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INTRODUCTION

The goal of this work is to elaborate upon a generarthef first-order, real and
complexG-structures that will be, at the same time, simpl @ complete as possible.
We will therefore not concentrate upon the case cdréain group$s whose properties
are particularly rich (if not also known), but rathere will try to isolate all that is
common to those structures for some different grdsipsr at least for large classes of
them that are introduced naturally.

Let G be a subgroup of a real (or complex) linear groum wariablesL, (or CLy).

A G-structure on the manifold of dimensionm is determined by apace of framethat

is a principal fiber subspace of the sp&cef real frames (or the spa& of complex
frames) onX. That is why the first chapter is dedicated to ttuelys of principal fiber
subspaces (PFSS). Certain definitions and classicalraotisns on (topological) fiber
spaces are first recalled in a form that is adapted tgaair(881, 2). TheG-PFSS’s of

a fiber spacéd (X, G) are then defined and characterized (Pro.1). They correspond
bijectively to the sections ¢4 / G’ (Prop. 1,3.3). In 85, the notion of PFSS is analyzed
in the differentiable case (Prop.9,1) and is characterized by the subs¢tsf H (X, G)
that admit the structure of a differential PFSS. HA\in eye towards the study of
subordinate structures that are common to®agiructures (Chap. IIl), we shall study the
intersection of &5-PFSS and &"-PFSS in the topological case 48 and then in the
differentiable case (8). One can say, on the whole, that the intersect@l -PFSS [
=G’ n G") under the single condition (which is obviously necegsidat its projection
should beX as long as5’/ ' (or G" / I') is compact, and in the differentiable case, the
property should be true, moreover, for “almost all pafrsubgroup$’andG".”

Chapter Il first introduces (88 2) the tool that will mainly be employed in Chapter
lll: Vector-valued differential forms and the calciges on those forms (in particular,
the various “products” that constitute the extension hosé¢ forms of the laws of
composition between their spaces of values). 18, 8he notion of tensor that is
associated to a tensorial form on a HF®X, G) is analyzed: It is a tensor on the fiber
productH X E (E is the space of frames &), and not orH itself. The main properties
of connections are recalled iM8at the end of which, we shall establish the fundarhenta
formulas of differential geometry by the exclusive a$¢he algorithm that is introduced
at the beginning of the chapter. The extension ofdhrithm to the case of complex
vectorial forms, and in particular, to the notion s$@ciated tensor will define the subject
of the last section.

Chapter Il contains the main results of this treati$be frame spaces and (real and
complex) G-structures are first defined and several examples malyzed (81). An
important class ofG-structures that contains almost-complex structures, stimo
Hermitian, Riemannian, ... is that of “structures definedabiensor”; i.e., ones whose
distinguished frame space is the subspace of the framé&s(E®, resp.) for which a
certain tensor oft (E, resp.) has a well-defined valueZ§ In §3, the equivalent and
subordinate structures are studied: Theorem I111.3, which sgmple application of the
first chapter, indicates that the trivially necessaopndition for two structures to have a
common subordinate structure is generally sufficiefithe spaces of frameld are
characterized among the PFS’s with bAsky the existence of a “regular” tensorial 1-
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form with values irR™ or C™ that is called théundamental 1-forneonH. In the case of
frame spaceshe inclusiorH O E (ES, resp.) permits one to define an associated tensor
to any tensorial form ol with values inM that is a tensor oHl itself (Prop. 1114.2).
The correspondence between the tensorial form andiatesbdorm is bijective. The
tensor and the form are coupled by a particularly-simglition [(12), Chap. IlI, &].
Nonetheless, that correspondence is defined in a cahdaghion only wherH is a
space of real frames (and arbitrdy or whenH is a space of complex frames avids a
complex vector space. That remark is essential @ &5 is dedicated to the special
properties of connections on frame spaces, the chaeatten of a manifoldX that
admits aG-structure by the existence of a linear connection whosgnomy group is a
subgroup ofs (Theorem lll, 85.2), torsion, the generalized Ricci identity whose preof i
carried out solely with the aid of the notion of asstad tensor and the algorithm of
Chapter II, the relation between the associated tenstire absolute differential of g
form and the “covariant derivative” of that form (Prdip. 8 5). Thestructure tensoof a
G-structureS (which generalizes the “torsion tensor of an almostydex structure”)
characterizes the tensorial 2-formstof vectorial type with values iR™ or C" that are
the torsions ofs-connections [Theorem (llI, §.1) and (lll, 86.2)]. Nevertheless, that
tensor is defined only for th&-structures of the first kind.e., real ones, or if they are
complex, ones such th& is a complex Lie subgroup &L, . The peculiarity of
complex structures of the second kind comes from theemgstence of a canonical
associated tensor on a space of complex frames flmawith values in a real vector
space. Sectiong and 8 contain some calculations of the structure tensat their
identification with known invariants in the case adisdical structures. We shall call a
structure whose structure tensor is zatmost-integrable For example, an almost-
integrable almost-Hermitian structure is Kahlerian.

