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On linear manifolds of somas
By
Hans Beck in Bonn.

Translated by D. H. Delphenich

1. Study introduced theoma(}), which is any of theo® positions of a rigid body
(whose boundary will be ignored), as the basic coneegnalytical mechanics. A
trihedron that is fixed in the rigid body will serve &g ftintuitive carrier of a soma. The
trihedron of the coordinate axes will be regarded aprtd®@soma A right-handedsoma
will arise from it by a motion and keft-handedsoma by a transfer. The protosoma is
then itself regarded as right-handed.

It is customary to represent the figure that we nolvacaoma by twelve defining
data. The soma hashadpoint(which is the coordinate origin for the protosomahafl
will absorb three defining data — say, in ordinary rectiamgooint coordinatesx(y, 2).
Furthermore, a soma has thi@ees i.e., orientedlines. We shall refer to the axis that
emerges from th&-axis of the protosoma as thest axis. It will be represented by its
three direction cosine®4 qi, r1); their ratios do not suffice We arrive at the other two
axes by establishing two more triples of defining dptacg, r2) and s, gs, rs).

This representation of a soma indeed has a certain mitsmametry to it. However,
it is purchased at the expense of the fact that nahesdwelverelations exist between
the last nine of these defining data:

pr+q+r’ =1, etc. P2Ps+ Qa3 +r2rs3=0, etc.
(1)

pr+pi+ pl =1, etc. Quri+Qar2+0srs =0, etc.

One more must be added to them:
(1a) PrQprs| =%1,

in which the upper sign is true for right-handed somas.

The consequence is that this analytical apparatus &dgl@imbersome to work with
when one is dealing with only two or three somas.

However, one will diminish the number of relationg1) byonewhen one appeals to
a different representation of the sontéghtratios:

() Geometrie der DynameAppendix, pp. 556, 557, Sitzungsber. d. Berl. Math. G2$1913), 36-90.
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Xo : Xo1: Xo2 1 Xo3: X123: X231 X31: X12,
between which s single relation exists:
(2) Xo X123+ Xo01 X2z + Xo2 X31+ Xo3 X12=0

will be employed as theoordinatesof a right-handed soma.
If we introduce:

(3) (| X) = X0 +X5,+ X5+ X5,
for brevity, then we shall have:

(X 1X)pr= X5+X5,- X5, X5,
(4) (X |%) a1 = 2(X01 Xo2 — X0 Xo3) ,
(X]%X) r1=2(Xo1 Xo03+ X0 X02) -

One will get from this, by cyclic permutation of theiceb 1, 2, 39, andrs from the first
row, r, andps from the second row, andgs from the third row.
With that, all of the relations (1), as well as (hail] already be satisfied when one
takes the plus sign in the latter.
Finally, let:
(X ] %) x = 2(Xo02 X12 — Xo3 X31 — Xo X23 + X123 Xo1),

(5) (X |1X)y=2(X02 X23— Xo1 X12 — X0 X31 + X123 X02),
(X %) z=2(X01 X31— Xo02X23— Xo X12 + X123 X03),

for the midpoint X, y, 2 of the soma.
Conversely, if the soma is given by the usual defining gata z, p, ..., rs) then one
can ascertain its coordinates in two steps. Firsthase

(68.) Xo . Xo1 . Xo2 . Xo3
=1l+pr+Qp+r3 Oz —I3 : rh—ps pPs— 0z
QB—rz :1l+pr+Q+rs potou r.+ps

Po—Qr r.+ps ; QB+r2 l-pi—C+rs.

Each of these four systems of formulas can breakndbawever, one of them will
always be usable. If one has found the ratios ofihe Xo1 : Xo2 : Xos then the

remaining four coordinates of the soma will follow fréime additional formulas:

2 X123 * +XxXo1 +YXo2 +ZXo3,

2 Xo3 -xXo+ * —ZXo2 +YXos,
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(6b)

2 X31 —Y¥Xo+ZXo1 + * -—YyXos,

2X1o -ZXo — y3601 +XXo2 + *

In order for the formulas (4), (5) to make sense, mnst require thatX | X) # O.

We will then speak of aroper (right-handed) soma. However, the concept of a soma
shall also be extended to the case that was just excludedsince we are considering
only realquantities here, to the case in which:

Xo=Xo1=X02=X03=0.

We then speak of amproper(right-handed) soma. Hence, we shall now @ayl system
of eight real ratiosX that satisfy the relatio(2) a right-handed soma.

The improper somas have been up in the air, up to rnwey; Wwere defined only
formally, for the time being. In 8 5, we will see tlaat improper soma can be associated
with anordered triple of oriented directions.

The basis for the introduction of improper somasihase following theorem, which
is deduced from (2) immediately:

Theorem 1: The totality ofe® proper ande® improper real somas can be mapped,
with no gaps in a single-valued and invertible way, to the totality afpeints of a six-

fold extended, singularity-free, quadratic manifdt; of signature zero that lives in a
seven-dimensional space R

That implies an approach to research; at the same, thowever, kinematics is
recognized to be the general counterpart to line geométryhat field, as one knows,

one maps the straight lines to the points ofVii whose equation will follow from (2)
by “abbreviation” — i.e., when one drops all terms withand X123 . Meanwhile, that

will also yield a wealth of things that hame analogue in line geometry, but will first
occur when the number of dimensions is changédu and that case will attract special
interest for us.

2. The collineation (homogeneous point coordinatesy; : X, etc.):

X, = a&00Xo ,
(7 .
X TaoXotaixitaxXt+tasxs (=12 3),
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will be amotionwhen the coefficients satisfy certain well-knovetations. They will all
be satisfied when one introduces eight homogengatsneters?):

Q... (3. Lo B BB,
which satisfy only a single quadratic relation:

(8) lHhr+afitalpt+az=0,

and are subject to the inequality:

9) a+a’+al+al+#0,
moreover.
One must then set:

—_ 2 2 2 2
ag=a,ta +a,+as;,
an=a.+a’-ai-a?, ...

(10) a3 =2 (as + aom), ...
g = 2 (a3 — ao), ...

a0 =2 (- a3 — a0 + nfp), ...

Here,as well as henceforththe ellipses after the last four lines shall suggest tilio
sequences are missing that are defined by the cyclic peionubéthe indices 1, 2, 3.

Any system of eight such parametess £) that satisfy the requirements (8) and (9)
will yield a motion,and conversely.

It is atranslationfor o1 = a» = a3 = [ = 0. If one orients the direction of translation
in such a way that one fixes its cosines (i.e., nateimeheir ratios) then thetep size

2H,' of the translation will be determined uniquely:

(11) cosly : cosA i cosAs: H ' =B B B — o,

le.:
cosh=Bi:B+B+B . .. Ho=—B+B+5: a,

in which the square root is assigned an arbitrary valuasthia¢ same in both cases.
In the remaining cases, there isaaais for the motion.ts Plicker coordinates:

PBo1 : Poz : Pos: Pos: Pa1 : P2

are deduced from the formulas:

() Study, “Von den Bewegungen und Umlegungen,” Math. /A&8n(1891), 527, 528. Unfortunately,
some sign errors crept at crucial placeshere that were corrected @eom. d. Dyn.but here it will be
necessary for us to dwell upon them longer than would bessaigy, especially for the transfers.
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Poir = (af +ai+ad)a,, ...
(12)
Pas = (a) +a; +a;) B, + afon, ...

If one orients it by a convention on the sigm@f +aZ+a? then thestep sizeHo

will be determined uniquely, and thetation angle 20, will be determined up to a
multiple of 27z

(13) cot@y=-ap: .+ ai+a’+a’l, Ho=+&:Jai+a’+a?.

One must make a remark about this that was alreadydryél1), and shall not be
repeated after this. If one endows teS with a proportionality factop # 0 then

J a? +a’+a? must also be multiplied by g, and not with- p.

