Excerpted from Henri Beghistude théorique des compas gyrostatiques Anschutz et Speéses de
I'entre-deux-guerres, 1922. Translated by D. H. Delphenich.

FIRST CHAPTER

EXTENDING THE LAGRANGE AND APPELL
EQUATIONS TO SYSTEMS THAT INCLUDE A SERVO

3. The general theorems of mechanics (in particular kifetic moment theorem)
are convenient for an elementary study of the compagshbir application to a more
precise study presents some difficulties of a prachiatlre that one can avoid by the use
of the Lagrange equation or the Appell equations.

| would like to recall the conditions under which tb@xjuations apply. | will show
that those conditions are not realized in systemsthkeSperry compass that include a
servo {), but | shall indicate the modifications that mustnhede in order to permit that
application.

4. Constraints.— If the parameters, oy, ..., 0, that the configuration and position of
a system depend upon are coupled by a certain number efdquiations of the form:

$(Qu G2, ..., G ) =0

then one says that the systerhadonomic That is the case, for example, for a system of
invariable solid bodies that are in contact with eatifteloand some fixed or moving
foreign obstacles that are known in advance as fumcoft.

If certain constraints are expressed by non-integrageations between the
parameters and their derivatives with respect to tinem tthe system is callegon-
holonomic That is true, for example, for solid bodies that subject to rolling over each
other without slipping. The equations that translate ehoenditions are linear with
r?spect to the first derivatives of the parameters: Hueyirst-order linear constraints
).

In regard to that, 1 would like to recall that the doaisits are considered from a
purely-analytical viewpoint that is independent of the particular manner bichvthey
are realized.

However,can one abstract from the manner by which a constraint is realized?
other words, is the motion of a system determined éntiog the constraint equations
and the initial values of the parametgrscp, ..., 0, and their first derivatives?

(") Translator: The French wordsservissemenineans “servitude” or “slavery,” but the modern
terminology for these constraints is “servo-constsa? so | have chosen to translate the word as “servo

() On this topic, see P. APPELI-F]; J. HADAMARD [1]; E. DELASSUS L, 2]; P. APPELL gave
numerous bibliographic references #. [



Beghin — Extending the Lagrange and Appell equations torsgdteat include a servo. 2

That question has been the object of numerous stjlies \ill summarize some of
the results that relate to holonomic systems andhatsromic systems with first-order
linear constraints.

A constraintL on a systenx can be realized with or without recourse to an auyilia
systemZ; . In the first case, the realization of the caaistris calledperfectwhen the
introduction of that system imposes no restriction len ibfinitesimal displacements of
the system> that are, in turn, all of the displacements tha emmpatible with the
constraintL. It isimperfectif there is no restriction on the infinitely-smédlsplacements.

Hence, one has, for example, the following situatimat was cited by DELASSUS
and is realized imperfectly by the constraint a that is imposed upon a material point
whose coordinates argy, z: The fork of a unicycle of radiwsis kept vertical by means
of a tripod that rests on the plaRegz = 0). The unicycle touches the plaReand the
friction is assumed to be sufficient to make any stigpmpossible. The material point
is attached to the center of the unicycle.

The systenk is composed of that point. The unicycle, fork, and tripouistitute the
auxiliary systenk; .

That arrangement obviously permits the material pwirgccupy all of the positions
in the planeQ (z = a), and is realized, in turn, by the given constrainowklver, it is
realizedimperfectlybecause under any infinitely-small displacementhefgysten?;,
the displacement of the material point will obvious®/ ibh the plane of the wheel, so it
cannot have an arbitrary direction in the pl&neviz., there is a restriction.

On the contrary, if one attaches the point to timereof a sphere of radiasthat rolls
without slipping on the plane then one will get perfectrealization of that constraint.

One easily verifies that an imperfect realizationl wiecessarily provide non-
holonomic constraints.

4. Applying d’Alembert’s principle. — If the constraintg that are imposed upon a
system> are realized by means of an auxiliary syskanthen | shall apply d’Alembert’s
principle to the systerkZ; : The virtual will done by inertial forces, given fes; and
constraint forces is zero for any displacement, iarghrticular, any displacement that is
compatible with the constraints on the system that might exist at the instamt

If the constraint forces — i.e., the forces whose @epis to insure that various
constraints -€o zero work for each other those displacememtsl if on the other hand,
the inertial forces in the systexm are negligible (the mass &f is negligible), as well as
the given forces that are applied3p, then the inertial forces on the syst&nand the
given forces that are applied to it are the only ohasénter into d’Alembert’s equations.

If the systenk; realizes the constraingerfectlythen the displacements of the system
> that are compatible with the constraints on theesysi>; will be the same as the
displacements that are compatible with the consgdintin such a way that the
d’Alembert equation is the same and applies to the sasmadements as if the
constraintsL were realized without the help & . The motion of the system is
determined by the equations that express the constraints L and thé valties of the
parameters and their first derivatives (initial positions and veldcityis independent of
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the manner by which the constraints L are realized, and in particularatixdiary
systenk; .

On the contrary, iE; is realizedmperfectlythen the constraintsand the application
of d’Alembert’s principle to thex; will give only one part of the equations that are
capable of determining the motion, and whigh, in turn, depend upon the way that the
constraints are realized.

