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On theflexion of ruled surfaces ()
By EUGENIO BELTRAMI

Translated by D. H. Delphenich

The admirable research that GAUSS established ogeheral theory of surfaces,
which he committed to two justly-celebrated papeds ¢pened up a path to the solution
of some problems in which those surfaces are considerea droviewpoint that is
essentially different from that of the geometerd firaceded him, among which, we cite
EULER and MONGE, without mentioning everyone. Indeed,red®they had regarded
the surface as the limit of a body, and thereforerdisies that cannot be subjected to any
other spatial displacements than the ones that amenoo to the solids that determined
them, GAUSS naturally treated them as solids in whiod @f the dimensions vanishes,
as well, by his method of applying analysis to the studsuofaces. In that way, if one
supposes that these new geometric entities are suscefatitideing flexed, but not
extended or contracted, then it will be clear tlweg tisplacements of their parts are,
within certain limits, mutually independent, and the stubithose relative displacements
no longer has anyhing in common with the study of thelatesdisplacements of a rigid
surface, which will always be supposed in the reseaathdhows.

That research has therefore provided an indeed speciabmedthat relates to the
theory of flexible and inextensible surfaces: We wolile to discuss that of the
developablesurface, or the ones that are exactly mappable optana, which is well-
known to have many uses in multiple questions in pure, hsasvapplied, mathematics.
It is also strange that before GAUSS, no one (thatow of) had thought to generalize
the new concept that the surface had introduced spontaypetiasheometry when one
regarded it as flexible. Be that as it may, it is @erthat when one abstracts from the
simplest case that | mentioned right now, the thexdrffexible surfaces presents grave
difficulties, which the geometers are invited to make object of diligent study. The
importance and beauty of the fundamental theorem by wB®WSS inaugurated that
new branch of analysis leaves no doubt that other¢ines of equal or greater fecundity
will be the reward for those who penetrate more depdythat thorny question.

() The preface to this paper is excepted from the notehbyatithor “Intorno all flessione delle
superficie rigata” that was read to the Venice AthenaenrhO August 1865, which is a note that will not
be reproduced here, since it contains only a summaheahbre extended paper that is printed in the text.
[Ed. note].

(") “Allgemeine Auflésung der Aufgabe die Theile einer gegebéitimhe...” This paper was awarded
a prize by the Copenhagen Academy in 1822 and published forshérfie by SCHUMACHER in the
Astronomsiche Abhandlunger “Disquisitiones generales circa superficie curvadiisTpaper was
published in v. VI of th&€ommentationes recentiorethe Goéttingen Academy (1828).
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The difficulty in that (as far as | know) proceedsetlyi from the fact that we do not
possess a clear idea of the way by which we can dffedtexion of a curved surface in
the general case, even in a less-extensive treatmembess obliged to trust completely
in the bare analysis when one starts from formias ¢tharacterize the inextensibility.
We can almost never make good use of the auxiliary deragions — whether direct or
indirect — that lead promptly and elegantly to the firgeotive for the better part of the
ordinary problems of analytic geometry.

The truth in that observation seems to me to Indircoed by the developments into
which | am about to enter, and which will take into consitlen, more specifically, the
surfaces that can be generated by the motion of a liRer those surfaces, when
considered to be flexible and inextensible, the difficuityhe question is, for the most
part, derived from the fact that if one overlooks thiteséons whose effect is to make the
original generators cease to be rectilinear then Itheilpossible to get a very clear and
simple idea of the manner by which the flexion can belyred. Indeed, any surface of
that class can be mentally decomposed into an infmiteber of infinitely-thin zones,
each of which is found between two contiguous generaaadspne can imagine that the
flexion of the surface comes about by means of an iefimhal rotation that is performed
on each of those zones around that generator thas inheommon with the preceding
zone. In that way, it will become clear that the rewface that is produced by a well-
defined flexion is defined completely by the elements twracterize the original
surface and the series of successive infinitesimal oostthat were just mentioned.
Indeed, until 1838, the talented geometer MINDING had expiled®e values of the
three coordinates of the transformed surface by quadratunatrbglucing an arbitrary
function that represented precisely the law by whick¢hotations proceeded.

MINDING's solution, which was subsequently discussed omoee by BONNET
(1848) and BOUR (1860), was undoubtedly invested with all of tegaide analytic
generality. However, the presence of an arbitrary fanah the final formulas means
that one will encounter a series of analytical diffiies when one wishes to determine
the nature of the transformed surface that depends upamlsgenditions that are
prescribeda priori. Thus, it seems that in those cases, it wouldab&dm advantageous
to introduce the conditions that are prescribed for rdr@stormation from the beginning,
in such a way that one would arrive at a special soldtoit. That process is not unlike
the one that has been followed for a long time in manayches of analysis, and thanks
to it, the solutions to many problems would become plessithile they would present
very great difficulties when treated by the general odsh

§1.

Let ¢, n, ¢ be the orthogonal coordinates of an arbitrary lin¢ is&raced on a ruled
surface, which will be regarded as tieector of that surface and will be subject to the
single condition that it should not coincide with afehe rectilinear generators. Lt
M, v be the cosines of the angles that the generatop#ésaes through the poirf (7, {)
makes with the three axes, and debe the length of the portion of the generator that is
found between that point and another arbitrary poirthaff generator. The surface can
be represented by the equations:
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(1) x=¢&+vul, y=n+um x={+un,
in whichl, m, n are coupled by the usual relation:
(2) P+mf+n’=1.

We suppose that them, n, as well as thé&, 7, ¢, are functions of the arc lengtiof the
director, and we will likewise have the relation:

(3) |/2+m/2+n/2:1’

in which the prime denotes the derivative with respeat t
Take:
|151+m1,7! + nIZI :K,

(4) {

|12+m12+n12:£rZ

for brevity, and represent the angle that the genefators with the director by ; i.e.,
set:
(5) | & +mnp’ +n " =cosé.

That angle, like the other ones that will present gewes in what follows, will be
measured in the sense in which one proceeds from thievpasirection of the director
(i.e., the one in whiclu increases) to the positive direction of the gener@ter, that of
increasing).

If one regardsy, v as the curvilinear coordinates and adopts the known GAUSS
nomenclature then one will find that:

(6) E=1+2ku+e? 0 F=cosf G=1.

Now suppose that the surface, which is considered tdekibdlé and inextensible,
changes form in such a way that its rectilinear geoes will be converted into other
ones. It is clear the director transforms into rdase other curve for whicli, 71, & will
denote the coordinates of the point that corresponds fwthe(¢, 7, {), while thel, m, n
will change intol;, my, n; . The variables, v have the same value at the corresponding
points of the two surfaces, so in order for the lilement to be identical for the two
surfaces, as it must (i.e., in order for e, G to be the same for one surface and the
other), it is obviously necessary and sufficient thatthree equations must be valid:

|112+m12+r1112:£rz,
(7) &1 +mypi+ = cosf,

I

1zt r oo
Il g(1 + ml,71+ anl_ K’

to which one must add the following two:
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®) Femieng =1, P4 di= 1.
Note that in order to have:
(I 5! +m,7/ +nZI)I:K+I 5” +m,7/I +nZIl,
one must have:

(9) " +mnp” +n{"=-(k+ 6'sinb).

