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The study that forms the subject of the present pagersressentially to those
formulas that | studied, from a different viewpoint, ne tpaper that | had the honor of
presenting last year to this illustrious Academy [“Sglb delle coordinate curvilinee
nelle theorie del potenziale e dell’elasticita,” (4V1]. | allude to the formulas by which
MAXWELL defined the systems of stresses that are gesgiiatan elastic medium by a
force field that one ordinarily considers to be represkrby a Newtonian potential
function.

Those formulas, which are reproduced here with the syméols that were used in
the preceding paper, are the following ones:
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in whichV is the Newtonian potential function that one consideng the components of
the stresy, Xy, ... are just the symbols that were used in KIRCHHOF©B®tion, in
which one agrees to I, , Yn, Z, represent the components along three orthogonal axes
X, Y, zof the unit pressure that is exerted on a planar elewignhormaln.

Now, here is the question that | propose to tredtthat, and which | believe presents
itself naturally to anyone who reflects upon the sigaifime that the theory of elasticity
attributes to the stresses or tensions that are presam elastic medium. One leaves
aside any preconceived notion in regard to any possiblegahysirrelation between the
so-called actions-at-a-distance and the stresses esionenthat that are defined in
MAXWELL'’s formulas, and considers those stresses nsibes to be simply generated
in an elastic medium by a slight deformation of &;,iby a slight displacement of any of
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its points (relative to an initial equilibrium state)When regarding matters from that
aspect, it is natural to demand to know: Does therg &uist a deformation that is
capable of generating that stress, and if it does existf are the components of the
displacement of any point of the medium?

In order to respond to that demand, one first needstablish a few things in regard
to the nature of the elastic medium in which one suppibs¢ghe stresses and tensions
that are defined by MAXWELL'’s formulas are generatedonfthe purely-mathematical
viewpoint, one can require that the constitution ofrtleglium is not constrained by any
condition other than that of continuity. However order to avoid the prolixity of a very
general and abstract study, | shall suppose that | am deatimgimply a homogeneous
and isotropic medium, while assuming that the constantotropy can be different in
the regions of space that are found to be in diffecamtditions with respect to the
distribution of the potentiating masses; i.e., the seaghat contribute to the formation
the potential function. Nonetheless, in order to avoidegree of generality that is
theoretically justifiable, but unused in practice, onaegpondingly assumes that in the
formation of that potential function in terms of contiting masses that are extended in
three dimensions, those masses have constant deasttysjthe density in an ordinary
isotropic medium is constant. Moreover, that restmc has little importance with
respect to the physical theory in which MAXWELL'’s forraal are presented, since
surface potential functions do not appear in them, akea r

Having thus circumscribed the problem, it is possible to uakierts mathematical
treatment, and it is precisely that treatment thah$othe subject of the present work. Its
conclusions are almost-entirely negative, since ilt be established that in a truly
isotropic medium, it is not possible to perform displments that are capable of
reproducing the system of stresses that are defined byWERX{_’s formulas, unless the
potential function is linear in the coordinates. Not aelyhat particular case devoid of
all interest, but it cannot be verified when the spamesidered is infinite, either. If we
would like to avoid the necessity of attributing that jeatar form to the potential
function, which is not always admissible, then wé meed to concede the existence of a
medium that isui generissotropic, which is a property that does not corresporahjo
reality that is known so far. In order to envisidw thature of such a medium, it is
convenient to recall that the elementary potentiaklafsticity for a given properly-
isotropic medium that is assumed to have the formwilaes so opportunely adopted by
GREEN consists of two very distinct parts, which ¢enregarded in that way as the
distinct elastic potentials of two essentially-diéfet, irreducible media whose
combinations with varying ratios will result in the isqti® medium that one ordinarily
considers). The first of those media corresponds to a wellvkmoeal entity, since its
properties tally precisely with those of ordinary &tafluids in which only longitudinal
waves are transmitted. However, the second onehiohwonly transversal waves are
transmitted, does not correspond (and probably cannot pondsto any known entity,
since, among other things, the conditions of stabilityegdilibrium are not generally
verified in them. Now, it is precisely when one assarthe existence of the second
medium in the analysis that will be presented beloat th will first seem possible,
among other things, to pursue the investigation of the ohafiwns in spaces that are

() According to molecular theory, that ratio will always 3 to 1, and according to WERTHEIM, 4 to
1.
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devoid of potentiating masses, except that the ultimatgress in that analysis will show
that (at least in the infinite space that surrounds tres)rtae deformations will again be
possible only when the potential function has the sirfgoie that it would take if all of
the masses could be concentrated into a fixed, butampipoint. It is then legitimate to
assert that if one is given a potential function aabity then it will not be generally
possible to reproduce the system of stresses that anediély MAXWELL'’s formulas
by means of the deformations of an isotropic medium.

| have induced myself (not without some hesitationnteke those results public, not
only to raise some objections against MAXWELL'’s doctrimet to show the necessity of
investigating the mechanical interpretation along a diffepath.

§1.

As usual, leu, v, w denote the components of the displacement of an anppoint
(X, Y, 2) of the elastic medium and set:
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i.e., a, B,y A, i, vdenote the known components of the deformatioth@fmedium at
the point &, vy, 2), and ¢ denotes the cubic dilatation. After that (whildatting the
isotropy hypothesis), assume that the elastic piatdras the form:

(2a) ®=1{AI*+B A%+ pu®+v? - 4By— 4y — 4ap)},

in which A and B are the isotropy constants that were introducedhé& manner of
GREEN used and are proportional to the squarebeof/¢locities of propagation of the
longitudinal and transverse waves, respectivelyn older for the initial state of the
medium (i.e., the one in which the three functions, w are zero) to be a true state of
stable equilibrium, it is necessary and sufficiemt those two constantd andB to be
subject to the limitations:

(2.b) B> 0, A-48B>0,

which will be satisfied by those functiodsthat are not only kept constanggsitivefor
any given proper deformation, but will be annuleady whenall of the components of
deformation are separately zero.

