
“Sulla teorica generale dei parametri differenziali,” Memorie della Accademia delle scienze dell’Istituto 
Bologna (2) 8 (1868), 549-590. 

 
On the general theory of differential parameters 

 
By. Prof. E. BELTRAMI 

 
(Read at the session on 25 February 1859) 

 
Translated by D. H. Delphenich 

 
 

 LAMÉ gave the name of differential parameters to certain expressions that are 
defined by the partial derivatives of a function of three variables that one encounters 
frequently in various doctrines of pure and applied analysis. 
 Those expressions first present themselves in the theory of the attraction of spheroids, 
and LAPLACE dealt with performing a transformation (which became quite celebrated) 
of the potential equation, which is an equation that results precisely from equating to zero 
what LAMÉ later called the second-order differential parameter of the attractive 
potential.  It is intimately connected with some important transformations in the theory of 
spherical functions, which has been developed a great deal in this century and has led to 
many useful applications. 
 The LAPLACE transformation requires somewhat long-winded calculations with the 
usual methods.  With his ingenious theory of curvilinear coordinates, LAMÉ achieved 
results that he reduced to supremely simple and elegant formulas in a much more 
extended category of transformations.  His proofs of them, however, seemed to be 
somewhat artificial, and they were, on the other hand, subordinate to the hypothesis that 
the curvilinear coordinates were orthogonal.  The first person to lift that restriction and to 
point out a much briefer path to achieving what LAMÉ had proposed to do was JACOBI 
in his beautiful paper “Sopra una soluzione particolare dell’equazione del potenziale.”  
(See v. 2 of Opuscula Mathematica.)  In that work, one will find the property that seems 
to me to be truly the most important in the study of differential parameters written down 
expressly, namely, that the transformation does not require anything except for 
knowledge of the form that line element assumes in the new system of variables.  That 
property was indeed also revealed in the formulas of LAMÉ, but with the restriction that 
he imposed upon the nature of the coordinates, it does not appear to be clearly necessary. 
 Nevertheless, the JACOBI process was also not used by that author in all of the extent 
to which it is susceptible, and therefore, without a doubt, for the single reason that the 
question that he treated did not demand a great degree of generality, since the method 
would have lent itself to the extension that was alluded to with no difficulty.  I mean that 
in the JACOBI paper, the original line element is always assumed to have the form 

2 2 2dx dy dz+ + , while the theory of differential parameters likewise persists when the 

given element is not reducible to that form, but rather the laws of composition of its 
parameters keep all of them unaltered under that more general hypothesis.  On the other 
hand, it is true that in the ordinary geometry of space, that hypothesis offers little interest.  
However, in order to convince oneself of the inopportune character of the restriction that 
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was imposed, it is enough to consider that it tacitly assumes something that has been 
ignored for a long time, even in the case of just two variables, namely, the existence of 
the parameters of the surface, the nature and utility of which (especially the ones of order 
two) has been manifested in some recent studies of mine [“Ricerche d’analisi applicata 
alla geometria” in Giornale mathematico di Napoli, t. 2 and 3 (1864-65); “Delle variabili 
complesse, ecc.” in Annali di Matematica (2) 1; “Teoria generale delle superficie d’area 
minima,” in Memorie dell’ Accademia di Bologna (2) 7]. 
 In the present article, I propose to establish the general theory of differential 
parameters on a purely analytical basis, free from any unnecessary restriction, either on 
the number of variables or their significance.  I hope that the simplicity of the method 
that is used, which does not differ from that JACOBI in its principal features (apart from 
the greater scope in which it is applied), will persuade one that the path that it follows is 
the most natural and direct one for achieving the goal. 
 The theory that is discussed here is contained substantially in § 3 of the present work.  
The first two §§ expose the principles upon which the adopted method is founded, which 
is an exposition that I wished to perform while reconciling brevity with clarity and  
addressing the fact that some readers might not have had a preliminary exposure to those 
principles yet.  § 4 is dedicated to the search for some formulas of integral calculus that 
give a perfect confirmation and that are known already in some particular cases and that 
also give one an opportunity to understand the notion of differential parameters with all 
of the generality that I have tried to invest in it.  In § 5 and the last one, one finds the 
proof, which is founded upon one of the general propositions, of a theory that was stated 
simply by (Carlo) NEUMANN [Schlömilch’s Journal 12 (1867)] and which he proposed 
as an extension of that of GREEN. 
 I am obliged to mention, in addition to that of NEUMANN, some later writings in 
JACOBI’s papers, in which the theory of differential parameters is recalled, in various 
aspects, and in greater generality than one finds in the work of LAMÉ. 
 CHELINI has defined the general expressions for the corresponding conventional 
expressions in ordinary rectangular coordinates in the elegant paper “Sulle formole 
fondamentali risguardanti la curvatura delle superficie e delle linee” Annali di Scienze 
Matematiche e Fisiche of Prof. TORTOLINI, Rome (1853).  For that purpose, he took 
advantage of some very spontaneous and simple analytico-geometric considerations that 
often served to shed some light on it, as well as other arguments, and he referred to the 
beautiful paper “Sulla teoria delle coordinate curvilinee,” which the same author has 
presented recently to the Academy, and in which he summarized the essence of his 
research on that interesting subject. 
  In Teorica dei determinanti [Pavia 1854, § X, eq. (114)], BRIOSCHI gave a general 
transformation of the sum of the second derivatives of a function of n variables, which is 
a transformation that the illustrious author had obtained with great elegance and 
simplicity, and from which we deduced (by means of the special variables that he also 
made use of in § 5 of that paper) a formula that reduces to that of LAPLACE in the case 
of three variables. 
 In volume 8, series VII, of Reports of St. Petersburg (1865), one can read a paper of 
SOMOFF that contains an interesting exposition of the theory of differential parameters 
in the case of three arbitrary curvilinear coordinates.  The basis for the SOMOFF method 
is essentially the same as that of JACOBI, but the author gave it a dynamical context by 
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regarding the variables as the coordinates of a moving point and considering the vis viva 
in place of the line element.  Without detracting from the merit of the research, which is 
carried out with elegance and originality, for the most part, it seems to me that the 
viewpoint is not, perhaps, the most preferable one for a purely analytical question. 
 Finally, in the first paper “Sulle coordinate curvilinee d’una superficie e dello 
spazio,” Annali di Matematica (2) 1 (1868) (Milan), CODAZZI has calculated the 
expressions for the differential parameters in arbitrary coordinates, by starting from their 
normal form in the system of orthogonal, rectilinear coordinates and performing all of the 
necessary transformations in detail. 
 It emerges from these brief hints that the more general results are, up to now, the ones 
that BRIOSCHI achieved in the cited classic reference.  However, it is worth pointing out 
that the process of proving them that was employed by that author assumes essentially 
that the quadratic differential expression upon whose coefficients the definition of the 

parameters depend is deducible from the normal form 2 2 2
1 2 ndx dx dx+ + +⋯ .  The 

purpose of the present work is precisely to exclude the necessity of that supposition 
without resorting to transformations that would be too laborious, which however would 
appear to be simple verifications under those more general hypotheses that are ill-suited 
to create an opportunity to consider the expressions in question.    Nonetheless, I shall not 
neglect to confirm the result upon which the analytical definition of the second-order 
parameter is founded with a calculation of that type (which will be done with the greatest 
possible speed). 
 Before entering into that material, I beg your permission to use geometric language 
sometimes, notwithstanding the fact that the number of coordinates can be greater than 
three.  The present study, like all of the ones that are connected with multiple integration, 
belongs essentially (as GAUSS said in regard to some other analytic investigations) “to a 
higher field of the abstract study of quantities that are independent of any concept of 
space, and that has as its objective the combinations of quantities that proceed 
continuously, which is a field that has been cultivated very little in our time, and in which 
one cannot take a step without invoking the phraseology that is appropriate to the figures 
that exist in space.” [Göttinger Berichte 4 (1850)]. 
 
 

§ 1. 
 

ALGEBRAIC THEOREMS ON QUADRATIC FORMS 
 

 Suppose that one has the quadratic form in n variables: 
 
(1)     φ = Σrs ars xr xs  (ars = asr), 
 
in which the Σ sign is extended over all terms that arise when one writes all of the values 
1, 2, …, n for each of the two indices r, s. 
 If one sets: 

(2)     
1

2 r

d

dx

φ
 = Xr  (r = 1, 2, …, n) 
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then from EULER’s theorem in homogeneous functions one will have: 
 
(3)     x1 X1 + x2 X2 + … + xn Xn = φ . 
  
Moreover, if one solves equations (2) for the x then one will have: 
 
(4)     xr = A1r X1 + A2r X2 + … + Anr Xn , 
 
in which Ars are the quotients of the complements of ars in the discriminant: 
 

a = 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
over a, so that (if one considers ars to not be distinct from asr) one can write: 
 

Ars = 
log

rs

d a

da
, 

and one will have Ars = Asr . 
 Now, if one considers the quadratic form: 
 
(1′)      Φ = Σrs Ars Xr Xs 
 
then it will be clear that formula (4) can be written: 
 

(2′)      
1

2 r

d

dX

Φ
 = xr , 

so, by the cited theorem of EULER: 
 

x1 X1 + x2 X2 + … + xn Xn = Φ, 
and therefore, from (3): 

Φ = φ. 
 
Hence, the new form Φ is nothing but the old one φ when the variables x are transformed 
into the X by means of equations (2). 
 It is clear that if one operates on Φ as one would on φ then one must revert back to 
φ itself.  For that reason, the two quadratic forms (1) and (1′) are called reciprocal.  
Formulas (2), (2′) serve to transform the one into the other.  The reciprocity of the two 
forms certainly shows that ars is the quotient of the complement of Ars in the 
discriminant: 
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A = 

11 12 1

21 22 2

1 2

n

n

n n nn

A A A

A A A

A A A

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
over a, which also results from the theory of determinants, so one can write (if one 
considers Ars to not be distinct from Asr): 
 

ars = 
log

rs

d A

dA
. 

 
It results from the rules for the multiplication of determinants that Aa = 1. 
 Now, suppose that the variables x are substituted for other ones y by means of the 
linear equations: 
(5)    xr = p1r y1 + p2r y2 + … + pnr yn (r = 1, 2, …, n) 
 
from which, one infers that, reciprocally: 
 
(6)    yr = qr1 x1 + qr2 x2 + … + qrn xn , 
 
so if p, q, denote the determinants that are formed by the coefficients prs, qrs, respectively, 
then one will have: 

(7)    qrs = 
log

rs

d p

dp
,  prs = 

log

rs

d q

dq
,  pq = 1. 

 
Assume that when the form φ is transformed by means of (5) it will become: 
 
(8)     ψ = Σrs brs yr ys , 
so that one will have: 
(9)     brs = Σuv auv pru psv  (brs = bsr) 
 
and therefore if one substitutes the values (6) in the new functions (8), while recalling (1), 
then one will have, reciprocally: 
 
(10)    ars = Σuv buv qru qsv . 
 