Now, let p denote the radius of curvature of the original direatathe point ), and let
wbe the angle that this radius makes with the tangehetsurface, so one will have:

(10) | & +mn” +n "= sing 2%
0

SO

(11) sing 2¥=_ (k+ @'sin 9.

Therefore, by virtue of the preceding, one can tswibs the following equation for the
last of equations (7):

(12) cosa _ cosw

P

which expresses the idea that the geodetic cuesnirthe two directors are the same at
the corresponding points. That result can be kskedola priori as a consequence of the
known fundamental property of that curvature. Heavethe process keeps teaching us
(and this is very important for our purposes) ttat three properties that are expressed
by the first two equations (7) and (12), which alwiouslynecessarnconditions for the
identity of the line elements of the two surfacel| also besufficientto determine that
identity.

Let dw denote the minimum distance between the infinitdbge generators that
correspond to the valuesandu + Au, so one has:

J €7%sin0-k? 'omon
(13) e a, &%siff-«k*=[lI' m n

[l H

&

in which the quantityy/ £'°sin”8-«?, which is always real, can be zero only when the

surface is developable. That formula will not heet or it would be better to say, it will
become indeterminate for the cylindrical surface,Which one will have, at the sam#,
= k= 0. Inthat particular case, one will obvioukjve:

(13) an = & sin @
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The functionsé, 71, &, 11, M, N1, which determine the transformed surface, must
satisfy five equations that are equivalent to (7), (8)s then clear that one of them must
be capable of being chosen arbitrarily; that is, the mgénexpression for the
aforementioned six quantities must involve an arbitrampction. Such general
expressions were posed by MINDING, (vho was the first to address that argument, and
by the other authors that followed in his footsteps (However, if one can say that the
problem is solved analytically in full generality withettexplicit introduction of an
arbitrary function then things will not be the samgew one has the geometric question
as one’s target. Indeed, it is clear that in ordeotopietely determine the nature of the
transformed surface, one can prescribe a new conditanslexpressible by means of
one finite or differential equation between theni, (i, 11, M, g, u, 0. If we would like
to determine MINDING's arbitrary function by means oétlequation then most of the
time we would encounter very grave analytical diffi@dt that would have to be
overcome in order to treat the six equations betweenatbeementioned quantities
directly.

We propose to show how the second method can be applsahte cases that are
chosen from the more interesting ones, with the htya the simplicity of the
calculations and results can tempt other to proceed tivthresearch, which seems to
promise an abundant harvest of new and elegant theorem

§2.

If one considers the first conditions (7) to be smtitsbind supposes that the geodetic
curvature of the first director is zero then it wilbviously result from (12) that a
necessary and sufficient condition for this is thhé tgeodetic curvature of the
transformed director must be zero: That is to sathafdirector if the first surface is a
geodetic line then it will be necessary and sufficidmat tit is also a geodetic of the
second one, as long as the other two conditions aidiesh Having said that, one
examines whether the transformed director can be a Assuming that the line is tize
axis and measuring its lengifrom the origin, one will have:

&=0, m=0, & =u, cosd _ o,
joi

In order to satisfy the second of the conditions {7s obviously enough to suppose that
@ is equal to the angle that generator of the toansd surface makes with tkeaxis.
We therefore set:

(14) l1 = sinfcosg, my = sin@sin ¢, n; = Cosé,
from which:

|i2+m12+n’12 — €/2+¢/25ir12 e

() Journal fiir reine und angewandte Mathemaik1838), pp. 297, 365.
(") O. BONNET, Journal de I'Ecole Polytechniql@ cahier 32 (1848), pp. 1; BOURd., 22, cahier
39 (1862), pp. 1.
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If one then assumes that the original director geadetic line of the given surface then
the second of those equations will be satisfied idelhyicand the first one will likewise
determineg by the formula:

5’2 _312
15 = | ————du,
s) =1 sne
with which, (14) will give the values &f, my, n; . Hence:
Any ruled surface can always be transformed by means of simple fiexsoch a
way that one of its geodetic lines will become a straight line, andrdraformation will
depend upon just one quadrature.

Consider, for example, the hyperboloid of rotation:

for which, if one assumes that the circumferencehefthroat is the director and is one of
its geodetic lines then one can set:

F=acosy, /7=asinE, {=0,
a a
_ . u u : b
| =—cosédsin —, m = cosécos—, n=sing tand= —.
a a a
In that case, formula (15) will give:
ucotéd u
¢ = ==,
a b
and therefore:
Ilzsinecos%, ml:sinesin%, ny = cosé.

The coordinates of the transformed surface, whichisliaoid with a rectilinear director,
are then:

x:—bu cosE y:—bu sinE z:u+—au
Jai+p b’ Jaz+p? b’ a+b

and when one eliminates v from this, one can deduce that:
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z= %\/ X+ Y+ barctan? ,
X

which is the equation for a surface that can be mappebetdyperboloid of rotation
whose semi-axes aseandb.

It is good to observe that when the director is alggo line, one will have from (11)
thatx = — &’sin 6, and therefore, (13):

_sing4 &% -67

U

&

ow .

It will then result from (15) that the original surfaisedevelopable if one has= const.,
and therefore the transformed surface will be a planghat fact is a necessary
consequence of the hypothesis that we assumed, narhalythe generators stay
rectilinear under the transformation.

It is worthwhile to point out the following two appittons of the general theorem
that was proved at the beginning of this 8.

1. Any curved surface on which there exists a geodeticthiaeis normal to all of
the generators can obviously be considered to havedm®rated by the lines that are
perpendicular to the osculating planes of a line of dowhbkvature. Now, when that
geodetic line transforms into a straight line, the gdneseof the surface will arrange
themselves to all be normal to that line. One can shgrthat:

Any curved surface that is generated by the perpendiculars to the oscplateg of
a line of double curvature can be mapped into a conoidal sufface

The formulas that relate to that transformatios guite simple. Indeed, lif m, n are
the cosines of the angles that the three axes makehg normal to the osculating plane
of a line of double curvature whose arc length,isvhile r is its radius of torsion, then
one will have:

and then:
&4=0, m=0, 4=0, $=[—,

l; = cosg, m=sing, n=0.

2. By virtue of the general theorem that was provethig 8§, one will see that the
number of ruled surfaces thatctify an arbitrary line, whether planar or of double
curvature, iunlimited. In fact, it is clear that if one draws a line fronygoint of that
line that perpendicular to the principal normal andimsx with respect to the tangent by

() ENNEPER, Zeit. Math. Phy8.(1864), pp. 398.
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an angle that varies by an arbitrary law then it gdherate a ruled surface for which the
given line will be a geodetic line. One can then akvagnsform that surface in such a
way that the line will be converted into a line.