If ap = 0 then one will have@, = 7(mod 27). Thesex® screwing motions play an
essential role in the further considerations, andalledunscrewingg®).

If /o =0, without havingn = a» = a3 = 0, then one is dealing withratation (2H, =
0). The intersection of the rotations with the unsimgs defined thex* involutory
motions; they are callegversals(’) (ao = 0, 5 = 0).

If a translationis given by its oriented direction of translationgela , cosA, , cos
A3) and step siz&H then, from (11), its parameters will be:

(14) -H,;J*:0:0:0: 0 : cody : COSAz : COSA3.

The remaining motion will be characterized by tbegnted axis ‘B, the step size
2Ho, and the angle of rotatior€g. Its parameters are then:

aO:_COtGO\/moi+§Bozz+moé’ a1 =Por, ...
(15)

Bo=Ho | B2 + P+ B, B =P23 +Ho cotOo Poy, ...
The somda arises from the protosoma by the motion with the patars:
(16) ao =Xo, a1 = Xo1, ..., ,&):36123,,81:3623,

Soma coordinates and parameters of motion are themtedly identical. We can
manage with one of these systems of quantities. Hewvenve believe that one’s
understanding of things is eased by their separation.

() Math. Ann.39 (1891), pp. 461.
(") H. Wiener, Sachs. Berichte, 1890.
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3. A left-handedsoma arises from the protosoma byransfer and therefore the
most necessary ideas regarding those transformatidirise stated now.
The collineation:
X, =—apoXo,
(17)

I

X = aoXotaiXitazx +azXs, (=1,2,3)
is a transfer when the coefficients are replaceth (D), while giving consideration to

(8) and (9). However, we prefer to avoid confusion bygis different notation. As
Study recently did, we call the eight homogeneous pasamet

SR B < D A% 0s

transfer parametersThey satisfy the equation:

(18) Wh+ha+)pd+)a=0
and the inequality:
(19) Vot Vi+yi+ys 0.

One shall then have [cf., (10)]:

a = VoY YItYL,
au= Y+ -vi-ve
(20)
Q3 =2 (p)s + )6}, -, a2 =2 (5)6 — JH), -
a0=20BB— V3 - WA+t KD), ...,

The transfer (17) leaves theoperplaned : i : )5 : psfixed, along with the poinj :
O . O . s, Which lies on it (viz., theniddle plane and midpoint Both of them can be
undetermined (but not simultaneously!); one would theminbthe 200c® involutory
transfers, namelygeflections through (proper) planes(undetermined midpoint):

(21) Owui:up:us: U:0:0:0,
andreflections through (proper) points(undetermined midpoint):
(22) &%:0:0:0: 0&:&:&.

The midpointé can bemproper()p = 0). The transfers can then be generated by the
reflection in the middle plane and a translation pak#tl the middle plane that commutes
with it, and whose direction runs perpendicular to itgproper midpoint.  After
orientating the direction of translation, the stége sof that translation2H, will be
determined uniquely, and will then be called the step sizthe transfer Let that
direction of translation be:
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(23) coshy = —— 2u2532_u3i2 —, ..
JU U+ B EF+EHEL

The parameters of the transfer can then be written:

}{):0, M:ul‘/é2+522+532"”
& =Uor| E2+E2+E7, A=-Hs &y ui+uy+us, ..

Conversely, one has:

(23)

HY == 02+ 32+07 1 |2 +Vi+y2,
cosAi=pR- o \/yf+y§+y§\/512+522+5§,

Finally, one must still consider the “general” cdsg# 0, )7 +y: +y2# 0). The

midpoint and middle plane are well-defined and proper, andrdigierthe line whose
Pllcker coordinates are:

(24) WA W Wh: BB UE-BA A~ KO,

moreover, which is normal to the middle plane atrtin@point. It is called thexis of the
transfer. It can now be generated by a rotation aroumchtis and a reflection that
commutes with it. The angle of rotation will be driént according to whether the latter
is the reflection through the middle plane or thielpoint.(The difference amounts ta)
When we speak of the angle of rotatio®,20f the transfer, we choose tisecond
possibility, and then, analogous to (13), we will have:

(25) COt@y =—Jp i L+ Vo + V7,

when we take the seventh coordinates of the transiet@be:

Y Vit Yat Vs,
in order to orient it.

Conversely, if the (oriented) middle planeand the midpoin¥ are given then the
transfer axis will already be oriented; ®2is the angle of rotation of the transfer then it
will have the parameters:

W =—CotOp o/ UZ+ U2+ UL, K=, ..
& = Uo <o, d=—CotOp &/ U +Us+ U2, ...

(26)
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One can then employ the eight ratios:
(27) Xy =16, Xy =W oo Xl =, xL=a, ...,

as the coordinates of theft-hand somahat emerges from the transfey ¢ by the
transfer, and which satisfy the quadratic relation:

(28) %:) %IZLZS+ %|Ol%I 23+ %I 02% 3l+ f Og 1 = 0

Therefore, this relation appears for a fourth time, bigt time with a different meaning,
and later on (8 10) two (four) more interpretations dladdressed. The consistency of
the basic analytic notions explains the altered nathtio

4. We arrived at the propeight-handed soméy a motion of thggrotosoma Now,
let X and®) be two proper, right-handed somas, wh&reno longer needs to be the

protosoma. We seek the motion that takes ). One finds its parameters to be:

H=X719)= X0YDo +X01Yo1 +X02Yo2 + Xo3Yo3,
m= = Xo0Qor —Xo1Do —X02Yoz + Xo03Yo2, ...
(29)
Lo=(XY) = X023 +X01P2s + X023 + X03Y12,
+X1230 +X23Vo1 + X31 Vo2 + X12Yo3,
b= = X023 —X01Y123— X02Y12 + X03 D31,

+X123D01— X23Yo —X31Yoz + X122, ...

When these formulas are solved %y they will give merely the composition of two
motions, when taken at their basis, and can be sumedavery elegantly when one
appeals to certain biquaternior. ( We deliberately refrain from employing that tool
here. The solution of formulas (29) @) is then accomplished by means of formulas
(36).

The abbreviated symbak(/ 2)) (which is read asX into 9)!) that appears in the first
formula of (29) subsumes the one that appears in (8)special case and emerges from
it by a process of polarization. A further-abbreviatetilsyl appears in the third row of
(29). With the help of it, the quadratic relation (2)tterists between the coordinates of
a soma can be written briefly as:

(2) 1(xx)=0.
It follows from (29) that:

() Sitzungsber. d. Berl. Math. G&2 (1913), pp. 40.
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(30) af+ai+al=@1%)Q19)- &),
and one will then obtain the expressions:

(31) cot@=- (X/%) , H=+ (X2)
J@EIX)Q1D)-(x1D)? JEI2)Q19)-(x1)?

for the angle of rotation@ and the step sizeHof that motion from (13) and (29). We
now define the two quantitie® andH to be theangle and distancebetween the two
somasX and®). The process of abbreviation that was described in § 4 tgaée angle

and distance between the two lifésand?) (which are assumed to not be parallel).

This further yields the following terminology with nffcet:

Two proper somas are callgrhrallel to each other when each of them can be
obtained from the other byteanslation. The two soma& and®) are parallel to each

other when:
(32) Xo: Xo1: Xo2: Xo3 =Do:Do1: Yoz : Doa,

and the parallelism of somas will be defined by this whepmraper somas come under
consideration. All improper somas will then be patatleeach other, and also to any
proper soma.

