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 1.  Study introduced the soma (1), which is any of the ∞6 positions of a rigid body 
(whose boundary will be ignored), as the basic concept in analytical mechanics.  A 
trihedron that is fixed in the rigid body will serve as the intuitive carrier of a soma.  The 
trihedron of the coordinate axes will be regarded as the protosoma.  A right-handed soma 
will arise from it by a motion and a left-handed soma by a transfer.  The protosoma is 
then itself regarded as right-handed. 
 It is customary to represent the figure that we now call a soma by twelve defining 
data.  The soma has a midpoint (which is the coordinate origin for the protosoma).  That 
will absorb three defining data – say, in ordinary rectangular point coordinates (x, y, z).  
Furthermore, a soma has three axes; i.e., oriented lines.  We shall refer to the axis that 
emerges from the X-axis of the protosoma as the first axis.  It will be represented by its 
three direction cosines (p1, q1, r1); their ratios do not suffice.  We arrive at the other two 
axes by establishing two more triples of defining data (p2, q2, r2) and (p3, q3, r3). 
 This representation of a soma indeed has a certain inherent symmetry to it.  However, 
it is purchased at the expense of the fact that no less than twelve relations exist between 
the last nine of these defining data: 
 
 2 2 2

1 1 1p q r+ +  = 1, etc. p2 p3 + q2 q3 + r2 r3 = 0, etc. 

(1) 
 2 2 2

1 1 1p p p+ +  = 1, etc. q1 r1 + q2 r2 + q3 r3 = 0, etc. 

 
One more must be added to them: 
(1a)     | p1 q2 r3 | = ± 1, 
 
in which the upper sign is true for right-handed somas. 
 The consequence is that this analytical apparatus is already cumbersome to work with 
when one is dealing with only two or three somas. 
 However, one will diminish the number of relations in (1) by one when one appeals to 
a different representation of the soma.  Eight ratios: 

                                                
 (1) Geometrie der Dynamen, Appendix, pp. 556, 557, Sitzungsber. d. Berl. Math. Ges. 12 (1913), 36-90.  
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X0 : X01 : X02 : X03 :  X123 : X23 : X31 : X12 , 

 
between which s single relation exists: 
 
(2)     X0 X123 + X01 X23 + X02 X31 + X03 X12 = 0 

 
will be employed as the coordinates of a right-handed soma. 
 If we introduce: 
(3)     (X | X) = 2 2 2 2

0 01 02 03+ + +X X X X , 

 
for brevity, then we shall have: 
 
 (X | X) p1 = 2 2 2 2

0 01 02 03+ − −X X X X  , 

(4) (X | X) q1 = 2(X01 X02 − X0 X03) , 

 (X | X) r1 = 2(X01 X03 + X0 X02) . 

 
One will get from this, by cyclic permutation of the indices 1, 2, 3: q2 and r3 from the first 
row, r2 and p3 from the second row, p2 and q3 from the third row. 
 With that, all of the relations (1), as well as (1a), will already be satisfied when one 
takes the plus sign in the latter. 
 Finally, let: 
 (X | X) x = 2(X02 X12 − X03 X31 − X0 X23 + X123 X01), 

(5) (X | X) y = 2(X02 X23 − X01 X12 − X0 X31 + X123 X02), 

 (X | X) z = 2(X01 X31 − X02 X23 − X0 X12 + X123 X03), 

 
for the midpoint (x, y, z) of the soma. 
 Conversely, if the soma is given by the usual defining data (x, y, z, p1, …, r3) then one 
can ascertain its coordinates in two steps.  First, one has: 
 
(6a) X0 : X01 : X02 : X03 

  = 1 + p1 + q2 + r3 : q3 – r3 : r1 – p3 : p3 – q3 
  q3 – r3 : 1 + p1 + q2 + r3 : p2 + q1 : r1 + p3 
  p2 – q1 : r1 + p3 : q3 + r2 : 1 − p1 − q2 + r3 . 
 
 
 Each of these four systems of formulas can break down; however, one of them will 
always be usable.  If one has found the ratios of the X0 : X01 : X02 : X03 then the 

remaining four coordinates of the soma will follow from the additional formulas: 
 
 2 X123 =         * + xX01 + yX02 + zX03 , 

 
 2 X23 = − xX0 +     * − zX02 + yX03 , 
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(6b) 
 2 X31 = − yX0 + zX01 +    * − yX03 , 

 
 2 X12 = − zX0 − yX01    + xX02 +     *    . 

 
 In order for the formulas (4), (5) to make sense, one must require that (X | X) ≠ 0.  

We will then speak of a proper (right-handed) soma.  However, the concept of a soma 
shall also be extended to the case that was just excluded; i.e., since we are considering 
only real quantities here, to the case in which: 
 

X0 = X01 = X02 = X03 = 0. 

 
We then speak of an improper (right-handed) soma.  Hence, we shall now call any system 
of eight real ratios X that satisfy the relation (2) a right-handed soma. 

 The improper somas have been up in the air, up to now; they were defined only 
formally, for the time being.  In § 5, we will see that an improper soma can be associated 
with an ordered triple of oriented directions. 
 The basis for the introduction of improper somas lies in the following theorem, which 
is deduced from (2) immediately: 
 
 Theorem 1: The totality of ∞6 proper and ∞3 improper real somas can be mapped, 
with no gaps in a single-valued and invertible way, to the totality of real points of a six-
fold extended, singularity-free, quadratic manifold 26M  of signature zero that lives in a 

seven-dimensional space R7 . 
 
 That implies an approach to research; at the same time, however, kinematics is 
recognized to be the general counterpart to line geometry.  In that field, as one knows, 
one maps the straight lines to the points of an 2

4M  whose equation will follow from (2) 

by “abbreviation” – i.e., when one drops all terms with X0 and X123 .  Meanwhile, that 

will also yield a wealth of things that have no analogue in line geometry, but will first 
occur when the number of dimensions is changed to four, and that case will attract special 
interest for us. 
 
 
 2.  The collineation (homogeneous point coordinates; x = x1 : x0, etc.): 
 
 0x′  = a00 x0 , 

(7) 
 1x′  = ai0 x0 + ai1 x1 + ai2 x2 + ai3 x3  (i = 1, 2, 3), 
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will be a motion when the coefficients satisfy certain well-known relations.  They will all 
be satisfied when one introduces eight homogeneous parameters (2): 
 

α0 : α1 : α2 : α3 : β0 : β1 : β2 : β3 , 
 
which satisfy only a single quadratic relation: 
 
(8)    α0 β0 + α1 β1 + α2 β2 + α3 β3 = 0, 
 
and are subject to the inequality: 
 
(9) 2 2 2 2

0 1 2 3α α α α+ + +  ≠ 0, 

moreover. 
 One must then set: 
 a00 = 2 2 2 2

0 1 2 3α α α α+ + + , 

 a11 = 2 2 2 2
0 1 2 3α α α α+ − − , … 

(10) a23 = 2 (α2α3 + α0α1), … 
 a32 = 2 (α2α3 − α0α1), … 
 a10 = 2 (α2β3 − α3β2 − α0β1 + α1β0), … 
 
Here, as well as henceforth, the ellipses after the last four lines shall suggest that two 
sequences are missing that are defined by the cyclic permutation of the indices 1, 2, 3. 
 Any system of eight such parameters (α, β) that satisfy the requirements (8) and (9) 
will yield a motion, and conversely. 
 It is a translation for α1 = α2 = α3 = β0 = 0.  If one orients the direction of translation 
in such a way that one fixes its cosines (i.e., not merely their ratios) then the step size 

02H ∗  of the translation will be determined uniquely: 

 
(11)   cos λ1 : cos λ2 : cos λ3 : 

1
0H ∗− = β1 : β1 : β2 : − α0, 

i.e.: 

cos λ1 = β1 : 
2 2 2

1 2 3β β β+ + , …, 0H ∗  = − 2 2 2
1 2 3β β β+ + : α0 , 

 
in which the square root is assigned an arbitrary value that is the same in both cases. 
 In the remaining cases, there is an axis for the motion.  Its Plücker coordinates: 
 

P01 : P02 : P03 : P23 : P31 : P12 

 
are deduced from the formulas: 
 

                                                
 (2) Study, “Von den Bewegungen und Umlegungen,” Math. Ann. 39 (1891), 527, 528.  Unfortunately, 
some sign errors crept in at crucial places there that were corrected in Geom. d. Dyn., but here it will be 
necessary for us to dwell upon them longer than would be necessary, especially for the transfers.  
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 P01  = 2 2 2
1 2 3 1( )α α α α+ + , … 

(12) 
 P23  = 2 2 2

1 2 3 1( )α α α β+ +  + α0β0α1, … 

 

 If one orients it by a convention on the sign of 2 2 2
1 2 3α α α+ +  then the step size 2H0 

will be determined uniquely, and the rotation angle 2Θ0 will be determined up to a 
multiple of 2π: 

(13)  cot Θ0 = − α0 : 
2 2 2
1 2 3α α α+ + , H0 = + β0 : 

2 2 2
1 2 3α α α+ + . 

 
 One must make a remark about this that was already true for (11), and shall not be 
repeated after this.  If one endows the α, β with a proportionality factor ρ ≠ 0 then 

2 2 2
1 2 3α α α+ +  must also be multiplied by + ρ, and not with − ρ. 

 If α0 = 0 then one will have 2Θ0 = π (mod 2π).  These ∞5 screwing motions play an 
essential role in the further considerations, and are called unscrewings (3). 
 If β0 = 0, without having α1 = α2 = α3 = 0, then one is dealing with a rotation (2H0 = 
0).  The intersection of the rotations with the unscrewings defined the ∞4 involutory 
motions; they are called reversals (4) (α0 = 0, β0 = 0). 
 If a translation is given by its oriented direction of translation (cos λ1 , cos λ2 , cos 
λ3) and step size 02H ∗  then, from (11), its parameters will be: 

 
(14)   − 1

0H ∗− : 0 : 0 : 0: 0 : cos λ1 : cos λ2 : cos λ3 . 

