"Definition d'une densité d'énergie et d'un état de radiation totale généralisée," C. R. Acad. Sci. Paris **246** (1958), pp. 3015-3018.

Definition of an energy density and a generalized state of total radiation

By LOUIS BEL

Presented by George Darmois

Translated by D. H. Delphenich

If one is given a time direction **u** then a convenient choice of the three tensors will permit one to define the energy density scalar that is associated with **u**. We define a state of total radiation by imposing some conditions on the curvature tensor of V_4 that generalize the ones that A. Lichnerowicz pointed out (¹).

1. Let V_4 be the space-time manifold of general relativity endowed with the metric $ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta} (^2)$, let x_0 be a point of V_4 , let be the tangent vector space at x_0 , and let T_{x_0} be the subspace of $T_{x_0}^{\wedge(2)}$ of $T_{x_0}^{\wedge}$ antisymmetric tensors of order 2. If one is given a basis $\mathbf{e}_{(\alpha)}$ for then we will suppose that T_{x_0} is referred to the basis (³):

One will then have:

$$G_{\rm IJ} \equiv E_{\rm (I)} E_{\rm (J)} = \gamma_{\alpha\beta, \lambda\mu} = g_{\alpha\beta, \lambda\mu} - g_{\alpha\beta, \lambda\mu} .$$

 $\mathbf{E}_{(1)} = \mathbf{e}_{(\alpha)} \wedge \mathbf{e}_{(\beta)} .$

It is easy to associate the curvature $R_{\alpha\beta,\lambda\mu}$ that is defined at x_0 with the tensors:

$$*R_{\alpha\beta,\ \lambda\mu} = \frac{1}{2} \eta_{\alpha\beta\gamma\delta} R^{\gamma\delta}_{\ \lambda\mu} \qquad \text{and} \qquad **R_{\alpha\beta,\ \lambda\mu} = \frac{1}{2} \eta_{\alpha\beta\gamma\delta} \eta_{\lambda\mu\nu\sigma} R^{\gamma\delta,\ \lambda\mu}_{\ \lambda\mu\nu\sigma}$$

in which $\eta_{\alpha\beta\gamma\delta}$ is the volume element form. Those three tensors can be considered to be tensors of order 2 in $T_{x_0}^{\wedge(2)}$. In that case, they will denoted by H_{IJ} , $*H_{IJ}$, and $**H_{IJ}$, respectively. In what follows, we shall also utilize the three scalars:

$$(1 \ 2 \ 3 \ 4 \ 5 \ 6)$$

^{(&}lt;sup>1</sup>) A. LICHNEROWICZ, C. R. Acad. Sci. Paris 246 (1958), pp. 893.

^{(&}lt;sup>2</sup>) $\alpha, \beta, \ldots = 0, 1, 2, 3; i, j, \ldots = 1, 2, 3.$

^{(&}lt;sup>3</sup>) The correspondence between indices α and I conforms to the substitution:

$$A = \frac{1}{2}H_{IJ} H^{IJ} = \frac{1}{2} * H_{IJ} * H^{IJ} = -\frac{1}{2} * H_{IJ} * H^{IJ},$$
$$B = \frac{1}{2}H_{IJ} * H^{IJ} = -\frac{1}{2} * H_{IJ} * H^{IJ},$$
$$C = \frac{1}{2}H_{IJ} * H^{IJ}.$$

2. If one is given a vector u^{α} of square + 1 at a point x_0 then consider the three tensors:

$$Y_{\beta\mu} = R_{\alpha\beta, \lambda\mu} u^{\alpha} u^{\lambda}, \qquad X_{\beta\mu} = **R_{\alpha\beta, \lambda\mu} u^{\alpha} u^{\lambda}, \quad Z_{\beta\mu} = -*R_{\alpha\beta, \lambda\mu} u^{\alpha} u^{\lambda}.$$

With respect to any orthonormal frame such that $\mathbf{e}_{(0)} = \mathbf{u}$, one will have:

$$A = \frac{1}{2} (X_{\beta\mu} X^{\beta\mu} + Y_{\beta\mu} Y^{\beta\mu} - Z_{\beta\mu} Z^{\beta\mu}), \quad B = (X_{\beta\mu} - Y_{\beta\mu}) Z^{\beta\mu}, \quad C = X_{\beta\mu} Y^{\beta\mu} + Z_{\beta\mu} Z^{\beta\mu}.$$

The spatio-temporal square of each of these three tensors is positive or zero; they will be annulled only if the corresponding tensor is zero. If all three are zero then the curvature tensor itself will be zero. Consider the scalar:

$$V = \frac{1}{2} (X_{\beta\mu} X^{\beta\mu} + Y_{\beta\mu} Y^{\beta\mu} + 2 Z_{\beta\mu} Z^{\beta\mu}).$$

This scalar is strictly positive unless $R_{\alpha\beta,\lambda\mu}$ is zero. We call it the *energy density that* is associated with the time direction **u** (⁴).