The components of stress:
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XX1 Yy, ZZ1 YZ1 ZX1 YY1
that are due to the deformation components:
a, B, Vi A, M, Vv

are, as is known, minus the derivatives of the potedtiavith respect to the latter
components, so they will be given by:

Xk =B (L+ ) —AF, Y, == BA,
Y,=2B (y+ a) —AJ, Zy=—- By,
Z, =8B (a+ ) —-AJ, Xy=-Bv.
If we set:
P=Xx+Yy+7Z,,

for the moment, then we will get:
P=-(3A-4B) J

and then we will easily have the reciprocal formulas:

:JL(A_ZBP—XJ, a=-1v,,
2B\ 3A- 4B B
1( A-2B 1
= P-Y, |, =-=7Z,
p 2B(3A—4B yj H="g
y:i( A-2B P_sz, V:—ixy_
2B\ 3A- 4B B

If one substitutes the values (1) in these formuddier observing that from the result
that:

__1 (a_vz_A—BAV __1 VoV
gmB |\ ox) 3A-4B ' |’ 4TBOYy d z
2
(3) ﬁ:_l V| __AB AV ¢, ;|:_1 6_\/6_\/’
8B |\ dy 3A-4B 4TB0z0 X
2
Ll syl Loy
8B |\ 0z 3A-4B 4TB0 X0y
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These are then the values of the components of dafmmof an isotropic medium that
correspond to the six components of stress that fesoitMaxwell’s theory.
One deduces from (3) that:

(3.9 g=- _AF ,
877(3A- 4B)
(3.0) X+ 1f + V= 4By— 4y — daf = (A — B(3A - B) {—Alv }2 ,
471B(3A- 4B)

and then, if one substitutes this in the expres@a), one will find that:

2
(30 _ _4A-5B (Alvj .
2B(3A-4B)\ 87
That is then the particular value that the elgstitential assumes when the stresses that
exist in the isotropic medium are the ones thaewest pointed out.

However, in order for givensystem of components of deformationg, y; A, u, vto
effectively correspond to a system of componentsligplacemenu, v, w, or in other
words, in order for given system of functionsr, S5, y; A, u, v to represent gossible
deformation of the elastic medium, it will be nesay and sufficient ) that it should
satisfy the following equations identically:

62’8+62y: azA 2 620' :i a_’u+a_v_%
02> 0dy° 0dydz’ dydz ox\dy 0z 9x)
oty O _ 0% L, 0B _ (v oA ou
x> 07 0zox 0zox oyl dz ox dy)’
Oa 3p_ o LTV _ (0 u_ov
ay> 9x°  oxdy oxdy 0z\ ox A0y dz)

Therefore, in order for there to truly exist a defation of the medium that is defined by
the six components (3), it is necessary and sefitdihat the functioW should satisfy the
six following conditions, which result from substiing the expressions (3) for, 5, y; A,

M, vin the preceding six equations:

() For the proof that those equations suficient see théNoteat the end of the present article.
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in which we have set:

(4.2) A-B

3A-4B

for brevity. That constar® can be expressed, more briefly, as:

(4.b) C=

m|w

in whichE is the modulus of elasticity of the isotropic medi
The solution of the problem that was posed is @ortl completely in the preceding
equations (4), which we shall now study.

§ 2.

In order to simplify the following calculations,ewshall first adopt the following
notations:

oV Y, Y,
—=a, =g =
ox X dyoz
2 2

5) oV b, 6V:f, 6V:f,’
dy oy’ 020 X
o _ 0V _ g 0’V _ J
oz 0Z 2 oy o
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If one performs the differentiations in the expresgigvi then one will find the following
values in that way:

2
10DV _ o g2y goy o284 08, 08
2 0x ox 9y 0z
2
2 ay ox dy 0z
2
EaA;V:g2+e,2+f12+aa_g+b%+(:@,
2 0z ox o0y 0z
2 U
10BY g v (f+g + a2 +p28+ 28,
2 0yo0z ox o0y 0z
2 ! ! '
108V _ge vt gre+al +bT 4o
2 020X ox 9y 0z
2 ! '
1OV ot v g e+ + a2 +p%9 + 29
2 9xay ox ady 0z

However, if one sets:

fg-€’=E f d-eb= E
ge- f?=F, dé- ff=F,
ef-g°=G ¢éf-g94=G
e+ f+g=6, E+ F+G=0

(5.8

then one will easily find that:

€+ f°+g°=E+fe-0, f g+ H # 9= Etf'e

(5b) f2+g%+e’=F+0f-0, dé+ f(gr o= F+6 f,
g°+€°+ f?=G+0g-0, éf+ ¢ e j= Gt g

Finally, if one sets:

(5.0) a®+b?+c?=H?

then one can write:

(5.d) a:H%, b:Hﬂ, c= %,
on on on
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in whichn is the normal to the level surfaWe= const. that passes through the paint/(
2), and it is not necessary to fix a sense for its nhremace it will depend upon the sign
that one attributes to the quantity:

) H=(av =

On the basis of these varied formulas, one will have:

2
100V g pe o,
2 ox on

2
EaA;V:F+9f—G)+Hﬂ,
2 oy on

2
EaA;V:G+Hg—GD+Ha—g,
2 0z on

2 !
LOBY ooy gy oy O,
2 0yoz on

2 [
EaAlV:F'+9f'+Hi,
2 0z0X on

2 [
LIAN oy gy +n 29
2 0xoy on

and if one substitutes these expressions and thbddy in (5a) in equations (4) then one
will find that they can be given the following form

(1—C)E:C(8e+ H%+®—ez— H%j,
on on

(1—C)F:C(8f+ H vo-62- H%j,
on on

(1—C)G:C(9g+ Ha—g+®—82— H%j,
on on

(6)
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1-C)E = C(9é+ Ha—ej,
on

(1-C)F’ :C(Bf’+ Hij,
on

(1-C)G = C(eg+ Haij.
on

If one sums corresponding sides of the first tlukehese equations then one will get
a result that can be written in the following way:

(6.3) (1—4:)e+2cez+2CH%:o.