 
 The remaining motion will be characterized by the (oriented) axis P, the step size 

2H0, and the angle of rotation 2Θ0.  Its parameters are then: 
 

   α0 = − cot Θ0 
2 2 2

01 02 03+ +P P P , α1 = P01 , … 

(15) 

   β0 = H0 
2 2 2

01 02 03+ +P P P ,  β1 = P23 + H0 cot Θ0 P01, … 

 
 The soma X arises from the protosoma by the motion with the parameters: 

 
(16)  α0 = X0 , α1 = X01 , …, β0 = X123 , β1 = X23 , … 

 
Soma coordinates and parameters of motion are then essentially identical.  We can 
manage with one of these systems of quantities.  However, we believe that one’s 
understanding of things is eased by their separation. 
 

                                                
 (3) Math. Ann. 39 (1891), pp. 461.  
 (4) H. Wiener, Sächs. Berichte, 1890.  



Beck – On linear manifolds of somas 6 

 3.  A left-handed soma arises from the protosoma by a transfer, and therefore the 
most necessary ideas regarding those transformations will be stated now. 
 The collineation: 
 0x′  = − a00 x0 , 

(17) 
 ix′  =    ai0 x0 + ai1 x1 + ai2 x2 + ai3 x3 ,  (i = 1, 2, 3) 

 
is a transfer when the coefficients are replaced with (10), while giving consideration to 
(8) and (9).  However, we prefer to avoid confusion by using a different notation.  As 
Study recently did, we call the eight homogeneous parameters: 
 

γ0 : γ1 : γ2 : γ3 :  δ0 : δ1 : δ2 : δ3 
 
transfer parameters.  They satisfy the equation: 
 
(18)    γ0 δ0 + γ1 δ1 + γ2 δ2 + γ3 δ3 = 0 
and the inequality: 
(19)     2 2 2 2

0 1 2 3γ γ γ γ+ + +  ≠ 0. 

One shall then have [cf., (10)]: 
 
 a00 = 2 2 2 2

0 1 2 3γ γ γ γ+ + + , 

 a11 = 2 2 2 2
0 1 2 3γ γ γ γ+ − − , 

(20) 
a23 = 2 (γ2γ3 + γ0γ1), …, a32 = 2 (γ2γ3 − γ0γ1), …, 

a10 = 2 (γ2 δ3 − γ23δ2 − γ0 δ1 + γ1 δ0), …, 
 

 The transfer (17) leaves the proper plane δ0 : γ1 : γ2 : γ3 fixed, along with the point γ0 : 
δ1 : δ2 : δ3, which lies on it (viz., the middle plane and midpoint).  Both of them can be 
undetermined (but not simultaneously!); one would then obtain the 2 ⋅⋅⋅⋅ ∞3 involutory 
transfers, namely, reflections through (proper) planes u (undetermined midpoint): 
 
(21)    0 : u1 : u2 : u3 :  u0 : 0 : 0 : 0, 
 
and reflections through (proper) points ξ (undetermined midpoint): 
 
(22)    ξ0 : 0 : 0 : 0 :  0 : ξ1 : ξ2 : ξ3 . 
 
 The midpoint ξ can be improper (γ0 = 0).  The transfers can then be generated by the 
reflection in the middle plane and a translation parallel to the middle plane that commutes 
with it, and whose direction runs perpendicular to its improper midpoint.  After 
orientating the direction of translation, the step size of that translation 02H ∗  will be 

determined uniquely, and will then be called the step size of the transfer.  Let that 
direction of translation be: 
 



Beck – On linear manifolds of somas 7 

(23)   cos λ1 = 2 3 3 2

2 2 2 2 2 2
1 2 3 1 2 3

u u

u u u

ξ ξ
ξ ξ ξ

−
+ + + +

, … 

 
The parameters of the transfer can then be written: 
 

 γ0 = 0, γ1 = u1 
2 2 2

1 2 3ξ ξ ξ+ + , … 

(23) 

  δ0 = u0
2 2 2

1 2 3ξ ξ ξ+ + , δ1 = − 2 2 2
0 1 1 2 3H u u uξ∗ + + , … 

 
 Conversely, one has: 
 

 0H ∗  = − 2 2 2
1 2 3δ δ δ+ +  : 2 2 2

1 2 3γ γ γ+ + , 

 cos λ1 = γ2 δ3 − γ3 δ2 : 
2 2 2
1 2 3γ γ γ+ + 2 2 2

1 2 3δ δ δ+ + , … 

 
 Finally, one must still consider the “general” case (γ0 ≠ 0, 2 2 2

1 2 3γ γ γ+ + ≠ 0).  The 

midpoint and middle plane are well-defined and proper, and determine the line whose 
Plücker coordinates are: 
 
(24)  γ0 γ1 : γ0 γ2 : γ0 γ3 : γ3 δ2 − γ2 δ3 : γ1 δ3 − γ3 δ1 : γ2 δ1 − γ1 δ2 , 
 
moreover, which is normal to the middle plane at the midpoint.  It is called the axis of the 
transfer.  It can now be generated by a rotation around the axis and a reflection that 
commutes with it.  The angle of rotation will be different according to whether the latter 
is the reflection through the middle plane or the midpoint. (The difference amounts to π.)  
When we speak of the angle of rotation 2Θ0 of the transfer, we choose the second 
possibility, and then, analogous to (13), we will have: 
 

(25)    cot Θ0 = −γ0 :
2 2 2
1 2 3γ γ γ+ + , 

 
when we take the seventh coordinates of the transfer axis to be: 
 

γ0
2 2 2
1 2 3γ γ γ+ + , 

in order to orient it. 
 Conversely, if the (oriented) middle plane u and the midpoint ξ are given then the 
transfer axis will already be oriented; If 2Θ0 is the angle of rotation of the transfer then it 
will have the parameters: 
 

 γ0 = − cot Θ0 ξ0
2 2 2
1 2 3u u u+ + , γ1 = u1 ξ0 , … 

(26) 

 δ0 =  u0 ξ0, δ0 = − cot Θ0 ξ1
2 2 2
1 2 3u u u+ + , … 
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 One can then employ the eight ratios: 
 
(27)  0

lX  = γ0, 01
lX  = γ1, …, 123

lX  = δ0, 23
lX = δ1, …, 

 
as the coordinates of the left-hand soma that emerges from the transfer (γ, δ) by the 
transfer, and which satisfy the quadratic relation: 
 
(28)     0 123 01 23 02 31 03 12

l l l l l l l l+ + +X X X X X X X X  = 0. 

 
Therefore, this relation appears for a fourth time, but this time with a different meaning, 
and later on (§ 10) two (four) more interpretations will be addressed.  The consistency of 
the basic analytic notions explains the altered notation! 
 
 
 4.  We arrived at the proper, right-handed soma by a motion of the protosoma.  Now, 
let X and Y be two proper, right-handed somas, where X no longer needs to be the 

protosoma.  We seek the motion that takes X to Y.  One finds its parameters to be: 

 
 α0 = (X / Y) =  X0 Y0 + X01 Y01 + X02 Y02 + X03 Y03 , 

 
 α1 = =  X0 Y01 − X01 Y0 − X02 Y03 + X03 Y02 , … 

(29) 
 β0 = (XY) =  X0 Y123 + X01 Y23 + X02 Y31 + X03 Y12 , 

   + X123 Y0 + X23 Y01 + X31 Y02 + X12 Y03 , 

 
 β1 = =  X0 Y23 − X01 Y123 − X02 Y12 + X03 Y31 , 

   + X123 Y01 − X23 Y0 − X31 Y03 + X12 Y02 , … 

 
 When these formulas are solved for Y, they will give merely the composition of two 

motions, when taken at their basis, and can be summarized very elegantly when one 
appeals to certain biquaternions (5).  We deliberately refrain from employing that tool 
here.  The solution of formulas (29) for Y is then accomplished by means of formulas 

(36). 
 The abbreviated symbol (X / Y) (which is read as: X into Y!) that appears in the first 

formula of (29) subsumes the one that appears in (3) as a special case and emerges from 
it by a process of polarization.  A further-abbreviated symbol appears in the third row of 
(29).  With the help of it, the quadratic relation (2) that exists between the coordinates of 
a soma can be written briefly as: 
(2)      1

2 (XX) = 0. 

It follows from (29) that: 

                                                
 (5) Sitzungsber. d. Berl. Math. Ges. 12 (1913), pp. 40.  
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(30)   2 2 2
1 2 3α α α+ +  = (X / X)(Y / Y) – (X / Y)2, 

 
and one will then obtain the expressions: 
 

(31) cot Θ = −
2

( / )

( / )( / ) ( / )−
X Y

X X Y Y X Y
, H = +

2

( )

( / )( / ) ( / )−
XY

X X Y Y X Y
 

 
for the angle of rotation 2Θ and the step size 2H of that motion from (13) and (29).  We 
now define the two quantities Θ and H to be the angle and distance between the two 
somas X and Y.  The process of abbreviation that was described in § 1 goes to the angle 

and distance between the two lines X and Y (which are assumed to not be parallel). 