 The form ψ possesses the reciprocal: 
 
(8′)     Ψ = Σrs Brs Yr Ys , 
which one gets by putting: 

(11)    
1

2 r

d

dy

ψ
= Yr 
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in it, and which will give the inverse formula: 
 

(11′)     
1

2 r

d

dY

Ψ
= yr . 

 
The Brs are given (in the usual way) by the formula: 
 

Brs = 
log

rs

d b

db
, 

 
in which b is the discriminant of the form ψ. 
 Write (5), (6) in the following way: 
 

yu = Σr qur xr ,  xu = Σr pru yr , 
 

and apply the double sum Σuv to both sides, after multiplying the left-hand side by buv qvs 
and the right-hand side by auv psv .  While taking (9), (10) into account, one will find in 
that way that: 
 

Σr aur xr = Σv qvs (Σu buv yu),  Σr brs yr = Σv psv (Σu auv xu), 
 
or, from (1), (8): 

1

2 s

d

dx

φ
= Σv qvs 

1

2 v

d

dy

ψ
,  

1

2 s

d

dy

ψ
= Σv psv 

1

2 v

d

dx

φ
, 

 
or finally, from (2), (11): 
 
(5′)    Xs = q1s Y1 + q2s Y2 + … + qns Yn ,  
(6′)    Ys = p1s X1 + p2s X2 + … + pns Xn , 
 
which are formulas in which the coefficients are obviously the same as in the original 
substitutions (5), (6), except that prs and qrs are found to be exchanged with each other.  
Thanks to that simple exchange, the substitutions that serve to transform the one form 
φ into the other one ψ turn into the ones that serve to transform the reciprocal form Φ into 
the other on Ψ. 
 If one multiplies both sides of equation (9) by qri and sums over the index r then one 
will find that: 
      Σr brs qri = Σv aiv psv , 
 
because Σr pru qri = 1 or 0 according to whether u = i or not, resp.  If one suitably alters 
the indices then one will have: 
(12)     Σm (arm psm − bms qmr) = 0, 
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which is an equation that will persist for any pair of values for the indices r and s.  One 
easily obtains the formulas that express the coefficients p as functions of the coefficients 
q, and vice versa.  Indeed, if one multiplies the preceding equation, first by Ari and then 
by Bis and sums, the first time with respect to r and the second time with respect to s, then 
one will find that: 
 
   psi – Σmr bms Ari qmr = 0, Σms arm Bis psm − qir = 0, 

 
so, upon altering the indices, one will deduce the formulas: 
 
(13)  prs = Σuv bru Asv quv = 0, qrs = Σuv asv Bru puv , 
 
which are precisely the ones that we shall treat.  Finally, if one multiplies the first of 
these by Bri and sums over r then one will get a result that can be written as follows: 
 
(14)    Σm (Arm qsn – Bms pmr) = 0, 
 
and which is the reciprocal of the one that is contained in equation (12), which could 
have been established without any further proof. 
 Along with the form (1), it is often necessary to consider the bilinear expression: 
 

ξ = Σ ars xr sx′ , 

 
which is defined by not one, but two, series of n variables: 
 
 x1 , x2 , …, xn , 
 
 1x′ , 2x′ , …, nx′ , 

 
and it will be necessary to know some of their properties. 
 In the first place, one observes that if the variables x′ are transformed linearly with the 
same substitutions (5), i.e., if one sets: 
 

rx′  = Σu pur uy′ , 

then obviously, together with: 
Σ ars xr xs = Σ brs yr ys , 

one will also have: 
 

Σ ars (xr + λ rx′ ) (xs + λ sx′ ) = Σ ars (yr + λ ry′ ) (ys + λ sy′ ) 

 
for any value of λ, i.e.: 

φ + 2λ ξ + λ 2φ′ = ψ + 2λ η + λ 2ψ′, 
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in which η = ∑ brs yr sy′ .  Therefore, if one lets φ = ψ, φ′ = ψ′ then, by virtue of the 

substitution (5), one must likewise have ξ = η, by virtue of that, such that the 
substitutions that transform either of the two quadratic expressions: 
 
     ∑ ars xr xs , ∑ brs yr ys 
 
into the other one will also transform either of the two bilinear expressions: 
 
     ∑ ars xr sx′  , ∑ brs yr sy′  

 
into the other.  For the same reason, the inverse substitutions (5′), (6′) will transform one 
of the two functions: 
(16)    ∑ Ars Xr sX ′  , ∑ Brs Yr sY′  
into the other one. 
 It is known that the coefficients of a quadratic form can be such that they remain 
positive for all real values of the variables.  It is not necessary to write down the 
conditions (of inequality) under which that result is true, and which can be given in many 
different forms.  It is enough to know that when those conditions are fulfilled, any 
transform that contains only squares of the variables (a reduction that is well-known to 
follow in an infinitude of ways) will necessarily have all of its coefficients positive.  
Therefore, if one supposes that the form φ stays positive for all real values of the 
variables then one can always reduce it to the form: 
 

φ = 2
r

r

x∑  (r = 1, 2, …, n) 

 
by a suitable real linear substitution.  Now, from what we saw earlier, the same linear 
substitution will also make: 

φ′ = 2
r

r

x′∑ , ξ = r r
r

x x′∑ . 

Hence, one will have: 

φφ′ – ξ 2 = 
2

r r r r
r r r

x x x x
 ′ ′⋅ −  
 

∑ ∑ ∑ , 

 
or, by a well-known algebraic theorem: 
 

φφ′ – ξ 2 = 2

,

( )r s s r
r s

x x x x′ ′−∑ . 

 
An important property emerges from this that the function φφ′ – ξ 2, namely: 
 

2

, , ,
rs r s rs s r rs r s

r s r s r s

a x x a x x a x x
 ′ ′ ′⋅ −  
 

∑ ∑ ∑ , 
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stays positive for any system of real values of the variables x, x′ when that property is 
true for ∑ ars xr xs . 
 In general, one has (as is easily proved): 
 

(17)  
2

, , ,
rs r s rs s r rs r s

r s r s r s

a x x a x x a x x
 ′ ′ ′⋅ −  
 

∑ ∑ ∑  

= ∑ (ars atu − aru ats) ( )( )r t t r s u u sx x x x x x x x′ ′ ′ ′− − , 

 
in which the four indices r, s, t, u in the right-hand side must separately take on all of the 
values 1, 2, …, n, in such a way that any square of one of the binomials that are formed 
from the variables will appear just once, and any product of two binomials will appear 
twice. 
 One must observe that since two reciprocal forms will be made identical by the 
transformation formulas, and since those formulas are linear with respect to one and the 
other variable, it is obvious that if one form is kept positive for any system of real values 
of its own variables then the same property will also be true for the other one. 
 The algebraic theory of reciprocal quadratic forms is susceptible to an elegant 
application of the method of rectilinear coordinates, which is an application that deserves 
to find its place in the literature of analytic geometry.  To that end, it is enough to set: 
 

φ = x2 + y2 + z2 + 2yz cos α + 2zx cos β + 2xy cos γ, 
 
in which α, β, γ are the angles between the three oblique axes Ox, Oy, Oz, when taken 
two at a time.  In that way, the quantity φ will express the square of the distance r from 
the point (x, y, z) to the origin O, and the variables X, Y, Z in the reciprocal form to φ are 
nothing but the orthogonal projections of r onto the three axes Ox, Oy, Oz.  I shall briefly 
deviate from the present subject to consider where one might encounter some elegant 
relations that were found by CHELINI amongst what he called component coordinates 
and projection coordinates, along with their analytical origin.  We make only the general 
observation that the quadratic expression for the distance from a point to the origin has 
the same status in respect to finite geometry in rectilinear coordinates as that of linear 
element in respect to the infinitesimal geometry of curvilinear coordinates.  The most 
important, and most essential, formulas of the one and the other geometry do not depend 
upon the coefficients of the quadratic forms that represent that two aforementioned 
geometric elements.   
 
 

§ 2. 
 

PROPERTIES OF THE QUADRATIC DIFFERENTIAL EXPRESSIONS 
 

 Let: 
(1)     ds2 = 

,
rs

r s

a∑ dxr dxs  (ars = asr) 
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be a quadratic differential expression in n variables x1, x2, …, xn such that the coefficients 
ars are functions of those variables.  Many theorems are true with respect to that 
expression (for which ds2 must be regarded as simply its representative symbol, for now) 
that are perfectly analogous to the ones in the preceding §.  That analogy is based upon 
the fact that if all of the variables x1, x2, …, xn are replaced with n new variables y1, y2, 
…, yn that are coupled to the latter by n independent equations then the differentials of x 
will be coupled to those of the y by two (equivalent) systems of linear equations.  If one 
also sets: 

(2)     prs = s

r

dx

dy
,  qsr = r

s

dy

dx
 

 
then those equations will be the same as (5), (6) in § 1, as long as one writes the 
differentials dx, dy in place of x, y, respectively.  As a consequence, if one represents the 
transform of (1) by: 
(3)     ds2 = 

,
rs

r s

b∑ dyr dys  (brs = bsr) 

 
then one will get immediately the following relations from (9), (10) of § 1: 
 

(4)    brs = 
,

u v
uv

u v r s

dx dx
a

dy dy
∑ ,  ars = 

,

u v
uv

u v r s

dy dy
b

dx dx
∑ . 

 
(12) of § 1 will then become: 

(5)     m m
rm sm

m s r

dx dy
a b

dy dx

 
− 

 
∑  = 0, 

 
which is an equation that will be valid for any pair of values of the indices r, s.  (13) will 
then become: 

(6)    r

s

dx

dy
= 

,

v
sv ru

u v u

dy
b A

dx
∑ ,  r

s

dy

dx
= 

,

v
sv ru

u v u

dx
a B

dy
∑ , 

 
in which Ars, Brs are the coefficients of the reciprocal forms to (1), (3), and are therefore 
functions of x and y, respectively.  Finally, (14) is converted into: 
 

(5′)      s r
rm sm

m m m

dy dx
A B

dx dy

 
− 

 
∑  = 0. 