However, those results suppose in an essential wdytttbawork done by the
constraint forces is zero under all displacementsahfacompatible with the constraints
that might exist at the instant

Now, despite the very general character that is mofteh left to the nature of the
constraint force, it does not seem that the authors bansidered (to confine myself to
first-order constraints) any constraints that expressegthing beyond the contact
condition, or rolling without slipping or pivoting or angr€es beyond the corresponding
contact forces. The foreign obstacles are assumbéd fixed or moving as a function of
that is known in advance.

Under those conditions, the fundamental hypothesisnhatstated above on the zero
value of the work done by constraint forces is equivalerihe following one on the
nature of the body considered:

The resistance to rolling is neglected for all typésontact. For the ones where
there is pivoting, the resistance to pivoting is aleglected. For the ones where there is
sliding, the reaction is, in addition, supposed to be abrimn other wordsany source of
the dissipation of energy is neglected.

Those propositions apply to systems of invariable sobdids and extend to
incompressible liquids and perfectly flexible and inexteesgitings and membranes on
the condition that there is no viscosity or stiffnesmsd more generally, to any system that
is not capable of contraction or dilatation and exhibhidisphenomena that involve the
dissipation of energy.

Leaving aside the systems that are capable of contnamtidilatation, | return to the
guestion that was posed abovel[§

Can one abstract from the manner by which a constraint is realized?

From what was just recalled, it seems that the ansmest be in the affirmative
whenever one is dealing with systems that involve nopditisn of energy and perfect
realizations. In particular, it seems that this Wil the case for holonomic constraints
without friction.

| would like to show that this is not true: On the trary, there exists an important
category that realizes the constraints by a methadishcompletely different from the
ones that were just examined. For those mechanidrasariswer to the preceding
guestion is in the negativ€@ne cannot abstract from the way that the constraints are
realized.

6. Mechanisms that include a servo- The constraints that are realized by these
mechanisms can be arbitrary; most often, they a@nbaohtic. However, instead of those
realizations being — so to speak — passive ones that aieatbby simple contact, they
are ones that use arbitrary forces (e.g., electromiagoeces, pressure from compressed
air, etc.); in a wordauxiliary energy sources that come into play automatically and are
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automatically designed to realize this or that constraint at each inst@mie can even
imagine a living being that acts by contact and reguléseactions in such a way as to
realize this or that constraint.

Let a solid bodyz (a disc, for example) move around a diameieunder the
influence of certain given forces. A solid boBy (a concentric ring of diametédy, for
example) moves arounfl without having any contact with. The ringX; carries a
toothed wheeh whose axis i€®A and which meshes with a pinidnthat is press-fitted
(calé suj onto the shaft of a motdd . It is easy to imagine an arrangeméptlifat does
not act directly on eitheX or %; , but brings the motav! into play, in one sense or the
other, whenevek andZ; are not in the same plane. dfanda; are the azimuths & and
21 then the constraint:

a=m

will be found to be realized in such a way ttia ring; follows the dis& in all of its
motions around\ without being driven by.itIt is obvious that the manner in which that
system behaves has nothing in common with the mannghich it would behave iE
droveZ; by direct contact. For example, if a small sprinfixied to Z; and acts upo
then the system will take on a uniformly-acceleratestion in the case of servitude,
while it will obviously remain immobile under the second hyiesis.

What are the forces of constraint on the systethamreceding example?

If I consider the systerhZ; then those forces will be, on the one hand, theticres
along the axig\, which will be the ordinary constraint forces, and thactions of the
pinion b on the whee&. Those reactions, which play a major role in theblenm, have
an entirely special character, because the pibi@rnz., the foreign obstacle) that exerts
them is not fixed, nor is its motion known in advaasea function of : It is an obstacle
whose position is known in advance as a function of the parameters @veich o,
here) upon which the system considex&d depends.

If I surround the rotoR of the motor in the system considered then the constrain
forces will be, in addition to the actions due to contzetween the fixed obstacles and
the ones due to the cont&; , which are ordinary constraint forces, the electromagne
actions to which the rotor is subject on the part of taeos Indeed, those forces have
the character of constraint forcddey are unknown, but one knows that they have the
value that is necessary to insure the constraint considered.

Under any elementary displacement that is compatiltfethe constraintr = a1, the
ordinary constraint forces will do zero work. On tantrary, the other constraint forces
(which amount to the reactions of the foreign obstelhose position depends upon the
parametersy, ai, or those electromagnetic actions that are exenmeth® rotor from a
distance) will do non-zero work, and that is why thehamisms that include a servo are
distinguished from the other ones.

(®) See the description of the Sperry compas$hia Sperry gyrocompass and navigation equipment
publ. by Sperry Gyro. Co., NY, 1913.
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7. General study of mechanisms that include a servo. D’Aléert’s principle. —
Let Z be a material system that involves no cause fordiksipation of energy. |
suppose, in addition, that no part of that system iskdapaf contraction or dilatation,
with the exception of what will be assumed below.

Upon taking into account the contacts that are imposed iipthat system will be
supposed to depend upon a limited nuntbef parametersg, Op, ..., gx in such a manner
that the coordinates y, z of each element & will functions of those parameters that are
known in advance, and also possibly functions of time:

1) x=f(q, gz ..., Oh, 1), y=..., z=...