 This further yields the following terminology with no effort: 
 Two proper somas are called parallel to each other when each of them can be 
obtained from the other by a translation.  The two somas X and Y are parallel to each 

other when: 
(32)   X0 : X01 : X02 : X03  = Y0 : Y01 : Y02 : Y03, 

 
and the parallelism of somas will be defined by this when improper somas come under 
consideration.  All improper somas will then be parallel to each other, and also to any 
proper soma. 
 If each of the two proper somas X and Y can be obtained from the other one by a 

rotation then we will say that the two somas intersect.  The necessary, but not sufficient 
condition for this, namely: 
(33)     (XY) = 0, 

 
once more serves to extend the concept to improper somas. 
 It is useful to add a few words that say that either the two somas X and Y are parallel 

to each other or they intersect.  We then call them incident.  (33) will then be necessary 
and sufficient for incident. 
 For (XY) ≠ 0, the two somas X and Y shall be called skew to each other.  Each of 

them can then be obtained from the other one by a screwing motion that therefore does 
not reduce to a rotation or a translation. 
 In particular, if it is an unscrewing then we will call the two somas orthogonal to each 
other (6): 
(34)     (X / Y) = 0. 

 
The concept is again extended to improper somas by that. 
 Finally, if every soma goes to the other one by a reversal then both of them are said 
to intersect perpendicularly (7): 
 

                                                
 (6) “Hemi-symmetral,” to Study.  
 (7) “Symmetral,” to Study.  
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(X / Y) = 0, (XY) = 0. 

 
 The expression on the right in: 
 
(35)    H tan Θ = − (XY) : (X / Y) 

 
that is defined by (31) is rational, and is called the moment of the two somas X and Y (8), 

or also the “moment of the motion that takes X to Y.” 

 For the sake of completeness, we also have a measure H* for the proper, parallel 
somas.  The step size 2H* of the translation that takes X to Y can be ascertained from the 

following formula [which is derived from (11) and (29)] by the use of: 
 

{X / Y} = X123 Y123 + X23 Y23 + X31 Y31 + X12 Y12 

 
(which will not be used after this), namely: 
 

H* = − ( / ){ / } 2( / ){ / } ( / ){ / }− +X X Y Y X Y X Y Y Y X X  : (X / Y), 

 
which can be written more simply if one dispenses with symmetry, and goes to the 
abbreviated expression for the distance between two parallel lines. H* is then called the 
distance between the parallel somas X and Y. 

 We cite two systems of formulas that we shall make much use of in what follows. 
 The proper, right-handed soma Y, which emerges from the proper, right-handed 

soma X by the equation (α, β), is: 

 
 Y0 = α0 X0 − α1 X01 − α2 X02 − α3 X03 , 
 
 Y01 = α1 X0 + α0 X01 + α3 X02 − α2 X03 , ... 
(36) 
 Y123 = β0 X0 − β1 X01 − β2 X02  − β3 X03 
  + α0 X123 − α1 X23 − α2 X31 − α3 X12 , 
 
 Y23 = β1 X0 + β1 X01 + β3 X02  − β2 X03 
  + α1 X123 + α0 X23 + α3 X31 − α2 X12 , ... 
 
In other words, these are the formulas for the motion (α, β) in soma coordinates when 
one replaces Y with X′, as usual.  It is remarkable that the parameters of motion appear 

linearly here.  These formulas are considerably simpler than the ones that fall out by the 

                                                
 (8) Which deviates from Cayley, who called such a simultaneous invariant of two straight lines 
irrational. 
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use of the defining data (x, y, z; p1, …, r3) in § 1.  Finally, they also tell one how the 
motion (α, β) will permute the improper somas; there is only a three-parameter family of 
them.  The β then drop out of formulas (36), and in particular, any improper soma will be 
fixed by all translations. 
 If we call a left-handed soma Xl improper when: 

 

0
lX  = 01

lX  = 02
lX  = 03

lX  = 0, 

 
and otherwise proper, then we will further have: 
 The proper, right-handed soma Y that emerges from the proper, left-handed soma Xl 

by the transfer (γ, δ) reads: 
 
 Y0 = γ0 0

lX  − γ1 01
lX  − γ2 02

lX  − γ3 03
lX , 

 
 Y01 = γ1 0

lX  + γ0 01
lX  + γ3 02

lX  − γ2 03
lX  , ... 

(37) 
 Y123 = − δ0 0

lX  + δ1 01
lX  + δ2 02

lX   + δ3 03
lX  

  + γ0 123
lX  − γ1 23

lX  − γ2 31
lX  − γ3 12

lX  , 
 
 Y23 = − δ1 0

lX  − β1 01
lX  + δ3 02

lX   + δ2 03
lX  

  + γ1 123
lX  + γ0 23

lX  + γ3 31
lX  − γ2 12

lX  , ... 
 
 These formulas can also be written more conveniently with the use of biquaternions; 
however, in every application, one will find the final formulas.  There are two more 
similarly-constructed systems of formulas, which we shall not need; they are exhibited 
quite easily on the basis for the two remarks: 
 The inverse of the motion (α, β) has the parameters: 
 
(38)   α0 : −α1 : −α2 : −α3 :    β0 : −β1 : −β2 : −β3 . 
 
 The inverse of the transfer (α, β) has the parameters: 
 
(39)   γ0 : −γ1 : −γ2 : −γ3 :    −δ0 : δ1 : δ2 : δ3 . 
 
 Finally, one will get the midpoint and direction of the axis of a left-hand soma when 
one introduces a minus sign everywhere on the left in (4) and (5). 
 
 
 5.  We would now like to make the concept of improper (right-handed) soma (which 
we defined only formally up to now) more intuitive.  For that, we proceed in analogy to 
line geometry, in which one replaces an improper line with the totality of proper lines that 
are incident with it. 
 We then consider an improper soma: 
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(40)   0 : 0 : 0 : 0 :  A123 : A23 : A31 : A12  

 
and look for all ∞5 proper somas X that are incident with them.  The condition for that 

(AX) = 0 reduces to: 

A123 X0 + A23 X01 + A31 X02 + A12 X03 = 0. 

 
By comparing this with (34) and the first of formulas (29), one finds that all of these 
somas X are orthogonal to the proper somas: 

 
(41)   A123 : A23 : A31 : A12 :  0 : 0 : 0 : 0, 

 
and likewise to the ∞3 somas that are parallel to the latter soma (41). 
 The ∞5 somas X that are incident to the improper soma (40) emerge from these ∞3 

proper somas by way of the ∞5 unscrewings. 
 The aforementioned somas that are parallel to the soma (41) are thus determined 
uniquely from the improper soma (40).  On the other hand, they determine three oriented 
directions (which are syntactic to those of their axes).  However, the direction cosines of 
the first axis are: 

 cos λ1 = 
2 2 2 2
123 23 31 12
2 2 2 2
123 23 31 12

+ − −
+ + +

A A A A

A A A A
, 

 

(42) cos µ1 = 23 31 123 12
2 2 2 2
123 23 31 12

2( )−
+ + +
A A A A

A A A A
, 

 

 cos ν1 = 23 12 123 31
2 2 2 2
123 23 31 12

2( )+
+ + +
A A A A

A A A A
. 

 
 When one agrees that X123 = X231 = X312 then cyclic permutation of the indices 1, 2, 3 

will produce cos µ2 and cos ν2 from cos λ1, cos ν2 and cos λ3 from cos µ1, and cos λ2 and 
cos µ3 from cos ν1. 
  The figure of these three oriented directions now gives us an intuitive picture of the 
improper somas.  If one would like to proceed in complete analogy with line geometry 
then one would have to replace an improper line in that subject, not with the associated 
pencil of parallels, but one would have to go to the bundle of parallel normals. 
 Now that we have learned how to link the soma with a sufficiently clear picture in all 
cases, we return to Theorem 1, which showed us that the somas could be mapped to 
points of an 2

6M .  We take from the algebra of quadratic forms the theorem that the 

points of the 2
6M  are permuted with each other in the most general way by the 

projectivities of a twenty-eight-parameter group of R7 .  For the sake of brevity, we would 
now like to denote it by (G28, H28), and likewise for the group of soma transformations 
that is holomorphic to it.  The fact that it consists of (at least) two separate families of 
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transformations will be shown in § 10, where we will describe the structure of the group, 
moreover. 
 That yields a method of research in the spirit of Klein’s Erlanger Programm.  
However, (G28, H28) plays the same role in kinematics that the group (G15, H15) of 
collineations and correlations does in line geometry. 
 The difference between proper and improper somas is inessential in the geometry of 
the group (G28, H28).  Such a difference will first arise in the geometry of a twenty-two-
parameter (proof in § 10) subgroup G22 of G28 that can also be described in parallel to the 
affinities. 
 It is now convenient to treat only the phenomena that have an invariant character 
under transformations of (G28, H28), so one will then also arrive at the simplest general 
laws.  Meanwhile the difference between proper and improper somas is too profound for 
us too leave it completely unmentioned in a first introduction of the subject.  We shall 
then study the linear manifolds of somas, which we shall now move on to, as well as their 
classification under G22, which is closely connected with the kinematic generation of 
those structures and brings a greater degree of intuitiveness to the behavior that has 
seemed quite complicated up to now. 
 
 
 6.  We define the pencil of somas: 
 
(43)     X = σ1 A + σ2 B 

 
from two distinct, incident (right-handed) somas A and B.  The two somas A and B must 

be incident, since otherwise the relation (2) would not be fulfilled for X.  One shall then 

have (AA) = (AB) = (BB) = 0.  However, one will then have: 

 
 Theorem 2: Any soma of a pencil of somas is incident with any other such soma. 
 
 In fact, let Y = τ1 A + τ2 B be another soma of the pencil (σ1τ2 − σ2τ1 ≠ 0), so one 

will have: 
(XY) = σ1τ1 (AA) + (σ1τ2 + σ2τ1) (AB) + σ2τ2 (BB) = 0. 