 
 Under the hypothesis that the expression (1) is simply: 
 
      ds2 = 2 2

1 2dx dx+ + … + 2
ndx , 

 
the preceding equations will reduce to the ones that serve as the basis for the theory of 
curvilinear coordinates. 
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 One also encounters the doctrine of reciprocity of quadratic algebraic forms when one 
considers quadratic differential expressions.  In fact, in the preceding §, we found that the 
two forms: 

,
rs r s

r s

A X X∑ ,  
,

rs r s
r s

B Y Y∑ , 

 
which are reciprocal to the φ, ψ, are the transforms of the respective formulas (5′), (6′) of 
that §, and due to (2), they will become: 
 

 Xr = 1 2
1 2

n
n

r r r

dydy dy
Y Y Y

dx dx dx
+ + +⋯ , 

 Yr = 1 2
1 2

n
n

r r r

dxdx dx
X X X

dy dy dy
+ + +⋯ , 

 
in the present case.  Now, these will obviously be satisfied when one sets: 
 

Xr = 
r

dU

dx
, Yr = 

r

dU

dy
, 

 
in which U is any function of x1, x2, …, xn or y1, y2, …, yn, respectively.  An interesting 
property then results from this (which was pointed out by JACOBI in the case of three 
variables, and which was proved in general in my article in the Giornale matematico of 
Naples, t. 5, pp. 24), namely, that the transformations of variables that render the 
equation: 

∑ ars dxr dxs = ∑ brs dyr dys 
 
an identity will also render the other equation: 
 

rs
r s

dU dU
A

dx dx
∑  = rs

r s

dU dU
B

dy dy
∑  

 
an identity, and conversely, so the nature of the expression: 
 

(7)      rs
r s

dU dU
A

dx dx
∑  

 
is that one can assign the results of its transformation without actually knowing the n 
relations that exist between the original variables x and the new variables y, since it is 
enough to know only the results that are obtained by transformations that are analogous 
to the quadratic differential expressions (1).  By virtue of what was proved in § 1 in 
regard to the functions (16), that property belongs to all of the expressions: 
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(8)      
,

rs
r s r s

dU dV
A

dx dx
∑ , 

 
no matter what the two functions U, V are. 
 In the applications that one makes as a result of this notion, one always supposes that 
the coefficients ars satisfy the conditions that are necessary for the differential 
expressions (1) to be positive for any system of values for the ratios: 
 

dx1 : dx2 : … : dxn 
 
(in particular, one consequence of this is that the discriminant a is never negative), so 
there will always exist that positive infinitesimal quantity ds whose square is equal to the 
value of the differential expression (at least, if one does not consider some domain of 
values for the variables in which that property is not verified).  With that hypothesis, if 
δx1, δx2, …, δxn is a second system of infinitesimal increments of x1, x2, …, xn , and if one 
sets: 

δs2 = ∑ ars dxr dxs 
 
then from what was proved at the end of § 1, it will result that the expression: 
 

ds2 ⋅⋅⋅⋅ δs2 – (∑ ars dxr δxs)
2 

 
is positive, and therefore that the expression: 
 

rs r sa dx x

ds s

δ
δ⋅

∑  

 
is not greater than unity, such that one can always assign a real angle θ for which one has: 
 

(9)      ∑ ars dxr dxs = ds ⋅⋅⋅⋅ δs cos θ. 
 
By virtue of equation (17) in § 1, the sign of the angle θ will be given by the formula: 
 

(10) ∑ (ars alu − aru ast) (dxr δxl − dxl δxr) (dxs δxu − dxu δxs) = ds2 ⋅⋅⋅⋅ δs2 sin2 θ. 
 
 The possibility of satisfying equation (9) with a real value of θ as soon as the 
conditions are satisfied for the quadratic differential expression to stay positive for any 
system of values for dx leads to the important consequence that the ds that is given by the 
expression (1) can be considered to be a line element that is analogous to the one that 
bears that name in the theory of surfaces and in the analytic geometry of space.  Thus, if 
one calculates the three values of ds that arise from the following three systems of values 
for the variables, when considered two at a time: 
 

(x1, x2, …, xn), 
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(x1 + dx1, x2 + dx2, …, xn + dxn), 
(x1 + δx1, x2 + δx2, …, xn + δxn), 

 
then one will find three numbers that serve to express the length of the three sides of a 
rectilinear triangle.  Indeed, let M, M′, M″ denote the aforementioned three systems of 
values, and let MM′ represent ds, while MM″ represents δs.  The values of the system M 
can be deduced from those of the system M by means of the increments that are given to 
the latter: 

δx1 − dx1 , δx2 − dx2 , …, δxn − dxn , 
 
respectively.  Thus, if one neglects infinitesimals of order higher than two then one can 
set: 

2
M M′ ′′  = ∑ ars (δxr − dxr)(δxs − dxs) = ds2 + δs2 – 2 ∑ ars dxr δxs , 

 
or, from (9): 

(11)   
2

M M′ ′′  = 
2 2

2 cosM M M M M M M M θ′ ′′ ′ ′′+ − ⋅ ⋅ , 
 
in which θ is a real angle.  That equation proves the stated property, and one can 
understand how it is possible to associate any system of values for the variables x1, x2, …, 
xn to a definite point with those coordinates.  It is along that same line of thinking that the 
two line elements ds, δs can be considered to be orthogonal when one has θ = π / 2, i.e., 
(9), when the increments d, δ that relate to them satisfy the condition: 
 
(12)     

,
rs r s

r s

a dx xδ∑ = 0, 

 
which one can call an orthogonality condition, for ease of expression.  If one pursues the 
same analogy then one can say that the left-hand side of equation (10) expresses the 
square of the area of a parallelogram whose sides are ds, δs. 
 It is useful to observe that, by virtue of what was said at the end of the preceding §, it 
will result from the conditions that were given there in regard to the sign of the 
expression for ds2 that the expression (7) will always stay positive for any real function 
U. 
 When the quadratic expression (1) is kept constantly positive, with the introduction of 
a determinant that depends upon the n variables x1, x2, …, xn of a single independent 
variables t, one can define a (generally continuous) series of systems of values for the n 
variables, which is a series that be conceived to be a line for which ds is the element arc.  

If one writes, for brevity, s′ and rx′ , in place of 
ds

dt
, rdx

dt
, resp., then the differential 

equations that characterize the minimal line will be the following ones: 
 

(13)   
r

ds

dx

′
= 

r

d ds

dt dx

 ′
 ′ 

 (r = 1, 2, …, n), 
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in which one intends that s′ should have the expression: 
 

s′ = rs r sa x x′ ′∑ , 

 
and in which the indicated derivation in the left-hand side refers to the fact that xr are 
contained explicitly in the coefficients ars . 
 If the line along which only x1 varies – or, as one says more briefly, if the line (x1) – is 
that minimal line then the preceding equations must be satisfied by: 
 

2x′  = 3x′  = … = nx′  = 0, 

 
and in that case, if one takes t = x1 then one will have the following n – 1 equations, in 
place of (13): 

(14)    11

r

d a

dx
 = 

( )1 11/r

r

d a a

dx
  (r = 2, 3, …, n). 

 
If, moreover, the parameter of the line (x1) – i.e., the variable x1 – depends upon only the 

arc length s then one will have ds = dx1 11a  for that arc length, and it is clear that a11 

must be a function of only the variable x1, such that from the preceding equations, one 
must have: 

( )1 11/r

r

d a a

dx
 = 0, 

so: 

(15)    ar1 = fr (x1, x2, …, xn) ⋅⋅⋅⋅ 11a , 

 
in which fr is the symbol for an arbitrary function.  Suppose that the lines (x1) are, in 
addition, orthogonal to the domain x1 = c (c is a specific constant) – i.e., they are 
orthogonals to all of the line elements that exist in it and emanate from the point of 
intersection with each of those lines.  Since if one sets: 
 

dx2 = dx3 = … = dxn = 0, δx1 = 0 
 
in (12) then that equation will reduce to the following one: 
 

a12 δx2 + a13 δx3 + … + a1n δxn = 0, 
 
which cannot be satisfied by any element δs that belongs to x1 = c unless one has: 
 

a12 = a13 = … = a1n = 0  
 
for x1 = c, given the form of the expressions (13), one will see that if a11 is non-zero for 
x1= c then the n – 1 coefficients a12 , a13 , …  a1n will necessarily always be equal to zero 
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when they are zero for just the value x1= c.  Hence, if a11 is non-zero for x1 = c then it will 
result from the preceding that the lines (x1) will all be orthogonal to the domain x1 = 
const. when just one of them is.  That property, in conjunction with the other one that any 
two of those domains will cut out equal arcs along the lines (x1) (since a11 is a function of 
only x1), constitute the obvious generalization of a known theorem of GAUSS regarding 
systems of geodetic lines on a surface.  Conversely, if the domains x1 = const. are all 
orthogonal to the lines (x1), which are assumed to be minimal, then from (13), one will 
have: 

a12 = a13 = … = a1n = 0 
 

for any value of x1 , and then, from (14): 
 

11

r

d a

dx
 = 0  (r = 2, 3, …, n), 

 
from which, it will emerge that a11 is a function of only x1 and therefore the arcs that are 
cut out by the two regions will all be equal. 
 From the conditions that were just assumed, it is legitimate to assume for the variable 
x1 that the distance between two regions x1 = const. is constant – i.e., that a11 = 1 – and in 
that case, with x0, x1, …, xn−1 in place of x1, x2, …, xn , one will obtain the line elements in 
the noteworthy form: 
(16)   ds2 = 2

0
,

rs r s
r s

dx a dx dx+∑  (r, s = 1, 2, …, n − 1). 

 
 If the lines x0 all emanate from the same point (x0 = 0) then the coefficients ars will all 
contain the factor 20x   

 In the case of just two variables x0, x1, (16) will reproduce the known reduction that 
was pointed out and used by GAUSS for the formula of the line element of a surface.  As 
for the general case, it is good to observe that one can introduce n arbitrary functions of 
just as many new variables in place of the n original variables, so one can, in general, 
satisfy n conditions with those new variables that can consist of n relations that are 
prescribed for the coefficients of the new line element.  When the form (16) is compared 
with (1), it will offer an example of precisely that determination.  In fact, the n 
conditions: 

a00 = 1,  a01 = a02 = … = a0, n−1 = 0 
 
will be satisfied for the form (16). 
 We conclude this § with an important observation.  Let W be any function of the n 
variables x1, x2, …, xn , and form the n-fold integral: 
 

( )n
W a∫  dx1 dx2 … dxn , 

 
which is extended over a certain continuous region of those variables, and which we 
denote by Sn .  In order to perform the transformation of that integral with respect to n 
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new variables y1, y2, …, yn , according to the known rule, one needs to replace the 
product: 

dx1 dx2 … dxn 
with 

p dy1 dy2 … dyn , 
 
in which p is the determinant (2) that is defined by the derivatives prs .  However, from 
the known theorem on the discriminant of the form (1), one will have b = ap2, so the 
transformation in question will be expressed by the equation: 
 

(17)   
( )n

W a∫  ⋅⋅⋅⋅ dx1 dx2 … dxn = 
( )n

W b∫  ⋅⋅⋅⋅ dy1 dy2 … dyn , 

 

in which the roots a , b  are taken to be positive. (As is known already, a and b are 

necessarily positive quantities as long as ds2 is a positive quantity.)  The form of the 
preceding quantity allows one to regard the quantities: 
 

a ⋅⋅⋅⋅ dx1 dx2 … dxn ,  b ⋅⋅⋅⋅ dy1 dy2 … dyn 

 
as two different expressions for the element dSn of the region Sn over which the two 
integrals are extended, not only in the sense that the numerical values of the two 
expressions are the same, by in the sense that first form for the element is the one that 
corresponds to the decomposition of Sn in terms of the variables x, and the second one is 
the one that corresponds to the decomposition in terms of the y.  That is obvious on the 
basis of the analogy with what one has in the case of surfaces and ordinary three-
dimensional space. 
 As a consequence of that, either one or the other form for the integral will be denoted 
by the notation: 

(18)     nWdS∫ , 

 
which is very useful as an abbreviation for the writing down the integral formulas. 
 