Some of the foreign obstacles ttais in contact with are fixed or depend upon
Others, as a result of the contacts imposed, are suppmdepend upon a certain number
k of the previous parameters, namely,de, ..., 0k, and also possiblty

Those contact conditions dnelonomic contact constraints.

| suppose, in addition, that the system is subjecettain non-holonomic relations —
i.e., that the parametecs, O, ..., g» are coupled by a certain numheof differential
relations that express the conditions of rolling withelipping or pivoting for some of
the contacts. Those relations will permit one to esgpthep elementary variations:

dq1+1,dq1+2,...,dq1+p (n+p:h)

as functions oflq , do, , ..., dg,, anddt; they have the form:

Adg+---+ A dg+ AdEO,
(2 (o relations) B,dg+---+ B dq+ Bdt0,

Those conditions aneon-holonomic contact constraint¥.hese are the only two types of
constraints that one encounters in the modern problems

Under any elementary displacement that is compatittitethe constraints that might
exist at the instartt (i.e., ones for whichit is zero andy; , & , ..., A, are arbitrary),
the mutual reactions between the bodies of the syslemero work, as well as the
reactions of the fixed obstacles or the ones that deppont. | will say that those
reactions areonstraint forces of the first kind.

In addition, the systerk is assumed to be subject to some other constrédatsl t
shall call servo-constraintswhich are also expressed by finite equations or linear
differential equations, but are realized by means of fotbat are entirely different.
Those forces, which | shall cajeneralized constraint forcesr onesof the second kind
are applied to the bodies of the system. They caxteenalor internal.

In the first case, they will be either actions atlistance, such as electromagnetic
actions or others, which are goverrematomaticallyin such a manner as to assure the
finite of differential constraint that they are chad with realizing, or contact actions
from foreign obstacles whose position is supposed to depeonq, o, ..., ¢, t, and
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whose motion must be governadtomaticallyin such a manner that certain finite or
differential equations are verified by the paramepeaseach instant)

If the constraint forces of the second kind are iratketimen they will be either actions
at a distance, such as electromagnetic ones, or ahtstresses in the bodies that are
capable of contraction or dilatation (e.g., compressednauscles in a living being),
which are stresses that are goveraatbmatically(for example, by the will of the living
being) in such a manner as to realize this or that comstfhi

The systenX can be composed of an electric motor whose velaeis/ independent
of the load, which might be, for example, a bypassom@noteur-dérivatiop, within
certain limits. The servo-constraint thus-realizell ave the form:

dé= wdt

The system can consist of a cyclist and his machinee clyclist can contract his
muscles, not by a given quantity, but by a quantity thatffscgent for certain constraints
to be realized: It governs the action of his legs irhsumanner that it realizes a constant
angular velocity, or rather, he contracts the missofenis body in such a way that it will
realize an inclination of the frame that is a funetaft, etc. The methods that will be
described below will permit one to study the variatiorhefainknown parameters.

One can also imagine, as an application, a Elspch that one padr of its cargo is
put into motion automatically by a motor in such a manaerto realize certain
constraints: As an example of a servo-constraim, @an have that the ship must remain
constantly vertical, which is realized by a roll stataii. A small gyrostatic apparatus
that is based upon the principle of the Schlick stabilizight indicate the true vertical on
board. The servomotor will come into action when tretical is not in the symmetry
plane of the ship. One can also govern the motiaminfsuch a manner as to realize that
relation between its position and the inclination ¢f #hip. One can then change the
period of oscillation of the ship at will and avoid teygnchronism of the hull, where
appropriate. One can govern the motiorooh such a manner as to realize that relation
between its position and the angular velocity of thp,skhich will permit one to absorb
the oscillations, etc. The constraint forces @f slecond kind will be the mutual actions
of £ ando here.

A material system that presents constraint fordese second kind will be said to
include a servo. It is obvious that thevirtual work done by constraint forces of the
second kind will be generally non-zero.

Having posed those definitions, | will suppose that thexe servo-constraints, some
of which are finite, while others are differentials,tsey will have the form:

g(q,...,q,)=0,..

3) (r relations)
gdg+e,dg,+---+¢, dg+& dt=0,...

() It is interesting to remark that these contact astibave a mixed character, since they are, on the
one hand, associated with contact constraints, anaeostiier hand, with servo-constraints.

(") Except for that exception, as was assumed at the begiohihig paragraph, the system will not be
assumed to be compressible.
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The virtual displacements of the system that are pesivle with the contact
constraints that might exist at the instarfdt = 0) are obtained by taking — p of the
elementary variationsq , ..., &, arbitrarily. The othep are defined by the relations
(2), which reduce to:

A15q1+...+ A, d5h+ Adt=0,
(2) (p relations) B og+---+Bdg+ BOt=0,

here.
Among those displacements, there will exist onesvioich one can confirm priori
that the force done by constraint forces of the sedond is zero without knowing
anything but their mode of actio)( | suppose that they are the ones that simultaneousl
verify thej relations:
a15q1+...+ a, CBh =0,
(4) ( relations) <

D’Alembert’s principle, when applied to any of thosespdacements, can be
expressed by the equation:

(5) S m(Xx+ Y3 y+ 45 3= (XOx+ Y3 y+ B 3,

The Z sign on the left-hand side extends over all elemeftseosystemm denotes the
mass of one of those elements, aridy”, z” are the projections of its acceleration, while
theX sign on the right-hand side extends over all ofgilven forcesX, Y, Z. Indeed, it is
obvious that for those displacements, the constrairtes, which are of the first or
second kind, do zero work.