 
 Theorem 3: The pencils of somas are associated with the generating R1’s (straight 
lines) in 2

6M . 

 
 An easy count of the constants, which we would like to perform here, shows that 
there are ∞9 pencils of somas.  The point A on 2

6M  can be chosen in ∞6 ways, while the 

point B can be chosen in only ∞5 ways, since (AB) = 0.  There are then ∞11 useful point-

pairs on 2
6M .  However, each generator of 26M  belongs to ∞2 such pairs.  Therefore, 

there will be only ∞9 such generators, and thus, ∞9 pencils of somas.  One similarly 
shows that: 
 ∞4 pencils of somas run through every soma. 
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 The ∞9 pencils of somas define a single class under transformations of (G28, H28); i.e., 
every pencil of somas can be transformed into any other.  The properties of the pencils of 
somas can then be studied in a particular pencil of somas, say, the pencil: 
 

0 : σ1 : σ2 : 0 :  0 : 0 : 0 : 0 . 
 
 Things are different for the transformations of G22, where the difference between 
proper and improper somas will become essential.  We then have three classes to 
distinguish: 
 
 a) Pencils of somas that consist of only proper somas.  No two somas in the pencil 
are parallel.  We choose: 
(44) σ1 : σ2 : 0 : 0 :   0 : 0 : 0 : 0 
 
to be the “canonical” example. 
 One generates such a pencil of somas kinematically when one subjects any of its 
somas to all rotations around a fixed axis (in the example of the protosoma – say – all 
rotations around its first axis).  Or: 
 One reflects a left-handed soma through all planes of a pencil with proper axis (in the 
example of – say – the left-handed soma: 
 

0 : 0 : 1 : 0 : 0 : 0 : 0 : 0, 
 
through all planes through the X-axis).  The proofs are by (36) and (37). 
 
 b) Pencils of somas with a single improper soma.  All somas of the pencil will then 
be parallel to each other.  There are ∞7 such pencils of somas, through every proper soma 
there are ∞2, and through every improper one, there are ∞4 of them.  Example: 
 
(45)    σ1 : 0 : 1 : 0 : 0 : σ2 : 0 : 0. 
 
 One will obtain the proper somas of such a pencil when one subjects a right-handed 
soma to all translations along a fixed direction [in the example, perhaps, the protosoma 
in the direction of the X-axis, cf., (14)] or when one reflects a left-handed soma through 
the planes of a pencil of parallel planes (in the example of the left-handed soma: 
 

0 : 1 : 0 : 0 : 0 : 0 : 0 : 0, 
 
through all planes that are perpendicular to the X-axis). 
 One might be tempted to think that improper somas in such a pencil will be obtained 
from the common direction of the axes of its ∞1 parallel, proper somas.  Moreover, one 
has subjected that axis direction to a reversal around a line that is parallel to the direction 
of translation.  With that, the improper soma in the pencil is also constructed. 
 
 c) The pencil of somas consists of nothing but improper somas.  There are ∞4 such 
pencils, and ∞2 of them through any (improper) soma.  One subjects a (right-handed) 
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improper soma to, perhaps, all rotations around a line that can be chosen arbitrarily 
inside of the bundle of parallels that it determines.  All pencils of somas can be obtained 
from the initial soma by changing that bundle of parallels, or one applies all transfers 
with a fixed midpoint and fixed middle plane to a left-handed, improper soma.  For 
example: 
(46)    0 : 0 : 0 : 0 :   0 : σ1 : σ2 : 0 . 
 
 
 7.  The three right-handed somas A, B, C shall belong to no pencil of somas, but shall 

be incident to two of them.  With that assumption, the system: 
 
(47)    X = σ1 A + σ2 B + σ3 C 

 
will represent a manifold of ∞2 somas, namely, a bundle of somas. 
 
 Theorem 4: Any soma of a bundle of somas is incident with every other such soma. 
 
The proof is similar to that of Theorem 2. 
 
 Theorem 5: The bundles of somas are associated with the generating R2’s (i.e., 
planes) on 2

6M . 

 
 There are ∞9 bundles of somas, so there are ∞5 through any soma, and ∞2 through 
every pencil of somas.  A bundle of somas contains ∞2 pencils of somas, of which, two 
distinct ones will always have a single common soma.  Thus, two pencils of somas that 
have a coma in common do not have to belong to a bundle of somas.  Any two distinct 
somas of the bundle can always be linked by a single pencil of somas that lies in the 
bundle completely.  Two distinct bundles of comas can have one soma or a pencil of 
somas in common; however, it is also conceivable that they might be completely skew to 
each other.  The ∞9 bundles of somas define a single class under (G28, H28). 
 We now again turn our attention to the improper somas, and thus classify them under 
G22 and give kinematic generators for the individual types. 
 
 a) All somas of the bundle of somas are proper.  No two somas in the bundle are 
parallel then; there are only pencils of somas of type a).  One performs all rotations 
around the straight lines of a pencil with a proper vertex on a right-handed soma or 
reflects a left-handed soma through all planes through a proper point.  Example: 
 
(48)    0 : σ1 : σ2 : σ3 : 0 : 0 : 0 : 0 . 
 
 b) Bundle of somas with a single, improper soma.  There are ∞8 of them, ∞4 of them 
through any proper soma, and ∞5 of them through any improper one.  The somas of such 
a bundle can be divided into ∞1 pencils of type b); all of the remaining pencils of somas 
in the figure belong to type a).  One performs all rotations around the straight lines of a 
pencil of parallels on a right-handed soma or reflects a left-handed soma through all 
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planes of a bundle with an improper vertex.  One must then add the improper soma to 
this.  [Cf., § 6, type b)].  Example: 
 
(49)    0 : 0 : σ1 : σ2 :  0 : σ1 : 0 : 0 . 
 
 c) The bundle contains a pencil of improper somas.  There are ∞6 such bundles, ∞2 
of them through any proper soma, and ∞4 through any improper one.  All somas of the 
figure are parallel to each other; pencils of somas of type a) no longer appear.  One 
subjects a right-handed soma to all translations that are parallel to a plane or reflects a 
left-handed soma through all points of a plane.  Any one-parameter group of translations 
determines an improper soma.  Example: 
 
(50)    0 : σ1 : 0 : 0 :  0 : 0 : σ2 : σ3 . 
 
 d) The bundle of somas contains only imaginary somas.  There are ∞3 bundles of this 
kind, and ∞2 of them go through any (improper) soma.  One performs all rotations 
around the lines of a pencil with a proper vertex on an improper, right-handed soma or 
performs the transfers that were described in a) on a left-handed, improper soma.  
Example: 
(51)    0 : 0 : 0 : 0 :  0 : σ1 : σ2 : σ3 . 
 
 
 8.  The four right-handed somas A, B, C, D shall not belong to any bundle of somas, 

but shall be incident to two of them.  The system: 
 
(52)    X = σ0 A + σ1 B + σ2 C + σ3 D 

 
then represents a manifold of ∞3 somas, namely, a bush of somas. 
 
 Theorem 6: Any soma of a bush of somas is incident with every other one. 
 
 Theorem 7: The bushes of somas are associated with the generating three-
dimensional space R3 on 2

6M . 

 
 There are then ∞3 bundles of somas in a bush of somas, two of which split into a 
pencil of somas, and therefore ∞4 bundles of somas.  If two distinct somas among them 
have a soma in common then they can also be coupled by a bundle of somas that is 
contained completely in the bush.  Three bundles of somas in the bush have at least one 
soma in common.  There are ∞2 pencils of somas through a soma in the bush, and just as 
many bundles of somas that run through the bush completely.  One can lay ∞1 bundles of 
somas through a pencil of somas of the bush that belong to the bush. 
 
 a) Bush of somas with no improper soma.  There are ∞6 of them, and ∞2 of them 
through any soma.  No two somas in the bush are parallel to each other.  One subjects a 
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right-handed soma to all rotations around a fixed point or a left-handed soma to all 
transfers with a fixed proper midpoint. 
 
(53)    σ0 : σ1 : σ2 : σ3: 0 : 0 : 0 : 0. 
 
 b) A single improper soma.  There are likewise ∞6 such bushes of somas, and ∞3 of 
them through any soma.  The somas of the figure can be divided into ∞2 pencils of 
parallel somas.  One performs all rotations around the lines of a plane on a right-handed 
soma or performs the reflections through all planes in space to a left-handed soma: 
 
(54)    σ0 : 0 : σ2 : σ3:  0 : σ1 : 0 : 0. 
 
 c)  A pencil of improper somas.  There are ∞5 such bushes of somas, ∞2 of them 
through any proper soma, and ∞3 of them through any improper one.  The proper somas 
of the figure can be divided into ∞1 bundles of parallel somas.  A right-handed soma will 
be subjected to all rotations around the lines of a bundle of parallels; a left-handed soma 
will be subjected to all transfers with fixed, improper midpoints.  In that way, this case 
proves to be a degenerate case of type a): 
 
(55)    σ0 : σ1 : 0 : 0 :  0 : 0 : σ2 : σ3 . 
 
 d)  A bundle of improper somas.  There are ∞3 such bushes of somas, a single one of 
them through any proper soma, and ∞2 of them through any improper one.  All somas of 
the figure are parallel to each other.  One subjects a right-handed soma to all translations 
[degeneracy of type b)] or a left-handed one to the reflections through all points in space. 
 
(56)    σ0 : 0 : 0 : 0 :  0 : σ1 : σ2 : σ3 . 
 
 e)  The bush of all improper somas. 
 
(57)    0 : 0 : 0 : 0 :  σ0 : σ1 : σ2 : σ3 . 
 