Now observe first of all that from the hypothedest twere made, the quantiywhich is
nothing butA;V, can be equal to only zero or a constant; theeefarany case:

06
6.b — =0
(6.0) n
In addition, from the significance &.of E, F, G, ©, one has:

Ze:(e+f+g)2_(62_f2+92+2812+Zyz_l_zgr )’
or

(6.0) 20=07- (@ —f2+g + 267+ X2+ 297,

By virtue of those equations (6.c) and the significance @ of the constanC, the
equation (@) will be equivalent to this other one:

(6d) (BA—4B) 0> +A (& —f?+g+26°+ X2+ 29%) = 0.

Now, in order for the constants:
3A - 4B, A

to be both greater than zero, as is required bytwlze conditions (), that equation
cannot be satisfied byraal functionV unless one has:

e:f:g:e’ :f’:g’:o

at every point of the space considered — i.e.,sgnddl second derivatives of that function
are zero — which means that one can only havertéar|form:

V=ax+by+cz+d
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in this case, in which, b, ¢, d are four constants.

If one therefore overlooks the special cases in wiichn assume this form (which
can never happen in an infinite space, in particulat,vamch, on the other hand, present
nothing of interest in regard to the problems of elagtitiat lead to constant values for
the components of stress and deformation) then orlenadgessarily need to attribute
values to the isotropy constants that are irrecaleilvith the conditions (B) for the
stable equilibrium of the medium. In particular, cdesia space that is devoid of
potentiating masses — i.e., one in which the funcéi@atisfies the equatio@= 0. One
will then necessarily need to suppose that:

(6.€) A=0, B>0
for the isotropic medium that permeates that spaces s€oond of those conditions is

imposed by the form that that the expression) (for the elastic potential (or the energy
of deformation per unit volume) assumes/Aor 0, which will become:

2
(6.) o= E(Al\/j .
8B\ 8

The conditions (&) are in patent contradiction to the ones ib)2.The medium that
is defined by them cannot be in stable equilibrium withpeets to all possible
deformations: However, the nature of the expressidh i6such that the equilibrium is
still stable with respect to the special deformatidva tve present for consideration —
i.e., to the ones that are defined by formulas of e {(3) in a space in which the
function V satisfies the equatiof\,V = 0. Such a medium, if it exists, will have the
property that it transmits only transverse vibrationsThe known coefficient of
contraction or dilatation:

(6.9) A-2B

= A= B)

will to be equal to unity for it, so a prismatic portiohtbat medium that is subject to a
simple longitudinal extension will always contracthe transverse in an equal ratio.

§ 3.

We shall now see, while still assuming the exiseenf the medium that was just
considered, thathe determination of the deformation that corresisoto a given
potential functionV will follow in any case, and in order to avoid rhalfficulties, we
shall deal solely in the infinite space that isleded by the masses that belong to that
potential function, especially since it is that gpahat the supposition of the existence of
an isotropic medium is made largely possible.

If one introduces the conditions:

q=0, A=0 or C=

Al
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into equations (6) then those equations will reduce tdéolleaving simpler form:

oe 0é

H—==3E-0, H—=3F,
on on

@) HT —sr-0, S =5,
on on
HY=36-0, H =35
on on

Represent the determinant of the second derivativegty; i.e., set:

!

—h

e d
A=|g f
f' €

o .

and observe that this determinant can be developedigusarays. Indeed, one has:

A=Ee+F'f" +G’g;
=Ff+G’'g’+FE €,
=Gg+E e'+F'f/
and therefore also:
3A=Ee+F+Gg+2E€ +2F'f'"+2G' ¢ .

If one combines these various expressions opportunely therwdl find these other
ones:

(7.9 A=Ff+Gg+22k€ —-E¢g
=Gg+Ee+ 2F'f'—Ff,
—Ee+Ff+2G'g -Gg.

In addition to the known property of that determinantthree pairs of identities will
spring from it that have the type:

G'f’+Fe+E’g=0, F'g+Ef+Gée=0,

and if one sums the corresponding sides of the identifieach type then one will have
the three formulas:

F'g+G f'-E e- E e+ €0©=0,
(7.b) G é+Ed-Ff+F f+ fO©=0,
E'f'+Fé-G g-G gt go6=0.

Having said that, differentiate the expressionEdf, G, E’, F’, G’that are given by
formulas (5a) with respect to the normal and substitute the values of the normal
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derivatives ok, f, g, €, f, ¢ that are given by the six equations (7) in the equatlors t
obtained. With the help of the preceding identitya(B), one will then find these other
Six equations:

oE oE'

H—=-20e-3A\, H—=-2¢,
on on

(7€ Ha—F:—ZG)f—BA, Hai:—zef’,
on on

Ha—G:—ZG)g—%, Ha—G=—2®g’,
on on

which form a system that is equivalent to the onequraéions (7). The sum of the first
three of those equations (7) will yield:

H6®:

—=-09A.
on

(7.d)

Finally, when one differentiates any of the precedixgression for the determinant
with respect to the normal and substitutes the vahatsequations (7), (@). provide for
the normal derivatives & f, g, €,f', d', E, F, G, E’, F’, G’, one will deduce that:

HIE= 202
on

If one eliminatedd from the two equations ,.e) then one will find that:
(7. 1(4 ©%+ 270 =0,
on

and therefore one concludes that the expression:
40°+ 27N

is constant along each line of force. However, tikptession is annulled at any point at
an infinite distance, so one must always have:

(71) 407+ 27A* = 0.