3. We propose to say that the point x_0 presents a generalized total radiation state if the following hypotheses are satisfied:

 \mathcal{H}_1 . There exists an isotropic vector l^{α} such that:

$$R_{\alpha\beta,\ \lambda\mu}\ l^{\alpha}\ l^{\beta}=0, \qquad \qquad \ast R_{\alpha\beta,\ \lambda\mu}\ l^{\alpha}\ l^{\beta}=0, \qquad \qquad \ast \ast R_{\alpha\beta,\ \lambda\mu}\ l^{\alpha}\ l^{\beta}=0.$$

 \mathcal{H}_2 . There exists a vector u^{α} of square + 1 such that:

$$R_{\alpha\beta,\ \lambda\mu}\ u^{\alpha}\ u^{\lambda}\ l^{\beta} = 0, \qquad **R_{\alpha\beta,\ \lambda\mu}\ u^{\alpha}\ u^{\lambda}\ l^{\beta} = 0.$$

If that were true then one would find an orthonormal frame $\mathbf{e}_{(\alpha)}$ such that $\mathbf{e}_{(0)} = \mathbf{u}$, $\mathbf{e}_{(0)} + \mathbf{e}_{(1)} = \mathbf{l}$ with respect to which one will have:

^{(&}lt;sup>4</sup>) For the Schwarzschild case, that definition will coincide with a result of SYNGE, Proc. Roy. Irish Acad. **58**, A4.

$$(H_{\rm IJ}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \alpha_2 & \beta & 0 & \beta & \sigma_2 \\ 0 & \beta & \alpha_2 & 0 & \sigma_3 & -\beta \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \beta & \sigma_3 & 0 & \gamma_2 & -\beta \\ 0 & \sigma_2 & -\beta & 0 & -\beta & \gamma_3 \end{pmatrix}, \qquad \sigma_2 = \frac{1}{2}(\gamma_2 + \alpha_3),$$

The proper values of (H_{IJ}) with respect to (G_{IJ}) are $\rho_1 = \rho_4 = 0$, $\rho_3 = \rho_5 = (1/2)(\alpha_3 - \gamma_2)$, $\rho_2 = \rho_6 = (1/2)(\alpha_2 - \gamma_3)$. The vectors in the 2-plane $(E_{(1)}, E_{(4)})$, $M \equiv E_{(3)} - E_{(5)}$ and $L \equiv E_{(2)} + E_{(6)}$ are proper vectors that correspond to ρ_1 , ρ_3 , and ρ_2 , resp. H_{IJ} admits the reduction:

$$H_{IJ} = \beta (L_I M_J + L_J M_I) + \frac{1}{2} \alpha_2 (E_{(2) I} L_J + E_{(2) J} L_I) + \frac{1}{2} \alpha_3 (E_{(3) I} L_J + E_{(3) J} L_I) - \frac{1}{2} \gamma_2 (E_{(5) I} L_J + E_{(5) J} L_I) + \frac{1}{2} \gamma_3 (E_{(6) I} L_J + E_{(6) J} L_I).$$

Similarly, the proper values of $(R_{\alpha\beta})$ with respect to $(g_{\alpha\beta})$ are $s_0 = s_1 = R / 4$, $s_2 = 2\rho_3$, $s_3 = 2\rho_2 (s_0 + s_3 = R / 2)$. *l*, $\mathbf{e}_{(2)}$, and $\mathbf{e}_{(3)}$ are proper vectors that correspond to s_0 , s_2 , and s_3 , resp. $S_{\alpha\beta} = R_{\alpha\beta} - (1/2) R g_{\alpha\beta}$ admits the reduction:

$$S_{\alpha\beta} = -\frac{1}{2} (\alpha_2 + \alpha_3 + \gamma_2 + \gamma_3) l_{\alpha} l_{\beta} - \frac{1}{2} (s_2 + s_3) (l_{(0)\alpha} l_{(0)\beta} - l_{(1)\alpha} l_{(1)\beta}) + s_3 l_{(2)\alpha} l_{(2)\beta} + s_2 l_{(3)\alpha} l_{(3)\beta}.$$

In addition, one will have:

$$A = (\rho_2)^2 + (\rho_3)^2$$
, $B = 0$, $C = -2 \rho_2 \rho_3$.

4. One will deduce from the relations:

$$e^{\mu}_{(2)} \nabla_{\beta} \left(*R^{\beta}_{\alpha, \lambda\mu} l^{\alpha} l^{\lambda} \right) = 0, \qquad e^{\mu}_{(3)} \nabla_{\beta} \left(*R^{\beta}_{\alpha, \lambda\mu} l^{\alpha} l^{\lambda} \right) = 0$$

that:

$$s_2 e_{(3)\alpha} l^{\beta} \nabla_{\beta} l^{\alpha} = 0, \qquad s_3 e_{(2)\alpha} l^{\beta} \nabla_{\beta} l^{\alpha} = 0.$$

If $s_2 \neq 0$, $s_3 \neq 0$ then it will result that the vector $l^{\beta} \nabla_{\beta} l^{\alpha}$ is orthogonal to $\mathbf{e}_{(2)}$ and $\mathbf{e}_{(3)}$. Therefore:

$$l^{\beta}\nabla_{\beta} l^{\alpha} = a l^{\alpha}.$$

If $s_2 = s_3 = 0$ then $R_{\alpha\beta, \lambda\mu}$ will satisfy the conditions:

$$R_{\alpha\beta,\ \lambda\mu} l^{\alpha} = 0, \quad *R_{\alpha\beta,\ \lambda\mu} l^{\alpha} = 0,$$

and the preceding result will remain true, from a theorem of A. Lichnerowicz $(^{1})$. In those two cases, we state: *The trajectories of the vector l that is associated with a*

generalized state of total radiation that is defined in a domain are geodesics of the metric. We point out that the case for which the theorem is not established is characterized by the relations $A \neq 0$, B = C = 0.