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 In the French version of the Teoria dell’elasticità by Clebsch, which was edited and annotated 

by the celebrated de Saint-Venant, who performed a new and noteworthy service for the study of 

that very important theory with that publication, one will find, in a final note to § 31 (pp. 252-282), 

a summary of the method that was proposed by the same de Saint-Venant a long time before for 

studying the limits of resistance of elastic bodies. That method differs from the one that will 

generally follow, and which was also emphasized by Clebsch, by the principle upon which it is 

based, which consists of assigning a maximum limit to the dilatations, as well as tensions. 

 In order to justify his new principle, de Saint-Venant cited, in particular, the very simple case 

of a rectangular parallelepiped that is stretched by a unit force along one, two, or all three directions 

of its figure axes. He then observed that, whereas the maximum tension is, by hypothesis, the same 

in all three cases, the maximum dilatation will be greater along the first one than along the second 

one, and similarly, it will be greater along the second than the third, so it would seem obvious to 

conclude that the danger of disintegration will be greater in the first case than in the second and 

third cases. 

 Now, that conclusion does not seem as legitimate to me as one might perhaps believe on a first 

glance. As is known, the stretching of a body in the direction that points longitudinally is 

accompanied by a contraction in any transverse direction, which is a contraction that is partially 

prevented, or also changed into a dilatation, when transverse stretchings are simultaneously 

superimposed upon the body. It will then follow that the molecular cohesion is weakened in the 

longitudinal direction by more in the first case than in the second, but it is also strengthened in the 

transverse case more than in the second case than in the first. Therefore, it is not easy, if not 

impossible, to decide a priori whether one effect prevails over the other. 

 However, if one cannot formulate any precise conclusion regarding that, I nonetheless think 

that one can assume that it is obvious, based upon precisely the example that de Saint-Venant 

adopted so opportunely, that the true measure of the resistance that the cohesion of an elastic body 

presents must not be inferred from either its maximum tension alone or its maximum dilatation 

alone, but it must be the result of all of the tensions or all of the dilatations that prevail in the 

neighborhood of any point in the body acting together. 

 Now, those tensions and dilatations, which are each represented by six distinct components, 

are both coupled to each other by linear relations that express the idea that the six components of 

tension are the derivatives with respect to the six components of the deformation of a single 
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quadratic function that is composed of those second components, or that the six components of the 

deformation are the derivatives with respect to the six components of the tension of an analogous 

function that composed of the last components. That single function, which has the same value in 

the two different forms that it can take in either case, is the so-called elastic potential, and its 

distinguishing property is that it represents the energy per unit volume that the elastic body 

possesses in the neighborhood of the point in question, which is an energy that is equivalent to the 

work per unit volume that must be performed on the body during the restitution of the natural state 

from the current state, so it is the work that must be performed by external forces in order to take 

the given unit of volume in the natural state of elastic coaction to its current state. 

 Based upon that, it seems obvious to me that the true measure of the resistance that the 

molecular cohesion presents at any point of the body must be given by the value that the unit elastic 

potential assume at that point, and that the latter value, along with that of one tension or one 

dilatation, should prescribe a maximum limit beyond which the body is in danger of disintegrating, 

which is a limit that naturally differs according to whether one deals with local or distant 

disintegration. 

 That conclusion, which is already justified intrinsically by the dynamical significance of the 

elastic potential, is made even more obviously plausible by an analytic property of that potential, 

which must certainly depend upon the aforementioned significance, although a rigorous proof of 

that dependency is still not known (*). 

 I would like to allude to the property that the aforementioned potential has that it is an 

essentially-positive quadratic function, i.e., a function that cannot be annulled unless all of its six 

variables are zero, and that it will remain greater than zero for any other sextuple of real values of 

those variables. By virtue of that property, one cannot impose a limit on the value of the elastic 

potential without, at the same time, imposing a limit on that of each component of either the tension 

or the deformation, so the use of that potential as a measure of the elastic resistance will not 

intrinsically contradict the criterion that one infers by either considering only its tensions or only 

its deformations. In practice, the criterion that one infers from the potential will then have the great 

advantage that it does not require the preliminary solution to any equation. and one will be reduced 

to a discussion of a formula that cannot present any sign ambiguities. 