 

§ 3. 
 

DEFINITION AND PROPERTIES OF THE DIFFERENTIAL PARAMETERS 
 

 We saw in the preceding § that the expression: 
 

(1)      ∆1U = 
,

rs
r s r s

dU dU
A

dx dx
∑  

 
has the property of transforming into another one of the same form when one replaces the 
original variables x with the new variables y; that is to say, in order to perform that 
transformation, it is enough to replace the derivatives of U with respect to x with the 
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homologous derivatives with respect to y, and to replace the coefficients Ars (viz., the 
reciprocal of ars) with the homologous coefficients Brs (which are reciprocal to brs).  The 
expression will be called the first (or first-order) differential parameter of the function U, 
and will be denoted by the symbol ∆1U. 
 Since that term was already applied by LAMÉ to an expression that is used often in 
the geometry of space and in much research in mechanics and physics, and it is already 
used in that accepted sense by many writers, it will be necessary to show that the 
extension of that term to the more general expression (1) is legitimate – i.e., it is founded 
upon an essential analogy. 
 To that end, note that in order for the quantities Ars to be coefficients of the reciprocal 
quadratic form to the one whose homologous coefficients are ars, one must (with the 
same definition of the reciprocal form) pass directly from the expression: 
 

(2)      ds2 = ∑ ars dxr dxs 
 
to (1), by equating one half of the derivative of ds2 with respect to dxr to the partial 
derivative dU / dxr , and replacing the values of dx1, dx2, …, dxn in ds2 with the values of 
the n linear equations that are thus established.  However, in order to maintain the 
differential homogeneity, one should form the n equations: 
 

(3)    
( )1

2 ( )
rs r s

r

d a dx dx

d dx

∑
 = dk ⋅⋅⋅⋅ 

r

dU

dx
 (r = 1, 2, …, n), 

 
and in that way, by means of the aforementioned substitution, one will get: 
 
(4)      ds2 = dk ⋅⋅⋅⋅ ∆1U. 
 
Now, equations (3), when multiplied by δx1, δx2, …, δxn and summed, will give: 
 
(5)      ars dxr δxs = dk ⋅⋅⋅⋅ δU, 
 
so if the increments δ leave the value of U unaltered, or if they make δU = 0, then it will 
be clear that any element δs that corresponds to it will be orthogonal [by virtue of 
equation (12) of § 2] to the element ds for which it will satisfy equations (3).  Conversely, 
the variations d that refer to (3) are directly orthogonal to the region U = const.  On the 
other hand, when one supposes that the increments δ are identical to d that were defined 
just now, (5) will give: 
(6)      ds2 = dk ⋅⋅⋅⋅ dU. 
 
Therefore, if one eliminates dk from that equations and (4) then one will have: 
 

(7)      ∆1U = 
2

2

dU

ds
. 
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That formula expresses the idea that the first differential parameter of the function U is 
equal to the square of the ratio of the increment dU that is due to a variation ds that is 
normal to U = const. to the one that is due to the normal variation ds.  Now, that property 
concurs precisely with the one that is characteristic of the parameters that were 
considered by LAMÉ in ordinary three-dimensional space, and one cannot avoid the fact 
that such concurrence (which is manifested by all of the geometric evidence in the 
parameters of surfaces) is not just contingent upon the identity of the analytical relations, 
but is in fact founded upon it. 
 Formula (7) confirms the property that was pointed out already in the preceding § that 
the first differential parameter of any real function is always a positive quantity when that 
is true for ds2. 
 One infers from (7) that: 

(7, cont.)    
dU

ds
 = 1U∆ , 

 

which is an equation in which (as in any other formula into which 1U∆  enters) one 

supposes that the radical is given the positive sign, which one intends to mean that the 
normal element ds points towards the direction in which U increases. 
 From the theory of reciprocal quadratic forms, when equations (3) are solved with 
respect to dx1, dx2, …, dxn, they will give: 
 
(3′)    dxr = dk ⋅⋅⋅⋅Ur  (r = 1, 2, …, n), 
in which we have set: 

(8)      Ur = 1( )1

2 ( / )r

d U

d dU dx

∆
, 

 

for brevity.  These new equations (3′), when multiplied by 
1

dU

dx
, 

2

dU

dx
, …, 

r

dU

dx
, and 

summed, give: 

dV = dk r
r r

dV
U

dx
∑  

or 

dV = dk 
,

rs
r s r s

dU dV
A

dx dx
∑ , 

 
so when one eliminates dk using (6), one will infer that: 
 

,
rs

r s r s

dU dV
A

dx dx
∑  = 

2

dU dV

ds
, 

 
which is an equation in which the variations d are, as in (7), normal to the region U = 
const.  We already saw that the left-hand side of this equation possesses the same 
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character as the differential parameters – i.e., that it transforms into an expression of the 
same nature when one changes the variables.  It will be denoted by the symbol: 
 

(9)      ∆1UV = 
,

rs
r s r s

dU dV
A

dx dx
∑ , 

 
and for that reason, one can call it the intermediate (or mixed) parameter of the two 
functions U, V.  That expression will be converted into a first differential parameter when 
the two functions U, V are equal and by virtue of the foregoing will satisfy the relation: 
 

(10)     ∆1UV = 
2

dU dV

ds
, 

 
which is equivalent to the other ones (7), (7, cont.): 
 

(10, cont.)  ∆1UV = 1

dV
U

ds
∆ ,  ∆1UV = 1

dV
U

dU
∆ , 

 
in which ds is the normal element to U = const. that points in the direction of increasing 
U, and dU, dV are the increments of U, V along that element. 
 If one had dV = 0 then one would have to say that any variation ds that was normal to 
U = const. would make V = const.  In that case, the two regions U = const., V = const. 
would be considered to be mutually orthogonal, and the necessary and sufficient 
condition for that is consequently: 

∆1UV = 0. 
 One can observe that (9) gives: 
(11)     ∆1 xr xs = Ars , 
such that (9) can be written: 

∆1UV = 
,r s r s

dU dV

dx dx
∑ ∆1 xr xs , 

 
which is an equation that obviously also persists when the x1, x2, …, xn, are not the 
independent variables, by n arbitrary functions of them. 
 In my article “Ricerche di analisi applicata alla geometria” (art. IV), I proved that the 
equation: 
(12)      ∆1U = 1 
 
[in place of which one can consider, with no greater generality, ∆1U = f (U)] defines a 
certain relation on the surface that I called geodetic parallelism, which consists of saying 
that the system of orthogonal lines to U = const. is formed from geodetic (or minimal) 
lines on which (from GAUSS’s theorem) the U = const. cut out constant lengths.  That 
property, whose justification one already sees in formula (7), is also preserved 
(analytically speaking, if one prefers) in the general case of n variables, as we shall now 
proceed to prove. 
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 In order to do that, one now represents the quantities 
ds

dt
, rdx

dt
, by s′, rx′  (as in the 

preceding §) and observes that, in light of (4), equations (3), (3′) of the present § can be 
written as: 

(13)   
r

ds

dx

′
′

 = 
1

1

r

dU

dxU∆
,  rdx

ds
 = 

1

1
rU

U∆
. 

 
Assuming that, one recalls the equations of the preceding §: 
 

(14)   
r

ds

dx

′
 = 

r

d ds

dt dx

 ′
 ′ 

  (r = 1, 2, …, n), 

 
which characterize the minimal line, and supposes that they have the following n first 
integrals: 
(15)   rx′ = func. (x1, x2, …, xn) (r = 1, 2, …, n) 

 
Imagine that one replaces the values (15) of 1x′ , 2x′ , …, nx′  as functions of x1, x2, …, xn in 

the expressions: 

s′ = rs r sa x x′ ′∑ , 
r

ds

dx

′
′

 

 
and if one represents the derivative that is taken with respect to xr (with those hypotheses) 
by d / dxr then one will have two equations: 
 

(16)  
d

d r

ds

t dx

 ′
 ′ 

 = 
d

dm
m m r

ds
x

x dx

 ′′  ′ 
∑ , 

d

d r

s

x

′
= 

d

d
m

mr m r

xds ds

dx dx x

′′ ′
+

′∑ . 

 
In the same way, the identity equation: 
 

s = m
m m

ds
x

dx

′ ′
′∑  

will give: 

d

d r

s

x

′
 = 

dd

d d
m

m
m mm r m r

xds ds
x

x dx dx x

′ ′ ′′ + ′ ′ 
∑ ∑ , 

 
and when one compares this with the second equation in (16), one will get: 
 

m

ds

dx

′
′

= 
d

dm
m m r

ds
x

x dx

 ′′  ′ 
∑ . 
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From this equation and the first of (16), the system of equations (14) will transform into 
the following one: 
 

(14, cont.) 
d d

d d m
m m r r m

ds ds
x

x dx x dx

   ′ ′  ′−   ′ ′     
∑  = 0  (r = 1, 2, …, n), 

 
which is notable for its Pfaffian form.  For n = 2, one will obtain from it the 
transformation that was discussed in my note “Sulla teoria delle linee geodetiche,” Atti 
dell’Istituto Lombardo, t. 1 of series II. 
 The preceding equations (14, cont.), and thus (14), can obviously be satisfied when 
one can assign a function U such that one has: 
 

(17)     
r

ds

dx

′
′

= 
r

dU

dx
 (r = 1, 2, …, n). 

 
Now, if one observes the first of equations (13) then one will see that this condition is 
verified by any function U that satisfies the partial differential equation (12).  Hence, the 
lines that cross the region U = const. orthogonally when U is a solution of equation (12) 
all be minimal lines, and their differential equations will be (17) and the equivalent ones: 
 

d

d
rx

s
= Ur . 

 
 These equations, or (15), can be integrated in the following way: 
 Imagine that the expressions (15) for rx′  as functions of xr contain an arbitrary 

constant α.  Obviously, that constant will also enter into the function U, and since one 
has, from (17), that: 

dU = r
r r

ds
dx

dx

′
′∑ , 

 
differentiating with respect to α will give: 
 

(18)    d
dU

dα
= r

r r

d ds
dx

d dxα
 ′

⋅ ′ 
∑ . 

One likewise has: 
ds

dα
′

 = r

r r

dxds

dx dα
′′

′∑ ; 

 
however, from the identity equation: 
 

s′ = r
r r

ds
x

dx

′ ′
′∑ , 
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one will infer that: 

ds

dα
′

 = r
r

r rr r

dxd ds ds
x

d dx dx dα α
  ′′ ′′⋅ + ′ ′ 

∑ ∑ , 

so 

(19)    r
r r

d ds
x

d dxα
 ′ ′⋅ ′ 

∑  = 0. 