 All of the linear manifolds of somas are enumerated with that.  Namely, if there were 
a generating R4 on 2

6M then, as a count of the constants would give directly, there must be 

a discrete number of them present; however, 2
6M  is free of singularities. 

 The criterion for the classification under G22 will be obtained from the ranks of the 
three matrices: 

0 01 02 03

0 01 02 03

0 01 02 03

0 01 02 03

A A A A

B B B B

C C C C

D D D D

, 

 
in which, for a bundle of somas, one suppresses the last row, and for a pencil of somas, 
one suppresses the last two rows. 
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 In each case, for the construction of the individual figures by motions, we have 
employed only one soma that already belongs to the manifold.  In that way, the families 
of motions in question, which consist of only rotations and translations here (i.e., not 
screws), define a continuous group in each case.  Otherwise, one would be able to give 
other constructions, as well; for the pencils of somas and bundles of somas, one can 
manage with reversals.  The axes of reversals fill up a pencil of lines with a proper vertex 
[viz., a pencil of somas of type a)], a pencils of parallels [type b)], a bundle of lines with 
a proper vertex [bundle of somas, type a)], a planar field of lines [type b)], or finally, a 
bundle of parallels [type c)].  The bush of somas cannot be obtained in that way, since 
there are no somas that simultaneously cut four linearly-independent somas 
perpendicularly. 
 The canonical examples are chosen for all pencils and bushes of somas that do not 
consist of only improper ones in such a way that they will contain protosomas.  Naturally, 
that is not necessary, which is why we have intentionally given other examples for the 
bundles of somas. 
  The fact that there are two types of bushes of somas of the same number of 
constants – namely, six – demands further investigation, for which, we will require other 
tools (9). 
 
 
 9.  The figure of the soma, and thus of three perpendicularly-intersecting spears, is 
already quite complicated, and it proves to be desirable to arrive at a clear picture of the 
manifolds of somas that are considered, whose visualization brings certain difficulties 
with it, in another way. 
 A simpler figure that likewise presents ∞6 exemplars is the complex point in three-
dimensional space.  Let it be proper and have the inhomogeneous coordinates X1, X2, X3 ; 
the conjugate imaginary points will be denoted by 1X , 2X , 3X .  We then set: 

 
(58)   X0 = 1,  X01 = 1

1 12 ( )X X+ , … 

 
X123 = 2 2 2 2 2 21

1 2 3 1 2 34 { }i X X X X X X+ + − − − , X23 = 1
1 12 ( )i X X− , … 

 
The expressions for X01, …, X23, … are closely related (10), while the one for X123 

follows from (2). 
 Thus, every proper, complex point is associated with a (real), proper soma, and the 
converse is also true when one does not have X0 = 0.  If the somas X and Y belong to the 

points X and Y then one will have: 
 

                                                
 (9) Part of the results that were demonstrated up to now are due to de Saussure (“Exposé résumé de la 
géométrie des feuillets,” Geneva, 1910).  A “feuillet” is essentially identical to a proper soma; the 
difference between right-handed and left-handed somas, which both occur, is not clear.  De Saussure called 
the pencil of somas of type a) a couronne, the bundle of somas of type a), a couronoïde, and the bush of 
somas of type b), a hyper couronoïde.  The remaining nine types of linear manifold of somas have eluded 
him, especially the most import bush of somas of type a) (left bush, cf., § 10). 
 (10) Cf., say, Study, Ebene analytische Kurven, Leipzig, 1911, pp. 21.  
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(59)   (XY) = 1
4 i {( X1 – Y1)

2 + … − 2
1 1( )X Y−  − …}. 

 
It follows directly from this that: 
 
 Theorem 8: Incident somas map to complex points whose distance-squared is real. 
 
 Thus, the image of a pencil of somas proves to be the real progression of a real line, 
the image of a bundle of somas is the real progression of a real plane, and finally, we 
have the totality of all real points in space as the image of a bush of somas.  However, 
those are the images of only ∞4 pencils, ∞3 bundles, and a single bush, resp.  The 
remaining linear manifolds of somas map to imaginary point-structures here, and 
likewise by two other associations of real somas with complex points. 
 However, investigations are already available that replace complex points in space 
with a real figure, such as a real, oriented circle (Laguerre) or two ordered real points 
(11), and the latter proves to be useful for us.  The pair of proper, real points (x1, x2, x3) → 

1(x′ , 2x′ , 3)x′  (inhomogeneous coordinates) shall be placed in the following relationship 

with the complex point X: 
 
(60)   x1 + 1x′  = 1X  + X1, …, x1 − 1x′  = 1 1( )i X X− , … 

 
(deviating from Graustein).  As a result of (58), one will have: 
 

X0 = 1,  X01 = 1
1 12 ( )x x′+ , … 

(61) 
X123 = 2 2 2 2 2 21

1 2 3 1 2 34 ( }x x x x x x′ ′ ′+ + − − − , X23 = 1
1 12 ( )x x′− , … 

 
The inverse formulas read: 
 
(62)  x1 = X01 + X23 : X0, …, 1x′  = X01 − X23 : X0, … 

 
Thus, every ordered pair of real, proper points of space will be assigned to a unique 
soma, and conversely, as long as X0 does not vanish. 

 The last restriction can be lifted (§ 11); we shall not go into that at this point, in order 
to not disrupt the train of thought. 
 If the soma Y belongs to the point-pair y → y′ then: 

 
(63)   (XY) = 21

1 14{( )y x′ ′−  + … − (y1 – x1)
2 − …}. 

 
If the two somas X and Y are incident then the two “starting points” x and y will have the 

same separation-squared as the two “endpoints” x′ and y′: the two point-pairs will then be 
called isometric: 

                                                
 (11) W. C. Graustein, “Eine reelle Abbildung  analytischer komplexer Raumkurven,” Diss. Bonn 1913. 
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 Theorem 9: Incident somas can be associated with isometric point-pairs. 
 
Thus, the map proves to be useful in examining the geometry of (G28, H28). 
 
 
 10.  The linear manifolds of somas now correspond to the most intuitive figures, as 
long as one does not have X0 = 0 for all somas.  The ∞1 point-pairs that belong to a pencil 

of somas have their starting points on a line, and likewise their endpoints on a line (which 
can coincide with the first one); both lines are related to each other isometrically (i.e., 
congruently) by the ∞1 point-pairs. 
 The image of a pencil of somas is just as simple.  The starting points of the ∞2 point-
pairs fill up a plane, as do the endpoints.  Both planes, which can coincide, are mapped to 
each other isometrically (i.e., congruently) by the point-pairs. 
 One can read off the numbers of constants and a whole series of properties of the 
figures from this with no further analysis. 
 The images of bushes of somas behave somewhat differently.  One of them will 
indeed once more correspond to an isometric association, but this time, the space itself 
can be produced in two essentially different ways, namely, through a motion or through a 
transfer.  Accordingly, there are two different types of bushes of somas, which we would 
like to distinguish as left-bushes and right-bushes.  Of the types a) to d) that we presented 
in § 8, a) and c) are left-bushes, while b) and d) right-bush.  For example, as a result of 
(62), it will follow from (55) that: 
 
 x1 = σ1 : σ0 , x2 =    σ2 : σ0 , x3 =    σ3 : σ0 , 
 1x′  = σ1 : σ0 , 2x′  = − σ2 : σ0 , 3x′  = − σ3 : σ0 . 

 
One is then dealing with the reversal around the X-axis ( 1x′  = x1, 2x′  = − x2, 3x′  = − x3), 

and therefore a motion. 
 In order to have a criterion for when the bush of somas (52) is a left-bush, we 
compare the volumes of associated tetrahedra and find: 
 
 Left-bush (motions): 
 
(64a) | A0 B23 C31 D12 | + | A0 B02 C03 D23 | + | A0 B03 C01 D31 | + | A0 B01 C02 D12 | = 

 
  Right-bush (transfers): 
 
(64b) | A0 B01 C02 D03 | + | A0 B31 C12 D01 | + | A0 B12 C23 D02 | + | A0 B23 C31 D03 | = 

 
 It follows directly from this that the soma transformation: 
 
(65)  0′X  = X0, 01′X  = X23, …, 123′X  = X123, 23′X  = X01, … 
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converts any left-bush into a right-bush, and conversely.  With that, we have arrived at a 
first inkling of the structure of the twenty-eight-parameter group of soma transformations 
(§ 5).  It divides into two separate families of transformations, the first of which (“G28”) 
always takes left-bushes into other left-bushes, and right-bushes to other right-bushes.  
These transformations define a group, in their own right.  The transformations of the 
other family (“H28”) switch both families of bushes of somas.  Neither of the two families 
defines a continuum, moreover, as we will remark here in passing, but each of them again 
decomposes into four separate continua. 
 The analogue to the transformations of G28 in line space are the collineations, while 
the analogue to those of H28 are the correlations.  Namely, (cf., 66a) the left-bushes 
correspond to the bundles of lines there (i.e., left-handed generators R2 on 2

4M ), and the 

right-bushes correspond to the line-fields (right-handed generators R2 on 2
4M ).  We then 

extend Theorem 7 to: 
 
 Theorem 10: The left-bushes are associated with the “left-handed” generators R3 on 

2
6M , and the right-bushes are the “right-handed” generators R3 . 