 In the case of perfectly isotropic bodies, the elastic potential  is expressed as a function of 

the six components of tension by the following formula: 

 

2 E  = (txx + tyy + tzz)
2 + 2 2 22(1 )( )yz zx xy yy zz zz xx xx yyt t t t t t t t t+ + + − − − , 

 

in which the symbols for the tensions and the ones for the two isotropy constants E,  are the same 

ones that de Saint-Venant used. We observe, in passing, that in this case, the essentially-positive 

character of  is exhibited by the equivalent expression: 

 

2 E  = (1 + ) [(s  − txx)
2 + (s  − tyy)

2 + (s  − tzz)
2 + 2 2 22( )]yz zx xyt t t+ +  , 

in which: 

 
 (*) See a noteworthy article by Lipschitz in Bd., 78 of Borchardt’s Journal, where the property in question is 

deduced from the postulate of the stability of any free vibratory motion. 
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s = 
1 1 2

3 1

 



+  −

+
. 

 Whenever one has: 

− 1 <  < 1
2

 , 

 

the value of s will be real, and the three binomials: 

 

s  − txx , s  − tyy , s  − tzz 

 

can be annulled simultaneously only when: 

 

txx = tyy = tzz = 0 . 

 

The preceding limitation on  coincides exactly with an analogous condition that Green stated 

(pp. 246 of his Mathematical Papers), and in my opinion was not proved rigorously by Ferrers 

(ibid., pp. 330). 

 Assume, with de Saint-Venant, that the following equations exist for the cylindrical or 

prismatic bodies that are ordinarily considered: 

 

txx = 0 ,      tyy = 0 ,      tzz = 0 . 

 

The condition for cohesion is then given by: 

 

0  

2 2 22(1 ) ( )

2

zz yz zxt t t

E

+ + +
 , 

 

in which 0 is the maximum value of the potential . Let R0, T0 denote the maximum values of 

the unit tensions according to whether the body is subject to only longitudinal tension or only 

torsion, resp. One will then have the following relations between 0, R0, T0 : 

 
2

0R  = 2 E 0 ,  
2

0(1 )T+  = E 0 , 

 

by virtue of which the preceding condition can be written: 

 
2 22

2 2

0 0

yz zxzz
t tt

R T

+
+   1 ,          (a) 

 

while that will give rise to the necessary relation between the maximum values R0, T0 of the two 

types of tensions: 
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T0 = 0

2(1 )

R

+
 .     (a) 

 

That relation is different from the one that de Saint-Venant obtained, who found that: 

 

T0 = 0

1

R

+
 . 

 

The value that this latter formula assigns to the ratio T0 : R0 is greater than the one that results from 

(a), since  is always < 1 / 2. 

 We now pass on to the case of bodies endowed with only transverse isotropy, which is a case 

that was considered more especially by de Saint-Venant. The expression for the potential by 

means of tension is given by the formula: 

 

  = 

2 2 2 2 2 22 ( ) 2 2(1 )zz zz xx yy xx yy xx yy xy yz zxt t t t t t t t t t t

E E G

   − + + − + + +
+ +


 , 

 

in which E, E   are the two elastic moduli (viz., longitudinal and transverse, resp.), G is the 

tangential elastic coefficient, and ,   are the coefficients that determine the transverse 

contraction that is due to a longitudinal and a transverse dilatation, respectively. There is also a 

third coefficient   that determines the longitudinal contraction that is due to a transverse 

dilatation, but that coefficient depends upon the other constants by means of the relation: 

 

  = 
E

E


. 

 

If one also confines oneself to considering the cylindrical or prismatic bodies that admit the de 

Saint-Venant relations then the cohesion condition will reduce to: 

 

 0  

2 22
yz zxzz

t tt

E G

+
+  . 

 

One therefore has (a) once more, but with the single difference that now the maximum values R0, 

T0 of the two types of tensions are longer related by (a), but by: 

 

T0 = 
0

G
R

E
,      (a) 

 

in which the ratio G : E can take arbitrary values, so the ratio T0 : R0 can also assume an arbitrary 

value, at least a priori. 
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 Finally, in the more general case of a cylindrical body that is endowed with three elastic axes, 

one of which points in the longitudinal direction, the condition for cohesion will again have the 

simple form: 
2 22

2 2 2

0

yz zxzz

x y

t tt

R T T
+ +   1 ,         (b) 

 

in which R0, Tx, Ty are the maximum values of the tensions tzz, tyz, tzx . Those values are coupled 

with each other by the relations: 

 

Tx = 
0

xG
R

E
,  yx = 

0

yG
R

E
,         (b) 

 

in which E is the longitudinal elastic modulus, and Gx, Gy are the tangential elastic coefficients. 

When tzz = 0, the preceding condition will agree with the one that de Saint-Venant gave on pp. 

272. 