Letay, by, C1; @, by, ¢ ; a3, bs, c3 denote the cosines of the angles that the three axes
make with the tangent, the principal normal, and the pelipelar to the osculating plane
of the given line, resp., and lgtr be the radii of first and second curvature, resp. If one
lets|, m, n denote the cosines of the angles that the threenaades with the generators of
a rectifying ruled surface then one can set:

| =a; cosf@+azsind m=b;cosf+bzsingd n=cicosfd+czsiné,
from which, by the known formulas of SERREY, one will deduce:

"= (g& +S'—n9j a — &' (ag sin 8—az cos ),
Yo, r

m’= (ﬁe +S'—“9j by — & (by Sin 6—bs cOSH),
0 r

n’= (COSB +S'—r€j C; — 6@’ (c1 sin@—c3 cos),
Yo, r

and therefore:

(16) g2 :[

. 2
cosd , swﬂj e
0 r

With that value, (15) will become:
¢ = j[—cow +—1jdu.
p T
When one determine@from the equation:

cotéd 1
_ 4=
Yo r

01

the transformed surface will be a plane, and orkthén get theaectifying developable
which is the only rectifying surface to which theogneters have directed their attention
so far. Indeed, the known value éfthat relates to the generators of that surface
coincides with the preceding one.

Equation (16) is a special case of a more gerferalula that will be established
elsewhere.

() See BERTRAND{raité de calcul différentiels§ 590, 591.
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§3.

The theorem that was proved in the preceding § canaloke more intuitive by means
of some very simple geometric considerations that algb lead to a more general
property.

Indeed, any ruled surface can be considered to be compbardnfinitude of strips,
each of which lies between two contiguous generatorggilm an arbitrary line that is
traced on that surface. The tangent plane to thecgeudta point on that line will be
determined by the direction of the generator that passesgih that point and the
direction of the element of the curve that terminatethat point. Now it is clear that one
can rotate the strip that contains the successiveegleanound the generator that contains
the point that is common to it and that element uhéldther end of the second element,
and therefore all of its elements, come to lie & thngent plane that contains the first
element. In the same way, one can rotate the thipdwsttil the element that is contained
in it is arranged in the plane that is determined by gheceding element and the
generator that is common to the second and third strgh,sanon. In that way, the
original ruled surface will be transformed into anotbee on which the transformed
curve is found to be traced in such a way that eactopawnsecutive elements exists in
the tangent plane to that surface. That is to sayfrémsformed curve has all of its
osculating planes tangent to the transformed surface @hdrefore amsymptotidine of
that surface. Hence:

Any ruled surface can always be transformed in such a way that an arbitrahat
is traced on it will become an asymptotic line of the transforraddce.

When the original line is a geodetic, no matter howlme&ls the surface on which it
is traced, it must always continue to be a geodetiherransformed surface. It cannot
become an asymptotic line without transforming into aigit line then, since in any
case, it will be impossible that its osculating plaaes at the same time, normals and
tangent to the transformed surfaces. One will themeaat the theorem of the preceding
8.

If the line that one considers is an orthogonal ¢tajy of the generators then it will
be clear that when it is transformed into an asymptioi&; its principal normals will be
directed along the generators of the transformed surf@ree concludes from this that
one can always turn all of the generators of a ruled surface into principalaiemmone
of its orthogonal trajectories by an opportune flex{on

It is easy to find the formulas that relate totia@msformation under discussion.

Indeed, (12) will initially give:

1 _cosw

nop

since aa = 0 for the asymptotic line. That confirms thesetvation that if the first
director is a geodetic then the transformed onéheila straight line. By virtue of (11),
the preceding equation can be written:

() BOUR, J. Ecole Poly22, cahier 39 (1862), pp. 52.
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sin@
17 ___Sh6
(17 R Py

When the curve that one considers is the line dadtstn, one will havex = 0, and
therefore:
~1_ du

g do’
or, if one calls the contingency angle of the transkd linedthen:
dn+dé=0,

which is a formula that one deduces from a known the¢em

Now letay, i, Vi ; a2, [, V6 ; 3, 3, )5 denote the cosines of the angles that the three
axes make with the tangent, the principal normal, aegénpendicular to the osculating
plane, resp., of the transformed directors. If oneenkes that the generator of the
transformed surface is in the osculating plane ofd¢bate and makes an angle &ith
it then one will see that:

(18) li=a1cos@+a,sinf, M= cosf+L5,sin8 Ny =) cosf+ sing,

from which, if one recalls the SERRET relations tvatre cited above, one can deduce
that:

|i2+m12+n;2:S|n29+(_1+e,j ,
n o

in whichr; is the radius of torsion of the transformed curv@ne gets from this [(7),
(17)] that:

a2
(19) sin“ @

= _ .
\J E?sin?@-k?

The two equations (17), (19), along with (3), defithe three functiong, m, &
completely, and when one knows them, (18) will diveny, n; .

The value ofr; will become infinite only wheny/ £?sin8-«* = 0; ie., the

transformed curve can be planar only when the maigsurface is developable, which is
also clear in its own right. We then need to emspgathe case in which the director
coincides with the edge of regression of the depaghte surface, since one will then have
6= 0, k=0, and the preceding formula will become indeirate, as it must. Indeed, no
matter how one folds a developable surface, wisl@riginal generators stay rectilinear,
it will be clear that the edge of regression mustags preserve the characteristic

() PAUL SERRET,Théorie nouvelle géométrique et mécanique des lignes a daubleuce, Paris,
1860, pp. 150.
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property of the asymptotic lines, and whereas its curvatiutee first type will be remain
invariant at each point, the torsion can take on vahegsvary according to arbitrary law.

When the director coincides with the line of strictiohthe surface (which is not
supposed to be developable), (19) will yield the simple faamul

sing
h=—-,:

&

which will coincide with one that we encountered befarthe penultimate application of

§2.
The transformed director will prove to be defined, uritierpresent transformation,

by the expressions of the two radii of first and secoundfature as functions of the arc
length. The problem of determining a curve under thosdittons was treated recently
by HOPPE ). It is clear, moreover, that the complete intéigreof the three equations
(17), (19), (3), which have orders 2, 3, and 1, resp., mustinte six arbitrary constants
that can be determined by fixing the absolute positioh@ihew direction in space. All
of the surfaces that have been transformed in thatoaaytherefore differ from each
other only in position, which would also emerge from thecpding geometric

considerations.

§4.
If one takes:
A=mn'—m’'n, B=nl'—n’l, C=Im"=1I"m,
for brevity, then one will deduce from the three equation
| &'+mnp’+nd’ =cosé
I"&+m n’+n'd =K,

5!2+,7/2+Z12 = 1’
the following values:

, k't A\ £?sin*6-«k?
&' =lcosf+ 2 ,
, km + By £7sin®0-«*
(20) n' =mcosd + " ,
£
, kn' £ Cy £%sin8-«k?
{'=ncosd + e ,

() Jour. f. d. reine u. angew. MaB (1862), pp. 182bid. 63 (1864), pp. 122.
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which are formulas in which the radical must be takéh the same sign in all three.

If one excludes the case of developable surfaces théwahgy/stems of values fd,
n’, ¢’ will always be essentially different, since the ditsginy/ £'°sin’8-«? cannot be
zero independently af. It will then be clear that only one of thosetsyss considered
will coincide with the values of¢’, n’, {’ that were previously known from the
derivatives; in other words, in order for the givarbstitution of value fo€, 7, ¢, 1, m, n
to make the preceding three formulas identities, wil need to give a well-defined sign
to the radicals.