In Chapter 1V, we shall address some automorphisms anghitesimal
automorphisms of a re@-structure. In sectioh, thetransitive G-structuresre studied.
The first-order Lie pseudogroups correspond bijectively ® dlasses of equivalent
transitive G-structures. In &, we shall show, in particular, that t@artan conditions
(Definition 1V.2), which are necessary conditions for the existenca tfansitiveG-
structure with given structure tensor (and which willsbéficient whenG is involutive),
translate simply into the tensorial character ef structure tensor, on the one hand, and
the Bianchi identity, on the other (Prop. IV2®). 83 is dedicated to the involutive-
structures. If they are almost-integrable (almostsitave, resp.) then they will be
integrable (transitive, resp.) (Theorem IV38 We then give a necessary and sufficient
condition for two Lie pseudogroups to be locally sim{l@heorem 1V, 83). In the last
section, two problems that relate to infinitesimaloaubrphisms are posed that are
studied with the aid of Hermann’'s lemma (Prop. I\M.3) in some particular cases. The
main results are these: 8 is a G-structure onX that is subordinate to an almost-
integrable Riemannian structure then the infinitesimalmetoies will also be
infinitesimal automorphisms @ as long asX is compact or it does not admit a 2-form
with vanishing covariant derivative (Theorem 1V48). The theorem in (Chap. IV, 8§
4.2) gives some conditions under which any infinitesinfshea transformation for as
connection will be an infinitesimal automorphismSof

This brief summary calls for some remarks: At thelld@me International de
Géométrie différentielle du C.N.R.S. (Strasbourg 1953ketipresentations attracted
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attention to the general notion ofastructure (S.S. Cher®]) or “regular infinitesimal
structure” (C. Ehresmanii4] and P. Libermannlf9]). A large number of structures of
differential geometry can be defined by being givéastructure, on the one hand, while
on the other hand, the Lie pseudogroups (Elie Cartan’mitefcontinuous groups”) are
conveniently defined to be pseudogroups of local automorpre$raeme of them. It
would then seem useful to elaborate upon a generalytlodd®-structures, and that is
what we have attempted to do, while appealing to the seaaoll examples of the cited
authors, among other things. Hence,9) B. S. Chern introduced the “first invariants”
of the structure, whereas it9], P. Libermann could avoid using them because for the
structures that she studied “one can impose the toraimoneally”. Ourstructure tensor
(Chap. 1ll, 86) specifies the nature of the first invariants, givestaeglobal definition,
and permits one to characterize the torsion fornfSa@fnnections. Similarly, numerous
results will be generalizations of the known reswfsother authors that can often be
simplified.