If each of the two proper som&sand®) can be obtained from the other one by a

rotation then we will say that the two somasersect The necessary, but not sufficient
condition for this, namely:

(33) &) =0,

once more serves to extend the concept to improperssoma
It is useful to add a few words that say that eitherttvo soma& and?) are parallel

to each other or they intersect. We then call thesident (33) will then be necessary
and sufficient for incident.
For (X)) # 0O, the two soma& and¥) shall be calledskewto each other. Each of

them can then be obtained from the other one bgrewing motiorthat therefore does
not reduce to a rotation or a translation.

In particular, if it is arunscrewinghen we will call the two somasthogonalto each
other {):

(34) &€ /9)=0.

The concept is again extended to improper somas by that.
Finally, if every soma goes to the other one brg\@rsalthen both of them are said
to intersect perpendicularly):

() “Hemi-symmetral,” to Study.
() “Symmetral,” to Study.
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(X/9)=0, x2)=0.
The expression on the right in:
(35) HtanO=-(X9): (X /%)

that is defined by (31) istional, and is called thenomenof the two soma& and®) (®),
or also the “moment of the motion that take® 2).”

For the sake of completeness, we also have a medsuie the properparallel
somas. The step sizél2of the translation that takésto ) can be ascertained from the

following formula [which is derived from (11) and (29)] byetuse of:
{X 1D} = X123D123+ X203 Y23+ X351 YPa1 + X12D12

(which will not be used after this), namely:

H ==X/ D20 D PLY WA XX (XD,

which can be written more simply if one dispenses vs'ymmetr*y, and goes to the
abbreviated expression for the distance between twdlgddimzes. H is then calledhe
distance between the paralEdmasx and?).

We cite two systems of formulas that we shall makeh use of in what follows.

The proper, right-handedsoma), which emerges from thproper, right-handed

somaX by the equationd, p), is:

o Xo — 1 Xor— a2Xo2 — a3 Xo3,

Do

Vo1 = a1 Xo +aoXo1+ azXo2 — a2 Xo3, ...
(36)

LoXo —BiXor—FXo2 —[Xo3

+ 00 X123 — 1 X3 — 2 X31 — a3 X12,

2123

NDozs = LiXo +LXor+BXoe — B Xos

+t X3+ Ao Xz + a3 X311 — a2 X12, ...

In other words, these are the formulas for the maotmnf) in soma coordinates when
one replaceg) with X', as usual. It is remarkable that the parameters abmappear

linearly here. These formulas arensiderablysimpler than the ones that fall out by the

() Which deviates from Cayley, who called such a siamgibus invariant of two straight lines
irrational.
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use of the defining dat,(y, z p1, ..., r3) in 8 1. Finally, they also tell one how the
motion (a, £) will permute thampropersomas; there is onlythree-parametefamily of
them. TheSBthen drop out of formulas (36), and in particular, any oppr soma will be
fixed by all translations.

If we call aleft-handedsomax' improperwhen:

Xy = Xy = Xy = Xy, =0,

and otherwis@roper, then we will further have:
Theproper, right-handedsoma®) that emerges from theoper, left-handedomax’

by thetransfer(y; J) reads:

Vo WXy —WH Xy Xy, B X,

Do1 J’i%:) ) %I()l Mz %Ioz - ) %03 L
(37)
2)123:_53%:) +d%I()l'*'éfloz +@%|03

+M)%123 _J’i%|23_lé%|31 _%%12’

D23 :_d%:) _:81%1)14'@%'02 +é%|03

U X, +M)%Iz3+1é%|31 — Xy,

These formulas can also be written more conveniewitly the use of biquaternions;
however, in every application, one will find the fiflakrmulas. There are two more
similarly-constructed systems of formulas, which \kallsnot need; they are exhibited
quite easily on the basis for the two remarks:

The inverse of the motiomm( /) has the parameters:

(38) Qo.—1.—Qr.—Q3. Lo b 0.

The inverse of the transfes,(£) has the parameters:

(39 WU .-V .~k - %%,

Finally, one will get the midpoint and direction of tes of a left-hand soma when
one introduces a minus sign everywhere on the left)iarid (5).

5. We would now like to make the conceptimfroper(right-handed) soma (which
we defined only formally up to now) more intuitive. Rbat, we proceed in analogy to
line geometry, in which one replaces an improper liné tié totality of proper lines that
are incident with it.

We then consider an improper soma:



Beck — On linear manifolds of somas 12

(40) 0:0:0:0: 2[12312[2312[3112[12

and look for allo® proper somasX that are incident with them. The condition foatth
(AX) = 0 reduces to:
123 X0 + Aoz Xo1 + Az1 Xoz + A12 X0z = 0.

By comparing this with (34) and the first of formulas (289)¢e finds that all of these
somasx areorthogonalto thepropersomas:

(41) Aqo3: Aoz i Azp i Aqn: 0:0:0:0,

and likewise to theo® somas that are parallel to the latter soma (41).
The «® somas¥ that are incident to thenproper soma (40) emerge from thesé

proper somas by way of the unscrewings

The aforementioned somas that are parallel to tiheas@l) are thus determined
uniquely from the improper soma (40). On the other hang,dbtermine threeriented
directions (which are syntactic to those of theirsgxeHowever, the direction cosines of
the first axis are:

2 2 2 2
Q[1234'2[23_2[31_‘21 12

COSA; = ,
(42) costy = 2(2A 2 5 — A A )
Q[fza'*'2[223'*'912,1'*'2[212’
cosy, = 2(2[232[12-*"2112521 31) .
Q[f23+2[223+2[21+2[212

When one agrees thit,; = X»31 = X312 then cyclic permutation of the indices 1, 2, 3

will produce cogs, and cos, from cosAs, cosv, and cosl; from cosgs, and cost, and
coss from cosus.

The figure of these three oriented directions mwves us an intuitive picture of the
improper somas. If one would like to proceed impéete analogy with line geometry
then one would have to replace an improper linghat subject, not with the associated
pencil of parallels, but one would have to go ® Iandle of parallel normals.

Now that we have learned how to link the soma aitufficiently clear picture in all
cases, we return to Theorem 1, which showed usthgatsomas could be mapped to

points of anM?. We take from the algebra of quadratic forms tteorem that the

points of the M? are permuted with each other in the most gene Wy the

projectivities of a twenty-eight-parameter grougpt For the sake of brevity, we would
now like to denote it byGgs, Hzg), and likewise for the group of soma transforniagio
that is holomorphic to it. The fact that it consisf (@t leas) two separate families of



Beck — On linear manifolds of somas 13

transformations will be shown in 8§ 10, where we will désgcthe structure of the group,
moreover.

That yields a method of research in the spirit déilKs Erlanger Programm.
However, Gzs, H2g) plays the same role in kinematics that the gro@g;, (His) of
collineations and correlations does in line geometry.

The difference between proper and improper somas iseimgessin the geometry of
the group Ggs, H2g). Such a difference will first arise in the geomaeidfya twenty-two-
parameter (proof in 8 10) subgroGp, of G,s that can also be described in parallel to the
affinities.

It is now convenient to treat only the phenomena kiaae an invariant character
under transformations ofs, Hzg), SO one will then also arrive at the simplest ganer
laws. Meanwhile the difference between proper and ipgreomas is too profound for
us too leave it completely unmentioned in a first introiducof the subject. We shall
then study théinear manifolds of somasvhich we shall now move on to, as well as their
classification undeiG,,, which is closely connected with the kinematic genenabf
those structures and brings a greater degree of intweggeto the behavior that has
seemed quite complicated up to now.

6. We define thgencil of somas:
(43) X=gUA+xB

from two distinct, inciden{right-handed) soma¥ and8. The two somagl and®8 must
be incident, since otherwise the relation (2) would befulfilled for X. One shall then
have Q) = RB) = (BB) = 0. However, one will then have:

Theorem 2: Any soma of a pencil of somas is incident with any other such soma.

In fact, let)) = . A + 1 B be another soma of the penakz — c>rn # 0), sSo one

will have:
(X)) =0n R/A) + (o + &=n) (AB) + &6 (BB) = 0.