Having said that, observe that if one sets:

(21) =1, m =m, n=n
then the five equations (7), (8) will reduce ta jte three equations:
& +mn+nd; = cosg,
I"&+m'n+n{; =k,
§o+m+{” =1

which differ by only the substitution of;, n,, {; for &, n’, {’ from the ones that

provided the values (20), and which must therefive values to the first three quantities
are identical to them. Hence, if one takes thecadsl in those formulas to have the
opposite sign to the one that makes their righdhsides equal td’, 77, {’ identically
then one will have values fof,, 77;, {; that correspond to a curved surface that is

distinct from the given one such that its line edatwill be identical to that of the first
surface and its generators will be parallel to ¢beresponding generators of the first
surface. Therefore:

It is always possible to transform a curved surface in such ahedyetich generator
of the transformed surface will be parallel to the corresponding generatbeasriginal
one

We shall now make some applications of that theore
1. First of all, consider a surface that is endbwéh a rectilinear generator and set:
5: 01 ,7 = 01 Z: u!

| =sindcosy, m = sin@sin @, n = cosé,
SO

£'=. 6% +¢'?sin?@, k=-0'sing, \ £7sin*6-k? = ¢’sirt @




Beltrami — On the flexion of ruled surfaces 13

Substituting those values in the formulas (20) and takingdim¥enient sign, one will
find that:

, _ ¢'sinfé . -
§ = mw sin 29cosg + 26’ sin §),
, _ ¢'sin*@ L _ )
m = m(¢ Sin 285|n¢— 20 COS¢),
o= g% +¢'>cos D sirtd
'=

6% +¢'*sin’ @
which are formulas that resolve to simply:
& =sin 29jcos¢du, 7 =sin 29jsin¢du, {1=ucos &,

in which @is constant.

2. Suppose that the original surface is compos$didegprincipal normals to a line of
double curvature, and then set:

| = ay, m:bz, n = Cy,

from which, one will deduce that:

|':—(i+%j, m’:—(g.*.gj’ n/:_[&+&j.
p T o T o T

One will find that:

A:%—i’ B:E—E’ C:&—&.
o T p T p T

If one substitutes those values in formulas (20)jertaking a convenient sign, and takes:

£:tan O]

r

N

then one will find the following formulas:
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& =& cosO +ag sino, 1, = b1 cos© + bz sinG, {;=C1€0SO +C3SiNO,

from which, one can deduce the coordinates of the ttemefl director by integration in
special cases.
One gets the relation:

18 *+/7, 0+ ¢, = cosO

from that, which says that the angle between the tdag®e the two directors at the
corresponding points will be equal®
If one differentiates these formulas then one fiilll that:

é = %+ (a3 cos® —a; sinB) O/,
n = %+ (b3 cos© —b; sin©) @,

Il = C_;+ (c3 cos@ —c; sinB) @,

from which, one infers:

i:i+612.

e P
In addition:

" n n 1
QtlaQ+’71b2+Zlczz ;’

and therefore, if one calls the angle that theggpad normal to the transformed director
makes with the original ong then:

In order for the principal normals to the two aswo be parallel (and therefore, for
the principal normals of the transformed curve tincide with the generators of the
second surface, as well), one will need to haveycesl and thereforg, = p, © = const.,
plr =const. Asis known, the last equation is tiednly the cylindrical helices. One
likewise sees that in that special case the tramsfd director will be a helix that is traced
upon that cylinder, and will be equal and symmewithe first one with respect to plane
that is normal to the generators of the cylindéwo corresponding points can be found
on that generator.
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3. Consider surfaces that have their lines of stricticdhogonal to the generators;
i.e., ones that are composed of the perpendiculatsetodculating plane to a line with
double curvature. In that case, one will have:

cos@d=0, k=0, | =as, m=bs, n=_cs,

from which:

and therefore:
El':—al, Oi:—bl, Zl':—Cl.

If one integrates then one will get:

S=x%—-¢ Mm=Yo—n G(=2-{,

from which, one will see that the transformed dire@asimply symmetric to the original
one with respect to the point that has the coordindtgs 3y,, 57 i.e., that this
(arbitrary) point will bisect all of the lines that fptwo corresponding points of the two
directors.

In 8 6, we will find another example of parallelism of theresponding generators
for two surfaces that transform into each other.

§5.

Now consider the case in which the director must toamsinto a plane curve. If one
assumes that the plane of the transformed curve isytplane then one will havg = 0,
and the equations of the transformation will be thievahg ones:

(22) L &+mypi=cost, LEmiyy=k, SE+ni=1
IFemienE = et t=g

and their number will be equal to the number of functiorise determined.
We begin by excluding the case in which we have:

cosf=0, k=0,
simultaneously; i.e., the case in which the line attsbn is an orthogonal trajectory to
the generators, which is a case that was consider minag tbefore. Under that

hypothesis, the first two equations (22) can be written:

l, & +myp; =0, l,&+mn; =0,
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and in order to satisfy them, we need to supposes that:

I]_:mlzos nl:]'l
or
éni—émny =0.

The first solution is admissible only wheh= 0, and that will make the given surface be
cylindrical. In that case, the transformation wdhrain indeterminate, which should be
obviousa priori. In the second case, one will have 4 £ 0, and then the transformed
director will be a straight line; i.e., one would getlba ENNEPER’s theorem, which
was proved already in3

Hence, if one excludes those two cases then thaviiosequations in (22) will give:

(I,m —Iim)¢& = m cos@—m k,
(Lm=lm)n; =l k1] cosé,
from which, when one squares and sums, one will dedute tha

(,m;=1;m)’= (£ -n}%) co$ G+ (1- n¥) K + 2k yn{ cosb.
However:
(I mi = 1lim)?= (17 +m2) (12 +m?) = (I, 1+ myd) = &2 (1- nf) - n?,

SO one substitutes:

(&% =m?) sitf 6 =K + (6’2 = K)nf + 2m 1] cosb,
in which:
(23) N sin? 6+ Ky cos@= [ sin §—n2\ £ 2 sif-k?2.

That differential equation serves to deterrmpe if one knows that quantity then the
l1, My, &, 1 will be give by simple quadratures. Indeed, ié@ets:

(24) l1 = sing cosy, my = sing sin ¢, Ny = COSy
then one will have:
812 — ¢/2 + w/Z Slnz ¢,

and thus:

(25) p=[———

which is an equation that will givey, and thereforé;, my . The preceding values df ,
n, then assume the form:
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, | cOSO — K . |, cosf -kl
(26) & = ”1—2”1 = - 220K
Y'sin" ¢ W'sin’ ¢
and will provide the coordinates of the transforrd@dctor upon integration.
Since none of the operations that are necessasglte the present problem imply

any impossibility, one can generally state the theo

Any ruled surface can always be transformed in such a way that any tsénes
will become planar.

Let us consider some special cases.
1. The director is an orthogonal trajectory of gjemerators.

If one hasf = 77/ 2 then (23) will become:

N

from which, when one compares this with (24), (26)% will infer that:

¢=—H£’2—K2du, w:j’(_d”

sing
If one substitutes the valueslgfmy, ¢ in (26) then one will have:

&=-siny, n, = cosy,
from which:
&=-cosyly, n=-sinyly,
and therefore:
sing

== ,
K

which is an expression that could have been dedinosd(11), (12), which will give:

cosy _ _
2]

for 8=/ 2, and one observes thais obviously the complement of the angle that the
tangent plane to the transformed surface makesthatimew director; i.eg=7/2 - .