The G-structures to which this study is dedicated are thedmdr, real and complex
G-structures. It is necessary for us to clarify tbhbice. The example of almost-
complex structures and subordinate structures, whosegitaafs and calculations are
greatly simplified by the introduction of complex framé=mads us to define and study
complexG-structures. At the same time, a first example adraglexG-structure that is
not equivalent to a real one was studied by G. Legrandsirthksis 18]. He did not
reveal the fundamental difference between real andplonG-structures (and that
justifies their simultaneous studyposterior), unless it appeared in the definition of the
structure tensor. Although the compl€xstructures of the first kind behave like real
structures, the extension of the procedure to com@lstructures of the second kind
leads to tensors that are not sufficient to charaetéhe torsion o-connections. On the
contrary, the natural setting for the study of higher-or@estructures (cf., Y.
Matsushima 24]) is certainly C. Ehresmann’theory of jets while the first-order
structures can be studied with the more classical rdethbdifferential geometry (fiber
spaces, connections, exterior differential calculu§)cky when conveniently adapted by
the use of the algorithm in Chapter IlI, in particular,| ielad to some very simple
calculations and formulations. That difference in mdthaalready justifies an
autonomous study of the first-order structures, which is imredjuby their very
importance, in our opinion.

We have been led to consider that all of@astructures that are equivalent to a given
structureS (viz., spaces of frames that are deduced from thoSdwptight-translation on
E or E®) will define the same infinitesimal structure, and veé called the class of

structures that are equivalent $a C-structure, wher€ denotes the class of subgroups
that are conjugate t& in Ly, (or CLy). Most of the properties studied here will be
properties of-structures. We have been able to defisbeaf ofC-structures and that is

undoubtedly the direction in which this work will find th@sh immediate progress.

The bibliography that is placed at the end of this eas hardly exhaustive. We
have based it upon the principle that it shall includey ahé works that were cited
explicitly here.
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FIBER SPACES
PRINCIPAL FIBER SUBSPACES

1. — Definitions and notations.

We call a locally-trivial principal fiber space with twpgical structure group a
principal fiber spac€PFS). More precisely:

DEFINITION 1.1.1 ¢) — A PFS H(X, G) with base X and structure group G is
defined as follows:

a) Hand X are topological spac€d, and G is a topological group.

b) H is endowed with a continuous map p from H onto X that admits a lift in a
neighborhood of any X X.

Such a lift, which is a continuous magof a neighborhood) of X into H such thap - o
is the identity orU is called docal section of H over UH, = p* (x) is thefiber overx.

c¢) G acts on H on the right.e., one has a continuous ntdp< G - H, (z,9) —z0O
g, such that(z, ) @ =zgd) andze=2z(g, g O G, eis the identity inG): The partial
mapDg of H onto itselfz — z [y — orright-translation byg — is then a homeomorphism

of H such thatDg' Dg = Dgg. The right translations of G that respect the fibare
simply-transitive on the fibers.

d) The continuous bijective map, of Ux G on H;=p™* (U), (x, g) - o (x) [ that
is associated with a local sectiamover U is a homeomorphism that one callkoeal
chart on H over U that is associated with

We sayfiber space(FS) to mean a locally-trivial fiber space with tdgical
structure group that can be defined as follows:

DEFINITION I.1.2. —E (X, G, F) is a FS with base X, structure group G, fiber F if:

a) Let E, X, and F be topological spaces, and let G bepological group that acts
effectively on F on the left by way(ofy) — g0y (g O G,y O F). If the partial map of
F into F that takes y—» g [y is also denoted by g then one will have g =gd.

() This is Steenrod’s2f] classical definition, but put into a form that will lsenvenient for what
follows.
(®) A topological space will always be assumed to be sefgarab
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b) E is endowed with a continuous map p from E on(®)>€, = p * (X) is thefiber
overx.

c) Any x[ X possesses an open neighborhood U that is endowed with a local chart
®y ; i.e., a homeomorphism &fx F ontoEy = p™ (U) such thap « ®y (x, y) =x, x O X,
yUF.

d) If U and V are open subsets of X that are endowed with local ciaresxd ®y,
and if Un V£ [ then there will exist a continuous map s ohlW into G such that the
change of chart; - ® is the map ofU n V) x F onto itself(x, y) = (x, s (X) ).