Theorem 3: The pencils of somas are associated with the generatiisg(®raight
lines) inMZ.

An easy count of the constants, which we would likgp@éoform here, shows that
there arex® pencils of somas. The poigiton MZ can be chosen ir® ways, while the
point B can be chosen in ondy® ways, since8) = 0. There are then'* useful point-
pairs onMZ. However, each generator & belongs too? such pairs. Therefore,

there will be only«® such generators, and thus’ pencils of somas. One similarly
shows that:
o pencils of somas run through every soma.
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The«® pencils of somas define a single class under tranafins of Gz, Hzg): i.€.,
every pencil of somas can be transformed into any offiee. properties of the pencils of
somas can then be studied in a particular pencil oaspsay, the pencil:

0:00:0,:0: 0:0:0:0.

Things are different for the transformations @f,, where the difference between
proper and improper somas will become essential. We thea three classes to
distinguish:

a) Pencils of somas that consist of only proper sontds.two somas in the pencil
are parallel. We choose:
(44) 0.0:0:0: 0:0:0:0

to be the “canonical” example.

One generates such a pencil of somas kinematicalgnvame subjects any of its
somas taall rotations around a fixed axi@n the example of the protosoma — say — all
rotations around its first axis). Or:

One reflects &eft-handedsomathrough all planes of a pencil with proper axis the
example of — say — the left-handed soma:

0:0:1:0: 0:0:0:0,
through all planes through tbeaxis). The proofs are by (36) and (37).

b) Pencils of somas with a single improper sonfdl somas of the pencil will then
be parallel to each other. There afesuch pencils of somas, through every proper soma
there areo?, and through every improper one, therestef them. Example:

(45) 00:0:1:0: 0»:0:0.

One will obtain theoroper somas of such a pencil when one subjects a righteldland
soma toall translations along a fixed directiopin the example, perhaps, the protosoma
in the direction of theX-axis, cf., (14)] or when oneeflectsa left-handed somarough
the planes of a pencil of parallel plan@s the example of the left-handed soma:

0:1:0:0: 0:0:0:0,

through all planes that are perpendicular toXfais).

One might be tempted to think that improper somas in aysncil will be obtained
from the common direction of the axes ofds parallel, proper somas. Moreover, one
has subjected that axis direction teegersalaround a line that is parallel to the direction
of translation. With that, the improper soma in ple&cil is also constructed.

c) The pencil of somas consists of nothing but improper soffibsre areo* such
pencils, andw? of them through any (improper) soma. One subjectsgat{nianded)
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improper soma to, perhapall rotations around a linehat can be chosen arbitrarily
inside of the bundle of parallels that it determinedl. pAncils of somas can be obtained
from the initial soma by changing that bundle of parsller one applieall transfers
with a fixed midpoint and fixed middle plate a left-handed, improper soma. For
example:

(46) 0:0:0:0: 0gi.:0,:0.

7. The three right-handed soni4sB, ¢ shall belong to no pencil of somas, but shall
be incident to two of them. With that assumption,dys&em:

47 X=agA+xB+xc

will represent a manifold @b? somas, namely, lundle of somas.
Theorem 4: Any soma of a bundle of somas is incident with every other such soma.
The proof is similar to that of Theorem 2.

Theorem 5: The bundles of somas are associated with the generatisg(ifFe.,
planes) onM_.

There arex® bundles of somas, so there aréthrough any soma, and® through
every pencil of somas. A bundle of somas contahgencils of somas, of which, two
distinct ones will always have a single common somaus, two pencils of somas that
have a coma in common do not have to belong to a éwfdomas. Any two distinct
somas of the bundle can always be linked by a singieilpef somas that lies in the
bundle completely. Two distinct bundles of comas lksane one soma or a pencil of
somas in common; however, it is also conceivablettiggt might be completely skew to
each other. The® bundles of somas define a single class ur@gs; Hg).

We now again turn our attention to the improper somasitaus classify them under
G22 and give kinematic generators for the individual types.

a) All somas of the bundle of somas are prop8&io two somas in the bundle are
parallel then; there are only pencils of somas of gpe One performall rotations
around the straight lines of a pencil with a proper vertaxa right-handed soma or
reflects a left-handed sortiarough all planes through a proper poinExample:

(48) Oig.0m:.05: 0:0:0:0.

b) Bundle of somas with a single, improper sorithere areo® of them,” of them
through any proper soma, asd of them through any improper one. The somas of such
a bundle can be divided into* pencils of typeb); all of the remaining pencils of somas
in the figure belong to typa). One performsll rotations around the straight lines of a
pencil of parallelson a right-handed soma or reflects a left-handed sbnaagh all
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planes of a bundle with an improper verte®ne must then add the improper soma to
this. [Cf., § 6, typd)]. Example:

(49) 0:0n:0m: 0:2:0:0.

c) The bundle contains a pencil of improper somakere arex® such bundlese?
of them through any proper soma, antithrough any improper one. All somas of the
figure are parallel to each other; pencils of somasypé &) no longer appear. One
subjects a right-handed somaaibtranslations that are parallel to a planar reflects a
left-handed soma througtil points of a plane.Any one-parameter group of translations
determines an improper soma. Example:

(50) 0:0:0:0: 0:0m:0s.

d) The bundle of somas contains only imaginary sorfare areo> bundles of this
kind, and~? of them go through any (improper) soma. One perfaathsotations
around the lines of a pencil with a proper vertax an improper, right-handed soma or
performs the transfers that were describedajnon a left-handed, improper soma.
Example:

(51) 0:0:0:0: 0agi.x:0s.

8. The four right-handed somais 3, ¢, © shall not belong to any bundle of somas,
but shall be incident to two of them. The system:

(52) X=npA+0B+xl+xnD

then represents a manifold ot somas, namely, lush of somas.
Theorem 6: Any soma of a bush of somas is incident with every other one.

Theorem 7. The bushes of somas are associated with the generating three-
dimensional spacesRn MZ.

There are them® bundles of somas in a bush of somas, two of whidih isfo a
pencil of somas, and thereford bundles of somas. If two distinct somas among them
have a soma in common then they can also be coupled bundle of somas that is
contained completely in the bush. Three bundleofas in the bush have at least one
soma in common. There axé pencils of somas through a soma in the bush, and just as
many bundles of somas that run through the bush coryplédme can laye! bundles of
somas through a pencil of somas of the bush that dpédotine bush.

a) Bush of somas with no improper som@ihere arex® of them, and»? of them
through any soma. No two somas in the bush are pam@légich other. One subjects a
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right-handed soma tall rotations around a fixed poinor a left-handed soma tall
transfers with a fixed proper midpoint.

(53) .00 05 0:0:0:0.

b) A single improper somaThere are likewise® such bushes of somas, antlof
them through any soma. The somas of the figure cadiviged into «? pencils of
parallel somas. One perforral rotations around the lines of a plamma a right-handed
soma or performs the reflectiottsough all planes in spade a left-handed soma:

(54) x:0:.0: os 0:00:0:0.

c) A pencil of improper somasThere arex® such bushes of somas? of them
through any proper soma, amd of them through any improper one. The proper somas
of the figure can be divided inte* bundles of parallel somas. A right-handed soma will
be subjected tall rotations around the lines of a bundle of paraljeldeft-handed soma
will be subjected tall transfers with fixed, improper midpointdn that way, this case
proves to be a degenerate case of gjpe

(55) a:.01:.0:0: 0:0m:;,: 0.

d) A bundle of improper somasThere areo® such bushes of somas, a single one of
them through any proper soma, andof them through any improper one. All somas of
the figure are parallel to each other. One subjedtgh&elmanded soma tall translations
[degeneracy of typb)] or a left-handed one to the reflectidhsough all points in space.