 Let us seize this opportunity to show how one can very easily obtain the complete 

determination of the tensions in cylindrical bodies with elliptic sections, even when those bodies 

have three elastic axes that are parallel to the axes of the figure (*). The elementary process that I 

shall use consists of proving that one can satisfy all of the conditions of the problem by taking the 

six components of the tension to be just as many functions of degree two of the coordinates x, y, z. 

 Let: 
2 2

2 2

x y

a b
+  = 1 

 

be the equation of the lateral cylindrical surface. The conditions that the components of the tension 

must satisfy at any point of that surface are: 

 

2 2

xyxx
y tx t

a b
+  = 0 , 

2 2

xy yyx t y t

a b
+  = 0 , 

2 2

yzxz
y tx t

a b
+  = 0 , 

 

and they all have the form: 

2 2

x y

a b

 
+  = 0 . 

 

Now, one easily sees that the most general form of two functions of degree two  and  that are 

constrained to satisfy that equation at any point of the cylindrical surface is the following: 

 

 
 (*) The method is also applicable to the case in which only the longitudinal axis is an elastic axis, but for the sake 

of brevity, I shall confine myself to the aforementioned simpler case. 
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 = 
22

H y A

b


− ,  = 

22

H x A

a


+ , 

 

in which H and K are two constants, A is a linear function of x, y, z, and  is the function of degree 

two: 

 = 
2 2

2 2
1

x y

a b
− − . 

 

Given that, if one observes that in the first two equations for the surface, the component txy will 

alternately play the role of  and , then one will immediately find that the first five components 

of the tension can have only the following forms: 

 

txx = 
2

2

22

A y
a D

b


− , txy = 

2

B
D x y


+ , tyy = 

2
2

22

C x
b D

a


− , txz = 

22

H y

b

 
− , 

 

2y
t  = 

22

H x

a

 
+ , 

 

in which A, B, C, D, H, K are constants, and ,  have the meanings they were given above. 

 If one substitutes those expressions in the first two equations of equilibrium: 

 

xyxx xz
tt t

x y z

 
+ +

  
 = 0 , 

xy yy yzt t t

x y z

  
+ +

  
 = 0 

 

then one will find the conditions: 

 

A = 2a D , C = 2b D , B = 0 ,      
z

 


 = 0 . 

 

When one takes them into account and adds the value of the last component tzz, which results from 

the third equation of equilibrium: 

yzxz zz
tt t

x y z

 
+ +

  
 = 0 , 

 

one will get the following expressions: 

 

txx = 
2 2 2

2 2

3
1

2

a D x y

a b

 
− − 

 
 , txy = D x y , tyy = 

2 2 2

2 2

3
1

2

b D x y

a b

 
− − 

 
 , 
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  txz = 
2 2

2 2 2
1 ( )

2

H Q x y y
P x Q y R

a b b

 +
− − − + + 

 
, 

  tyz = 
2 2

2 2 2
1 ( )

2

K P x y x
P x Q y R

a b a

 −
− − + + + 

 
, 

  tzz = 
2 2

( , )
H x K y

z x y
a b


 

+ + 
 

. 

 

Those expressions satisfy all of the equilibrium equations and the one that relates to the lateral 

surface, no matter what the constants D, H, K, P, Q, R, and the function  (x, y) of degree two in 

just x, y. 

 Having said that, suppose that the body has three elastic axes in the directions x, y, z, and let: 

 

 = 2 2 2 2 2 21
2
{ 2 2 2 }xx yy zz yy zz zz xx xx yy yz zx xyAt Bt Ct A t t B t t C t t A t B t C t     + + + + + + +  

 

represent the unit potential, when expressed in terms of the components of tension. It results from 

that the six components of the deformation, with the symbols the de Saint-Venant used, will have 

the expressions: 

dx = 
xx yy zzAt C t B t + + ,  gyz = 

yzA t , 

dy = 
xx yy zzC t Bt A t + + ,  gxz = zxB t , 

dz = 
xx yy zzB t A t Ct + + ,  gxy = 

xyC t . 

 

In order to be able to determine the three components of a displacement u, v, w that can generate 

the given components of deformation dx, dy, dz, gyz, gxz, gxy, as is known, the six second-order 

differential equations that result from the following two must be satisfied: 

 
2 2

2 2

y z
d d

z y

 
+

 
 = 

2

yzg

y z



 
, 

2

2 xd

y z



 
 = 

yz xyzx
g gg

x x y z

  
− + + 

    
 , 

 

with circular permutations of x, y, z. If one substitutes the preceding values of dx, dy, …, and txx, 

tyy, … in those six equations then one will find that: 

 
2

2
C

x




 = 

2

2

3b A
D B

a

 
+ 

 
 , 

2

2
C

y




 = 

2

2

3a B
D A

b

 
 + 

 
 , 

2 2 2 2

2 2

3 ( ) 3 ( )
2( )

D a AC B b BC A
A B C C C C

C b a

  − −
   + − − + 

 
 = 0 , 

2A H  =   
2

2
( 3 )

a B
A Q H Q

b


 + +  , 
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  2B K  = −
2

( 3 )
b A

B P K P
a


 + −  , 

2

C
x y



 
 = 0 . 