One briefly says thgi : E - Xis afibration if E is a FS, in the precise sense that was
just defined, with bas® and projectiorp. A PFS is obviously a FS with a gro@othat
acts upon the fibe@ by left translation.g will denote the elemerg [0 G, as well as the
action of left-translation by, which will nonetheless be denoted bywhen there is
some risk of ambiguity.y Y =g [ (g, 9' U G).

2. — Various constructions on fiber spaces.

LetE be a FS, and le®) be the restriction of the local chabt, to {x} x G. We say

frame at the point x of the fiber structure ondEmean any homeomorphism 6fonto
Ex
h:(DSog, gDG,XDX

It follows from axiomd) in the definition (1.1.2) that this definition is indepkemt of
the choice of the local chatt, because ik J U n Vthen:

L = D os(X) and h=(®fos(X)og=®o(s(XNg, s BOG.

Let E, be the set of frames i at x, and let E= U It is classical — and

E. .
xOxX — X
immediate, with the aid of Definition (1.1.1) — thihie chartsﬁ)U that are associated with
the local chart®y of E:

d,;UxG-E, (xg - ®og, xOX gOG

define the structure of a PF@(X, G) on E. We remark simply that the right-translation

by g on E is Dy Uh = hog. When E is endowed with that structure, it is called the
associated PFS to E.

() The projection of a F§ onto its base will be generally denotedphyeven if one is simultaneously
dealing with several FS’s. When there is some risknabiguity, one can be more specific and denote it by

Pe .
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In particular, that construction applies to a FHES If ®y is the chart orH that is
associated with the local sectiorthen aframe inH atx is a map®; og= ®j oL, (g0

G) fromG toHx. Now:
D)oL, (9)=P;(99)=Pu(x9d)=0(x) g =(c(X M) g =Pu (x 9) I ;

i.e., sinced’ og= D, (x, 0) :
b, (x o) I =Py (x, 0) .

The dot on the left-hand side of this denotes the aabiohe left) of the fiber-typ&
on the frame, and the one on the right-hand side detisdeaction (on the right) @& on

H. That remark shows that there exists a bijective ofidp onto H that can be defined
on any pair of associated charts by:

®y (x, g) = D, (%, 9,

and which will be, as a result, a homeomorphisinis, Imoreover, &-isomorphism of
the PFS (cf., 1.3), and that will permit one to ntlgy H with H, whereh O H is
identified with the framen O H : gUG - hyOH. The notationh will sometimes be
employed in what follows when it is necessary midguishﬁ fromh.

LetE (X, G, F) be an FS and ldd = E be the associated PFS. letl H be a
homeomorphism of ontoEyn, yOF —» h Oy O Ep. FornOH,gUOG,yOF, one will
then have:

(hg) = DOgh) = (h - g)y=h Qg ),

which will imply, in particular, that:

(hy) Qg ' 0)=hOhOg yI=h0O.

That remark permits one to identiy with the quotient= x H by the equivalence
relation:

(v,h) ~ @Oy hm™, yOF,hOH,gOG.

Consequently, one can constridby starting fronf andH.
More generally, leF be a topological space upon whiGhacts by way oRR (G). If

G is not assumed to act effectively Brihen letN be a distinguished closed subgroup of
elements oG that leave all of the points &finvariant;G / Nwill then act effectively on
F.

DEFINITION I.2. —Let F(H) be the quotient of kK H by the equivalence relation:

v,h~R@0O,hy"), yOFhOHgOG
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There is a fiber structure BH) [X, G/ N F]. One says that it is the FS that is obtained
by modeling F on H), orthe FS that is associated with H of tyfe R (G)).