If one supposes that the surface is composedidipal normals to a line of double
curvature, and one therefore has:
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1
F )

1
| =a, m=bh,, n=c, £2= S+
P

then one will find that:
du

osing’

== |—, p=-

which will give:
&=~ [singdu, m= [cogydu, o= psing,
1 =sing cosy, m =singsiny, Ny = CcOSy .

In that case, one sees tlgatoincides in absolute value with all of the anglétorsion of
the line considered.

Of the four arbitrary constants that enter intat ttormula, three of them correspond
to a simple displacement of the transformed directdhe xy-plane, but the fourth one
corresponds to transformations that are truly mistirom each other, in general.

2. The director is a geodetic line.

Since one has, from (114,= - 6’sin @in that case, equations (23) will become:

N sin 6—n; cosf'= |/sin*§-n2\ £?-97.

That equation has the general integral:

’ 12 _ 2
n; = sin@sin { g—gdu} ,

sin@

and possesses a singular integral, in additiongwist
N, =sing.

A simple consideration will show that the solutittmour problem is contained in that
singular integral. Indeed, when a geodetic lirmngforms into a planar line, it will
continue to be a geodetic line on the transformethses, and then the lines normal to
that surface at its points must be found in itsnpland be normal to that curve.
Consequently, the generators of the transformefhe@imust project onto the plane of
the new director tangentially to that director, amaist therefore make an and@eavith the
xy-plane on which it is traced. One must then have sin g, which is precisely what the
singular integral expresses.

That argument will cease to be correct only whHandirector is transformed into a
straight line. That case, which was treated ajaad 2, corresponds precisely to the
general integral, so we shall not address it.
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Since one then has= 77/ 2 — 6, one can infer from (25) that:

N

p=|
SO
I = cosdcosy, my = cosdsin n, =sind,

after that, one will deduce from (26) that:
51=jcos¢/du, /71:jsinz//du.

One will then have:

§ =-singy,  n=cosyly,

from which:
[ 12 _ 2
i = ig—e' .
yo) cosd

All of the elements of the transformed surfacethus determined.

To avoid any misunderstanding, recall that thesgmé transformation cannot be
applied to the case in which the geodetic meetsfale generators orthogonally, or it
would be better to say that the transformed pldim& could not be anything but a
straight line in that case.

Furthermore, observe that the transformation ti¢ considered in this 8§ can be
treated more directly in the case of the geodeie by deducing the values kaf my, n;
from the equations:

l, & +m,7, = cosé

Il g(1 + ml,71 = O’

2 +m? +nP= 1
and substituting them in:
|i2+m12+n’12: 812,

and in that way one will get an equation in theoselcderivatives iné , m: that is

equivalent to:
1 _ [812 _812

yo) cosf
which can also be obtained by a different methad,then, when combined with:

qHmt =1,
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we would be given the same values that were found @csintly. If one applies that
process to the proof of the theorem that will defireedbjective of the following § then
that will serve to establish a general formula later on

§ 6.

Any ruled surface can always be transformed in such a way that arsygdatietic
lines transforms into a cylindrical helix.

Indeed, suppose that the cylinder on which the helix mustbed has its generators
parallel to thez-axis, and call the constant angle that is formed betwee helix and
those generatorg . One needs to set:

27) {,=costh,

and that equation, when combined with the following five:

2

(28) L& +mypy=cosf—n, coguy, 1, &+myy'= 0, &7 +n't = sify,
Femier=1 Lemie i

will determine completely the six quantities that relatéhe transformed surface, which
will prove the possibility of the transformation in whig is obvious thags can assume
arbitrary values. We need to emphasize the case irhwime has cog; = 0, cosd=0
simultaneously, which is a case that was excluded b&faitee preceding 8 and which
was spoken of before; or more generally, in which ash= 0 if 8is constant.

If one first observes that one has, in general:

1 I n n I I " n T T n " I
F: (,71(1_/71(1)2+(Zlgl_51§(])2+(§({7 1_5{7])2
1

- l"2 +/7;2+Zi’2

then one will have in the present case that:
1 " n T n " ! —_— n n
F: ( 12+/712)COSZ,L11+ 61’71_51’71)2_ §(12+’712’

1
SO

1 " n T n " 1 Sln
(29) F=<‘12+/712, an-&p =24

1 1

From the second of these equations, the third®f @nd:

éé-n'n =0,
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one can deduce the following values, in addition:

@ PO S
p.sing, p.sing,

1

Having said that, when one recalls (30), the finst equations in (28) will give:

|y sirf 14 = (cos@—n; costp) &,
my sirf 14 = (cos@—ny costw) 7,
from which, upon squaring and summing, one wilt get
n?— 2ny cosgs cos@+ cod 8—sirf 14 = 0,
and therefore:
Ny = COS 4 * 6), cosf—ny costa = singa sin (4 = 6).

Consequently, if one takes just the lower signntdeo to remain in agreement with the
convention that was established it ghen one will have:

(31) = Gsin@=8) . _;sin@,-0)

. . , m=cosfhn—6.
singy siny,

If one substitutes these values in the last of (&) one will find that:

812 — Sinz (/11_8) + 812,

pLsin’ i
from which:
(32) 1 _singNe*-6° |
2] sin (:u1 -0)

If one letsR’ denote the curvature of the cross-section of thiedsr on which the helix
is traced then one will have, as is kno®ri= o, sirf 4 , and therefore:

(33) 1 Net-o
R singsinw,-6)

If one substitutes the value pf that is given in (32) in (30) and observes thedtluf
equations (28) then one will find the formula:
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ng B m ,711-1 B 8’2 _ e’ 2

Jsitp-&7  sin@-6)"  [sintp-n? sin@-6)

from which, when one sets:

12 _ 02
(34) = [0 g,
sin(y, - 9)
one will infer that:
(35) &=siniy jcos¢ du, m=sinw jsin¢ du, {1=ucosi ,

and therefore:

(36) 1 =sin (n — 6 cosg, my=sin {4y — 6 sing, N =cosfn—06.

We have then arrived at all of the formulas tleate to our question by means of
only quadratures.

Let us make the following two applications:

1. The formulas:

usinu usinu

f=acos , n=asin , {=ucosy,
a a
. . usinu : usinu
| =—sinvsin , m = sinv cos———, n = cosv
a a

represent a ruled helicoid whose helix of strictf@mose arc length ig) is traced on a
cylinder of radius, and makes an angle gfwith its generators, while is the angle that
the generators of the helicoid make with thoséefdylinder.
If one takes:
asin(+ - p)siny, _ a
sinv sinu

for brevity, in whichy is an arbitrary constant, then one will find tlgatan be taken to
be equal tow +7—27, since the values of the constants that are atidéae integral
a

(34) will not influence its absolute position iretktransformed surface; if one substitutes
that value o in formulas (35), (36) then one will have:

usin . usin
Elzalcos—’ul, /71:als|n—’ul, {1=ucosi ,
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using, using,

1 ==sin (v+ 4 — L) sin my = sin (V + 14 — 1) CoS

Ny = cos ¢+ th — 1),

which is a formula that is perfectly analogous ke tne that represented the first
helicoid, and that shows that, 14, v + 14 — i are quantities with the same significance
asa, u, vwith respect to the transformed helicoid.