That conclusion will also persist when only one parthef line of force extends to an
infinite distance, since in order fdtto be a function that is continuous and finite, along
with all of its derivatives, in the infinite space wheéxg/ = 0, any expression that is
formed from the derivatives of that function cannot b 2B one region of that space
without it also being zero in the rest of that space.

The left-hand side of equation f(7is the well-known condition for the equality of
two roots of the third-degree equation with no second-oedsr. t
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$+s0-A=0,
in whichs is the unknown. If one writes that equation in et
A—E+F+G)s+(e+f+qg) £-5=0

then one will immediately recognize that it is equavalto the following one:

It is known that under the reality hypothesis, thedaamn (7f) for the equality of the
two roots of the last equations will split into some othwees, which will be, as one sees,
the ones that will lead to the solution of our problekhowever, we prefer to get those
individual conditions directly by taking advantage of tme noteworthy property of the
system of equations (7) that we shall now discuss.

§ 4.

Differentiate each of equations (7) with respect to @bmand substitute the values
of the normal derivatives &, F, G, E’, F’, G’, © that are provided by equationsd;7d)
in the left-hand sides of the equations that one obtadrge will then find the following
SiX new equations:

o(H o) o1 5)
H 9N i60e=0 H—~ "V .igd=0
on on
o) o1 %)
(8) H ™ igof=0, H~—Yigf'=0
on on
G(Hggj G(H ‘Zgj
H N/ +60g=0, H an” +60g =0

It results from this that the six second derivativa V all satisfy one and the same
differential equation of the form:

ow

G(Ha j
(8.2) H—~ 9 ;60 w=0,
on

in which:
w=¢f g€, d.
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Now let w and o’ be any two of those second derivatives, such thahgalith
equation (&), one will also have the following one:

"%

H N, +e@ w=0.
on

One deduces from that equation an@)&at:

G(H aa“’j G(H ‘;‘”)

) N/ w NJ-o,

w
on on

9 H(w%—a}a—wj =0.
on on on

It results from this that the expression:

or

(ot
on on

is constant along each line of force. However, as wbserved before in regard to the
left-hand side of equation (. that expression will vanish at any point at an itdini
distance, so one must always have:

(8.b) w2 —y%%= .

In particular, one deduces the following two equalitiesmf that equation, which
persists for any two of the second derivatiggsg, €,f', g':

oe of" og
(9) a_';] = a_r'] = a_r'] ,
€ f g

and therefore, by virtue of the last three equationgt{&$e other two, as well:

(ga) E:E:E.

I I

€ f g

Those relations contain the essential elementsea$alution to our problem.

While putting the preceding equality into the indicated foitnwas supposed that
none of the second derivativesf’, g were identically zero. Now, that assumption is
legitimate, since no special hypotheses were made eolithctions of the coordinate
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axes, so it is always possible to fix them in such a asmyo avoid the aforementioned
exception. The only case in which that proves to ljgossible will be the one in which
all of the second derivatives are identically zero, avtich 'V is a linear function of the
coordinates. However, that case, which was previouslylanlexd for other reasons, is
presently excluded by the infinitude of the space to whicluthetionV refers.
Let:
h

[=3]

(3]
>

h

denote the value of the three equal ratios in (9). caneset:
e’:ﬂ, f':_, g':ﬂ,
'3 '4

in which &, 7, { are three functions that remain constant alonglioaea force — i.e., that
satisfy the conditions:

(10) 2 =_~ =2 =0

and that can be additionally subject to the relation:

(10a) f2+n?+7%=1,

for ease of calculation. The preceding values df, g will imply that:

_h(¢-erd) ., h(hin-eld)

h(hW{ - eén)
énd énd ’

$ng

E’ , G’'=

and therefore (8):
Wg _ _hng _,_Hg_
n¢ 43 n o T
Let h denote the common value of the three equal expressso one will have:

e:ﬁ—h f:M—h Q—M_

’ ’ - h!
n¢ 4 §n
and the conditio@=e +f + g = 0 will give (10a):
L'—3h-0 ie., h=3énd
$ng ' o '

One will then finally have:
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e=h(35°-1), é&=3m7,
(10b) f =h(@y?-1), =3,
g=h(3¢*-1), d=3h7p.
That will imply:
E=n(36%-2), E’=3*n,
F=h*(3n%-2), F'=3°,
G:h2(3Z2_2), G':3h2§(/7,

O =-3n A= 202,

If one substitutes these values in (7), while dewalthe conditions (10), then one will
find that it reduces all of them to the single doqra

(100) L
on
8§ 5.

Now return to the formulas (5), from which one:has
da=edx+g dy+f'dz
db=g dx+f dy+e'dz
dc=f'dx+€ dy+g dz

and therefore, with the preceding values§}.0.

da=3h (€ dx+n dy¢ dy- hdp
(11) db=3h (£ dx+n dy+¢ di- hd)
dc=3h (£ dx+n dy+ ¢ di- hd.

The nine integrability conditions (which can bduweed to eight):

a_g—izo, i—a_ezo, a_e_a_gzo
0z 0y ox 0z dy 0x
ﬂ—a_ezo, 6_6—%20, a_g—ﬂzo
0z 0y ox 0z dy 0x
a_e_@:o a_g—izo of —ae:O

oz ay ox 9z 9y ox
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will translate into some other partial differenteuations between the four functiofis
n, ¢, hthat can be written in the following way:

L5+h(/7g— g—i =0,

(11.9 ME+h

NE+hl &= =+

(5
( oy 30y’
a+(rt
&

+h (a”
(11.19) Mp +h 292 5

0 0 10h
&9 _p 2l

N7 +h — |=—==,
d ay ,76y 30y
(14 il4 10h
L+hip—-{—— |=—=—,
¢ ,762 oy 30z
0¢ _.0d 10h
11. M{ +h =+=—,
(119 ¢ Zax 0z 30y
NZ+h(E% /7% =0,
oy
in which, we have set:
(112) L= 90w _ofhe —\,_0he oy _0lh¢ ofny
0z oy 0x 0z oy 0x

for brevity. If one sums the equations of the eatthe three triples (14, 1, ), after
having multiplied them by, 7, ¢, in the ordinary way, then one will have:

