess ∞3 integrals M6 – 
say: 

f(z, x, y, λ1, …, λ7) = 0. 
 

 The system of equations will be mapped to the space R3 .  Thus, every surface 
element (z, x, y, p, q) will correspond to a characteristic M4 and every element (z, x, y, p, 
q, r, s, t) will correspond to a characteristic M1 that is the intersection of a single 
infinitude of neighboring characteristics M4 that go through one and the same point λ. 
 Every surface of R3 corresponds to an integral M6, and this should include an M3 
(perhaps, as a cuspidal manifold) that consists of ∞2 characteristic M1 

** ). 
 If, from the ∞8 elements (z, x, y, p, q, r, s, t) of R3, ∞7 of them are distinguished by an 
equation F(z, x, y, p, q, r, s, t) = 0 then this is identical to distinguishing ∞7 characteristics 
M1 .  The search for integral surfaces of the partial differential equation of second order F 
= 0 and the search for integral M3 of the system of equations in R7 that are each generated 

                                                
 *) n > k. 
 ** ) An integral M6 can be laid through each M2 , and just the one characteristic M4 can be laid through an 
M3 when it is generated by ∞2 strips. 
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by ∞2 of the distinguished characteristic strips (M1) are, as a consequence, equivalent 
problems. 
 

§ 6. 
 

Some examples of a class of multi-valued surface transformations 
of the space of three dimensions. 

 
 16.  As was shown in the introduction, a surface transformation is completely 
determined by any three equations: 
 

(15)    1

2

( , , , , ),

( ),

( ).

X F z x y p q

Y F

Z F

=
 =
 =

 

 
It becomes a single-valued transformation in the event that it satisfies the condition that 
the system of equations: 
 

dz = p dx + q dy, dp = r dx + s dy, dq = s dx + t dy, …, ad inf. 
 

shall be transformed into the similar one: 
 

dZ = P dX + Q dY, dP = R dX + S dY, dQ = S dX + T dY, …, ad inf. 
 
in which the quantities P, Q likewise include only z, x, y, p, q, but not higher differential 
quotients; in the other case, when one obtains from the calculations described: 
 
     P = Φ1(z, x, y, p, q, r, s, t), 
     Q = Φ2(                           ), 
 
the transformation (15) is a multi-valued surface transformation. 
 This transformation associates any point (X, Y, Z) with a family of ∞2 elements (z, x, 
y, p, q) and every surface element (Z, X, Y, P, Q) on an element (z, x, y, p, q) that belongs 
to each point (X, Y, Z) with a family of ∞1 systems of values (r, s, t).  Any surface in the 
region (x, y, z) will go to a surface in the region (X, Y, Z) and any surface of the latter 
region will go to all integrals of a partial differential equation of first order f(F, F1, F2) = 
0. 
 A partial differential equation of first order ϕ(Z, X, Y, P, Q) = 0 corresponds to a 
partial differential equation of second order that possesses a first integral with two 
arbitrary constants λ, µ: 

f(F, F1, F2, λ, µ) = 0. *). 
 

                                                
 *) The transformation (15) was also mentioned by P. du Bois-Reymond in his paper: “Beiträge zur 
Interpretation der partiellen Differentialgleichungen,” Leipzig, 1864, pp. 173. 
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 The linear partial differential equations of first order in the region (X, Y, Z) 
correspond to partial differential equations of second order in the region (x, y, z) that are 
linear in r, s, t, rt – s2, and possess a first integral of the form: 

f(F, F1, F2) = an arbitrary function of ϕ(F, F1, F2). 
 

 17.  In particular, due to their application to a certain class of partial differential 
equations of second order, I would like to draw attention to the following 
transformations: 

(16)     

,

,

.

X x

Y y

Z q

=
 =
 =

 

 
 The remaining equations of this transformation, which are derived in the manner that 
was set down, become: 
 

(16′)  

,

,

,

,

,

etc.

P s

Q t

R v

S w

T ϖ

=
 =
 =
 =
 =



 
3 3 3

2 2 3, , .
d z d z d z

v w
dx dy dx dy dy

ϖ 
= = = 

 
 

 
 I consider an equation of second order in the region (x, y, z) that is free of z, p, so it 
has the form: 
     F(x, y, q, r, s, t) = 0, 
or, when solved for r: 
(17)    r = f(x, y, q, s, t)  *), 
 
and define the corresponding figure of the region (X, Y, Z). 
 By differentiating equation (17) with respect to y, one obtains: 
 

v = 
df df df df

t w
dy dq ds dt

ϖ+ + + , 

 
an equation that has the following linear equation as its image in (X, Y, Z): 
 

(18)    R − 
df df

S T
dP dQ

− = 
df df

Q
dY dZ

+  

 

                                                
 *) The equation: 

r = f(x, y, q, s, t) + z ϕ(x) + p ψ(x) 
can be treated in the same way. 
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on the basis of equations (16), (16′).  It will then be the image of all equations: 
 

r = f(x, y, q, s, t) + an arbitrary F(x). 
 

 Every surface in the space (X, Y, Z) corresponds to the integral of an equation: 
 

q = F(x, y), 
whose solution has the form: 
(19)     z = ϕ(x, y) + Ψ(x), 
 
where Ψ means an arbitrary function. 
 Since every integral of equation (18), inter alia, must correspond to integrals of 
equation (17), one might, when Z = F(X, Y) means an integral surface of (18), determine 
the arbitrary function Ψ in (19) in such a way that the latter equation represents an 
integral of (17), and the equation that served to determine Ψ gives *) Ψ equal to a well-
defined function of x, F(x), increased by cx + c′, where c, c′ are completely arbitrary. 
 
 The problem of integrating the second-order equation (17) is therefore reduced to the 
problem of the integration of the linear equation of second order (18). 
 
 By the applied transformation, any two integrals of equation (17) that have nth order 
contact at a point correspond to two integrals of equation (18) that have (n – 1)th order 
contact at a point, and accordingly, characteristics of equation (17) will correspond to 
characteristics of equation (18). 
 The theory that was established here defines an extension of the well-known theory of 
Legendre ** ) of the equations: 

F(r,s, t) = 0  *** ) 
 

that do not contain x, y, z, p, q. In order to obtain the Legendre form of the corresponding 
linear equation (18), one would have to appeal, in place of the transformation (16), to an 
equation that is derived from it by a reciprocal transformation: 
 
    X′ = P,  Y′ = Q,  Z′ = PX + QY – Z, 
namely: 
    X′ = s,  Y′ = t,  Z′ = sx + ty – q. 
 
 The foregoing theory naturally remains essentially unchanged when an arbitrary 
contact transformation is applied to the fundamental equations (16), (17). 
 
 Helsingborg, 18 July 1875. 
 

____________ 

                                                
 *) By means of a double quadrature. 
 ** ) Cf., Boole: Differential Equations, Cambridge, 1859, pp. 369. 
 *** ) I was recently made aware of Legendre’s theory by Lie. 