If one setgs = 0 then the helicoid will have a rectilinear di@r, and if one setg; =
7l 2 + u— v then the helicoid will have a director plane. dHy if one setgs = 77/ 2
then one will have a hyperboloid of rotation, whisha surface to which all of the

helicoids that are contained in the preceding eguositcan be mapped, as is known. The
formulas that relate to this case are:

acos(u-v u sinu siwv acos(—-v) . usSinu siwv
= — (U. )COS Lol o h=— (U. )sm da . =0
siny sinv acosfi-v siny sinv acosfi-v
. usinu sinv usinu siny
Ilz—cos@—v)smL, mlzcosgz—v)cos#,
acosu-v) acosu-v)

Ny = sin (- v),
which will give:

X%+ y? z a’
cos (- V) sift - v) sin® u sirfv

when they are substituted in (1) and one eliminates
In the exceptional case that was mentioned tonb&gh, this is presently verified for
L1 = U —V, as is easy to seeposteriori That value of the constant must therefore be
considered to have been excluded.
2. Suppose that the director of the first surfadbez-axis, and therefore take:
f: O, /7:0, Z:U,

| =sindcosy, m=sinésin ¢, n = cosé.

In that case, one will have from (34):

J z//sme
sin (i, 8)

which is a value that will yield the desired tramshation when it is substituted in
formulas (35), (36).
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If one supposes th#&is constant and equal ta / 2 then one will have simply = ¢,
and therefore:
=1, m=m, m=n;

i.e., the generators of the transformed surface wifldrallel to those of the original one,
which is a particular case of the question that westéd in 84. We will then get a
theorem that can be stated as follows:

Trace a helix on a cylinder with an arbitrary base that forms thgtrary angle i
with the generators of the cylinder, and slide a line that is incliuitkd respect to the
generators by the angje/ 2 along that helix. The curved surface that is obtained in that
way can be superimposed with that generator by a line that one keeps cgrsiaaitel
to the generators of the preceding surface, while one if its pointssnadmeg an axis
that is parallel to the generators of the cylinder and sweeps out lengthg #iat axis
that are constantly equal to the corresponding arc lengths of the helix.

§7.

The geometric considerations that we made use o8ioag serve to easily prove that
one can always transform a ruled surface in such a thvaly its generators become
parallel to those of a director cone that is givesitaarily (which can therefore never be
reduced to a simple line, except when the surface isiadey). That property was
established before by MINDINGo. cit) and more recently by BOUR)( who based it
upon an ingenious classification of the ruled surfacBsus, we shall not return to that
argument and will limit ourselves to presenting somesicterations that relate to the case
in which the cone that is assumed to be the direstadine.

Under that hypothesis, let denote the angle that the generators of the cone make
with its axis, which is supposed to be paralleD) so one can set:

l1 = sinA cosg, My = sinA sin @, Ny = COSA,
from which:
E'=¢’sinA.

The equations that must be satisfied by the functfangn, & are then the following
ones:

&G +mi+ {7 =1,
(37) (& cosp +n; sing )sim+{; cod = ca®
—-(&sing—n,cosp ¥' =k .

The projection of the transformed generator onéxy-plane is represented by:

(x —&) sing — (y —rm) cosg =0,

() Cited paper, page 43.
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and therefore the envelope of all the analogous projectist satisfy the equation:

[(x =¢1) cosg + (y —/m) sing] ¢’ = & sing —n, cosp,
or, from (1):
(38) & sing—n,cospp=uv¢’sina.

This equation betweemand v (which one would likewise arrive at if one had supposed
that the angled was variable) represents the curve on the transtbrsneface along
which it is enveloped by a cylindrical surface that has itegeors parallel to theaxis.
The corresponding curve on the original surface is repted by an equation betwegn
and v that one can write as:

K+ve?=0,

by virtue of the last equation (37), and under the hypothbsaisA is constant and

thereforeg’sinA = £’ If one substitutes the value @that one infers from that equation
in (1) then one will get the rectangular coordinateghefcurve in question, which will

be:

Kn

g?’

X=¢- 7 y=n-"z 2=~

One deduces from this that:

£ £

Kkl P
Z={-—-n j

5'2 512

and therefore:
'K +my +n Z=0,

which is a result that says that the line in questionoihing but the line of striction.
Hence:

The line of striction of a ruled surface that hdlsad its generators inclined the same

with respect to a fixed plane is the line of cohtaetween that surface and the cylinder
that is normal to the plane that involves (invokegrthe given surface.

Conversely:
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If the line of contact between a curved surface and an involved cglhdurface is
the line of striction of the first surface then its generatoesall inclined the same with
respect to those of the second one.

Indeed, if one supposes thhis variable and considers the line of striction tohee t
director (i.e., one sets= 0) then one will get the following equation in plafehe third
equation in (37):

[(& cosg +n; sing )cod —¢; sid A" = (& sing —n, cosp @’sinA,

and then, by virtue of the second equation in (37), whiclaresrinvariant, and the fact
that {; = cos @ + 6), equation (38) will become:

A'sin@=u ¢’? sirf A.

Now the line of contact between the transformed saréad the cylindrical surface must,
by hypothesis, coincide with the director; i.e., witk 0, soA’ sin@= 0. If the surface is
not developable then s#cannot be zero, so one will need to have 0; i.e.,A = const.

This property can be made to appear obvious by meansntd sasy geometric
considerations, moreover.

Indeed, when two lines that are concurrent at a poispace are inclined the same
with respect to a fixed plane, it will be clear thlabne projects onto that plane the
common normal that goes through it from the point térsection of the two lines then
one will get a line that bisects the angle that is @efiny the projections of the two lines.
It results from this that if two lines that are infelit-close and not situated in the same
plane make the same angle with a fixed plane thendifeetion of their minimum
separation distance must project onto that plane partdlethe bisector of the
infinitesimal angle that is defined by the projectiofshe two lines. Now, the length of
the minimum distance is infinitely small, so its pr¢lec must be that way, as well, and
therefore if one takes into account the direction tha projection takes then it will be
clear that the projections of the feet of the afeetioned minimum distances must fall
on the projections of the two lines at points thatiafiaitely-close to the intersection of
those two projections.

If one applies that observation to the successivws pdinfinitely-close generators of
a curved surface all have generators that are equally-idckmia respect to a fixed plane
then one will conclude immediately thathe line of striction of such a curved surface
projects onto that plane along the envelope of the projections of the geserator

Conversely, if two contiguous generatal® notmake the same angle with a fixed
plane then the direction of their minimum distaneben projected onto that plane, will
define a finite angle with the projections of the geteesa Hence, in order for the
projection of the minimum distance to be infinitely d¢ined the same order as the angle
that is found between two generators (and therefore phejections, as well,) one will
require that the projections of the feet of that munm distance must fall at fanite
distance from the intersection of the two projectidraan which, it will obviously result
that the projection of the line of strictiosannot coincide with the envelope of the
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projections of the generators. Hence, along with theepliag theorem, one will have
the converse theorem, and therefore its reciprosaiedl.