(LE+MA+NO)E=L —a“z——a“nj,
3 0z
(11b) (LE+Mp+NG)p =2 —5——(}
3\l 0z
_1foh _oh
(L<‘+I\/I/7+NZ)Z—3 ax'7 6y5j'
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However, if one sums the first equations in eachhoté triples, then the second
ones, and then the last ones, after ordinary-multiglgach time by, 7, ¢, then when
one recalls the relations (H). one will have:

1(oh, oh |_
L+§(a—i E/7 =0,
(10€) 3(625——5 =0,

1(oh
N+=|—n-—¢&|=0.
ZB(GXI7 ay‘(

Finally, if one sums either the three equationkl)lor the three equations (t}.
after ordinary-multiplying them by, 77, ¢, then one will get:

LS+M7+NJ=0,

and therefore, due to equations {.t), one will have:

oh oh oh . oh oh
—{-—n =0, —&——¢ =0, —n-— 0,
ayZ 62,7 625 6xZ ax,7 5
as well as:
L =0, M =0, N=0.

One can give the first three of these latter gixations the form:

onh oh oh
(11d) x -0 _ 0z dn
¢ n  { Sdxtpdy+d dz

however, if one takes the preceding equations autmount then one can give the last
three the form:

(11€) 9 _9¢ _g 9¢ 94 _y 9 _0n _
0z 0y ox 0z dy 0x

If follows immediately from those three equatiodd .€) that there will exist a function
of the coordinates, y, zwhose total differential is given by:

(12) Edx+ ndy+ ¢dz=dr,

and the preceding equations @)1show that the quantitly can depend upon only that
functionr.

The three of equations (¥1, {) whose right-hand sides are zero will reduce & th
following ones:
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0¢ ,0n 0§ .0¢ on 0¢& _
12a —-(—L=0, —2 - —_2=0, —~-n—=0,
( ) 4 [)4 oXx oy oy ‘(az ,762

by virtue of equations (1d). The remaining six equations of the aforementionetéBys
when combined pair-wise in a sum in such a way as tangltenthe derivatives df, will
give:

on _ol\_ on_,0f
‘{ay oz) Tox Zax’
0l _of z 0¢
(12b) /7( 3 Bx Z 3y
o _on) %_ an
ox oy 0z ,762

Finally, when those equations are combined paiewigsubtraction, they will give:

R ARy AT

hf[af on a(j 26h’
ox dy 0z

h,{&a_r/ %j _20n
ox dy 0z
hz(af on ., a(j 20h

x oy 0z) 30z’

which are equations that summarize all of (12hagingle one:

(13 6/7 6( dr——gﬁ
6x 6y 0z 3 h

which one can put into the form:

(120 dlogh =- §Azr.

dr 2

§ 6.

It is now easy to determine the two functian$ upon which the solution to the
problem presently depends.
When equations (12). are put into the form:
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ox\ ¢ "oyl & " 0z\n ’

(13) n=pPd¢, {=P¢, é=Pn,

that will give:

in which P is a function o andz, Q is a function ok andx, andR is a function ok and
y. Those three functions are constrained by the ralatio

PQR=1,
or

(13a) logP +logQ + logR =0,
from which one deduces that:

alogQ:_alogR 6IogR:_6IogP alogP:_alogQ
ox ox oy dy =~ oz 0z

Now, in the first of these latter equalities, tlet-hand side is independent yand the
right-hand side is independent thence, the two sides can be equal to only a ifumct
of justx. By an analogous argument, the two sides oféhersl equality can be equal to
only a function of jusy, and those of the third equality can be equalisbz It follows
quite easily from this and the necessity of saitigfithe original relation (18) that the
forms of logP, log Q, log R can be only the following ones:

logP=Y -7 logQ=Z2-Xx logR=X-Y,

in which X is a function of only, Y is a function of only, Z is a function of only, and
therefore equations (13) can be written in theofeihg way, if one alters the notation for
those arbitrary functions:

in whichX”is the derivative of a function of only Y’ is that of a function of only, and
Z’is that is a function of onlg One deduces from this and equation (12) that:

X' Y Z d(X+Y+2D'
so, if one sets:

(13b) X+Y+2Z=t,

for the moment, then one will see thiais necessarily a function of ontyand that one
has:
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or or or
13c =— =r'X] =— =r"Y, =— =r'Z,
(13¢) '3 pw n % 7 >
in which:
,_ dr
r=—:;
dt
equation (1@) will then become:
(13d) r'2(X2+Y2+2%=1.

When the preceding values (&)3of the functions{, 7, { are substituted in equations
(12b), that will give:

rIZX/ (Z//_ Y//) :0’ rIZY/ (X//_Z//) :0’ rIZZ/ (Y//_x//) :0’
and therefore one has:
(13e) X"=Y"=72"=2,

in which X represents the common value of the three second tieewaf X, Y, Z,
which can be only aonstant.

That constank cannot be zero. Indeed, if that were true then thetijes X', Y, Z*
would be constants, and therefore 3., as well, sa would be a linear function of
y, z, and one would havA,r = 0. Consequently (18, h would also have a constant
value, and that value could only be @Qero, so (11) one would have:

and the functiory would prove to be linear, which is a form that was alyeaxcluded as
inadmissible.