Let a be the canonical projection 6fx H ontoF (H); the projection of (H) ontoX
is defined by:

Pr#) (a (v, h)) =pu (h),

and the fiber structure &f (H) that is defined by the chanig, that are associated with
the sectiongrof H overU :

Wy (X, y) =al(y, g(x), xOUOX yOF;

the PFSF/(W) Is isomorphic to the PFS that is the quotidntN (see below).
LetH be a PFS with grou@, and letG'J G be a closed subgroup; the relation:

h~h’ if h'=hy, hOH, h'OH, g'OG’

is an equivalence relation . LetH / G be the topological space that is the quotient of
H by that relation, and letr be the canonical mad — H / G. H / G’is naturally
endowed with a projection onkthat is defined by:

Pric’ (77(h)) = pu (h) .

Since G acts naturally o = G / G, one can moddl on H. Let a be the canonical
projection ofL x H ontoL (H), andy, be the point ot that is defined by the class’.
Since:

a(yo, hy) = a (g o, hgy™) = a(yo, h), g 0G, hOH,

the relation:
f(77(h)) = a (yo, h)

defines a map dfl / G’into L (H). One can show th&t which is bijective and respects
the projections, is a homeomorphism, so:

PROPOSITION [.2.1. +et G’ be a closed subgroup of the structure group G of a
PFS H. The quotient space H /,@&here G acts on H by right-translations in G, is
identified with the FS L(H), which is modeled on H by the homogeneous spase L
G/G', upon which G acts naturally.

If N is a distinguished subgroup @fthen the fiber structure dth/ N that is specified
by Proposition (1.2.1) will be a principal fiber structurettwgroupG / N and the
canonical maprof H ontoH / N will be a homomorphism of PES’s that is compatible
with the canonical homomorphismof G onto G / N(cf., 1.3). Hence, ifG’is not a

(%) Cf., Aragnol [, Chap. 12; with Aragnol’s terminology, one says thék F is modeled on H.
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distinguished subgroup & and G, is not the largest subgroup Gf that is invariant in

G thenH /G, will be a PFS with groufis/ G, that is identified with the PFSI /G that

is associated withl / G".

Proposition (1.2.1) can be completed if one makes upplementary hypothesis that
the canonical projectio® — G / G’is a fibration. We say briefly th&is a subgroup
(L. T.)of G it will necessarily be closed.

PROPOSITION 1.2.2 (super-fibration theorem)Let G be a topological group, let
G’and G”be subgroups such that"Gl G’'[J G, and let H be a PFS with group G. If G
is a subgroup (L. T.) of G then each map in the commutative diagram wdldve a
fibration:

/4

H . HIG
n/ p"

pl><\q

X P HIG

That proposition results from the preceding and tleofpof the property for the
single mapy.
Finally, we need the notion of a fiber product:

DEFINITION 1.2.2. —Let E(X, G, F) and E' (X, G, F") be two FS’s. Théiber
product E E’is the subspace of £E’that projects onto the diagonal ofXX; it is

endowed with a natural structure of a FS with base X and growgsGhat acts trivially
on the fiber Fx F".

In particular, ifE andE’are PFS's then the same thing will be trueEoX| E

3. — Homomorphisms and subspaces of principal fiber spaces

LetH (X, G) andH’ (X, G’) be PFS’s with the same base An X-homomorphism f
of H into H’ that is compatible with a homomorphigmof the topological grougs into
the topological grougs “is a continuous map &f into H’such thapy- o f=py, and:

) f(z[o) =1 (2 Lo (9), zUOH, gOG.

Most often, we shall simply say “homomorphism.” Gf = G and p is the identity
representation oG thenf will be a G-isomorphism. If H” = H thenf will be an
automorphism oH (X, G).