That equation decomposes irtep-j equations, since onlg-p-j of those variations
are arbitrary, because tleelementary variations , ..., ¢, , t are subject to the
relations (2) and thg relations (4).

() If two solid bodiesS andS’in the system exert actiofts F’, resp., on each other that are constraint
forces of the second kind then the virtual work that isedoy those two forces will be independent of the
reference frames, since those two forces form eisy$hat is equivalent to zero. | shall refer togbkd
body S’ By itself, the forcd- that is applied t& will do work. The virtual displacement is supposed to
take place during the fictitious time interval, so that work will have the expression:

(U, X+ U, Y+U,Z+pL+gM+N)dt,

in which X, Y, Z, L, M, N denote the coordinates Bfwith respect to arbitrary axes, whpeq, r, U,, Uy, U,

are those of the system of vectors that charactdrzeirtual velocities of the various points $fwith
respect to the solid body (H. BEGHIN [1], t. 1, pp. 131). That expression is linear with respediq.
When one is dealing with a cyclist, one will immab#l the articulations that are commanded by the
muscles whose internal stresses are constrainsfofdée second kind, while leaving free the onesdteat
commanded by muscles whose action is zero or given in eglvan
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In order to effectively write these equations, | skeafiploy the method of Lagrange
multipliers: Ifx, y, z are expressed as functionsgef, ..., g , t by equations (1) then the
left-hand side of equation (5) will be the sunhdérms of the form:

0x ay 0z
6 Ot E mxX—+y—=+12 P
© | ( aq yaq 6qj %

in whichq denotes any of the parameters. The right-hand side is the suimtefms of
the form:

_x ay az
7) 5q2m( +Yaq aqj Qx.
The d’Alembert equation is written:
(8) P1—Q) dp+(P2—Q) A2+ ... + Pn—Qn) dh=0

| append to that equation tperelations (2), multiplied by the coefficients M, ...,
respectively, and thg relations (4), multiplied by, 4, ..., respectively, where those
coefficients/\, M, ..., A, 4, ... constitutep + | auxiliary unknowns. | get the equation:

(9) > (P-Q+AA+MB+...+da+ub+..)& =0,

in whichi represents the indices 1, 2, h., The multipliersA\, M, ..., A, &, ... can be
chosen in such a way that the coefficientgof j of the variationsdy will be zero,
because, of course, the relation9 éhd (4) are independent in the preceding. Equations
(9) must be verified for anf-p-j of the other variationgq; , in such a way that the
coefficients of thosé-p-j variations in equation (9) also be zero.

In summary, the problem comes down to solvingtkeguations:

-Q-ANA+MB+---+Ag+uh+---=
(10) PR-Q-AA+MB+---+Aa+ub+---=

to which, there is good reason to append phequations (2) that express the non-
holonomic contact constraints and theservitude equations (3), so in &l+ p +r
equations ih +p +j unknowns @i , ...,gn, A\, M, ..., A, 44, ...).

If it happens that of them are greater thgnthen the problem will generally be
impossible to solve; i.e., it is not possible to @Ak number of the servo-constraints that
is greater than the number of restrictive conditittmst one must impose upon the
parameters in order to annul the virtual work done byctmstraint forces of the second
kind.

If r is equal tg then the problem will be solved by the equations (2), (&),(20).
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If r is less than then the motion will be indeterminate: One imagimasreover, that
if the functions that must replace the forces ofgaeond kind are not sufficiently well-
defined then their elimination will become impossiblad @ahat the motion cannot be
studied without one giving at least part of them.

8. Special cases:

1. | suppose that equations)(2vhich express the idea that the virtual displacesent
are compatible with the non-holonomic contact condisaand that equations (4), which
one is led to introduce in order to annul the work donedmnstraint forces of the second
kind, are solved with respect to the- j = mvariationsdq, ..., Om :

50& = 'Am+15qm+1 oot 'Ahaqh’
(11) e,

The Lagrange multipliers then become superfluous. dplaced,, ..., Am in equation
(8) with those expression then | will get an equatiat ihlinear indgm+1, ..., dh, Which
must be verified for any of those variations, sohfer mequations of the form:

(12) P —Qm+i + Amsi (Pl —Ql) + oo+ L (Pm —Qm) =0,
in whichi denotes one of the numbers 1, 2,h.—=m

There is good reason to appendpleguations (2) and theservitude equations (3) to
these equations.