Therefore, since the constdnicannot be zero, one can assign €lL8e following
forms to the functionX, Y, Z:

X=k(x=%)?+l, Y=k(y—-w?+m Z=k(z-23)*+n,

in whichxo, Yo, 2, I, m, n are new arbitrary constants. One deduced)XBm this
that:
t=k{(x—%)°+y—-%)’*+@Z-27%+1+m+n,

X2+Y2+Z22%=4k({t-1-m-,
and therefore (18):
dt

ar= 2k(t-1-m-n)’

and if one drops the additive constant (which is obviousgfess) then that will give:
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t—I-m-n
r= /—
k

(14) r= (x=%)2+(y- ¥)2+(z 3)>.

or

It follows from that expression farthat:

Nor = E ,
r
such that equation (1d.will become:
dlogh__3
dr r’
and will give:
M
(14a) h=—,

r
in whichM is a new constant.
By virtue of formulas (14), (14), (13c), equations (11) will become:

3(X—X,) dr—rdx
r ’

da=M

db= M 3(y- yor)4dr— rdy’

- M 3(z- %)4dr— rdz’
r

dc

and give:

az-mXhea, b=M Y Kih, czom B,
r
in whichag, by, ¢o are three constants that can only be zero. FBhateady required by

the property that the first derivative ¥fmust have that it is zero at infinity, but wilkal
necessarily follow from the equations of the prableindeed, the three quantities @3.

g(: X_)% _ y_yO Z: Z_%
r r r

0X or ﬂ:/]ﬂ %:Zﬁ
on “don’ on "dn’  dn on’
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for those values of, 7, ¢ .
Those equations show that the quanfityy, ¢ must be proportional to the three first
derivatives ofV; i.e., to the quantities that were just determined:

U b= M oo MC
re re re

a=-—

and that proportionality obviously cannot happen urdessby = ¢y = 0, as we said. We
will then have:

oM oM oM
a=—, b=—-L, =",
0x oy 0z

and from which, we will finally get:

-M
g

(14b) Vv

The direction of the normal can be made to coincide with that of the radius this
case, so we will have (1a}.b):

M
e

=== H= _

oh__ 3M Vv
9

and equation (16) will then be satisfied, as well.

The value o that was found will then satisfy all of equations (FJoreover, if that
value is satisfied in the original equations (4) then oiliefind that they reduce to the
following ones:

A (2r 34 =0, Ayz=0,
A (2r -34) =0, Azx= 0,
A(2*-34) =0, Axy=0,

and will become an identity when (and only whe¥)= 0, which agrees with the
conclusions of .

§7.

It will result from the preceding that the numbercases is severely restricted in
which it is possible to represent the MAXWELL systemstifesses by the effective
deformation of an infinite isotropic medium, which is adium whose constitution does
not, on the other hand, correspond to any known redilitg,to the necessary condition
thatA = 0. Despite that fact, one will then see whatdéfmrmation of that medium will
be that corresponds to the unique form for the functiothat was just seen to be
possible.
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For simplicity, take:

Xo=Yo=2 =0, r=4x+y+72,

and one will have:

V__Mx v _My oV__ Mz ,,__M

ox 2 ey P oz ré’ re

and when one sefs= 0, formulas (3) will give:

_ M?*(4x*-r?) _ 8M?yz
g=2"2 10 )= .,
32mBr 32mBr
B= M?(4y*—r?) L= 8M ?zx
327Bré 327Br®’
_ M?*(4z°-r?) L= 8M *xy
327Bré 327Br®’
or
0°p 0°p
a= PR A=2 ,
0x 0yoz
0’p 0’p
=—, =2 ,
d ay? H 020X
2 2
= ?3?’ V= Zaia?;/’
in which:
V2
15 = .
(15) ? 6418

It will then result that the componenisv, w of the displacement of the poiry, §/, 2),
which one supposes will vanish at infinity, areegi\by:

(15a) u:a_§0’ V:a_¢’ W:é)_qo’
0x oy 0z
or
y=- M x __ My __M? 2z
328 rt’ 32mB rt’ 32mB rt’

The displacement of any point of the medium isefaeradial, like the force, and will
have the value:
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M7 1
32mB r?’

(15h)

The sign of that expression shows that it is alwagsntractionof the entire surrounding
region towards the cent&r=y =z = 0, but the law by which that contraction decesas
with distance from the center will be such thatc¢hbic dilatation will always bpositive
and given by:

M2 1
15¢ I=
(150) 3278 r*
One then finds that:
2 .2 _~ny2 2 _
= Mgt o M? oy
8rr r 8T r
2 L2 2 2 _
y=MIgi2yt o, M2 2z
8rr r 8T r
2 L2 _~n,2 2 _
ZZ:M— 622 , Xy=M—G 26)()”
8rr r Tor
or also:
_ 10y 1%y
XX__2 2 1 YZ__2 )
r< ox r<oyoz
1 0%y 1 02
Yy:_z 2 ZX:_Z d J
re oy I 0zox
1 0%y 1 07
ZZ:_z 2 XY:_z ¢ J
r< oz re oxoy
in which:
MZ
=—1logr.
7 8 g

The deformation that was defined by formulas 415, c) can refer to the infinite
space that is excluded, for example, from a spbefmite radius and it can come about
radially and uniformly around the center of thabese. Now, the study of a deformation
of that type presents itself in one of the moremeletary applications of the theory of
elasticity — i.e., in the problem of the equilibriuvof an isotropic spherical shell that is
subjected to constant pressures on its two surfacelsin our analogous case, its external
surface would be completely at infinity and wouldt support any pressure. One can
then suppose that the preceding solution wouldbbed to coincide with the one that is
known already. However, that is not, nor can it fog the reason that we shall now
discuss.
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§ 8.