 
 However, the analogy is not rigorous, since the group (G15, H15) of projectivities in 
line space encompasses only four separate continua of transformations.  One will again 
obtain eight separate families when one once more returns to two dimensions in the form 
of the group of a real, rectilinear, singularity-free second-order surface (12).  In regard to 
that, one recalls the remark at the conclusion of § 1. 
 A point x can be taken to a point x′ by ∞3 motions and ∞3 transfers.  In fact, one can 
vary the α in equations (7) to (10) arbitrarily [cf., however, (9)!], and determine the β 
uniquely from them: 
 
 2β0 =     * − (x1 − 1x′ ) α1 − (x2 − 2x′ ) α2 − (x3 − 3x′ ) α3, 

 
 2β1 =  (x1 − 1x′ ) α0             ∗ − (x3 + 3x′ ) α2 + (x2 + 2x′ ) α3, 

(66) 
 2β2 =  (x2 − 2x′ ) α0 + (x3 + 3x′ ) α1             * − (x1 + 1x′ ) α3, 

 
 2β3 =  (x3 − 3x′ ) α0 − (x2 + 2x′ ) α1 + (x1 + 1x′ ) α2                 *     . 
 
 One finds the ∞3 transfers in a corresponding way: 
 
 2δ0 =     * − (x1 + 1x′ ) γ1 − (x2 + 2x′ ) γ2 − (x3 + 3x′ ) γ3, 

 
 2δ1 =  (x1 + 1x′ ) γ0             ∗ − (x3 − 3x′ ) γ2 + (x2 − 2x′ ) γ3, 

(67) 
 2δ2 =  (x2 + 2x′ ) γ0 − (x3 − 3x′ ) γ1             * − (x1 − 1x′ ) γ3, 

                                                
 (12) Cf., an article by the author in Amer. Trans. 11 (1910), 418-420, 424-426.  
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 2δ3 =  (x3 + 3x′ ) γ0 − (x2 − 2x′ ) γ1 + (x1 − 1x′ ) γ2                 *     . 
 
 It follows from this by our map that: 
 
 Theorem 11: ∞3 left-bushes and ∞3 right-bushes run through a soma. 
 
 The proof breaks down for somas with the property that X0 = 0.  However, one then 

has only to show that these ∞5 somas do not define an invariant submanifold, and one 
sees that already in the transformation: 
 

0′X = X123, 01′X = X01, …, 123′X = X0, 23′X = X23, … 

 
that belongs to H28 . 
 Should a motion (66) or a transfer (67) also take the point y to y′ then the two point-
pairs x → x′ and y → y′ would have to be isometric.  For a fixed y, that will give ∞2 
additional positions for y′, or: 
 
 Theorem 12: ∞1 left-bushes and ∞1 right-bushes run through a pencil of somas. 
 
 A single motion and a single transfer is determined by three pairs x → x′, y → y′, z → 
z′ that are pair-wise isometric. 
 
 Theorem 13: A single left-bush and a single right-bush run through a bundle of 
somas. 
 
 The analogue in line geometry is: A single bundle of lines and a single line-field run 
through every pencil of lines. 
 Theorems 11 to 13 show that there are none of the differences between pencils of 
somas and bundles of somas that one finds between left-bushes and right-bushes. 
 There are skew left-bushes [right-bushes, resp.].  One example will suffice: 
 
 σ0 : σ1 : σ2 : σ3 : 0   :      0  : 0  : 0, 
 σ0 : σ1 :   0 :  0 : σ1 :  − σ1 : σ2 : σ3 . 
 
We take this opportunity to replace the cumbersome criteria (64a, b) with simpler ones.  
The consideration of improper somas (§ 8) yields: 
 
 The bush of somas: 
(52)    X = σ0 A + σ1 B + σ2 C + σ3 D 

 
is a right-somas when the rank of the matrix: 
 

|| A0 B01 C02, D03 || 

is an odd number. 
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 That would lead us to define the bush of all improper somas to be a left-bush, and in 
fact, the following two theorems are necessary for that.  In them, the analogy with line 
geometry will once more be undermined, in which the totality of all improper lines is 
regarded as a line-field, corresponding to a right-handed generator R2 of 2

4M . 

 
 Theorem 14: Two left-bushes [right-bushes] that have a common soma intersect in a 
pencil of somas. 
 
 We can directly assume that X0 ≠ 0 for the common soma.  One must then show that 

when two motions [transfers] S and T simultaneously take x to x′, there will be ∞1 other 
points that transform both of them in the same way.  Any such point is then the fixed 
point of a motion ST−1 that can only be a rotation, since it already possesses the fixed 
point x.  However, the existence of ∞1 fixed points will be confirmed with that. 
 One can also prove it directly.  If one regards the α, β in (66) as given and replaces 
the x, x′ according to (62) then the coordinates of the soma of the left-bush that is 
associated with the motion (α, β) will satisfy the four equations: 
 
 β0 X0 + α1 X23 + α2 X31 + α3 X12 = 0, 

 
 β1 X0 − α0 X23 + α2 X03 − α3 X02 = 0, 

(66a) 
 β2 X0 − α0 X31 + α3 X01 − α1 X03 = 0, 

 
 β3 X0 − α0 X12 + α1 X02 − α2 X01 = 0. 

 
 Our theorem will now be proved (to the extent that it relates to left-bushes) by 
considering two such systems of equations.  For right-bushes, one correspondingly 
employs (67): 
 The coordinates of the somas of right-bushes that is associated with the transfer (γ, δ) 
satisfy the equations: 
 δ0 X0 + γ1 X01 + γ2 X02 + γ3 X03 = 0, 

 
 δ1 X0 − γ0 X01 + γ2 X12 − γ3 X31 = 0, 

(67a) 
 δ2 X0 − γ0 X02 + γ3 X23 − γ1 X12 = 0, 

 
 δ3 X0 − γ0 X03 + γ1 X31 − γ2 X23 = 0. 

 
 If one abbreviates (§ 1) then the four equations (66a) will express the condition for 
the straight line X to run through the point α0 : α1 : α2 : α3 .  With that, on the one hand, 

the stated parallelism of left-bushes and bundles of lines will be established, while on the 
other hand, one can also glimpse a proof of the convenience of the notation for the 
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parameters of motion.  Namely, instead of the parameters (α, β) that are employed here, 
which were introduced by Study, other symbols were employed by other authors, in 
succession: 
 

Study: α0 α1 α2 α3  β0 β1 β2 β3 
Combebiac: α0 − α1 − α2 − α3  β0 − β1 − β2 − β3 
Klein: D − A − B − C  D′ − A′ − B′ − C′ 
Bricard: λ µ v ρ  l m n p (!) 
Schoenflies (13): − D A B C  + 1

2 D1 + 1
2 A1 + 1

2 B1 + 1
2 C1 

 
 The Bricard notation is completely useless in practice.  For all of the other ones, there 
is a discrepancy between (66a) and the corresponding system of formulas in line 
geometry.  Nevertheless, we have summarized them here in order to build a bridge to the 
papers of the aforementioned authors. 
 If one abbreviates the system (67a) then the abbreviated formulas will express the 
united position of the straight line X with the plane γ0 : γ1 : γ2 : γ3 . 

 
 Theorem 15: A left-bush and a right-bush either intersect in a single soma or they 
have an entire bundle of somas in common. 
 
 In fact, the system of eight equations (66a), (76a) will always be satisfied by the 
soma: 
 X0 = α0γ0 + α1γ1 + α2γ2 + α3γ3 , X01 = α0δ1 − α1δ0 − β2γ3 + β3γ2 , 

(68) 
 X123 = − (β0δ0 + β1δ1 + β2δ2 + β3δ3 ), X23 = − (β0γ1 − β1γ0 − α2δ3 + α3δ2), 

 
and all that remains to be examined is the case in which that soma is undetermined. 
 We denote the left-hand sides of the equations in (66a) by L0, L1, L2, L3 and the ones 
in (67a) by R0, R1, R2, R3 .  Furthermore, let: 
 
 − γ1 L0  + γ0 L1  − α3 R2 + α2 L3 = P1, … 
 − α1 R0 + α0 R1 − γ3 L2  + γ2 L3  = Q1, … 
 
 For γ0 ≠ 0, we then have a system that is equivalent to the original one in the form of 
P1 = P2 = P3 = R1 = R2 = R3 = L0 = 0 .  R0 is then linearly independent of R1, R2, R3 .  
However, P1 = 0, P2 = 0, P3 = 0 are then satisfied identically, such that four more 
independent, homogeneous equations will be needed for the determination of the seven 
unknowns. 
 For γ0 = 0, α0 ≠ 0, we take the equivalent system to be the following one: 
 

Q1 = Q2 = Q3 = L1 = L2 = L3 = R0 = 0. 
 

                                                
 (13) Combébiac, “Calcul des Triquaternions”; Klein and Sommerfeld, Theorie des Kreisels; Bricard, 
Nouv. Ann. de Math. 10 (1910); Schoenflies, Rend. Circ. Mat. Palermo 29 (1910). 
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L0 will then be linearly independent of L1, L2, L3 ; Q1 = 0, Q2 = 0, Q3 = 0 will be fulfilled 
identically.  Finally, if γ0 = 0, α0 = 0 then one will have: 
 
 α1 L1 + α2 L2 + α3 L3 = 0, γ1R1 + γ2 R2 + γ3 R3 = 0, 
 β0 R0 +δ1 L1 + δ2 L2 + δ3 L3 = 0, δ0 L0  +β1R1 + β2 R2 + β3 R3 = 0, 
 
such that once more only four independent quantities remain. 
 In the latter case, where the left-bush and the right-bush intersect in a bundle of 
somas, the motion (α, β) and the transfer (γ, δ) transform a plane u into a plane u′ in the 
same way: 
 u0 = α0 δ0 + α1 δ1 + … − β0 γ0 − β1 γ1 − …, 
 
 u1 = α0 γ1 − α1 γ0 + α2 γ3 − α3 γ2 , …, 
(69) 
 0u′  = α0 δ0 + α1 δ1 + … + β0 γ0 + β1 γ1 + …, 

 
 1u′  = α0 γ1 − α1 γ0 − α2 γ3 − α3 γ2 , … 

 
 If the transfer is given in addition to u then the motion will be determined by: 
 
 2 2 2 2

0 1 2 3( )γ γ γ γ+ + + α0 =  + u1γ1 + u2γ2 + u3γ3 , 

 
 2 2 2 2

0 1 2 3( )γ γ γ γ+ + + α1 = − u1γ0 + + u3γ2 − u2γ3 , … 

(70a) 
 2 2 2 2

0 1 2 3( )γ γ γ γ+ + + β0 = − u1γ0 − u1δ1 − u2δ2 − u3δ3 , 

 
 2 2 2 2

0 1 2 3( )γ γ γ γ+ + + β1 = − u1γ0 + u1δ0 − u3δ2 + u3δ3 , … 

 
 The relationship between left-bushes and motions, and right-bushes and transfers that 
is mediated by the formulas (66a) and (67a) will be single-valued and invertible with no 
gaps when one drops the requirements (9) and (19) (i.e., “degenerate” motions and 
transfers) or when one goes from motions and transfers to somas: 
 
 Theorem 16: The totality of left-bushes can be related to the totality of (proper and 
improper) right-handed somas in a single-valued, invertible way without gaps, while the 
total of right-bushes can be related to the left-handed somas. 
 