 
By virtue of that equation, it is clear that in place of: 
 
(20)   dx1 : dx2 : … : dxn = 1x′  : 2x′  : … : nx′  

 
in (18), one can equivalently set: 
 

d
dU

dα
 = 0, i.e., 

dU

dα
= β, 

 
in which β is a new constant.  Now, observe that if U is a complete solution of equation 
(12) then it will contain n – 1 arbitrary constants α1, α2, … αn−1, in addition to an additive 
constant.  Having assumed that, one assumes that one has n – 1 new arbitrary constants 
β1, β2, … βn−1, and establishes the equations: 
 

(21)   
1

dU

dα
= β1, 

2

dU

dα
= β2, …, 

1n

dU

dα −

= βn−1.   

 
If one compares the two systems of equations that one deduces from (18), (19) when one 
sets α equal to α1, α2, …, αn−1 in succession then one will easily see that the system of 
equations that results from differentiating (21) (without varying α1, α2, …, αn−1; β1, β2, 
…, βn−1) is equivalent in substance to the system (20), or the system (15) of first integrals 
of which it is part.  If one concludes that equations (21) are nothing by the finite integrals 
with 2 (n – 1) arbitrary constants of the minimal lines that constitute the system that is 
orthogonal to U = const. 
 The correspondence between that process and the HAMILTON-JACOBI method of 
integration is obvious. 
 From the preceding formulas [or from (7)], one has U = s, from which it results (and 
this is a conformation of what was proved in the preceding §) that the portions of the 
minimal lines that are cut out between U = c1 and U = c2 are all equal, no matter what the 
constants c1, c2 are. 
 I shall pass over the consequences that one deduces from these formulas in the case of 
ordinary three-dimensional space, as they are too obvious. 
 If one now considers the n-fold integral that is extended over the region Sn : 
 

1 nU dS∆ ⋅∫  = 
( )

1

n
U a∆ ⋅∫ ⋅⋅⋅⋅ dx1 dx2 … dxn , 
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and if one recalls that by virtue of equation (17) of the preceding §, one will have: 
 

( )

1

n
U a∆ ⋅∫ ⋅⋅⋅⋅ dx1 dx2 … dxn = 

( )

1

n
U b∆ ⋅∫ ⋅⋅⋅⋅ dy1 dy2 … dyn , 

 
in which one intends that the parameter ∆1U should be expressed by the formula: 
 

rs
r s

dU dU
A

dx dx
∑  

on the left-hand side and by: 

rs
r s

dU dU
B

dy dy
∑  

 
on the right.  If one varies the function U and denotes its variation by δU (which is 
assumed to be zero on the boundary of the region Sn) then one will get, from known rules 
[and using the notation in (8)], that: 
 

( ) ( )n
r

r r

d U a
U

dx
δ ⋅∑∫ ⋅⋅⋅⋅ dx1 dx2 … dxn = 

( ) ( )n
r

r r

d U b
U

dy
δ

′
⋅∑∫  dy1 dy2 … dyn , 

or 

( )1 r

r r

d U a
U

dxa
δ

  
 
  

∑∫ dSn = 
( )1 r

r r

d U b
U

dyb
δ

 ′ 
 
  

∑∫  dSn , 

 
in which rU ′  expresses the quantity that is analogous to Ur when the variables are the y, 

instead of the x.  One obviously concludes from this that if there is always just one region 
(which is otherwise arbitrary) over which one or the other integral is extended then one 
will have: 

(†)    
( )1 r

r r

d U a

dxa
∑  = 

( )1 r

r r

d U b

dyb

′
∑ , 

 
which is an equality that must be true by virtue of the relations that are established 
between the x and y.  However, the two sides of this equality are constructed in 
completely analogous ways, the one, from only the coefficients of the expression: 
 

rs r sa dx dx∑ , 

 
and the other, from only those of the expression: 
 

rs r sb dy dy∑ , 

 
and it is clear that in order to perform the transformation of the one side into the other 
one, it would be not necessary to know all of the relations that were established between 
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the x and y, but it would be enough to know the form that the line elements assume in the 
one system of variables or the other.  That property, which we encountered before in the 
first differential parameter, confers great importance upon the equivalent expressions that 
we just encountered, and contains the first and second derivatives of the function U.  The 
expression: 

(22)    ∆2U = 
( )1 r

r r

d U a

dxa
∑ , 

 
will be called the second (or second-order) differential parameter of the function U, and 
will be denoted by the symbol ∆2U.  It is then appropriate to justify the suitability of that 
term, since the device by which one gets that second parameter from the first-order 
parameter is precisely the one that was used already by JACOBI in order to arrive at the 
same objective with respect to the ordinary LAMÉ parameters.  One should note only 
that for n = 2, formula (22) will yield the expression that I have often used by the same 
name in the theory of surfaces, and that CHELINI has recently recovered by his own 
methods in his excellent memoir on the curvilinear coordinates. 
 One infers from (22) that: 

∆2 xr = 
( )1 rs

s s

d A a

dxa
∑ , 

 
and from this, if one recalls formula (11) then one can easily conclude the following 
development of the second differential parameter: 
 

(22, cont.)   ∆2 U =
2

2 1
,

r r s
r r sr r s

dU d U
x x x

dx dx dx
∆ + ∆∑ ∑ , 

 
in which one can obviously suppose that x1, x2, …, xn are n arbitrary functions of the 
independent variables.  This development also includes the one that CAUCHY made for 
three variables in t. 2 of his Exercises d’analyse et de physique mathématique, pp. 347, as 
a particular case. 
 The fundamental property of the expression (22) can be easily verified a posteriori in 
the following way: 
 By virtue of formula (13, 2a), the equation: 
 

dxr = r
m

m m

dx
dy

dy
∑  

will give rise to this one: 

Ur = r
m

m m

dx
U

dy
′∑ . 

 
[This can be easily proved by a direct route when one includes equations (6) of § 2.]  

After one multiplies both sides of this by a  [and recalling the notation (2) of § 2], one 

will deduce: 
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( )r

r

d U a

dx
 = 

( )m v mrr
m

m vm v r r

d U a dy dpdx
U a

dy dy dx dx

  ′ ′+   
   

∑ ∑ . 

However: 

mr

r

dp

dx
 = mr

vr
v v

dp
q

dy
∑ = vr

vr
v m

dp
q

dy
∑ , 

or, from (7) in § 1: 

mr

r

dp

dx
= 

ln vr

v vr m

dpd p

dp dy
∑ , 

so: 

( )r

r

d U a

dx
 = 

, ,

( ) lnmv vrr
m

m v m vr m v vr m

d U ady dpdx d p
U a

dx dy dy dp dy

′    ′+   
   

∑ ∑ . 

 
One now takes the sums of both sides over the index r.  Since the expression: 
 

v r

r r m

dy dx

dx dy
∑  

 
is equal to 1 or 0 according to whether the indices m, n are equal or unequal, respectively, 
the first group of terms in the left-hand side will reduce to: 
 

( )m

v

d U a

dy

′
. 

The second group can be written: 
 

,

ln vr
m

m v r vr m

dpd p
U a

dp dy

 
′ 

 
∑ ∑  = 

ln
m

m m

d p
U a

dy
′∑ , 

so one will have: 

( )m

r

d U a

dy

′
 = 

( ) lnr
r

r r r

d U a d p
U a

dy dy

 ′ ′+ 
  

∑ , 

or 

( )r

r r

d U a

dy

′
∑  = 

( )1 r

r r

d U p a

p dy

′
∑ , 

 

in which if one recalls that p a  = b  then one will finally deduce that: 

 

( )1 r

r r

d U a

dxa
∑  = 

( )1 r

r r

d U b

dyb

′
∑ , 
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which is an equation that is identical to (†), which was found directly by the calculus of 
variations, and which served to define the second differential parameter analytically. 
 If one keeps (13, 2a) in mind then (22) can be written: 
 

(23)    ∆2U = 
11

r

r r

dx
d U a

ds
dxa

 ∆ ⋅ 
 ∑ , 

or 

∆2U = 1
1

ln ( / )r

r r

d U d a d dx ds
U

ds ds dx

 ∆  + ∆ 
  

∑ , 

so, from (7, cont.): 

(24)   12

1

d UU

dUU

∆∆ −
∆

 = 
ln ( / )r

r r

d a d dx ds

ds dx
+∑ , 

 
which is a symbolic equation in which the quantities: 
 

1d U

dU

∆
, 

lnd a

ds
, rdx

ds
  

 
are not (in general) true derivatives, but simply quotients of the simultaneous variations 
of the quantities: 

1U∆ , U, a ,  xr 

 
by a displacement ds that is normal to U = const. 
 For n = 2, the left-hand side of equation (24) will become the expression for the 
tangential curvature of the line U = const. at the point (x1, x2), which would emerge from 
formulas (55) in the cited Ricerche d’analisi, etc. (pp. 71).  That observation will become 
interesting as a result of the significance that one assumes for its left-hand side in the case 
of ordinary three-dimensional space.  In fact, suppose that one has: 
 

ds2 = dx2 + dy2 + dz2,  and thus a = 1, 
 

so the quantities 
dx

ds
, 

dy

ds
,
dz

ds
 will be nothing but the cosines X, Y, Z of the angles that the 

normal to the point (x, y, z) of the surface U = const. makes with the axes, so that (24) 
will give: 

12

1

d UU

dUU

∆∆ −
∆

= 
dX dY dZ

dx dy dz
+ + . 

 
However, from the identity X 2 + Y 2 + Z 2 = 1, one will have: 
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dX dY dZ

dx dy dz
+ +  = 

dX X dX dY Y dY

dx Z ds dy Z ds

  − + −  
   

, 

 

or, from the fact that − X

Z
= 

dz

dx
, − Y

Z
= 

dz

dy
: 

 
dX dY dZ

dx dy dz
+ +  = 

dX dY

dx dy

  +   
   

, 

 
in which the derivatives in parentheses are taken with respect to the x, y, which are 
considered to be principal variables in which the z is a function by virtue of the equation 
U = const.  Due to a well-known theorem (cf., Correspondance sur l’École 
Polytechnique, t. 3, pp. 168): 

dX dY dZ

dx dy dz
+ +  = 

1 2

1 1

R R
+ , 

 
in which R1, R2 denote the principal radii of curvature of the surface U = const. at the 
point (x, y, z).  By virtue of that relation, which one can also establish directly (see, e.g., 
BORCHARDT in t. 19 of LIOUVILLE’s Journal, pp. 374), one will have: 
 

(25)    12

1

d UU

dUU

∆∆ −
∆

 = 
1 2

1 1

R R
+ . 