Since the trinomial:
n dx+ v dy+w dz

is an exact differential for one question, as wethasother, one can set:

(3]

202,00

u=—, =—,
0x oy z

from which, it will follow, as in the preceding §, that

2 2
a:a_f /]:Zaw
0x 0yoz
_0% _, 0%
p= ay*’ K= “o5zox

2 2
:a—z, v=2 aw .
0z oxay

It results from this that the components of the sisdn an ordinary isotropic medium
will have the values:

2 2
xX:—(A—zs)Azw—zaa—f, YZ:_Z_D,aw,
0x 0yoz
0’p 0’p
Y, =- (A -2B) Ahpgp— B—-, Zy=—2B ,
v=-( ) Bag oy’ 020X
’p 0°p
Z;=— (A -2B) App— B—, Xy=—2B ,
( ) Bag 07° Y oxay
from which, one will deduce that:
X, ,OX, OX, __ 790.0
ox o0y 0z ox

oY, N aY, N ay, __ AaAzw,
ox o0y 0z oy

0z, 02, ,0Z, __ 2900
ox dy 0z 0z
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If X, Y, Z denote the components of the external force per unim@khen the indefinite
equations of equilibrium will be:

A(?A_240+X:0’ AM_Z{p+Y:0, AGA_240+Z:0’
0x oy 0z
and if one sets:
X:_ka_v, Y:—ka_v, Z:—ka_v,
0x oy 0z

in which 'V is the potential function of the external force &nd the density, then those
equations can be summarized in the single one:

A M- KV = const. ,
which will reduce to simply:
A M@= const.
when there are no surface pressures.

Now, if A is non-zero, which would be necessarily true in aginary isotropic
medium, and if, as would happen in the spherical probleah was cited above, the
function ¢depends upon only the distancitom the point X, y, 2 from the center of the
shell then that equation will become:

2
Ea (rz(p) = const.,
r or

and when one drops an insignificant additive caristhat will give:

=Nk
r

in which K andK” are two constants. In the case of the infinitacgpthat is excluded
from a sphere, one needs tolkét 0, and one will then get the expression:

K
p=—,
r

which represents the ordinary solution, in whicé tlonstanK is then determined by the
pressure that exists upon the internal sphericddsel However, no matter what that
pressure is, the cubic dilatation of the mediumictvits given by:

F=N; @
will always bezero.
However, if, as one has in the singular case tim®t was led to consider in the
preceding 88, the constafdtis zero, then one will have:
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X,  OX, oX, _
X 4 + zZ — 0,
ox dy 0z
ay, odY, oy,
+ +

Z:O’
ox dy 0z

for any functiong It will then result that from the very nature dietdeformation,
equilibrium can come about only in the absence of rfases, but when that condition
is satisfied, it will be consistent with any form felme function@ That obvious
contradiction with the fundamental theorem on the unigserof the equilibrium will
clearly depend upon the fact that foe 0O, the elastic potential will no longer possess the
character of an essentially-positive quadratic forfine precise determination that one
has nonetheless obtained for the functpim the preceding 8, and the fact that its
character will imply that the cubic dilatation (&bis not precisely zero, spring from
another source, and therefore the components of tégsesX, , Xy, ... will assumea
priori expressions of thgiven form— i.e., the expressions (1). Those expressions can
very well contain an arbitrary functiow, but in the infinite space in which those
functions satisfy the equationsV = 0, as we proved before, it cannot relate to thestre
components that one derives from a true deformatiomenmedium unles¥ has the
form (14b), and that special form o¥ will necessarily imply just the special
determination ofg that was encountered in the preceding 8 and that was iallgent
different from the one that is suitable to an ordinsogropic medium.

§9.

I would not wish to conclude this article without mening a case in which the
problem of the determination of the functiamsv, w that correspond to a given form of
the potential functiory that is reducible to some very simple terms whenreonalls the
conditions (1). The case to which | allude is the onevhich the aforementioned
function depends upon only the distamc#om the potentiating point to a fixed point,
which one assumes to be the origin of the coordindesimplicity.

It is easy to understand (and also to prove) that igm@adements must be radial and
uniform in this case as well; i.e., that the componants w must be the derivatives of a
function of only the distance Having said that, for ease of calculation, consiiey be
a function of the argument:

r=xXt+y +Z=r?

and set:
dv _

- V’,
do

one will have:
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— = V'x, LA Ny, v Nz, MV=4V?X,
0x oy 0z

and the formulas (3), @) will give:

12 12
2
a= x°—Cp), A=—
zms( 0) ﬂByz
V'2 V'2
= -Cp), =—z
B 2ﬂB(yz 0) u pr X
V'2 V'2
= Z —-Cp), V= —XYV.
14 2778( 0) B Y.

After that, assume that there is another funcppaf the same argumeptand set:

u= 6_40, V= 6_¢’ W= 6_40,
0x oy 0z
and one will find that:
a=2¢+49’%,  A=8pyz
B=2¢ + 4"y, U =8pzx
y=2¢/+ 49’7, v = 8pXxy.

Now, these ultimate expressions cannot be idedtii¢h the preceding ones unless one
simultaneously has the followirtg/o relations:

V' CV'2p

WZBITB’ 48

from which it will result that:

g 1

r 4 = O
¢ 2Cp

The last equation already establishes that then faf the function ¢ (and
consequently that of the functiof) as well) depends uniquely upon the constitutibn o
the isotropic medium that one considers, if oneoiga a constant. That would be
likewise true if the constitution of the medium reakr with the distance from the center;
i.e., if the isotropy parametefsandB were supposed to be functionsrpfn such a way
that the medium is envisioned to be formed of cotrae isotropic layers with isotropy
parameters that vary continuously from one layeartother.

In the case of constant parameters, when oneratesgthe last equation, one will
have:

p=Kpo",
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in which K is an arbitrary constant angl already refers to the ratio of the transverse
contraction to the longitudinal dilatation. It witsult that:

n

in which E is the modulus of elasticity. If one replagesvith r* again then one will
conclude from this that the unique solution to the probtegnmen by:

M 7 \p
= —, =——V
r ¢ 1677E

in whichM is a new constant.
The density of the distribution that produces that p@tivitis expressed by:

Mn (1-7)
A"

In order for that density to be zero, one needs ¥e ha 1, and therefore:
A=0, E =4B.