9. - 2. If equations (11) reduce to:
(13) =0, ....an=0
then the equations of motion will reduce to the simpitent
(14) Pt = Qmet ) oees Ph=0Qn.
10. - 3. | suppose that the constraint forces of the skkonl are solely the contact
actions of one auxiliary systelh of moving obstacles whose positions depend upon a

certain numbeq, , ..., g« of the parameters, , ..., g . In that case, the relations (4) will
be:

(15) dqlzo, ...,dqh:O,
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because it is by keeping those obstacles fixed that dhamnmul the work done by their
actions on the given system The multipliersd, 4, ... will become superfluous, because
equation (8) will no longer contaitgk:1, ..., & . Equations (10) will reduce to the
following ones, which ar — kin number:

Pk+1_Qk+1+/\ Ak+1+ M B<+1+"':O!
(16) e
R=Q+A A+ MB+--=0,

and as in the general case, there is good reason to apmegndquations (2) and the
relations (3) to them, namellg,— k+ p + r relations inh + p unknowns. The problem is
determinate when the number of servitude equation is equahe numberk of
parameters upon which the auxiliary systéngdepends.

11.—- 4. If the hypotheses are the ones in the precedingrppta(10. — 3) then | will
suppose, in addition, that the contact constraints @system are all holonomip € 0).
The multipliers/\, M, ... will also become superfluous, and equations (10) willceda
the followingh — kequations:

(17) Pmi1 = Qmet, -ony Pnh=0Qh,

to which there is good reason to appendrtieguations (3) that express the servitude.
The unknowns are solely tlog, ..., .

12. Remarks:

1. In the systems without servitude, the virtual disptaa@s to which one applies
d’Alembert’s equations are the ones that are compatibteall of the constraints. In the
systems that include servitude, they are completelgrdifit displacements: One has then
exhibited the analytical reasons for the differencet tbgists between those two
categories of systems, and one can understand all oftdrest that is attached to the
mechanisms that include servitude from the industrial viemtpoi

13. — 2. In the case where the constraint forces of #wersl kind are solely the
reactions from moving obstacles whose position is atimof certain parameters(8
10, §11), the solution to the problem is independent of the meftthose bodies and the
given forces that are applied to them.

Therefore, if one can divide a system that is suligec servitude relations into two
partsZ, %;, such that the partial systeinis not subject to any constraint force of the
second kind beyond the reactions of the sysignand if on the other hand, the number
of parameters upon which the syst&mndepends is equal to the number of servitude
relations then the inertia and given forces that amied to%; will not influence the
motion ofZ . The method that was indicated in paragrdghandl11 will permit one to
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present the problem in terms of equations without introdueither inertial forces or
given forces. The partial system then plays an muyilrole. That special case
frequently presents itself in the applications.

14. Equilibrium in systems that include a servo— D’Alembert’s principle gives
conditions of equilibrium when one suppressesitiethem, which are the terms that are
due to the inertial forces in the system considered. tibmsa(10) relate to the general
case, and equations (12), (14), (16), or (17), which relateetspecial cases that were
studied, will then give the equations of equilibrium when @paces th® in them with
zero. There is good reason to append the equations dtigerwivhich are finite, to those
equations. The differential expressions will express-immonomic constraints, which
are due to either contact or servitude, and must obvimalybe appended; they are
verified independently.

15. Extension of Lagrange’s equations- The conditions are the general conditions
that were defined in paragrafh The coordinates, y, z of the various elements of the
system considered are expressed in terms of finite expressions/,[&q. (1)] as
functions of timet and the parametexg , ..., g» upon which the system will depend
when one takes into account only the holonomic com@estraints. In the treatises on
rational mechanics), one establishes that the expression:

0x ay 0z
P=>mX—+y—+7—
2 ( aq yaq 6qj

P:E a_T _a_T
dtlaq ) aq’

in which g denotes any of the parametejs, ..., 0k, q’is its derivative with respect to
time, and I denotes the expression for the vivaof the systenx as a function of the;
yoes Oy Oy eeny G L

One will then extend the Lagrange equations to systeatsirttiolve servitude by
replacingPs, ..., P, with those expressions in equations (10) in paragrfaph

will have the value:

() P.APPELL [, t. Il, pp. 309.
() With an eye towards applications, | recall that wisevivaof an invariable solid body that moves
around a fixed poin®@ is (P. APPELL 4], t. I, pp. 147):
2T=f(P,gr=ApF+Bf+Crr—-Dqgr— E rp—2ZF pq,

in whichp, g, r denote the projections of the instantaneous rosaoound three rectangular axas Oy,
Oz whether fixed or not, where:

fxy,=AX+ByY+CZ-Dyz-E zx— Fxy=1

is the equation of the ellipsoid of inertia of the ce@eavhen referred to the same axes.