 
This result (which was found already in LAMÉ, Leçons sur les coord. curv., pp. 42), in 
conjunction with the one that we recalled earlier in the case of n = 2, reveals a perfect 
analogy between the tangential (or geodetic) curvature of a line that is traced on a 
surface and the sum of the principal curvatures of a surface that exists in space, insofar as 
either quantity is represented (abstracting from the number of variables) by just one and 
the same analytic expression.  That analogy is the true origin of two properties that have 
been known for quite some time, namely, that the sum of the principal curvatures is 
constant for the surfaces whose area is a minimum for the same volume enclosed, and 
that it is zero for the ones whose area is an absolute minimum between given limits.  
Indeed, those properties offer an exact counterpoint to the other two, namely, that the 
tangential curvature (of a line that is traced on a surface) is constant for those lines whose 
length is a minimum for the same area enclosed, and it is zero for the ones whose length 
between two given points is an absolute minimum. 
 One should note that the curvature 1 / r of a plane curve U = const. can be expressed, 
on the basis of (24), by the formula: 
 

1

r
 = 

dX dY

dx dy
+   (X 2 + Y 2 = 1), 
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in which X, Y are the cosines of the angles that the normal to U = const. that points in the 
direction of increasing U makes with two orthogonal axes. 
 The differential parameters assume a noteworthy form when the line element has the 
form (16) of § 2.  Indeed, from equations (1), (9), (22) of the present §, one will have, 
with that hypothesis: 

(26)    

2

1 1
0

1 1
0 0

2 2
0 0

,

,

1
,

dU
U U

dx

dU dV
UV UV

dx dx

d dU
U a U

dx dxa

  
′ ∆ = + ∆ 

  

 ′∆ = + ∆

  
 ′∆ = + ∆ 
  

 

 
in which 1′∆ , 2′∆  denote the parameters that relate to the element: 

 

,
rs r s

r s

a dx dx∑   (r, s = 1, 2, …, n − 1). 

 
The first formula says that if U is a function of only x0 then the same thing will be true for 
∆1U.  Thus, in general, if the orthogonal trajectories of the region U = const. are all 
minimal lines then one will have: 
      ∆1U = f (U), 
 
which reproduces, in a different way, the theorem that was proved already in this § as a 
consequence of equation (12), to which the last equation that was written will reduce 
immediately. 
 The last of formulas (26) says that the equation: 
 
(27)     ∆2U = 0 
 
cannot be satisfied by a function of only x0, unless the discriminant a of the differential 
expression in x1, x2, …, xn−1 is the product of a function of only x0 with a function of the 
other n − 1 variables.  In fact, in that case, if X0 is the factor that is a function of only x0 
then it will be enough to set: 

(28)     U = k 0

0

dx

X∫ . 

 For example, if one sets: 
ds2 = 2 2 2

1 2 ndy dy dy+ + +⋯  

and 
y1 = λ1 x0 ,  y2 = λ2 x0 , …, yn = λn x0 , 

 
with the condition that: 

2 2 2
1 2 nλ λ λ+ + +⋯ = 1, 



Beltrami – On the general theory of differential parameters. 29 

then one will obtain: 
 

ds2 = 2 2 2
0 0dx x d+ Λ , dΛ2 = 2 2 2

1 2 nd d dλ λ λ+ + +⋯ . 

 
The coefficients of the element dΛ2 are obviously reducible to functions of n – 1 
independent variables of x0, so the discriminant of that element will be equal to the 
product of 2( 1)

0
nx −  with a function of the n – 1 variables, and from (28) one will have the 

following solution for equation (27): 

U = k 0
1

0
n

dx

x −∫ ; 

i.e.: 

 U = 
2

0

1
nx −  when n > 2, 

 U = ln
0

1

x
 when n = 2, 

in which: 

x0 = 2 2 2
1 2 ny y y+ + +⋯ . 

 
 

§ 4. 
 

PROOFS OF SOME INTEGRAL FORMULAS 
 

 In what follows, we shall suppose that the domain of values for the variables x1, x2, 
…, xn is always limited in such a way that the functions ars all stay monodromic, finite, 
and continuous, along with their first derivatives.  In addition, one supposes the equation 
ds2 = 0 cannot satisfy any real relations that inside of that domain unless one sets dx1 = 0, 
dx2 = 0, …, dxn = 0. 
 One lets U1, U2, …, Un denote n of the variables x1, x2, …, xn that are monodromic, 
continuous, and finite in all of the interior of a domain Sn, within which, one has the 
aforementioned assumptions, and one considers the n-fold integral: 
 

Wr = 
( )r

r

d U a

dx∫  dx1 dx2 … dxn , 

or 

(1)     Wr = 
( )1 r

r

d U a

dxa∫  dSn , 

 
which is extended over all systems of values of the values that are found in Sn . 
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 The boundary of Sn is an n – 1-dimensional region that one will denote by Sn−1, and 
which one assumes to be composed of the complex of systems of values of the variables 
that satisfy the equation: 
(2)      y0 = h, 
 
in which y0 is a given function of x1, x2, …, xn, and h is a constant.  From the level of 
precision of the considerations and what was just said, one also supposes that the function 
y0 will increase in value when one passes from an internal point of Sn to an external one 
(which are both close to the boundary Sn−1). 
 Having said that, one will have: 
 

(3)    
( )r

r

d U a

dx∫  dxr = ( ) ( )r r
s s

U a U a
′
−∑ ∑ , 

in which the notations: 

( )r
s

U a , ( )r
s

U a
′
 

 

denote the values that the expression Ur a  will assume when, having first assigned 

well-defined values (included in the domain Sn) to the n – 1 variables: 
 

x1, …, xr−1 , xr+1 , …, xn , 
 
one attributes values to the xr (at least two in number and always an even number) that 
satisfy equation (2), along with the preceding ones; i.e., values that define systems of 
values that belong to the boundary region Sn−1 with the preceding ones.  If one supposes 
that xr varies continuously from the smallest to the largest of those values then the 

corresponding values of the places where the expression Ur a  is odd will be denoted by 

just one prime, and the places where it is even will be denoted by two primes.  In 
figurative language, one can say that those values of xr correspond to points at which a 
line (xr) enters or exits the region Sn ; i.e., the points at which it crosses the boundary 
region Sn−1 . 
 If one multiplies both sides of equation (3) by: 
 

dx1 dx2 … dxr−1 dxr+1 … dxn 
 
and integrates over the entire region Sn then one will get: 
 

(4)   Wr = ( ) ( ){ }r r
s s

U a U a
′
−∑ ∑∫  dx1 dx2 … dxr−1 dxr+1 … dxn . 

 
The integral on the right-hand side must obviously be extended over just the region Sn−1 .  
It is composed of several partial integrals, each of which refers to a portion of the region 
Sn−1 that is bounded by systems of values of the variables in which the value of xr (while 
keeping those of the other variables constant) is a double root of equation (2); i.e., it is 
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bounded by the points at which the aforementioned line does not cross, but only touches, 
the boundary region Sn−1 . 
 We now agree to replace the original variables with n new variables y1, y2, …, yn−1 
(which are analogous to the y1, y2, …, yn of the preceding §§), the first of which is 
precisely the function y0, and is therefore constant in all of the boundary region Sn−1 .  If 
one sets: 

p = 1 2

0 1 1

n

n

dxdx dx

dy dy dy−

 
± 
 

∑ ⋯  

 
then it will be clear, from the rule for the transformation of multiple integrals, that in 
place of: 

dx1 dx2 … dxr−1 dxr+1 … dxn , 
one will need to set: 

± 
0( / )r

dp

d dx dy
 dy1 dy2 … dyn−1 , 

 
in the (n – 1)-fold integral, or, from a known relation: 
 

± p 0

r

dy

dx
 dy1 dy2 … dyn−1 . 

 
The sign of that quantity must be chosen in such a way that it proves to be positive as 
long as one supposes that the determinant p (which cannot be annulled) is kept positive.  
Now, since, by hypothesis, y0 increases from the inside to the outside of the region Sn, the 
derivative dy0 / dxr will be negative when the line (xr) enters the given region and positive 
when the line leaves it.  One then needs to take the – sign in the former case and the + 
sign in the latter, from which it will result that (n − 1)-fold integral can be written in the 
following way: 

0
r

r

dy
U p a

dx

 
 
 

∑∫  dy1 dy2 … dyn−1 . 

 
In the expression in parentheses, it is intended that one must replace the x1, x2, …, xn with 
the y1, y2, …, yn and give the value of h to y0 .  One can suppress the Σ sign, provided that 
one understands that the integration extends over all of the region Sn−1 .  In addition, one 

can write b , in place of p a , where b is the discriminant of the quadratic expression 

that defined by the y, and finally, one can suppress the parentheses, as long as one 
understands that the integration is taken over just the boundary region.  In that way, the (n 
– 1)-fold integral can be denoted in the following way: 
 

0
r

r

dy
U b

dx∫  dy1 dy2 … dyn−1 . 
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 If one substitutes that integral in equation (4) and takes the sum over r on both sides 
then one will get: 
 

(5)   0
r

r

dy
U b

dx∫  dy1 dy2 … dyn−1  = 
( )1 r

r r

d U a

dxa
∑∫  dSn . 

 
The first integral must be taken over the entire region Sn−1, while the second one must be 
taken over the entire region Sn . 
 In order to make a first application of that general formula, take the product UrV, in 
place of Ur, in which Ur is the expression that is deduced from U by using formula (8) of 
the preceding §.  That requires that the function U must be monodromic, continuous, and 
finite in the region Sn , along with all of its first-order derivatives, which are conditions 
that one also assumes to be satisfied by the function V.  From that substitution, one will 
have: 

0
r

r r

dy
U

dx
∑  = V ⋅⋅⋅⋅ ∆1 U y0 , 

 
and therefore, by virtue of equation (10, cont.) of § 3 (with the hypotheses that were 
made there regarding the way that y0 varies): 
 

0
r

r r

dy
U

dx
∑  = − V 1 0

dU
y

dv
∆ , 

 
in which dv is the line element that is normal to the region Sn−1 and internal to the region 
Sn, and dU is the increment that U takes on along dv .  Equation (5) can then be written: 
 

(6)   1 0

dU
V b y

dv
∆∫  dy1 dy2 … dyn−1 + 

( )1 r

r r

d U a

dxa
∑∫ dSn = 0. 

 
Now, if one takes y0 = h, dy0 = 0 in the expression: 
 
    ds2 = 

,
rs

r s

b∑ dyr dys  (r, s = 0, 1, 2, …, n – 1) 

 
then the resulting value for ds, which one can denote by ds0, and which is given by: 
 
    2

0ds = 
,

rs
r s

b∑ dyr dys  (r, s = 0, 1, 2, …, n – 1), 

 
expresses the generic line element of the region Sn−1, such that, from what was 
established at the end of § 2, one needs to set: 
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dSn−1 = 
00

db

db
⋅⋅⋅⋅ dy1 dy2 … dyn−1 . 