(56) @:0:0:0: Ouoi: o 0s.
€) The bush of all improper somas.
(57) 0:0:0:0: Q.01. 0. 0.
All of the linear manifolds of somas are enumerated with thimely, if there were

a generating®, on M?Zthen, as a count of the constants would give diretttgre must be

a discrete number of them present; howef, is free of singularities.

The criterion for the classification und@g, will be obtained from the ranks of the
three matrices:

0 01 02 03

R &

0 0 03

2
B
¢

o

M &

0.

=

Ve R

0.

N

03

b e R

QO 01

02 03

in which, for a bundle of somas, one suppresses theoastand for a pencil of somas,
one suppresses the last two rows.
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In each case, for the construction of the individuglires bymotions we have
employed only one soma that already belongs to #ueifaid. In that way, the families
of motions in question, which consist of only rotatiard translations here (i.e., not
screws), define aontinuous groupn each case. Otherwise, one would be able to give
other constructions, as well; for the pencils of somag bundles of somas, one can
manage withreversals The axes of reversals fill up a pencil of lines vatproper vertex
[viz., a pencil of somas of typ®], a pencils of parallels [typg)], a bundle of lines with
a proper vertex [bundle of somas, tywé a planar field of lines [typ®)], or finally, a
bundle of parallels [type)]. The bush of somas cannot be obtained in that giage
there are no somas that simultaneously cut four Ipn@adependent somas
perpendicularly.

The canonical examples are chosen for all pencidsbaishes of somas that do not
consist of only improper ones in such a way that théycentain protosomas. Naturally,
that is not necessary, which is why we have inteatigrgiven other examples for the
bundles of somas.

The fact that there are two types of bushes ofasoaf the same number of
const?nts — namely, six — demands further investigationyHarh, we will require other
tools ().

9. The figure of the soma, and thus of three perpendictilaidysecting spears, is
already quite complicated, and it proves to be desitabderive at a clear picture of the
manifolds of somas that are considered, whose vistializérings certain difficulties
with it, in another way.

A simpler figure that likewise present® exemplars ighe complex point in three-
dimensional spacelet it be proper and have the inhomogeneous coordiKates, Xs;

the conjugate imaginary points will be denotedXy X,, X,. We then set:
(58) Xo=1, Xo1=1(X, + X)), ...
X123= 2{X7+ X2+ X2 = XZ= X=X}, Xaz=1i(X,—X), ...

The expressions fokor, ..., X23 ... are closely related™¥, while the one for¥iss

follows from (2).
Thus, everyproper, complexpoint is associated with @eal), proper somaand the
converse is also trughen one does not hase = 0. If the soma& and®) belong to the

pointsX andY then one will have:

() Part of the results that were demonstrated up to newla to de Saussure (“Exposé résumé de la
géométrie des feuillets,” Geneva, 1910). A “feuillet” ssentially identical to groper soma; the
difference between right-handed and left-handed somas, wbibloccur, is not clear. De Saussure called
the pencil of somas of typ® a couronne the bundle of somas of ty@g, acouronoide and the bush of
somas of typd), ahyper couronoide The remaining nine types of linear manifold of soinage eluded
him, especially thenost importoush of somas of typ® (left bush, cf., § 10).

(*% Cf., say, StudyEbene analytische Kurveheipzig, 1911, pp. 21.
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(59) EY) = Li{( X -Y)*+ .- (X, -%)?-..}
It follows directly from this that:
Theorem 8: Incident somas map to complex points whose distance-squared is real.

Thus, the image of a pencil of somas proves to beeddeprogression of a real line,
the image of a bundle of somas is the real progresdi@real plane, and finally, we
have the totality of all real points in space as thagenof a bush of somas. However,
those are the images of oy’ pencils, ©® bundles, and a single bush, resp. The
remaining linear manifolds of somas map itbaginary point-structures here, and
likewise by two other associations of real somas withpdex points.

However, investigations are already available thalacepcomplex points in space
with a real figure, such as a real, oriented circleg(lesire) ortwo ordered real points
(*Y), and the latter proves to be useful for us. Theqfgiroper, real points{, Xz, Xs) —

(X, %, %) (inhomogeneous coordinates) shall be placed in the foipwelationship

with the complex poink:
(60) X1+Xi :)?1+X1,...,x1—x1 :i()?l—xl),...
(deviating from Graustein). As a result of (58), oné alve:

Xo=1, %01:%(X1+)4),
(61)
Rism HCHR KRR, Xm0,

The inverse formulas read:
(62) X1 =Xo1+Xo3: X, ..., Xi =Xo1— Xx3: Xo, ...

Thus, every ordered pair of real, proper points of space will be askign@ unique
soma, and conversely, as long3sdoes not vanish.

The last restriction can be lifted (8 11); we shallgminto that at this point, in order
to not disrupt the train of thought.
If the som&) belongs to the point-payr — y' then:

(63) EY)=H(Y-X7 + . - (i—x)* - )

If the two somas and®) are incident then the two “starting pointsandy will have the

same separation-squared as the two “endpoxhtidy’: the two point-pairs will then be
calledisometric:

() W. C. Graustein, “Eine reelle Abbildung analytisckemplexer Raumkurven,” Diss. Bonn 1913.
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Theorem 9: Incident somas can be associated with isometric point-pairs.

Thus, the map proves to be useful in examining the geowie(@ss, Hos).

10. The linear manifolds of somas now correspond to thst mtuitive figures, as
long as one does not ha¥g = 0 for all somas. The! point-pairs that belong togencil

of somadave their starting points on a line, and likewiserteadpoints on a line (which
can coincide with the first one); both lines areaatedl to each other isometrically (i.e.,
congruently) by theo! point-pairs.

The image of @encil of somass just as simple. The starting points of ¢fepoint-
pairs fill up a plane, as do the endpoints. Both plamk&h can coincide, are mapped to
each other isometrically (i.e., congruently) by the ppmurs.

One can read off the numbers of constants and a whats of properties of the
figures from this with no further analysis.

The images obushes of somasehave somewhat differently. One of them will
indeed once more correspond to an isometric associdrthis time, the space itself
can be produced in two essentially different ways, mantielough amotionor through a
transfer Accordingly, there are two different types of beslof somas, which we would
like to distinguish aeft-bushesandright-bushes Of the types) to d) that we presented
in 8 8,a) andc) are left-bushes, while) andd) right-bush. For example, as a result of
(62), it will follow from (55) that:

X1=01.0, Xx= 0.0, 3=

a3 O
X=O:h, %=—FR .0, X%=—0B.0.

I

One is then dealing with the reversal aroundtaxis (x; = X1, X, = =X, X = — X3),
and therefore a motion.

In order to have a criterion for when the bush ahae (52) is a left-bush, we
compare the volumes of associated tetrahedra and find:
Left-bush(motions):
(64a) [Ao B2z €31 D12 | + Ao Boz Coz D2z | + Ao Boz Co1 D31 | + Ao Bo1 Co2 D12 | =
Right-bush(transfers):
(64b) [0 Bo1 Co2 Doz | + Ao B3z1 €12 Dox | + [Ao B12 €23 Doz | + Ao B2z a1 Doz | =

It follows directly from this that the soma transfation:

(65) %;) = %o, %;)1 = %23, ceny %123 = %123, %’23 = %01,
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converts any left-bush into a right-bysind conversely. With that, we have arrived at a
first inkling of the structure of the twenty-eight-pamr@ter group of soma transformations
(8 5). It divides into two separate families of transfations, the first of which (Gzg”
always takes left-bushes into other left-bushes, and-bigéhes to other right-bushes.
These transformations define a group, in their own righhe transformations of the
other family (‘Hzg") switch both families of bushes of somas. Neitbkthe two families
defines a continuum, moreover, as we will remark hepassing, but each of them again
decomposes into four separate continua.