Beghin — Extending the Lagrange and Appell equations torsgdteat include a servo. 12

In the special cases that were defined in paragr@pinsi1l, the Lagrange equations
take the simple well-known form:
d(oT) 0T
( j = Ql

dt\od) aq-

in whichg denotes any of the parametggs: , ..., gy in the case of paragra@hand any
of the parameterg.1, ..., gn in the case of paragragh.
It is essential to remark that thies vivamust be calculated as a function of the

ey On, @, ..., G, t without taking into account the servitude constrainihe same
thing is true for the elementary wo€x A + ... + Qn &g, done by given forces. If the
forces admit a force function (i.e., @, ..., Qnare the derivativesgi, Z—U of a
G Oh
functionU of q1 , ..., On, t) then that functiod will be calculated without appealing to

. . . : : : . oT
servitude. It is only in the equations themselves — irethé expressionsQ, 39
q

%(Z—Tj — that it can be taken into account. Meanwhile, stheederivative of?
q q

with respect tat is taken along the real motion, which is compatiblehwhe servo-

: cooe 0T
constraints, one can perform all of the simplifioas onT that result from those
q

constraints before differentiating with respecttto In summary:One can take the
servitude into account after having concludes takwdation of the three categories of
: T 0T
expressions Qa— 6_
Jq dq

16. Equation ofvis viva — Since the contact constraints are not supposed todiepe
upont, in particular, equations (2), which represent the ndarmmmic constraints, have

no terms indt (soA=B = ... =0) . Since the given forces are supposed to adeit th
force functionU (1 , ..., 0n), | shall multiply equations (10), which give the maotim
the general case, Wy, , ..., dog,, resp., which are the elementary variations of the

parameters for the real displacements, so the expness
Prdg + ...+ P, dog,

will give the work done by the inertial forces (withethign changed)

S m(Xdx+ ¥ dy & d;

If one is dealing with a solid body that is animateth an arbitrary motion then one must add toise
viva of a solid body that is due to its motion around th&ereof gravity (which has the form that I just

indicated) thevis viva M VO2 that the masM of the solid body would have if it were concentratethat
center of gravity (Koenig's theorem; P. APPELUL, [t. Il, pp. 56).
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i.e., the differentiatiT of the semvwis viva
The expression:

Qudg + ...+ Qndg,
is equal tadU. The multiplierA has the coefficient:
Ardg + ...+ A doy

which is zero, since the displacement verifies equat(2); the same thing will be true
for the analogous coefficienks, ...
One will then have the equation:

dT-U+A(@dg+..+andg) + ¢ (o dog + ...+ by dgy) + ... = 0.

One sees that — Uis not constant. The terms i 4, ... represent the elementary
work done by constraint forces of the second kind, wisictot zero, in general, since the
conditions (4) are not imposed upon the real displacem@ntording to its sign, that
work done will correspond to anput or anoutput of mechanical enerdyr the systenx
considered.

The same thing is true in each special case that wmeden paragraph$, 10, 11.
The combination o¥is vivaswill not give the expressioa (T — U), because only some of
the expressionBy, ..., Pn, Qu, ..., Qn will enter into the equations of motion.

It is interesting to conclude thagrvitude can permit one to increase or decrease the
mechanical energy in the system at will, and in particular, to dampheutdcillations of
a system that presents no source of energy dissipation.

17. Application. — Let a plate in a fixed plane articulate at a podtwith a circular
plate; that moves around its cent@r. A constant forc€& that is parallel to a fixed line
Ox is exerted on the plate at a pointA that is situated on the line that joi@sto the
center of gravityG. A servomotomM acts on the plat&; by means of gears in such a
manner as to constantly realize the constraint:

(1) a-p=

[a= (Ox OC), b = (Ox, CA), OC=R, CA=a, CG=bh]

Since the servitude constraint is unique, and on the btret, the plat&; depends
upon only one parametear, the systenX, when taken in isolation, will fall into the
special case that was defined in paragriplOne can then apply the Lagrange equations
to just the plate . One sees that the mass of the platwill have no influence on the
motion. Thevis vivaof Z is:

2T=M R a’?+b* B2+ RbaB cos @-P +I& B3,
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whereM I denotes the moment of inertiaaboutG.
The virtual work done by the forgeis:

d7=F o6(Rcosa +acosp).

By itself, the equation that relatesf@das written:

(4) %(S—gj—g—; =-Fasing.
However:
g—;: M[b*B +Rba’cos@—-0) +KB]1=M (B> +K) 5,

if one takes the servitude constraint into accoudtsf8 On the other hand:

g—;: MR ba’fB’sin (@—f =MRb g2

The equation of motion is then:
(5) M (b* + k) B”—MRhB’? + Fc sin S= 0.

If the constrainta — = 77/ 2 is realized by direct contact betweeand; then the
motion will be entirely different: It will be goverdeby the equation:

(6) MR +b*+K) +14] B” +F (asinB+Rcosp) =0,

in whichI; denotes the moment of inertia of the plat®atEquation (5) easily gives the
motion: 5’2 is obtained by adding an exponential term to a termigtgnusoidal in3: B
varies between two limits, one of which can be pushédminfinity. On the contrary,
equation (6) will give a pendulum motion.

The equilibrium positions are obtained by annulling tghtrhand side of equation
(4). One then finds the two positions for which thecéd= passes throug@. On the
contrary, equation (6) will give the positions for whttle forceF passes througd.

18. Extending Appell’s equations— As the author has remarked before, the Appell
equations) present the following advantages:

1. They can be applied to systems that are subjecbrnehmlonomic constraints
without one having to introduce a system of multipliergaxiliary unknowns.

¢) P. APPELL ], t. II, pp. 374, B].