If f satisfies simply (1) then it will be r@presentatiorof H in H” that is compatible
with p, and aG-representationf G’ = G, while pis the identity representation &.
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Sincepy-f (z[D) =pu- f (2, f will then be associated with a continuous rpapf X into
itself that is defined bpy- of = 17 o py : One says thdtinducesy/ on the base.

DEFINITION 1.3.1. —Let G’ be a topological subgroup of G. A-@&incipal fiber
subspace (G-PFSS)of H (X, G) is a PFS H(X, G”) such that:

1. The space His a subspace of H that is endowed with the induced topology.
2. The projection pis the restriction of p to H

3. The right-translation by 'g] G’is the restriction to Hof the right-translation |
that acts on H.

The following characterization will be useful in wHaliows:

PROPOSITION 1.3.1. 4n order for a subset Hof H to be a GPFSS of H, it is

necessary and sufficient that the restrictionobp p to H should enjoy the following
properties:

1. p(H) =X
2. Pt =z05'if zOH’andx =p' [k

3. p' admits a local lift in the neighborhood of anyIxX (that is continuous for the
induced topology).

Those conditions, which are obviously necessaryjrateed sufficient: LeH  be a
subset oH that satisfies those properties; give it the inducedlogyo Axioma) of the
definition (1.1.1) will then be verified at the samelgssincep’, which is the restriction
of a continuous map to a subspace, is continuous andsemjoperty 3. As for Axiom
C), it is verified because the maptdfx G’ontoH":

(zd) — z, z OH", g oG,

which is well-defined, from property 2, is once more aoraus, since it is the restriction
of a continuous map to a subspace. Finally, Ax@)ns verified because &ris a local
section ofH"overU then it will also be a local section dfin such a way that the map of
U x GontoHy, (X, g) — o(X) (his a local chart dff and its restriction t&J x G’ (which
is the restriction of a homeomorphism to a subspa@®as a homeomorphism.

One deduces from that proposition the:

COROLLARY. —The image of a PFS HX, G) by a homomorphism f of H into (X,
G) that is compatible with the representatiof G’in G is ap (G")-PFSS of H.
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Indeed, ifH"is closed therH, = Hyx n H’will be closed inHy (x O X). Now, G is
homeomorphic téd, under the homeomorphisi:

g z[ (zOH,gOG)

that transforms” into H, in such a way thaG’ will be closed inG. The converse is
obtained immediately with the aid of local chartd-bn

PROPOSITION 1.3.3. # G’is a subgroup (L. T.) of G then theeBSS'’s of a PFS
H (X, G) will correspond bijectively to sections of H/. G

Keep the notations of Proposition (1.2.1) andHé(X, G") O H (X, G) be given.H’
defines a mapof X intoH / G"byf (x) = 77(H,) , since ifzz OH, andz OH,, thenz =
z Og, forg O Gandm(z) = 7 (z). fis continuous becaudewill factorize into a
product of continuous map§:= 770 g, on an open se) that is endowed with a local

sectionay ; it will then be a section dil / G”. Conversely, let be such a section, and let
H' = m(f(X)). The subseH’O H, when endowed with the induced topology,

xadX
will satisfy properties 1 and 2 of Proposition (LBin an obvious way. In order to show
thatH’is aG*-PFSS oH, it remains to show tha@t admits local lifts in the neighborhood
of anyx 0 X. Now, if gy is a section oH andp is the canonical map & ontoL =G/
G’then one will have the local ch&¥, onH / G”:

xy) = Yoy =m(aw (¥ ) Iif xOX, yOL, p(9 =Y.

There will then exist a continuous function Onwith values inL, y — y (X) such
that:
f(¥) =%y (XyX), x O U.