The analogue to the transformations@g in line space are theollineations while
the analogue to those kg are thecorrelations. Namely, (cf., 68) the left-bushes

correspond to the bundles of lines there (i.e., lefided generato®; on M), and the

right-bushes correspond to the line-fields (right-hangenerator® on M?). We then
extend Theorem 7 to:

Theorem 10: The left-bushes are associated with the “left-handed” generatpmR
MZ, and the right-bushes are the “right-handed” generatoss R

However, the analogy is not rigorous, since the gr@p, His) of projectivities in
line space encompasses oftyr separate continua of transformations. One will again
obtaineight separate families when one once more returns taltmensions in the form
of the group of a real, rectilinear, singularity-freecsetorder surface'?). In regard to
that, one recalls the remark at the conclusion of § 1.

A pointx can be taken to a poirt by * motions ando® transfers. In fact, one can
vary the a in equations (7) to (10) arbitrarily [cf., however, (9Ahd determine thg
uniquely from them:

26 = * (- X))o -0 X) - (k- X) as

260 = (1~ X)) Qo O — (Xt X) @2+ (X2 + X)) as,
(66)

26 = (2= %) Ao + (X + X;) 1 * - (at x) as

26 = (8= %) 0 — e+ X))o+ (Xt X) @ *

One finds theo® transfers in a corresponding way:

20 = % —(xtx) U et X)Lt X) s

200 = (Kt X)W O - X) Bt (X2— X)W
(67)

20 = (et X)W —(—X) K * - (= %) K

(*3 Cf., an article by the author in Amer. Trah$.(1910), 418-420, 424-426.
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2% = (Rt X)W (- X) U +(a—X) P *
It follows from this by our map that:
Theorem 11: «° |eft-bushes and? right-bushes run through a soma.

The proof breaks down for somas with the property &aat 0. However, one then

has only to show that thes€ somas do not define an invariant submanifold, and one
sees that already in the transformation:

%;): X123, %;)1: Xoy -.us %123: Xo, %’23: Xo3, ...

that belongs tdzs .

Should a motion (66) or a transfer (67) also take thetydp y’then the two point-
pairsx — x andy - y’would have to be isometric. For a fixgdthat will give ?
additional positions foy’, or:

Theorem 12: » left-bushes and’ right-bushes run through a pencil of somas.

A single motion and a single transfer is determined Betpairs< - X,y - y’,z -
Z that are pair-wise isometric.

Theorem 13: A single left-bush and a single right-bush run through a bundle of
somas.

The analogue in line geometry is: A single bundle ofsliaed a single line-field run
through every pencil of lines.

Theorems 11 to 13 show that there are none of tlereliices between pencils of
somas and bundles of somas that one finds betwedrulgies and right-bushes.

There are skew left-bushpght-bushes, resh. One example will suffice:

Q.0 .0.03: 0 : 0:0:0,
d.o0:. 0:0: O:. -0 .0 .

We take this opportunity to replace the cumbersome criféda b) with simpler ones.
The consideration of improper somas (8 8) yields:

The bush of somas:
(52) X=npA+0B+xl+xn2

is a right-somas when the rank of the matrix:

[| 2o Bo1 €o2, Dos ||
is an odd number.
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That would lead us to defirtbe bush of all improper soma&s be deft-bush and in
fact, the following two theorems are necessary fat.thn them, the analogy with line
geometry will once more be undermined, in which the tgtalftall improper lines is

regarded as a line-field, corresponding to a right-handed genBsaif M ;.

Theorem 14: Two left-bushefright-bushegthat have a common soma intersect in a
pencil of somas.

We can directly assume th#p # O for the common soma. One must then show that
when two motions [transfer§ and T simultaneously take to X, there will becwo® other
points that transform both of them in the same wayy such point is then the fixed
point of amotion ST* that can only be a rotation, since it already posseti® fixed
pointx. However, the existence of fixed points will be confirmed with that.

One can also prove it directly. If one regardsdh@ in (66) as given and replaces
the x, X according to (62) then the coordinates of the soma ofetftidushthat is
associated with the motioar(/) will satisfy the four equations:

LoXo+m Xzt Xa1+a3X12 =0,

BrXo — o Xz + 02 Xoz— a3 Xo2 =0,
(66a)
B Xo — o Xa1+ a3 Xo1— a1 Xo3 =0,

BsXo— X2+ Xoo— a2 Xo1 =0.

Our theorem will now be proved (to the extent thateiates to left-bushes) by
considering two such systems of equations. For rightdsjsone correspondingly
employs (67):

The coordinates of the somas of right-bushes tregssciated with the transfer, ©)
satisfy the equations:

QD Xo +)iXor )Xo +)5Xes =0,

AXo - WwXor +)p X2 —)Xas1 =0,
(67a)
O Xo —WXo2 + )Xoz — JiX12 =0,

OB Xo —WXos +)iXa1 — Xz =0.

If one abbreviates (8§ 1) then the four equations (66a)ewgless the condition for
the straight linex to run through the poindnp : o1 : @ : a3. With that, on the one hand,

the stated parallelism of left-bushes and bundles of lvié be established, while on the
other hand, one can also glimpse a proof of the conveniehtiee notation for the
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parameters of motion. Namely, instead of the parasée f) that are employed here,
which were introduced by Study, other symbols were emgdldye other authors, in
succession:

Study: Qo o0 @ a3 5o B 5 B
Combebiac: QO -~ - b -H -6 B
Klein: D -A -B -C DD -A -B -C
Bricard: A u v 0 I m n p@®

Schoenflies): -D A B C  +1iD;, +1A; +1B;, +1iG
The Bricard notation is completely useless in practieer all of the other ones, there
is a discrepancy between (66a) and the correspondingnsyst formulas in line
geometry. Nevertheless, we have summarized themrherder to build a bridge to the
papers of the aforementioned authors.
If one abbreviates the system (67a) then the abbreviatetilas will expresshe
united position of the straight lirfé with the planeg: )4 : )5 : 5.

Theorem 15: A left-bush and a right-bush either intersect in a single soma or they
have an entire bundle of somas in common.

In fact, the system of eight equations (66a), (76a) aWllays be satisfied by the
soma:
Xo = o+ U+ 26 + d3), Xo1= 00 — 1O — Bo)s + ()5,
(68)
X123 == (LoD + f10 + 0 + B33), X2z =— (BoW — i — 020 + a3),

and all that remains to be examined is the case in whatlsoma is undetermined.
We denote the left-hand sides of the equations ia) (6¥Lo, L1, L2, L3 and the ones
in (67a) by Ry, R1, R, Rs . Furthermore, let:

—}/j_Lo +}{)L1 - R t+a Ll =Py, ...
- Ro+tamRi-ple +pls =Qy ...

For )6 # 0, we then have a system that is equivalent to tiggnatione in the form of
Pir=P,=P3 =R =R, =R3 =Lp = 0. Ry is then linearly independent &, R;, Rs.
However,P; = 0, P, = 0, P3 = 0 are then satisfied identically, such that four more
independent, homogeneous equations will be needed for thentheteon of the seven
unknowns.

For s =0, ap % 0, we take the equivalent system to be the following one

Q=Q:=Q:=L1=L=L3s=Ry=0.

(*¥ Combébiac, “Calcul des Triquaternions”; Klein and Swerfeld, Theorie des KreiselsBricard,
Nouv. Ann. de Mathl10 (1910); Schoenflies, Rend. Circ. Mat. Paler28q1910).
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Lo will then be linearly independent bf, L,, L3; Q1 = 0,Q. = 0,Q3z = 0 will be fulfilled
identically. Finally, ifys = 0, ap = 0 then one will have:

aLli+ b+ aslz =0, ViRt + pR + 5Rs =0,
LHRo+aLi+ &Ly + L3 =0, QLo +4R + LR+ R =0,

such that once more only four independent quantities remain

In the latter case, where the left-bush and the -bgkh intersect in a bundle of
somas, the motioma( ) and the transfery( J) transform a plane into a planas in the
same way:

U =0 +a1 0 + ... —ﬁ)}{)—ﬁlyi—...,
W =i — Mo tao—as ), ...,

(69)
Uy =00+ +... +6w +tBn+...,

U =i — o — -z )b, ...