Beghin — Extending the Lagrange and Appell equations torsgdteat include a servo. 15

2. They permit one employ auxiliary parameters tha ewoupled to the true
coordinatesy, ..., g by differential relations.

For example, in the motion of a solid body around a fp@idt, if p, g, r denote the
projections onto the three axes of the instantaneatatian then it can be advantageous
to use the auxiliary parametetsy, vthat are coupled tp, g, r by the relations:

dA =pdt du=qdt dv=rdt.

dA, du, dvare then the elementary angles that the solid bodst taun through around
those three axes in order to pass from the positidnittbacupied at the instamtto the
one that it occupies at the instantdt.

Therefore, letz be a system that fulfills the conditions that wendicated in
paragraph7. Upon taking theholonomic contact constraintsito account that were
imposed, its position will depend upbnparametersy, ..., ¢, , and maybe, in such a
way that the coordinates of each element of mattébwifinite functions of the form:

(1) x=f(Q, ....,h, 1), y=..., z=...

| suppose thas auxiliary parametergn.1, ..., d ns are appended to these parameters,
which are coupled with the preceding one by some diffederelations that serve to
define themand which are relations that do not, in turn, correspond to any constraint
force. | shall count them with the relations that express nbn-holonomic contact
constraints, because they are used in the same wayexh#iting the equations.

I will then havep differential relationsg{ > s) of the form:

Adg++ A, dg, .+ AdED,
(2) (b relations) B dq+---+ B, dqg,,+ Bdt0,

(3) (r relations)

Finally, the virtual displacements that annul the knawne by constraint forces of the
second kind are the ones that verify jtnelations:

a0+ +38,,00,,=0,
(4) ( relations) bdg+-+h,.dq,.=0,
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Having said that, | form the expression:
S=3y m(x*+ y?+ 27),

which is called thenergy of accelerationlf | express, y, z in terms of the parameters ,
t, and the first and second derivatives of the parametexith respect tot then a
calculation that is analogous to the one that servedtablessh the Lagrange equations
will show () that the termB in d’Alembert’s equation will have the expressions:

0S ’szé

Pi=—, ... ,
t o aq,

which then establish the Appell equations.

19. Case in which the differential equations of the contaatonstraints and the
definitions (2) are solved for the p variations 4. — In order to give the Appell
equations their full simplicity, it is useful to soMsosep equations (2) fop of theh + s
=n+pvariationsd . | thus express, on the one hand,glierivativesq,,,, ..., d,,, as

functions of theq,, ..., g, by means of relations of the form:

q:1+1:alq’1+”'+an CL'*'O’,

(B) s

Onep =Vt F )V, O+,
and on the other hand, tpevirtual displacement&n+p , ..., dn+1 @s functions of theéq,,
ey OOn':

5qn+l :alaq1+”'+an 50"'*'0',
(B)

Oy p =110+ +), 00, %,
in which the coefficientsr, ..., 4 are functions of the, , ..., gnp, t. Of course, those
parametersy , ..., {, can just as well be chosen from among the truedoaates as from

among the auxiliary parametegs,, ..., On+s -

Having said that, instead of expressi#igs a function of the parameteys, ..., g,
and their first and second derivatives, as | sup@aa the preceding paragraph, it is
interesting to utilize equations (5), which replaeguations (2): Upon differentiating
them with respect tg one expresses the second derivatiyes ..., q;,, as functions of
the g, ..., q.,., and first derivatives of the parameters One can also make tipe
second derivativesy,,, ..., d,,, disappear frons. Swill become a function od , ...,

Ohss, t, O, ..., O, and then second derivativesy , ..., g . Appell [note {), pp. 14]
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shows that under those conditions, the virtual work dgnmertial forces (with the sign
changed) will be:

0S 0S
7 — |0q +---+| — |0¢,.
v (2ol g o
On the other hand, if one expresses the virtual worle dignthe given forces by
means of onlydy , ..., &, then upon using the relations (6), one will get an exprassi
of the form:
(8) Qudp + ... +Qndn

for that work.

Those two expressions must be equal for any displatetim®t annuls the work done
by constraint forces of the second kind — i.e., onesuwiafy thej relations (4). Here
again, it is interesting to take the relations (6) iatwount, which will permit one to
make thedy , ..., dwp disappear from equations (4) . When those equation®etls
for | of the remaining variationdy , ..., &n, they can be written:

5q1 :-Aj+15qj+1+"'+"4n 5q1’

(B) R ——
5qj ‘C]+l 5qj+1+ +41 5q‘|
If | replace thedy, , ..., &g in the expressions (7) and (8) with these valusb a
express their equality for any of the remainingat&ons &+1 , ..., & then | will get the

Appell equations in the form

1) R ST OO

These equations are simpler than the Lagrangetiegsahat one can write for the
same problem [see & eq. (12)] because the number of terms in eacth@fAppell
equations i$ + 1, instead on+ 1 =p +j + 1, in the case of the Lagrange equations. The

complication that is introduced in that way by gresence of the coefficient$ and £
provides solely the relations that express the tatthe work done by constraint forces
of the second kind is zero and provide none ohtire holonomic constraints.

There is good reason to append phexjuations (5) to equations (10), along withithe
equations (3) that express the servo-constraints.
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20. Case in which the displacements that annul the virtuawvork done by
constraint forces of the second kind are defined byrelations of the form:

(11) &u=0,..,4=0.