 Admittedly, in order to do that, one must necessarily extend formulas (66a), (67a) to 
the following ones: 
 α0 X123 + β1 X01 + β2 X02 + β3 X03 = 0, 

(66b) 
 α1 X123 − β0 X01 + β2 X12 − β3 X31 = 0, … 
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 γ0 X123 + δ1 X23 + δ2 X31 + δ3 X12 = 0, 

(67b) 
 γ1 X123 − δ0 X23 + δ2 X02 − δ3 X02 = 0, … 

 
 One then obtains, for example, the left-bush of all improper somas when: 
 

α0 = 0, α1 = 0, … β0 = 1, β1 = 0, … 
 

 In this, one has the possibility of also representing a left-bush, and likewise a right-
bush by eight parameters that are coupled by a quadratic relation (§ 3). 
 All of the remaining questions about linear manifolds of somas can be conveniently 
addressed by the map to point-pairs.  For the applications to differential geometry, we 
consider the figure of two pencils of somas. 
 In the most general case, two pencils of somas cannot be linked by a bush of somas; 
they shall then be called “bush-foreign” (gebüschfremd).  They will then be “bundle-
foreign” (bündelfremd), as well (Theorem 13).  It can happen that: 
 a) Every soma of one pencil is incident with a single soma of the other pencil.  That 
will always happen for the two pencils: 
 

σ1 A + σ2 B and 1 2τ τ′ ′+A B  

when the matrix: 
( ) ( )

( ) ( )

′ ′
′ ′

AA AB

BA BB
 

 
has rank two.  The totality of all somas that have an incident soma in each of the two 
pencils defines a nonlinear, irreducible manifold that possesses a connection to a 
singularity-free 2

2M . 

 
 b) However, if the rank is one then there will be a single soma in each pencil that is 
incident with all somas of the other pencil.  All somas that have an incident soma in each 
pencil then divide into two bundles of somas that intersect in a pencil of somas, or: 
 
 c) The two original pencils of somas have a common soma.  We give an example for 
each of the three cases: 
 

a)    1 2: : 0 : 0 :

0 : 0 : 0 : 0 :

σ σ
 

1 2

0 : 0 : 0 : 0 :

: : 0 : 0 :τ τ
 

 

b)    1 2

1

: : 0 : 0 :

0 : 0 : : 0 :

σ σ
τ

 
2

0 : 0 : 0 : 0 :

0 : : 0 : 0 :τ
 

 

c)    1 2

1

: : 0 : 0 :

: 0 : 0 : 0 :

σ σ
τ

 
2

0 : 0 : 0 : 0 :

0 : : 0 : 0 :τ
 



Beck – On linear manifolds of somas 27 

 It is, moreover, possible that two pencils of somas can be coupled by a single bush of 
somas.  They will then be bundle-foreign (Theorem 13) and have no common soma.  
There are two cases (left-bush, right-bush). 
 It can then happen that two pencils of somas can be coupled by precisely two bushes 
of somas, namely, a left-bush and a right-bush.  They will then have a common soma and 
can be coupled by a bundle of somas. 
 Finally, the two pencils of somas can coincide; there are then ∞1 coupling left-bushes 
and just as many right-bushes. 
 The matrix that was just considered will have rank zero for all non-bush-foreign pairs 
of pencils of somas. 
 We are now in a position to be able to rectify a deferred proof.  Since there are ∞6 
left-bushes, each of them will be fixed by a group of soma transformations that depends 
upon 28 – 6 = 22 parameters.  Their transformations all belong to G28 (i.e., and not to 
H28).  If the left-bush is that of all improper somas, in particular, then one will be dealing 
with the group G22 . 
 
 
 11.  The map (61), (62) of somas to point-pairs was endowed with singularities; the 
somas with the property that X0 = 0, which we briefly call critical, could not be mapped.  

These exceptions can be ignored when one appeals to a new conceptual image and speaks 
of critical point-pairs.  Admittedly, such a thing is accessible by only part of one’s 
intuition.  As we anticipate, it consists of an ordered pair of oriented directions that is 
endowed with a number, or rather two such “figures” that are coupled in some way. 
 A pencil of somas can consist of nothing but critical somas.  In the other cases, there 
will be a single critical soma, and we consider all ∞4 pencils of somas that possess the 
same critical soma.  From § 9, each of them will be mapped to a pair of isometrically-
related lines that will be casually distinguished as the initial line and the final line.  
However, for the aforementioned ∞4 pencils of somas, the initial lines will all be parallel 
to each other, and likewise for the final lines.  However, the two bundles of parallels that 
are determined in that way given rise to ∞5 pencils of somas, so the critical soma is still 
not defined; one must be given the type of isometric relationship. 
 If P is a proper initial line, and P′ is a proper final line (Plücker coordinates) then 

let: 
P11 = P02 P12 − P03 P31 , …  P2 = 2 2 2

01 02 03+ +P P P  . 

 
 The ∞1 point-pairs: 
 P: x  = P11 + (t – c) P P01 : P

2, … 

(71) 
 P′ : x′ = 11′P  + (t + c) P′ 01′P  : P′2, … 

 
then give an isometric relationship between the spears P : P0i : Pkl  and P′ : 0i

′P : kl
′P  

for varying t.  If one then lets c vary then another isometric relationship will result.  From 
(61), the soma that is associated with the point-pair P → P′ will be: 
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 X0 = 2 P2 P′2, 
 
 X01 = P′2 P11 + P2 

11′P  + (t – c) P′2 P P01 + (t + c) P2 P′ 01′P , … 

(72) 
 X123 = 1

2P
2 2 2 2

23 31 12{ }′ ′ ′+ +P P P − 1
2P′2 2 2 2

23 31 12{ }+ +P P P + 2 c t P2 P′2, 
 
 X23 = P′2 P11 − P2 

11′P  + (t – c) P′2 P P01 − (t + c) P2 P′ 01′P , … 

  
 Let c be fixed and let t be variable.  (72) then represents a pencil of somas whose 
critical soma is ascertained by passing to the limit of t = ∞: 
 
 X0 = 0, X01 = P′ P01 + P 

01′P , … 

(61a) 
 X123 = 2 c PP′, X23 = P′ P01 − P 

01′P , … 

 
 c probably enters into that, but no longer the line coordinates P23, …, 23′P , …  If one 

then varies the line P or P′ inside of their bundle of parallel then the critical soma will 

remain the same.  If one changes the orientation of both lines, as well as changing the 
sign of the weight c, then one will still arrive at the same critical soma.  Conversely, if its 
coordinates are given then it will, in fact, be double-valued: 
 

P01 : P = ρ (X01 + X23), …, 01′P : P′ = ρ (X01 − X23), …, c = ρ X123 ; 

(62a) 
1 : ρ2 = 2 2 2 2 2 2

01 02 03 23 31 12+ + + + +X X X X X X . 

 
 One can now define a critical point-pair as the “figure” of two ordered spear direction 
that are weighted with a number and do not change when one changes all of the 
orientations and signs of the weights.  Every soma can now be assigned a unique point-
pair invertibly and without exceptions (14). 
 The weight c mediates an association between the (oriented) normal planes of the 
oriented directions P and P′.  The normal plane to P at the zero distance t – c will be 

associated with the normal plane to P′ at the zero distance t + c [cf., (71)].  Any point P 

can be linked with all ∞2 points P′ of a plane (II), and likewise every point P′ with all ∞2 
points P of a plane (I), when I and II are such associated normal planes of P and P′.  
One will then obtain ∞5 point-pairs (P → P′) that one calls “isometric to the critical pair 
(P, P′, c)”, so the incidence condition for the associated somas will imply the condition 

for the isometric position of the pairs x → x′ and (P, P′, c): 

 

                                                
 (14) When one introduces an improper critical pair that corresponds to the soma 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0.  
However, it would probably not pay to go into that any further.  
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(73)  P 1 01 2 02 3 03{ }x x x′ ′ ′ ′ ′ ′+ +P P P  – P′{ x1 P01 + x2 P02 + x3 P03} = 2c P P′. 
 
If one cancels the factor PP′ on the right then the two terms on the left will give the 

projections of the vector at the endpoint (starting point, resp.) along the oriented final 
direction (initial direction, resp.) when the two vectors are attached to the origin. 
 The isometric position of the two critical pairs (P, P′, c1) and (Q, Q′, c2) will now 

be defined by: 
(74)  P′Q′(P01Q01 + P02Q02 + P03Q03) = PQ 01 01 02 02 03 03{ }′ ′ ′ ′ ′ ′+ +P Q P Q P Q . 