The preceding considerations make some of the prop#rdesvere pointed out by
BONNET () seem obvious, since they are all immediate consegsi@idermula (11),
moreover. If the generators of a curved surface areddithed the same with respect to a
fixed plane then they will likewise make a constant engith the generators of the
cylindrical surface that is normal to that plane and weslthe curve surface along its
line of striction. Therefore, if that line makes axstant angle with the generators of the
curved surface then they will likewise make a constagleanith those of the cylindrical
surface — viz., it will be a cylindrical helix — and therefoa geodetic line on the
cylindrical surface, as well as on the tangent curvethselr Conversely, if the line of
striction is a geodetic on the curved surface then thee gaing will also be true with
respect to the cylindrical surface, and that line o€tbm will therefore make a constant
angle with the generators of the cylindrical surface, el @ with those of the curved
surface. Now any curved surface can be transformed mutther one that has all of its
generators inclined the same above a fixed plane, anchtdracteristic property of the
geodetic lines and lines of striction will remain unalteby the transformation; it is then
clear that the preceding observations will lead tottreerem:

If the line of striction of a curved surface meets all the gepes at a constant angle
then it will be, at the same time, a geodetic line, and conveigalyis a geodetic line
then it will cross all the generators at a constant angle.

Another property that was stated before by BONNIBIO () will also persist; namely:
If a geodetic line meets all the generators at a constant angle thelh lievthe line of
striction. Indeed, transform the surface in such a way that theegjeoin question
becomes a straight line. All of the generators otthasformed surface will prove to be
inclined the same with that line, and therefore, froprevious theorem, that line will be
the line of striction of the transformed surface. gfHfore, etc.)

§8.

If one letsa, b, c denote the cosines of the angles that the threeraaks with the
normal to the ruled surface at the pout@n the director then one will have:

(39) q=1n-¢'m p=Sl-¢'n

o= m-n'l
sin@d ' siné '

sin@

In order for the transformed surface to be tangentl ggoatts of the new director to a
cylinder that is normal to they-plane, one needs to have:

() J. Ecole Poly19, cahier 32 (1848), pp. 71. A much-more-general theorengivas by BRIOSCHI
in the Giornale dell’lstituto Lombardo e Bibliotecallana9 (1856), pp. 400.
BONNET's theorems were proved geometrically by PARERRET; sedhéorie nouvellepp. 149.
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(40) 51'”11_’71 1= 0,

and that equation, when combined with the usual five (7)&ndan serve to determine
the six functionséy, /m, &, 11, M, N One can proceed with that search in the following
way:

One gets from (20) that:

Em-n’l = i[—K(I m' =1"m) + rly/ £'Zsin29—K2]

g'?

and therefore the condition (40) can be replaced weHdllowing one:

K2 (I, m, = I;m)? = n? (¢'%sin’ - k2),
or
n?sind=k*(1- n}),
from which, one gets:

(41) N, = COSY,
by setting:
_rkdu
¢ _I sin@’

Hence, if one takes:

(42) = I«/ £?sin@-«k* du

- sind sing

once more, then one will get the value$;pfy, n; from the formulas:
(43) l1 = sing cosy, my = sing sin ¢, Ny = COS¢Y .

If one setsk equal to O then one will hawe = const., and one will get back to a
theorem that was proved in the preceding 8. If the maigurface is developable then

one will have:
N E7sin?@-k? =0,

= const.;

and therefore:

i.e., the transformed surface will be planar. Hesveif the director makes the same edge
of regression then one will simultaneously have 0, d = 0, and the formulas of the
transformation will become indeterminate, whiclolwiousa priori.

It is clear that the angle that the transformedador makes with the generators of the
involved cylinder is equal t¢ + 6, and that the angle that is made by the tangetiteto
cross-section of that cylinder and thexis is equal tay. It will then result that:

(44) & =sin @+ 6 cosy, n, =sin @+ 6 siny, {, =cos @+ 6),
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which is a value that can be deduced from (20) by chahgmg into |1, mg, ny .
One deduces from this formula that:

1 (k+8'sin@y N E*sSifO—-k>)sit p+80)
0f sin’ @ si’ ¢ sirf@

Or also, from (11):

(45) iz: [cosa)j L€ sirf.ezkz-)sir? $+6
05 0 sin’ @ sir’ @

One also easily determines the curvature R bf the cross-section of the cylinder.
Indeed, if one lets 1 R; denote the curvature of the normal section thahasle in the
transformed surface tangentially to the new dinettien one will get from (45) that:

1 _sin@+8)3/ £ si 6-«”

R sing sin@

and therefore:

12 im0 2
(46) i \/5 sin“@—-«

R singsindsinp+6)

The preceding developments permit us to statéotloaving theorem:

It is always possible to transform a ruled surfacesuch a way that any one of its
lines will become a line of contact between thengfarmed surface and a cylindrical
surface.

When the director is a geodetic line, one willéaw= — 6’sin 6, so:
p=6&-6, {,=cosk,

from which, it will emerge that the new directoraiselix, as it must be. In that case, one
will also have:

1 _sing/e*-0° 1 g?-0°?

o sin@,-6) R sing,sin@,-6)

which are formulas that agree with (32), (33).
When the director is the line of striction, onél find that:

o7 siffg ' R singsing+8)’

12 (]
i:€,2+£ sin(g+8) 1 £

in which ¢ is a constant angle.
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When the director is an orthogonal trajectoryhef generators, one will have:

5’2_/(2
%:K2+(8'2—K2) cof ¢, 1_ 4

o3 R sing cosp

§9.

Last, but not least, we shall mention a conditidra very general nature by which
one can prescribe the transformation.
If one sets:

M=md-mné&+nl-ag+am-trm¢,
N=@R'{"=n"{ )1+ ({'E"={7EYm+ (E'n”"—=¢"n')n,

for brevity, then one will easily see that at anyinp (u) of the directorv = 0, the
equation:
Mdv—Ndu=0

will define the directiondv / du that is conjugate with respect to that directotheait
point. Wherefore, if one substitutes a well-dediffienction ofu for the ratiodv / du then
the resulting equation will express the conditibattmust be satisfied in order for the
director to have its tangent conjugate to the tivacthat is defined by that function at
that point. Hence, e.g., the equatr O expresses the condition for the director to be
an asymptotic line (which will follow with no furén discussion from the geometric
significance of the expression fd). However, the equatioM = 0 expresses the
condition for the director to be the conjugate lingh respect to the rectilinear
generators. It is clear enougler sethat this last situation can be verified only for
developable surfaces. That will emerge immedidtelsn our formulas, moreover, when
one observes that (20) will give:

M=A&+Bn +CJ =+J&%sin"0-k>,

and that the quantitx/ £'?sin®@-k? can be annulled only on developable surfaces, as
was said in §.
In order for the directiodv / duto be normal to that of the director, one needseto

dv___1
du cosd’
and therefore, the equation:
M +Ncosfd=0



Beltrami — On the flexion of ruled surfaces 31

will express the condition for the director= 0 to be a line of curvature of the ruled
surface. When the surface is not developable, onesegllthat the preceding condition
can never be satisfied fét= 77/ 2, which recalls the preceding observatign (

If one letsN; denote whalN will become when one passes from the original surface
to the transformed one then it will be clear thamié adds the relation:

(47) N; cos@ 4/ £%sin“8-k*=0

to the five relations (7), (8) then one can, ingyah determine the six functiods, /7,
¢1; 11, mg, ng, which is equivalent to saying that:

In general, one can transform a curved surface in such a way that a linis trexted

on it and is neither a generator not an orthogonal trajectory to the generatibrs
become a line of curvature on the transformed surface.