Under the same hypotheses as in the preceding paragrsipdl] suppose that the
conditions that a displacement must replace in oi@emnul the virtual work done by
constraint forces of the second kind have the simmie f(11). Furthermore, one can
always put oneself in this case by introducing convenietihsen auxiliary parameters,
if needed, as was indicated in paragrafh

In that case (which is, in summary, the general)¢césene performs the calculations
in the manner that was just described then equations (L@&mplify and take the same
form as in the case of a system without servitude:

0S 0S
(12) —":Qj+1, ...,—":Qn.
0d;., aq,

One sees that the Appell equations give a general@ohatithe question in a simpler
form than the Lagrange equations. There is good reasappend the equations (5)
and ther servitude equations (3) to these- j equations. It = j then the number of
equations will be equal to the number of unknowhs (

() With an eye towards applications, | recall that gcaid moves around a fixed poif, if p, g, r
denote the projections of the instantaneous rotatiohsthe edges of a reference trihed@yz, which is
fixed or animated with an arbitrary motion that is giena function of or the parameters of the problem,
and if P, Q, R are the projections onto the same axes of the itastaous rotation of trihedron itself then
the projections onto those axes of the accelerafioheopoint whose coordinates agey, z will be given
by the following formula, and the two analogous ones tteatladuced by cyclic permutation (P. APPELL

[1], t. II, pp. 379; B)):
K==x(P+g+nN+ppEx+qy+r+@-Q)z-((-R)y;

Pi=gR-rQ=rP-pR Ri=gQ-qgP

| have set:

If the axes are fixed or invariably coupled with thedsblbdy therP,, Qi, R; will be zero.
The energy of acceleration of the solid body is defimethe relation (P. APPELLL], t. II, pp. 393, ex.
16, [Q)):

of  of of of
2S=f(p'=P,q'—Q, r'— —P)g—-r— _ = _p=
P -P,q-Q,r'-R)+(p l)(qar raqj+(q Ql)(rap parj

" Rl)(paf—qafj :
oq dp

the functionf (x, y, 2) has the significance that was indicated above [ffhteg. 11]. The unwritten terms,
which do not contain the second derivatives of the perensido not have to be calculated, because they do
not enter into the Appell equations.

If one is dealing with a solid body that is animatedhwan arbitrary motion then the energy of
acceleration will be calculated by means of a thedrehis analogous to Koenig's theorem (P. APPELL
[1], t. II, pp. 381):

2S=M J;+25.
(Jo is the acceleration of the center of graGty S, is the energy of acceleration in the motion aroGtjd
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21. Application. — A material planeP can slide by translation along a fixed
horizontal planexOy. On that plane, a sphekeof radiusR can roll without slipping.
The motion of the planB is governed automatically in such a manner that theecet
the sphere that turns uniformly aroudd with a velocitywwith respect to the fixed axes
Ox, Oy, Oz. Let us study the motion by means of the Appell equations

Let u, v be the coordinates of a distinguished pd@indn the pland® with respect to
the axe0x, Oy, Oz. The position of that plane is defined by just thoge parameters.
The position of the sphere is defined by the coordingtesof its center and the Euler
anglesg, 6, ¢that define its orientation, for example.

If p, g, r are the projections onto those axes of the instantsn®tation of the sphere
then the conditions that express rolling without slippirg @tained by writing that the
material element of the sphere and the material eieoiethe plane, which coincide at
the instant, will have the same velocity:

(1) &—qR=u’, n’+pR=V".
There are two servitude constraints:
(2) dé+wndt=0, dn+ wédt=0.

The number of those relations is equal to the numbea@meters upon which the
position in the plané> depends, so one can solve the problem by applying the Appell
equations to only the sphexe

Upon taking into account only the holonomic contactddans, the sphere will be
considered to depend upon the seven parametevs &, n, @, 6, ¢ (h = 7). 1t is
interesting to append three auxiliary parameters= (3) that are coupled with the
preceding ones by the relations:

(3) dl=pd;, du=qd; dv=rdt.

Thoseh + s = 10 parameters are coupled with those three relatiodstte two
relations (1) that express the non-holonomic cortanstraints. The relations (1) can be
written:

(1) dé—R dh=du, dn+Rdi=dv.

The relations (3) and (1) are tpalifferential relations [8L8, eq. (2)] of the general
theory o = 5).

| shall keegh + s—p =n =5 of theh + s= 10 parameters; | shall choasey, & 7, v.
| express the energy of accelerat®aof the sphere as a function of the second derivatives
of thosen parameters by utilizing the= 5 relations (3) and (1 Now [note ?), pp. 18],
the value ofSis defined by:

2S=M (5”2_'_,7”2) +%MR2 (p/2+q/2+r/2),
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or, from (3) and (3:
2S=M (5”2 + ,7//2) +%M [(V”—/7”)2 + (g(//_ u//)2 + R2 V”) )

The virtual displacements that annul the work done Iogtcaint forces of the second
kind are defined by the= 2 conditions:

(5) &i=0, & =0,

since those forces are the reactions of the plartkeosphere. Those conditions have the
form that was indicated in paragrap@ [eq. (11)], in such a way that the equations of
motion will have the form [0, eq. (12)].
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