If the transfer is given in addition tothen the motion will be determined by:

Ve +Vi+Va+ya) +ULA +U2)s + Us)s,

(Ve+Vi+yvityn o = -+ +U3)s —W2)s, ...

(70a)

W+V+Vi+y) B = —up—uwd — U — Usds,

(V+Y2+y2+y) B = — Ui+ Uiy — Uy + Usds, ...

The relationship between left-bushes and motions, ahtHbigshes and transfers that
is mediated by the formulas (66a) and (67a) will be singlaed and invertiblevith no
gaps when one drops the requirements (9) and (19) (i.e., “deggefiemotions and
transfers) or when one goes from motions and transfessmas:

Theorem 16: The totality of left-bushes can be related to the totality of (prapdr
improper) right-handed somas in a single-valued, invertible way without géuis, tive
total of right-bushes can be related to the left-handed somas.

Admittedly, in order to do that, one must necessaxiyend formulas (66a), (67a) to
the following ones:

o X123 + B Xo1 + B Xo2 + B3 Xo03 = 0,
(66b)
X3 —SoXor +BX12—-F X =0, ...
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W X123 + O Xoz + O X31 + 3 X12 =0,
(670)
Vi X103 — X3 + 0 Xo2 — B X2 =0, ...

One then obtains, for example, the left-bush ofatroper somas when:
a=0,n=0, ... ,&)21,,31:0,...

In this, one has the possibility of also representiteftebush, and likewise a right-
bush by eight parameters that are coupled by a quadratiomg@ 3).

All of the remaining questions about linear manifolds of @®man be conveniently
addressed by the map to point-pairs. For the applicat@usfferential geometry, we
consider the figure of two pencils of somas.

In the most general case, two pencils of somas cdenbiked by a bush of somas;
they shall then be called “bush-foreigrgeptuschfremd They will then be “bundle-
foreign” (bundelfremg, as well (Theorem 13). It can happen that:

a) Every soma of one pencil is incident with a singlaaf the other pencil. That
will always happen for the two pencils:

aA+c;:B and A +7,%
when the matrix:
(AA (AB"
o com)|

has rank two. The totality of all somas that havenaident soma in each of the two
pencils defines a nonlinear, irreducible manifold that pesses connection to a

singularity-freeM?.

b) However, if the rank is one then there will berggle soma in each pencil that is
incident with all somas of the other pencil. All soriaat have an incident soma in each
pencil then divide into two bundles of somas that iet&rs a pencil of somas, or:

¢) The two original pencils of somas have a common sdoiia.give an example for
each of the three cases:

2) 0,:0,:0:0: 0: 0:0:0:
0: 0:0:0: r,:7,:0:0:
b) o:.0,. 0:0: 0: 0:0:0:
0: 0:7,:0: 0:7,: 0:0:
0 0:0,:0:0 0: 0:0:0
r,: 0:0:0 0:7,:0:0
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It is, moreover, possible that two pencils of soices be coupled b singlebush of
somas. They will then be bundle-foreign (Theorem a3 have no common soma.
There are two cases (left-bush, right-bush).

It can then happen that two pencils of somas can iyelexb by preciselywo bushes
of somas, namely, a left-bush and a right-bush.yT¥i# then have a common soma and
can be coupled by a bundle of somas.

Finally, the two pencils of somas can coincide; tlaeetheno! coupling left-bushes
and just as many right-bushes.

The matrix that was just considered will have ranio Zer all non-bush-foreign pairs
of pencils of somas.

We are now in a position to be able to rectify a deteproof. Since there are®
left-bushes, each of them will be fixed by a group ahadransformations that depends
upon 28 — 6 = 22 parameters. Their transformations all be® s (i.e., and not to
H.g). If the left-bush is that of all improper somasparticular, then one will be dealing
with the groupGz: .

11. The map (61), (62) of somas to point-pairs was endowddsmgularities; the
somas with the property thap = 0, which we briefly cal€ritical, could not be mapped.
These exceptions can be ignored when one appeals to@neeptual image and speaks
of critical point-pairs. Admittedly, such a thing is accessible by only part o¢'®n
intuition. As we anticipate, it consists ah ordered pair of oriented directions that is
endowed with a numbeoy rather two such “figures” that are coupled in somg. wa

A pencil of somas can consist of nothing but critszahas. In the other cases, there
will be a single critical soma, and we consideredllpencils of somas that possess the
same critical soma. From § 9, each of them will be méppea pair of isometrically-
related lines that will be casually distinguished as ititial line and the final line.
However, for the aforementionee pencils of somas, the initial lines will all be péeél
to each other, and likewise for the final lines. Howetlee two bundles of parallels that
are determined in that way given risectd pencils of somas, so the critical soma is still
not defined; one must be given the type of isomegélationship.

If 5B is aproper initial line, and3" is aproper final line (Plicker coordinates) then

let:

P11 = Poz P12 — Poz Pay, .. P2 = Po + P+ B, -

The! point-pairs:
P: X :‘B11+(t—C)‘B‘B011‘B2,...
(71)
PooX =P, + (t+0) PR, P

then give an isometric relationship betweengpears® : Poi : P andP' : B : B,
for varyingt. If one then lets vary then another isometric relationship will resitom
(61), the soma that is associated with the pointsgais B’ will be:
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Xo =29 P2

Xor =P° Pu+ PR, + -9 PP Por+ ¢ +0) B P By, -
(72)35123 = 1% {5 + Pal +PiF - P PL P+ B + 20 1P P

X2z =P Pu- PR, + -9 PP Por- (t+0) PP Ry,

Let ¢ be fixed and let be variable. (72) then represents a pencil of somaseavh
critical soma is ascertained by passing to the limit=od:

Xo =0, Xo1 =P Por + P Byy» -
(61a)
X123=2C PP, X23 =P Por—P By, -
c probably enters into that, but no longer the line cootegifys, ..., B,,, ... Ifone

then varies the lin& or B’ inside of their bundle of parallel then the critisaima will

remain the same. If one changes the orientatidmotf lines, as well as changinghe
sign of the weight, then one will still arrive at the same criticahsm Conversely, if its
coordinates are given then it will, in fact, ¢d@uble-valued:

PBor: P = p (Xor+ X23), ..., Boy ! PB' =0 (Xo1 =~ X23), ..., €= p X13;
(62a)
100 = X+ X5+ X+ X+ X5+ X0,

One can now define a critical point-pair as the “figuretwo ordered spear direction
that are weighted with a number and do not change vamenchanges all of the
orientations and signs of the weights. Every soararmw be assigned a unique point-
pair invertibly andwithout exceptioné™).

The weightc mediates an association between the (oriented) hqiaaes of the
oriented directiong? and‘p’. The normal plane t@ at the zero distande— c will be

associated with the normal plane}to at the zero distandet c [cf., (71)]. Any pointP

can be linked with akk? pointsP' of a plane (I1), and likewise every poift with all c?
points P of a plane (1), when | and Il are such associatednabplanes off and‘g'.

One will then obtaino® point-pairs P — P') that one calls “isometric to the critical pair
(B, ', )", so the incidence condition for the associatedaowmill imply the condition

for theisometric position of the pairs x x and (3, B, ¢):

(*Y When one introduces an improper critical pair thatesponds to the soma0:0:0:0:1:0:0:0.
However, it would probably not pay to go into that any furthe
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(73) PP+ X B+ XePBg — P {1 Por + %2 Poz + X3 Pos} = 2¢ P P'.