Other than the quantitie§ «, & the value ofN; will contain only the radius of
curvaturep; of the transformed director. Indeed, from the¢hequations:

|, &+m,/7;+ g} = cosf)

" n n . COSC!)
l,&'+mni+nd| =sind ——,
2 4mien = 1,

one will deduce the following values laf my, n; :

l, =alcose+wpla2+a3\/m
(48) m = f,c080+@ p, B, + B sirt 6-a’p?

n = V10039+W,01V2+V3\/m ;
in which:

. COSw
w=Ssinfg ——,

and the quantitiesr, B, y have the same significance that they had # 8with those
values, one will deduce that:

() The property thaany ruled surface that has an orthogonal trajectory to its generatora fioe of
curvature is necessarily a developable surfaaa be regarded as a consequence of the other orikeghat
tangents that go through the points of a line to two different evadliieslefine a constant angle between
them.
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2022
(49) N _|sin’ g wp

L=
P

If one substitutes that value in equation (47) theea will get:

12ain2_ 2 2
(50) i:i\/g sin 8 k*+w?®cosd
o) sind cosyY

which will always be real since'”sin®8—-«? is a positive quantity (§).
If one lets 1 R, denote the normal curvature of the transformeelctiir then one wiill
have:

1220 2
(51) i:i«u sin“8—-«

R sind coY

for that value ofeg, which is a value that will become indeterminatieew the original
director is an orthogonal trajectory of the germmstof a developable surface, as is
obviousa priori.

When the director is a geodetic, one will hare 0, xk = - &’sin 6, and therefore:

which is a value that coincides with the one thasviound in &, application 2; it must
indeed be true then, since a geodetic line canmoatthe same time, a line of curvature
without being planar, as is known.

If the director is the line of striction then onall have x = 0, w= - @' sin 6, and
therefore:

i_+\/£’2+6"2c0529 1_, ¢
o cosd " R cosf

§ 10.

Since we would not like to multiply these exampdgeatly, it will be sufficient to
show one advantage of the method.

Everyone can see that many of the questions tleatreated are susceptible to
generalization. Hence, e.g., the problem o5 & a special case of this other one:
Transform a ruled surface in such a way that a gilree will be arranged on another
given surface. The one in 8 will come down to the followingTransform a ruled
surface in such a way that one of its geodeticslwiél become a geodetic line on another
surface. The last one is, in turn, contained in this othee, which is a generalization of
the one that resulted in& Transform a ruled surface in such a way that a gilmee on
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it will become a line of contact between that surface and another giveates and so
on. The solution to this and other questions would cdytae less simple than what we
could achieve in the special cases that we treatedhduistprecisely why it deserves to
be made the object of later research.

We conclude with the observation that, in genera§ niat possible to transform the
director (which is an arbitrarily-traced line on the audf, moreover) into another line of
that type, since that would implyo conditions on the transformation. Therefore, it
could happen that this transformation would be possibdeitain situations, and we had
a very obvious example of that in the question that vesgdd in . In order to be able
to judge the possibility that those transformations eiisany case, we establish an
equation that must be regarded as fundamental in theytbéouled surfaces, since it
expresses a condition that must be necessarily sdtibje any transformed curve
independently of the surface into which the original serfaas transformed.

That equation is obtained by eliminating the three questi, m;, n; from the three
equations (48) and the first of (8).

If one sets:
k=0 @ k= 4sin*8-p}w?,

for the moment, then one will get from (48) that:

|l': Ko+ (h’ + COS€+EJQZ +[k’ —Ejag,
P r ry

M=K+ [h’+c°se+5jﬂz+[k'—ﬂjﬁ3,
Iol rl rl

N=KH}+ (h'+cose+5jyz +[k’—ﬂjyg
pl rl r1

by means of SERRET's formula, from which, one welt:

2 2
8,2:K2+(h,+C059+Ej +[k’—ﬂj :
101 rl rl

upon summing and squaring. If one sets:

2
: sine\/ 1-pf [cosa)j
cosa)j 0
+
0

£

P=h+

k- (,olsine
rl
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then that formula can be written in the following wWay

2
2 | & cosf- Pplﬂw
cosd Jo
(52) (P+ j + L+ Kk*=¢"?
o) 1- 7 (coswj
P

and constitutes a relation between the four questit

ua pla rla

which will always be kept the same, no matter whamsformation is performed on the
ruled surface (as long as one keeps its origina¢éiggors rectilinear). In other words, it
will be a differential equation that belongs to afl the curves into which one can
transform the director of the ruled surface.

Hence, for example, when the director is a geodieke, one will have:

COsw_y  p=SNG __gsing

Yo,

[

and the preceding formula will reduce to this oty simple one:

cosg + sing _
2 r

(53) £%-a%,

which has the same form as (16)2,8~vhich should be obvious. If one takesri £ 0
then the last formula will reduce to the one thatggthe value ob, in application 2, %.

However, if the direction is an orthogonal tragegtof the generators then one will
have:

%}Z—K, 8’ =0, cosg=0,

P
and (52) will be:

(54) i _ (pl K), - 5'2 2

n \/1—,012K2

which is an equation that will give the same vdtreo, that was obtained by a different
method in the application 1,58by setting 1 f; = 0.

cosw

() That transformation excludes only the case that wefieekin § 3 in which one has£ =
1

Under that hypothesis, one can therefore Hawesin g k = 0 in the preceding formula, and one will
immediately get the value of that was given in equation (19) oBS§



Beltrami — On the flexion of ruled surfaces 35

If the director is a line of striction then one have:

and (52) will easily reduce to the following one:
cosd-p, (0,8 sing )+ sinH: &
pl\/l_plz g* gl
The preceding formulas can serve to determineodniee quantitieso, r1 when the

other one is given or determinate under certairditms.
Hence, in &, application 2, we found the value:

(55)

— 14

which depended upon the relations:

If one applies formula (54) then one will find that

1.1, o)
h or 1+p°0?%

which is a value that can be deduced less rapidiy the formulas in the cited 8.
Formula (32) in 86 provides the value of, that relates to a geodetic line that
transforms into a cylindrical helix. If one substes that value in (53) then one will

have:
1_ cospyye?-6°
rl

sin(u, —0)

which is a formula that will reproduce the knowmperty of the cylindrical helix when it
is combined with the aforementioned one.
We finally note that when one eliminatgedfrom equation (52) and:

oL p=
which characterizes the lines that are traced sphare of radiug, one will get a first-

order differential equation ip; and u, and its integration will yield the spherical
transform of the original director.

Pisa, May 1865