One will then get the solution that was found befokHowever, if one desires that the
aforementioned density should prove to dmnstantthen one could reach some even
more incongruous conclusions. Indeed, since one would ne®al/éa7 = — 2 in order
for that to happen, one would have:

BA-@B =0, and thereforeE =- 2B,

so one would need to assume that either the modulusasticely of the medium was
negative or that (8) the elastic potential:

2
o= 1BV
2E\ 8

There is another case in which the problem that westdad in this paper can be
solved in a direct way, although not as simply as whee makes the particular
hypotheses that were just considered. It is the caséiich the mass distribution that
belongs to the potential functiovi is symmetric around a rectilinear axis, gowill
become a function of only two coordinates that sufficddfine the position of a point in
a plane that passes through the symmetry axis. In &lsat the six condition equations
(4) will reduce to four, two of which will be the exactrdatives of the same second-
order partial differential equation. That equation, wisembined withA,V = 0, will
admit a new first integral, and from its form, ondl wasily deduce (when one benefits
from the intervention of thassociatedunction for that purpose) that if one excludes the

was negative.
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linear form and one then sets= 0 then the only possible form fofis the one that is
represented by equation (h¥or a point ko, Yo, 20) that is situated on the symmetry axis.

In that case, as was stated at the beginning of my dielyorm (14b) will reveal
itself to be the only admissible one (always excludimglinear case) iany space that is
devoid of potentiating masses.

NOTE

One ordinarily proves theecessitybut not thesufficiencyof the condition equations
for the quantitiesn, G, y; A, i, v that were cited in 8. Given the importance of those
equations in the context of the present work, | thereft®em it opportune to add a
deduction of those equations that will clearly estaltsh property that they represent
conditions that are not only necessary, but alsocserfi, for the existence of the three
components of the displacements, w.

Recall from the general theory of the deformationa obntinuous medium that along
with the cited components, S, y A, i, v, the three quantities that are defined by the
equations:

ow o0v Jou ow ov du
a ——— =2, ——— =2, — =2
@ oy 0z » 0z 0x = ox oy

will also intervene with no less authority and wépresent theomponents of rotatioof

the particle that surrounds the poirty, 2. Now, the system of nine equations that one
obtains by combining the six equations (2) id @&ith the preceding threea) will give
one the values of all of the first derivatives of theee components of the displacement
u, v, w, and those values will be the following:

ou _ ou_v ou_ u
—=a, —=—-r, —=2=+q,
0x ady 2 0z 2
ov_v ov ov_u

b —=—+r, —=p, —==-p,

(b) ox 2 ay d Jdz 2 P
a_\N:E—q a_\N:i-f-p a_VV:y
ox 2 9y 2 9z

Consider the first three of those equations, wipcbvide the values of the first
derivatives of the function. If one supposes that the quantities that entertheir right-
hand sides to bgiventhen in order for there to exist a functiothat satisfies those three
equations, it will be necessary and sufficient thatee known relations should be
satisfied, which can be written as follows:

_%_ﬂ_l(a_ﬂ_a_q 0q_da_1du o _1dov_da

dy 0z 2loy o0z) 9y o0z 20x  Ox 20x 0y
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One deduces the two analogous triples of necessary aficiesuifconditions for the
existence of the other two functiomsindw from this by cyclic permutation. However, if
one performs that permutation on only the first ofgreceding three conditions and then
sums corresponding sides of the three equations thasettthen one will find that)¢

9,99, 01 _
ox 9y 0z

such that the first of the aforementioned three canatcan be written more simply as:

o _1fou_ov
ox 2\dy 0z)

In that way, one will obtain the following system differential relations between the
nine functionsa, G, A, i, v, p, Q, r :

@_g(a_y_a_vj op_194 98  dp_dy_ 10/
ox 2\dy 9z) 90y 20y az 0z Ay 20 z
© d oo 14 99 10 0A) 2q_idu oy

ox 0z 20X oy 2\dz 0 0z 20z 0 X

or _1dv _da o _9B_lov & _ 1(6)l _a_/,zj

0x 20x 9y 0y 0x 20y 0z 2

ax 0y

That system of equations contains the necessary saffitient conditions for the
existence of the three functions v, w to satisfy the nine conditiond)( or the six
equations (2) in 8 and the three equatiors) (n this Note.

Having said that, consider just thi& components of deformation g, y; A, u, vto be
given If three functionsy, v, w exist that satisfy the equations (2) id ghen there will
certainly also exist the three functiopsq, r that are defined by equations) (Of this
Note. Since the derivatives of the last three tioms are coupled to the, G, y; A, u, v
by the nine equationg) one needs for them to satisfy the integrabiibynditions that
result from the latter nine equations and that cedo the following six:

() That well-known relation already results from theimiefy formulas &). However, in the present
context, it will be necessary to make it known thé ihcluded in the nine integrability conditions that we
spoke of.
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0’ %y _0°A 0% _d(ou,ov_oA
0z ay2 0y0z 0¥z X0y 0za )y

0%y 0%a _ 9’ 6,8 )[a_v@ay

(d) > T 1
¢ 07 X 629x6 0z0 x0Y
oOa  0f _ 0% (A ou_ov
ay2 0x° 6x6y Xy 9 ax oy 02

which are precisely the ones that were cited in 8V/hen those conditions are satisfied,
there will indubitably exist three functioms g, r that satisfy the nine equatiorns,(but
one has already seen that if those nine equationaaséesl by the nine functions, S,

Vi A, 1, v, p, q, r then there will exist three functionsv, w that satisfy the conditions (2)
in 81 and @) in the present Note. Therefore, the six conditi@hswhich are obviously
necessaryor the existence of three functionsv, w that satisfy only the equations (2) in
8 1, are alsaufficient.