 
The angle (which is given by just its cosine) between the two initial directions is equal to 
the angle between the two final directions. 
 The critical pairs that are associated with improper somas are characterized by the 
fact that initial direction is opposite to the final direction. 
 If that is not the case then the weight c will be closely related to the step size 2H0 of 
the unscrewing that takes the protosoma to the associated (now proper) soma.  If one then 
orients the unscrewing axis by the requirement that: 
 

2 2
01 01 02 02 03 032 2 { }′ ′ ′ ′ ′+ + +P P PP P P P P P P = 2 PP′ cos1

2 (P, P′) 
 
then one will have: 

c = H0 cos1
2 (P, P′). 
 

 It shall now be shown how the pencils of somas that consist of nothing but critical 
somas are mapped.  Let the images of the basic somas in the pencils be the pairs (P, P′, 
c1) and (Q, Q′, c2).  Since they must be isometric, the rectilinear carriers of P′ and Q′ 
will be separate, as long as that is true for P and Q, and conversely.  P and Q are 

parallel to the planes of a pencil of parallel planes, and similarly, P′ and Q′.  One takes 

an arbitrary R that is parallel to the first of these two pencils of planes, and likewise a 

direction R′ that is parallel to the second one.  R and R′, when suitably weighted, will 

then determine a variable soma in a pencil of somas. 
 One must distinguish the same two cases when the pencils of somas consist of 
nothing but improper somas. P′ must then be opposite to P, and Q′ must be opposite to 

Q. 

 One makes the relationship clearest when one appeals to the spherical map of the 
oriented direction to the unit sphere. 
 
 
 12.  The map of somas to point-pairs also proves to be so fruitful and intuitive for the 
study of nonlinear soma figures that we shall next derive it in another way and would 
then like to bring about its constructive implementation. 
 One sets: 
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 X0 + κ2 X123 = ξ0, X01 + X23 = ξ1, …, 

(75) 
 X0 − κ2 X123 = 0ξ ′ , X01 − X23 = 1ξ ′ , …, 

 
where κ2 is an arbitrary positive constant that will first be set to zero.  One will then have: 
 
 X0 = 1

2 (ξ0 + 0ξ ′ ), X01 = 1
2 (ξ1 + 1ξ ′ ), … 

(76) 
 κ2 X123 = 1

2 (ξ0 − 0ξ ′ ), X23 = 1
2 (ξ1 − 1ξ ′ ), … 

 

(77)  2 (XX) = 2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 32 2

1 1ξ ξ ξ ξ ξ ξ ξ ξ
κ κ

′ ′ ′ ′+ + + − − − −  = 0. 

 
If we accordingly set: 
 

(78)  2 2 2 2
0 1 2 32

1 ξ ξ ξ ξ
κ

+ + + = 2
2

1
ωξ

κ
 = 2 2 2 2

0 1 2 32

1 ξ ξ ξ ξ
κ

′ ′ ′ ′+ + +  

 
then the formulas (75) and (76) will mediate a gapless, invertible, single-valued 
association of somas with pairs (ξω : ξ0 : ξ1 : ξ1 : ξ2 : ξ3) → (ξω : 0ξ ′ : 1ξ ′  : 2ξ ′  : 3ξ ′ ) of 

points of R4 that be selected from the singularity-free 23M  whose equation is contained in 

(78), or even to double-pairs, so one can also replace the given pair with the pair (− ξω : 
ξ0 : ξ1 : ξ1 : ξ2 : ξ3) → (− ξω : 0ξ ′ : 1ξ ′  : 2ξ ′  : 3ξ ′ ).  We construct a projective metric on the 

2
3M : 

(79)   cos (ξ, η) = 
2

1

κ
ξ0η0 + ξ1η1 + ξ2η2 + ξ3η3 : 2

1

κ
ξωηω . 

 Since: 
 

2 (XY) = 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 32 2

1 1ξ η ξ η ξ η ξ η ξ η ξ η ξ η ξ η
κ κ
   ′ ′ ′ ′ ′ ′ ′ ′+ + + − + + +   
   

, 

 
incident somas X and Y will then be mapped to double-pairs that are isometric, in the 

sense of non-Euclidian geometry that is defined by (78) and (79): 
 

cos κ (ξ, η) = cos κ (ξ′, η′). 
 
 We would now like to pass to the limit of κ2 = 0, and then calculate: 
 

2

1

κ
sin2 κ (ξ, η) = 

2 2 2 2
0 0 0 0
2 2 2 2 2 4
0 0 0 0

( | ) ( | ) 2( | ) {( | )( | ) ( | ) }

{( | ) ( | ) } ( | )( | )

ξ ξ η η η ξ ξ η ξ η κ ξ ξ η η ξ η
ξ η κ ξ ξ η η η ξ κ ξ ξ η η

+ − + −
+ + +

, 
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in which we have get: 
(ξ | η) =  ξ1η1 + ξ2η2 + ξ3η3, 

to abbreviate. 
 In the limit, one will then have: 
 

(ξ, η)2 = 
2 2 2

3 31 1 2 2

0 0 0 0 0 0

ξ ηξ η ξ η
ξ η ξ η ξ η
     

− + − + −     
     

, 

 
such that the symbol (ξ, η) will be the Euclidian distance between the points (ξ0 : ξ1 : ξ2 : 
ξ3) and (η0 : η1 : η2 : η3).  In the limit, the 2

3M  will become: 

 
2 2

0ωξ ξ−  = 2 2
0ωξ ξ ′−  = 0. 

 
 If we set ξω − ξ0 = ξω − 0ξ ′ = 0, so ξ0 = 0ξ ′ , then (76) will go to: 

 
X0 = ξ0 , X01 = 1

2 (ξ1 + 1ξ ′ ), …, X23 =  1
2 (ξ1 − 1ξ ′ ), …, 

 

while X123 = lim 
2

1

κ
(ξ0 − 0ξ ′ ) will be implied by (2).  With that, formulas (61) are once 

more obtained.  The assumption that ξω + ξ0 = ξω + 0ξ ′ = 0 will yield the same thing, 

while the two otherwise conceivable possibilities will yield nothing useful.  In the limit, 
one will no longer have double-pairs in 2

3M , or what amounts to the same thing, in 

conformal three-dimensional space, but simple pairs in projective space.  For that, the 
singularities will appear that we had to address in § 11. 
 The constructive implementation of the map can result in a more or less satisfactory 
way when we start with point-pairs P → P′ (x → x′) and each time seek the defining data 
of the motion that takes the protosoma to the desired associated soma.  There is an entire 
series of cases to distinguish; that relations that are thus introduced will remain valid in 
each of the following cases: 
 Let M be the midpoint of PP′, and let O be the midpoint of the protosoma. 
 
 1. P and P′ coincide at O.  Identity motion.  Protosoma. 
 2. P and P′ are distinct, but M coincides with O.  The length and direction of OP′ 
gives the step size and direction of translation. 
 3. P′ coincides with P, but M is distinct from O.  Rotation around the axis OM.  For 
an arbitrary orientation, one will have tan Θ0 = MO = − OM. 
 4. Let P′ be distinct from P, and M, from O, but PP′ runs through O.  Screwing 
motion around OM.  P* means the mirror image of P relative to O, and M* means the 
midpoint between P and P*.  With an arbitrary orientation of the screw axis, one will then 
have: 

tan Θ0 = MO, H0 = M*O. 
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 5. Now, let PP′ not run through O.  For OP′ = OP, one is dealing with a rotation, 
and otherwise a screwing motion whose axis is parallel to OM, but no longer runs 
through O.  The altitude of O to P*P has the base point Q.  For any syntactic orientation 
of OM and P*P, one will have: 

tan Θ0 = MO, H0 = M*Q. 
 
 Now, OQ is oriented arbitrarily, and defines the second axis of a right-handed soma 
whose first axis is defined by OM.  The third axis will then be determined uniquely.  One 
measures out the segment OQ : OM along it from O.  A point of the screw axis is given 
by that, as well as the axis itself (cf., Fig. 1). 

 

O 
P* 

Q 
M* 

P 

M 

P′ 

 
Figure 1. 

 
 6.  Critical pair (P, P′, c), where P and P′ coincide.  The spear through O that is 

syntactic to it is the unscrewing (reversal) axis, which makes H0 = c. 
 7. Critical pair (P, P′, c), where P and P′ are opposite.  An improper soma is 

associated.  One will obtain the associated spear direction (§ 5) when one rotates the 
protosoma of the rotation around any spear P′ through 2Θ0, where cot Θ0 = c. 

 8. The directions P and P′ of the critical pair belong to different bundles of 

parallels.  cos (P, P′) is then given uniquely.  We decree that 1
2 (P, P′) should mean two 

arbitrary steps.  However, cos1
2 (P, P′) and sin1

2 (P, P′) will then be determined 

uniquely. 
 We construct a right-sided trihedron through O.  Let the direction cosines be: 
 
 a) P′ P01 + P 01′P : 2 P P′ cos1

2 (P, P′), …  (“true” bisector) 
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 b) P′ P01 − P 01′P : 2 P P′ sin 1
2 (P, P′), …  (“false” bisector) 

 
 c) P03 02′P − P02 03′P : 2 P P′ sin (P, P′), …  (common normal direction). 

 
One measures out the segment tan 1

2 (P, P′) around O along the third, uniquely-

determined axis, and thus has a point of the unscrewing (reversal) axis.  It is oriented 
syntactically to the true bisector direction, which then implies that: 
 

H0 = c : cos1
2 (P, P′) . 

 
With that, we have once more arrived at the last formula of § 11. 
 
 Bonn, December 1919. 
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