 
However, the quantity B00, which is the inverse of b00, is given by: 
 

B00 = 
00

lnd b

db
, 

 
and on the other hand, from equation (11) of § 3, one will have: 
 

B00 = ∆1y0 , 
so: 

00

db

db
 = b ∆1y0 , 

and therefore: 

(†)     dSn−1 = 1 0b y∆ ⋅⋅⋅⋅ dy1 dy2 … dyn−1 . 

 
On the basis of this, the equation (6) can be written more briefly as: 
 

(7)    
( )1 r

r r

d U a

dxa
∑∫ dSn + 1n

dU
V dS

dv −∫ = 0, 

or also: 

(8)     1 2( ) nUV V U dS∆ + ∆∫ + 1n

dU
V dS

dv −∫  = 0, 

so: 

 
( )1 r

r r

d U V a

dxa
∑  = 

( )1 r

r
r rr r

d U adV
U V

dx dxa
+∑ ∑  

  = ∆1UV + V ∆2U. 
 
If one compares equation (8) with the one that one deduces by permuting U and V then 
one will get: 

(9)   2 2( ) nU V V U dS∆ − ∆∫ + 1n

dV dU
U V dS

dv dv −
 − 
 
∫  = 0. 

 
 This last equation (9) contains the generalization (which, it would seem, increases 
with its amplitude) of a known, useful theorem from integral calculus.  For the case of n 
= 2, it was established for the first time (with no unnecessary restriction) in my paper 
“Sulla variabili complesse in una superficie,” Annali di matematica, (2), t. 1. 
 We agree to make a caveat regarding the preceding results: In this §, it was assumed, 
in principle, that from the nature of the functions ars , the expression for ds2 could not be 
annulled for dx1 = dx2 = … = dxn = 0.  That condition was necessary for validating the 
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proof that was adopted, but is not indispensible in itself, since equations (8), (9) no longer 
contain any trace of the special system of variables that served to deduce them.  Those 
equations can then apply in any case, provided that the integrations are suitably adjusted 
according to the circumstances, with rigorous attention paid to the nature of the variables 
with which one works.  One will see a simple example of that in the special study that 
defines the subject of the following §. 
 By virtue of the formula that was found before, equation (9) can also be put into the 
form: 

(10)  2 2( ) nU V V U dS∆ − ∆∫ = ( )1 0 1 0 1 2 1nU V y V V y b dy dy dy−∆ − ∆∫ ⋯  , 

 
in which the integral in the right-hand side is extended over the entire region Sn−1. 
 We now pass on to another application of formula (5). 
 Imagine that the position of each point (x1, x2, …, xn) varies with time t.  With that 
hypothesis, the derivatives 1x′ , 2x′ , …, nx′  of the coordinates with respect to time will 
become (generally speaking) functions of those coordinates and time, and, properly 
speaking, functions that one can assume to be monodromic, continuous, and finite.  
Assuming that, one sets: 

U1 = V 1x′ , U2 = V 2x′ , …, Un = V nx′  

 
in (5), where V is another function of x1, x2, …, xn , and t that is monodromic, continuous, 
and finite.  Since y0 does not contain t, one will have: 
 

0
r

r r

dy
U

dx
∑  = 0

r
r r

dy
V x

dx
′∑  =  0V y′ , 

 
and then equation (5) will become: 

0V b y′⋅∫  dy1 dy2 … dyn−1 = 
( )1 r

n
r r

d V x a
dS

dxa

′
∑∫ . 

 
One now observes that during the infinitesimal time interval dt, the region Sn, which is 
limited by the boundary region Sn−1, will change into another region nS′  that is limited by 

a boundary region 1nS −′  and is infinitely close to Sn−1. (One regards nS′  as being composed 

of points that were first in Sn .)  Under that change, the integral: 
 

V = t nV dS∫ , 

 
which is taken over the region Sn, will change into the integral: 
 

V′ = t dt nV dS+ ′∫ , 
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which is taken over all of the region nS′ , and will take on an increment dV = V′ − V that 

must be calculated. 
 That increment is composed of two parts. 
 In fact, the two regions Sn and nS′  have a third region nS′′  in common, in which the 

variation of V depends upon only the increment dt that is given at time t that figures 
explicitly in the function V.  The part of dV that relate to that common region is then: 
 

dt n

dV
dS

dt
′′∫ , 

 
which is, however, a quantity in which one can correctly assume that the other one: 
 

(12)     dt n

dV
dS

dt∫ , 

 
which differs only to second order, in order for Sn – nS′′  to be obviously an infinitesimal 

quantity. 
 The other part of dV is provided by the aggregate of elements V dS that are found 
between the bounding regions Sn−1 and 1nS −′ , which are elements that appear as 

increments of decrements in V according to whether the corresponding dS are external or 
internal to Sn .  Moreover, these elements can correctly be considered in the state that 
relates to the instant t, instead of the instant t + dt, as they properly should be.  Now, the 
function y0, which is constant in the entire region Sn−1, takes on the increment 0y′  dt while 

passing to 1nS −′ , so that the general expression (in the variables y) for an element dS that 

is found between Sn−1 and 1nS −′  will be: 

 

     dS = b  ⋅⋅⋅⋅ 0y′  dt dy1 dy2 … dyn−1 . 

 
Keeping in mind the hypotheses that were made about the function y0, the dS that is given 
by that expression will be positive at the places where it is external to Sn−1 (with respect 
to Sn) and negative at the ones where is internal to Sn−1 .  It results from this that the 
quantity: 

     dt V b∫  ⋅⋅⋅⋅ 0y′  dt dy1 dy2 … dyn−1 , 

or (11): 

(13)    dt 
( )1 r

n
r r

d V x a
dS

dxa

′
∑∫ , 

 
expresses precisely the second part of the increment dV in both numerical value and sign. 
 If one combines the two parts (12), (13) then one will obtain: 
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(14)   
d

d

V

t
= 

( )1 r

n
r r

d V x adV
dS

dt dxa

 ′
 +
 
 

∑∫ , 

or: 

(14′)   
d

d

V

t
= 

( )r

n
r r

d x aV
V dS

dxa

 ′
 ′ +
 
 

∑∫ , 

 
in which the integral is extended over the entire initial region Sn .  That is the formula that 
gives one the variation of the integral V, which depends upon the motion of the points 
that fill up the region, when one supposes that this (moving) region is always composed 
of the same (moving) points. 
 When V expresses the value of an entity that is (or is assumed to be) invariable in 
time (for any Sn), one will have dV = 0, and therefore: 
 

( )1 r

r r

d V x adV

dt dxa

′
+ ∑  or (ln V)′ +

( )1 r

r r

d V x a

dxa

′
∑  = 0. 

 
In ordinary three-dimensional space, the preceding equation will coincide with the one 
that is called the equation of continuity in hydrodynamics when V is the density of the 
fluid in question. 
 If V = 1 then (14′) will become: 
 

d

d
nS

t
 = 

( )1 r

r r

d x a

dxa

′
∑∫ , 

so 

(15)   lim 
d ln

d
nS

t
 = 

( )1 r

r r

d x a

dxa

′
∑  for Sn = 0. 

 
One can deduce a definition of the second-order differential parameter of an arbitrary 
function U (x1, x2, …, xn) from this, which is a definition that inherently includes the one 
that was given by SOMOFF (cf., cited paper) in the case of ordinary three-dimensional 
space.  In fact, suppose that the trajectories of the various points are everywhere normal 
to the region U = const. and that their velocities are everywhere governed by the 
equation: 

d

d

s

t
= 1U∆ , 

 
so formula (23) of the preceding § will give: 
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∆2U = 
( )1 r

r r

d x a

dxa

′
∑ , 

and then (15) will give: 

lim 
d ln

d
nS

t
 = ∆2U for Sn = 0. 

 
One can then say that the second differential parameter of a function U is the limit, for Sn 
= 0, of the derivative: 

(16)     
d ln

d
nS

t
 

 
under the hypotheses that any point of Sn is displaced normally to U = const. with a 

velocity = 1U∆ . 

 The quantity (16) was called the mean cubical dilatation of the volume S3 by 
SOMOFF (in the case of ordinary space). 
 From the general equation (5), which can be written in the following way: 
 

0

1 0

r
r r

dy
U

dx

y∆

∑
∫  dSn−1 = 

( )1 r

r r

d U a

dxa
∑∫  dSn , 

 
by virtue of (†), when one makes: 
 

Ur = 
1 0

rV Y

y∆
,  in which Yr = 1 0

0

( )1

2

r

d y

dy
d

dx

∆
 
 
 

 

 
(one supposes that y0 is a function that is monodromic, continuous, and finite in the entire 
region Sn, along with its derivatives), one will deduce that: 
 

(17)   1nVdS−∫  = 
1 0

1 r

r r

VY ad

dxa y

 
 
 ∆ 

∑∫  dSn , 

 
which is a formula that includes the one that BORCHARDT (Journal de Liouville, t. 19) 
and SOMOFF (loc. cit.) gave for the quadrature on the surface as a special case.  By 
virtue of formula [13, (2a)] and (24) of § 3, it can be further transformed into the 
following one: 

(18)   1nVdS−∫  = 1 02 0

01 0

dd

d d

yyV
V

p yy

  ∆∆ + −   ∆   
∫  dSn , 
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in which dp is the normal element to Sn−1 that is external to Sn . 
 In the case of ordinary three-dimensional space, by virtue of equation (25) of § 3, one 
infers from this that: 

(19)   VdΩ∫  = 
1 2

d 1 1

d

V
V

p R R

   + +  
   
∫  dS , 

 
and for the case of an arbitrary surface, by virtue of the expression for the tangential 
curvature 1 / r that was given in § 3: 
 

(20)   dV s∫  = 
d

d

V V

p r

 
+ 

 
∫  dΩ . 

 
The second integral in equation (19) is extended over the entire volume S that is 
contained within the surface Ω, over which the first integral is extended, and the principal 
radii R1, R2 refer to the surface y0 = const., which constitutes part of the boundary surface 
Ω.  The second integral in equation (28) is extended over the entire area Ω that is 
enclosed by the contour s, over which the first integral is extended, and the tangent 
curvature 1 / r refers to the line y0 = const., which constitutes part of the contour s. 
 For V = 1, equation (19) reproduces the known formula: 
 

Ω = 
1 2

1 1

R R

 
+ 

 
∫ dS. 

 
 

§ 5. 
 