 

Now, the coefficient C, which is the inverse of the modulus of longitudinal elasticity, cannot be 

zero. The expression: 

 
2 2 2 2

2 2

3 ( ) 3 ( )
( )

a AC B b BC A
A B C C C C

b a

 − −
   + − − +  

 

can be annulled only for some particular values of the ratio a : b (*). Therefore, one needs to set: 

 

D = 0 ,  
2

2x




 = 

2

x y



 
 = 

2

2y




 = 0 . 

 

The first of those conditions carries with it the equations: 

 

txx = txy = tyy = 0 , 

 

which constitute the point of departure for the de Saint-Venant process. The remaining three 

components of tension take the following expressions: 

 
2 2

2 2 2

2 2

2 2 2

2 2

1 ( ) ,
2

1 ( ) ,
2

,

xz

yz

zz

H Q x y y
t P x Q y L

a b b

K P x y x
t P x Q y L

a b b

H x K y
t z H x K y L

a b

 +
= − − − + +  

  
 − 

= − − + + +  
  

 
  = + + + + 

  

   (c) 

 

in which the constants H, K, L, H  , K  , L  are arbitrary, while the P, Q will still be determined 

by two of the conditions that were just obtained, which can be written: 

 
2 2

2 2

( 3 ) (2 ) 0,

( 3 ) (2 ) 0.

a B H Q b A H A Q

b A K P a B H B P

   + − − =


  − − + = 
        (c) 

 

 
 (*) Moreover, one can prove that this expression will remain positive for any real value of the ratio a : b. 
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 The six arbitrary constants H, K, L, H  , K  , L  are coupled directly with the forces that act 

upon the cylinder. Indeed, let X, Y, Z denote the components of the force, and let Mx, My, Mz be 

those of the moment that results from the transport of the external force to the origin of the 

coordinates. If one sets  a b =  : 

 

2 2

, , ,
4 4

, , .
4 4 4

x y z

H K
X Y Z L

K b H a L
M M M

 


  


= = = 


   = = − =



   (c) 

 

 One has the following six equations for determining the components of the displacement u, v, 

w : 

u

x




 = zzB t ,  

v

y




 = zzA t ,  

w

z




 = zzC t , 

w v

y z

 
+

 
 = 

yzA t , 
u w

z x

 
+

 
 = xzB t , 

v u

x y

 
+

 
 = 0 , 

 

whose integration is always possible and presents no difficulty. For example, in the case of simple 

torsion, one finds that: 

 

u = − 
2 22

L y z A B

a b

   
+ 

 
 , v = 

2 22

L x z A B

a b

   
+ 

 
,  w = 

2 22

L x y A B

a b

   
− 

 
 . 

 

 For a body that is endowed with only transverse isotropy, one has: 

 

A = B = 
1

E
, C = 

1

E
, A  = B   = − 

E




, C  = − 

E




, 

 

A  = B  = 
1

G
, C  = 

2(1 )

E

+


, 

 

and the preceding constants that were denoted by P, Q will have the following values: 

 

P = 
2 2

2 2

2

( 3 )

E b G a
K

E a b

+

+
, Q = − 

2 2

2 2

2

( 3 )

E a G b
H

E b a

+

+
, 

 

from which one deduces that: 

 

H + Q = 
2 2 2

2 2

(2 ) 2

( 3 )

E a b G b
H

E b a

+ −

+
, K – P = 

2 2 2

2 2

( 2 ) 2

( 3 )

E a b G a
K

E a b

+ −

+
, 
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which allow one to express the tensions (c) by means of only six essential components. 

 

 Addendum. – After writing down the preceding discussion, I recognized, with great pleasure, 

that the objection that I had raised against the ultimate ways of establishing the conditions of 

cohesion had been formulated, in almost the same language, by the late engineer Castigliano on 

page 128, et seq., of his Théorie de l’équilibre des systèmes élastiques. I am happy to think that 

the learned engineer, who had recognized all of the importance of the concept of elastic potential, 

would have probably approved of my proposal that it should serve as a foundation, as well as my 

deduction of the aforementioned conditions. 

 

____________ 

 