If one cancels the factd3’ on the right then the two terms on the left wiNeajithe

projections of the vector at the endpoint (starting paiesp.) along the oriented final
direction (initial direction, resp.) when the two @&t are attached to the origin.
The isometric position of the two critical paifg,(3', ¢;) and £, Q', ¢;) will now

be defined by:
(74) P'Q' (Po1Qo1 + Po2Qo2 + PosQos) = PP Q01+ Pol oot B s -

The anglgwhich is given by just its cosinéetween the two initial directions is equal to
the angle between the two final directions.

The critical pairs that are associated witipropersomas are characterized by the
fact that initial direction is opposite to the finatektion.

If that is not the case then the weighwill be closely related to the step sizdoof
the unscrewing that takes the protosoma to the assb¢rades proper) soma. If one then
orients the unscrewing axis by the requirement that:

J 2B + 2P I Boy + BBt B o' = 2 PR’ cost (B, P)

then one will have:
¢ =Ho cos; (B, P).

It shall now be shown how the pencils of somas tlasist of nothing but critical
somas are mapped. Let the images of the basicssintie pencils be the paifg,(‘B’,
c1) and Q, 9, ¢). Since they must be isometric, the rectilineanriers of3’ and Q'
will be separate, as long as that is trueforand £, and conversely.s3 and 9 are
parallel to the planes of a pencil of parallel penand similarly3’ andQ'. One takes
an arbitrary® that is parallel to the first of these two penafsplanes, and likewise a
directionfR’ that is parallel to the second on® andfR’, when suitably weighted, will

then determine a variable soma in a pencil of somas
One must distinguish the same two cases when ¢neilp of somas consist of
nothing butimpropersomas{3' must then be opposite 8, andQ' must be opposite to

Q.

One makes the relationship clearest when one &ppmdhe spherical map of the
oriented direction to the unit sphere.

12. The map of somas to point-pairs also proves tedbteuitful and intuitive for the
study of nonlinear soma figures that we shall raedive it in another way and would
then like to bring about its constructive implenagian.

One sets:
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Xo+ K X1m= &, Xor+Xo3=4¢1, ...,
(75)
%O—Kzflzszfé, Xo1—X23=¢, ...,

where«? is an arbitrary positive constant that will first4®t to zero. One will then have:

Xo=3(+ &), Xo1=3(&+ &), ...
(76)
K X123 =3 (& - &), X3=3(&- &), ...

1 1 ' /] 1 1z
(77) 2@%):F§(02+§(12+§(22+§(32_F 02_ 12_ 22_53 =0.

If we accordingly set:

1 1 1 T T T T
(78) F§(02+§(12+§(22+§(32: Fgaz;:F 02+ 12+ 22+ 32

then the formulas (75) and (76) will mediategapless invertible, single-valued
association of somas with pairé,(: & : & : & :&: &) - (Gw: & & 2 & @ &) of
points ofR, that be selected from the singularity-fri whose equation is contained in

(78), or even talouble-pairs so one can also replace the given pair with the(paf, :
&b & &) - (Ew: & & L& 1 &). We construct a projective metric on the

MZ:
1 1
(79) cos & 7)) = P $olfo + 111 + o172 + 3173 P Sl -
Since:
1 1 T I T ! T I (N}
2(0) = | entenct .t €0 -| S E0 ey £ 2 60
incident somast and®) will then be mapped to double-pairs that are igomen the

sense of non-Euclidian geometry that is definedA8y and (79):

cosk (& n) =cosk (&, ).

We would now like to pass to the limit &t = 0, and then calculate:

1 i? _ (E1EWs + 105 = 2€ W Xdno+k*AE1E)0 In )~ € I ¥}
ZSI K(Q(, ,7) 2.2 2 2
K &ns+kA(EL Eni+nImégy +x 1€ (nln)
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in which we have get:

(&l n) = é&m+ én+ &ps,
to abbreviate.

In the limit, one will then have:

2 2 2
_[&_n $2_ 1, S _ 1
(&)= (—1——1j +[—2—— + 2-2
g(0 ,70 g(O ,70 50 ,70
such that the symbo&( ) will be theEuclidian distance between the pointg (&1 : & :
&)and (o : /1 : 1722 3). Inthe limit, theM?2 will become:

E-&=8-& =0
If we seté,— & = Ew— &= 0, so& = &,, then (76) will go to:

Xo= o, Xo1=3(&+ &), . X23= (& &)), -,

while X123 = lim iz(fo - &) will be implied by (2). With that, formulas (61) arece
K

more obtained. The assumption tifat+ & = &, + &= 0 will yield the same thing,
while the two otherwise conceivable possibilities wilgl nothing useful. In the limit,
one will no longer have double-pairs MZ, or what amounts to the same thing, in
conformalthree-dimensional space, but simple pairprojective space. For that, the
singularities will appear that we had to address in § 11.

The constructive implementation of the map can tasuh more or less satisfactory
way when we start with point-pai’s — P’ (X - X') and each time seek the defining data
of the motion that takes the protosoma to the desirgateged soma. There is an entire
series of cases to distinguish; that relations thatlaus introduced will remain valid in
each of the following cases:

Let M be the midpoint oPP, and letO be the midpoint of the protosoma.

1. P andP coincide atO. Identity motion. Protosoma.

2. P andP' are distinct, butM coincides withO. The length and direction @P
gives the step size and direction of translation.

3. P coincides withP, butM is distinct fromO. Rotation around the ax@M. For
an arbitrary orientation, one will have t& = MO = - OM.

4. LetP' be distinct fromP, andM, from O, but PP runs throughO. Screwing
motion aroundOM. P° means the mirror image & relative toO, andM™ means the
midpoint betweer® andP’. With an arbitrary orientation of the screw axise avill then
have:

tan@, =MO, Ho=MO.
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5. Now, letPP not run througtO. ForOFP = OP, one is dealing with a rotation,
and otherwise a screwing motion whose axis is paraleDM, but no longer runs
throughO. The altitude oD to P'P has the base poi. For any syntactic orientation
of OM andP’P, one will have:

tan®, =MO, Ho=M'Q.

Now, OQ is oriented arbitrarily, and defines the second axis mglg-handed soma
whose first axis is defined WM. The third axis will then be determined uniquely. One
measures out the segmé® : OM along it fromO. A point of the screw axis is given
by that, as well as the axis itself (cf., Fig. 1).

Figure 1.

6. Critical pair {3, B', ), where3 andJ3’ coincide. The spear throughthat is
syntactic to it is the unscrewing (reversal) axis, winakesH, = c.

7. Critical pair 3, ', ), where‘3 and ‘B’ are opposite. An improper soma is
associated. One will obtain the associated speartidine(8 5) when one rotates the
protosoma of the rotation around any spBathrough B,, where cotd, =c.

8. The directions]d and ' of the critical pair belong to different bundle$ o
parallels. cos®, B’) is then given uniquely. We decree tB43, B") should mean two

arbitrary steps. However, cé€p, B') and sirk (B, P') will then be determined
uniquely.
We construct a right-sided trihedron throu@h Let the direction cosines be:

a) P Por+P By,: 2B P’ cost (B, P, ... (“true” bisector)
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b) B Por— P Pp,: 2P P sing (P, P, ... (“false” bisector)
C) Pos B, — Poz Pys: 2P P’ sin B, P'), ... (common normal direction).

One measures out the segment a3, P') around O along the third, uniquely-

determined axis, and thus has a point of the unscrewingrgady axis. It is oriented
syntactically to the true bisector direction, whichntlplies that:

Ho =c: cos; (B, P') .
With that, we have once more arrived at the last tbarof § 11.

Bonn, December 1919.
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