APPLICATIONS OF THE PRECEDING FORMULAS 
 

 In my cited paper “Sulla variabili complesse, etc.,” I showed that for the case of n = 
2, equation (9) of the preceding § can be deduced from another formula that could be 
considered to be the analogue of GREEN’s theorem.  The deduction of a formula of that 
nature in the case of arbitrary n presents very appreciable difficulties, unless one 
introduces special hypotheses about the expression for the line element.  I shall then 
confine myself to presenting that deduction in a special case that was considered already 
by (Carlo) NEUMANN in his excellent work on spherical and ultra-spherical functions 
(Schlömilch’s Journal, Bd. 12, 1867). 
 The case in question is the one in which the line element has the form: 
 
(1)     ds2 = 2 2

1 2d dx x+  + … + 2d nx , 
 
and in which, as we saw already at the end of § 3, the equation ∆2V = 0 will then be 
satisfied by the function: 
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(2)    V = 
2 2 2 /2 1

1 1 2 2

1

{( ) ( ) ( ) } n
n nx a x a x a −− + − + + −⋯

, 

 
in which a1, a2, …, an are constants. 
 If the system of values x1 = a1, x2 = a2, …, xn = an (or, as one can say more briefly, if 
the point a) is found within the region then one cannot apply formula (9) of the preceding 
§ to the value (2) of V, because the function V will become infinite at that point.  In order 
to remove that obstacle to the application of that formula, imagine that a small region nS′  

is removed from the region Sn, which contains the point a and is bounded by another 
small region 1nS −′  .  In that way, formula (9) of § 4 will become applicable to the residual 

region Sn − nS′ , and will assume the form: 

 

2 2 1 1

d d d d

d d d dn n n n

V U V U
V U dS V U dS U V dS U V dS

v v v v− −
   ′ ′∆ ⋅ − ∆ ⋅ + − + −   ′ ′   

∫ ∫ ∫ ∫  = 0 

 
for it, because when one subtracts nS′  from Sn, one must add 1nS −′  to Sn−1, assuming that 

the element dv′ is normal to 1nS −′  and directed towards the inside of the residual space Sn 

− nS′ .  However, if z0 represents a function (that is analogous to y0) that keeps the same 

value k at all points of 1nS −′  and that increases from the inside to the outside of nS′ , if z1, 

z2, …, zn−1 represent n – 1 variables (analogous to y1, y2, …, yn−1), which, along with z0, 
specify the points of  nS′ , and if c represents the discriminant of the quadratic expression 

of ds2 that is defined by the variables z1, z2, …, zn−1, then one will have (from what we 
saw in the preceding § and if we observe that dv′ is directed in the sense of increasing z0): 
 

1

d d

d d n

V U
U V dS

v v −
  ′− ′ ′ 
∫  = 1 0 1 0( )U Vz V Uz c∆ − ∆ ⋅∫ dz1 dz2 … dzn−1. 

 
The equation above can then be written: 
 

(3)  2 2 1

d d

d dn n n

V U
V U dS V U dS U V dS

v v −
 ′∆ ⋅ − ∆ ⋅ + − 
 

∫ ∫ ∫  

+ 1 0 1 0( )U Vz V Uz c∆ − ∆ ⋅∫  dz1 dz2 … dzn−1 = 0. 

 
 The choice of the region nS′  is arbitrary, as long as the point a is contained in it.  One 

can therefore define it by the condition: 
 
(4)    (x1 – a1)

2 + (x2 – a2)
2 + … + (xn – an)

2 ≤ k2, 
 
in which k is a positive constant that is subject to only the condition that it must be small 
enough that the region Sn (which obviously includes the point a) does not come from the 
boundary of Sn .  Afterwards, one can define the function z0 by taking: 
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(5)    z0 = 2 2 2
1 1 2 2( ) ( ) ( )n nx a x a x a− + − + + −⋯  

 
and always attributing the positive value to the radical.  In that way, z0 will become = k in 
the entire region 1nS −′  and increase from the inside to the outside of nS′ , which is precisely 

what was assumed.  That being the case, by virtue of the formulas of § 3, when they are 
applied to the present case, one will have: 
 

 ∆1 V z0 = 0

r r r

dzdV

dx dx
∑ = 

1
0

2
n

n

z −

−
, 

 

 ∆1U z0 = 
0

1
( )r r

r r

dU
x a

z dx
−∑  = 

1
0

2
n

n

z −

−
, 

so, for z0 = k: 

(6)  U ∆1V z0 − V ∆1U z0 = - 
1

1
( 2) ( )r rn

r r

dU
n U x a

k dx−

 
− + − 

 
∑ . 

 
 It now remains for us to suitably fix the meaning of the new variables z1, z2, …, zn−1 
over which the last expression must be integrated.  Observe that, from the two relations: 
 

ξ = ρ cos ψ, η = ρ sin ψ, 
 
which give rise to the other two: 
 

ξ 2 + η 2 = ρ 2,  dξ 2 + dη 2 = dρ 2 + ρ 2 dψ 2, 
 
one will see immediately that when one establishes the n – 1 pairs of formulas: 
 

(7)   
1

cos ,

sin ,
r r r r

r r r

x a k z

k k z+

− =
 =

  (r = 1, 2, …, n – 1) 

 
in which kn is intended to mean xn – an, one will have, correspondingly, the following n – 
1 pairs of relations: 
 

2 2 2
1

2 2 2 2 2
1

( ) ,

,
r r r r

r r r r r

x a k k

dx dk dk k dz
+

+

 − + =
 + = +

  (r = 1, 2, …, n – 1) 

 
from which, one will infer, upon separately summing the first n – 1 and the second n – 1: 
 

(x1 – a1)
2 + (x2 – a2)

2 + … + (xn – an)
2 = 2

1k , 

 
(8)   2 2

1 2dx dx+ + … + 2
ndx  = 2 2 2 2 2 2 2

1 1 1 2 2 1 1n ndk k dz k dz k dz− −+ + + +⋯ . 
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The first of these equations coincides with (5) when one sets k1 = z0, and with the same 
hypotheses, (7) will easily give: 
 

(9)   0 1 2 1

0 1 2 2 1

sin sin sin cos ,

sin sin sin sin ,
r r r r

n n r r

x a z z z z z

x a z z z z z
−

− −

− =
 − =

⋯

⋯

  (r = 1, 2, …, n – 1), 

 
(10)  kr = z0 sin z1 sin z2 … sin zr−1     (r = 1, 2, …, n – 1). 
 
Equations (9) show that in order to make x1, x2, …, xn traverse all of the values that are 
found within the region nS′  just once, it is necessary and sufficient for one to vary z0 from 

0 to k,  z1, z2, …, zn from 0 to π, and zn−1 from 0 to 2π.  However, in order to have all of 
the values that belong to the boundary region 1nS −′ , it is necessary and sufficient for one 

to vary the z1, z2, …, zn  in the manner that was just given, while taking z0 to be constant 
and = k.  The quantity c, which is the discriminant of the quadratic differential expression 
that constitutes the right-hand side of (8), is given by: 
 

c = 2 2
1 2k k … 2

1nk − ; 

hence, for the values (10): 
 

(11)   c  = 1
0
nz −  (sin z1)

n−2 (sin z2)
n−3… sin zr−2 . 

 

We need to observe that in the right-hand side of equation (3), c  refers to the boundary 

region 1nS −′ , so that one must make z0 = k, while in the left-hand side of that equation, one 

needs to set, more generally (11): 
 
(12)   ndS′  = 1

0
nz −  (sin z1)

n−2 (sin z2)
n−3… sin zr−2 dz0 dz1 … dzn−1 . 

 
 If one substitutes the values (6), (11), (12), along with the value V = 1 / 2

0
nz −  in 

equation (3) then one will find that: 
 

0z∫ ∆2U ⋅⋅⋅⋅ (sin z1)
n−2 (sin z2)

n−3… sin zr−2 dz0 dz1 … dzn−1 

+ 1 2

d d

d d n n

V U
U V dS V U dS

v v −
 − − ∆ 
 
∫ ∫  

= ( 2) ( )r r
r r

dU
n U x a

dx

 
− + − 

 
∑∫ (sin z1)

n−2 (sin z2)
n−3… sin zr−2 dz0 dz1 … dzn−1 . 

 
One now decreases the constant k indefinitely, while one recalls that the function U is 
kept finite, along with its derivatives, in the entire region Sn, and therefore, also at the 
point z0 = 0.  The first n-fold integral obviously converges to zero, from the factor z0 that 
multiplies the element and is always found between 0 and k.  In the last (n − 1)-fold 
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integral, the function U tends to assume the value Un (i.e., the value that corresponds to x1 
= a1, x2 = a2, …, xn = an) over the entire course of integration, while the sum: 
 

r r

dU

dx
∑ (xr − ar) 

 
will obviously tend to zero for the values (9).  It will then emerge that the equation that 
was found will reduce to the following one: 
 

1 2

d d

d d n n

V U
U V dS V U dS

v v −
 − − ∆ ⋅ 
 
∫ ∫  = 2π (n – 2) Z Un  

 
for z0 = 0, in which: 

Z = 2 3

0 0 0
(sin ) (sin ) sinn nz dz z dz z dz

π π π− −⋅∫ ∫ ∫⋯ . 

 
That last quantity is easily calculated by recalling that: 
 

0
(sin )mz dz

π

∫  = 

1 3 ( 1)
    when  is even,

2 4

2 4 ( 1)
2     when  is odd,

3 5

m
m

m

m
m

m

π ⋅ −
 ⋅
 ⋅ −
 ⋅

⋯

⋯

⋯

⋯

 

 
from which one will deduce that: 
 

Z = 

2
2

3

2

(2 )
    when  is even,

2 4 ( 2)

2(2 )
    when  is odd.

3 5 ( 2)

n

n

n
n

n
n

π

π

−

−



 ⋅ −




⋅ −

⋯

⋯

 

 
If one, with NEUMANN, then sets: 
 

N = 

2

1
2

(2 )
    when  is even,

2 4

2(2 )
    when  is odd

3 5

n

n

n
n

n
n

π

π
−



 ⋅




⋅

⋯

⋯

 

then one will finally have: 
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(13)  n (n – 2) N Ua = 
d d

d d

V U
U V

v v
 − 
 
∫ dSn−1 

 

− 2

12 2 2 2
1 1 2 2{( ) ( ) ( ) }

n
n

n n

U dS

x a x a x a
−

∆ ⋅

− + − + + −
∫

⋯

, 

 
in which, for brevity, we have neglected to substitute the value for V that was developed 
in (2) in the first integral on the right-hand side. 
 This equation will be valid as long as the point a is contained in Sn, because if that 
were not true then equation (9) of the preceding § would be true, and thus (13) would 
give Ua = 0. 
 If one supposes that the function U satisfies the equation ∆1U = 0 in the entire region 
Sn then the preceding formula will contain the new theorem that was given without proof 
by NEUMANN as an extension of that of GREEN. 
 In the case of n = 2, equation (3) comes down to (9) in the preceding §, even when a 
is inside of Sn .  In order to obtain the true equation that is analogous to (13) in this case, 
one needs to assume that: 

V = ln 
2 2

1 1 2 2

1

( ) ( )x a x a− + −
, 

 
as a result of the observation that concluded § 3, and as I did precisely in the paper that 
was cited already, in which the theorem under discussion was established without any 
restriction regarding the form of the line element. 
 
 

____________ 
 