Let xo 0 U, whereO is a neighborhood of (xo) in L that is endowed with a lift —
s (y) O G, which exists sinc&’ is a subgroup (L.T.).V =y™ (O) n U is an open
neighborhood 0%, and forx 0V, one will havey (X) = p[s (y(X))], so:

FO) =%y (x p[s ()] = lau () B (y ()]

e, forx OV, v (X) = au (X) Os (y X)) O H,. Sinceoy is obviously continuous, it
constitutes a lift op’ overV. Q.E.D.

That proposition is nothing but another form ofwell-known theorem of C.
Ehresmanni?] (°), because the notion of&-PFSS is, in fact, equivalent to that of the
restriction toG’ of the structure grou@. Indeed, the existence ofG-PFSSH’ (X, G’

0 H (X, G) derives from the possibility of restricting theeusture group oH to G

() See also J. Frenkelq), § 16.
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Conversely, if that operation were possible then thatldvsignify that there exists a PFS
K’(X, G’) that is “equivalent” tdd by enlarging the structure group that is given in a PFS
K (X, G). However, in our language, that would mean #&fxX, G’) would be aG*-
PFESS oK (X, G), and that it would b&-isomorphic toH (X, G). The image oK’ (X,

G') under that isomorphism would then b& aPFSS oH.

4. — Intersection of principal fiber subspaces.

Let G’andG” be subgroups dg, and letH’ (X, G”) andH ” (X, G”) be PFSS’s of the
PFSH (X, G). We shall now study their intersection.

PROPOSITION 1.4.1. §z'OH, and Z =z'YOH; (x X g G) then in order for
H, n H;# [, it is necessary and sufficient thatlgG’'0G”. Hence, if Z1H, n H| then
one will haveH, nH; =z[DT or =G’'n G”".

Indeed, ifH, n H; # O then lezOH, n H;. SincezOH,,z=z'y (g O G’), and
sincezUOH;,z=7'0y" (9" O G"). One will then have’' Oy' =z'0y, orz' =z'Og' O
g'™"). Hence,g =g Og'™* O G’0OG” and conversely. On the other handzif
OH, nH} thenz =z Oy Sincez, z OH, (H, , resp.),yd G’ (G” resp.) in such a
way thaty0 I, and conversely. Hencél, n H; =z [T.

Suppose, to simplify matters, thattH" n H") = X. K=H"n H" will then satisfy
conditions 1 and 2 of Proposition (1.3.1), and in ordeikfdo be & -PFSS oH, it would
be necessary and sufficient that it should admalisections in a neighborhood of axy
[0 X. LetU be an open subset ¥fthat is endowed with local sectioas(od”, resp.) oH’
(H", resp.). One will have:

o' (X)) =0’ (X (%), x U,

in which x +— g (X) is a continuous map dj into G with values inG’ 0G”, since
H. nH z0O. If Kis a PFSS thet will admit an open coveringy,} that is endowed

with local sectiong, of K overU, . o, will also be a local section &f'[0 K (H”, resp.),
in such a way that there will exist a continuous functgn(g, , resp.)U, - G’ (G”,

resp.) such that:
Pa(¥) =0 (), (¥ =0"( ;" (¥, x0Ua;
hence:

(1) 9 (¥ =9, (N (R.

Conversely, iU admits a coveringy,} that is endowed with continuoug, (9, ,
resp.) with values i (G” resp.) that satisfy (1) then one will have:
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0" (X) =0’ (x) 0, (YL (X
in Ug, in such a way that:

pa(x) = 0’ (9 I, (Y= 0" (x) [ (%)

is a common local section t&é’ andH “overUy, ; i.e., a local section d€. That leads us
to pose the:

DEFINITION 1.4.1. —-A continuous map f of a topological space Y into a topological
group G with values in GOG” (G” and G” are subgroups of ¥5is called locally
factorizable in G’ OG” if there exists an open coverif,} of Y that is endowed with
continuous mapw;, (g, , resp.) of ¥into G’ (G” resp.) such that for  Y,, one will

have f(y) = g, (Y) T, (y) -

We have established:

PROPOSITION 1.4.2. +et H (X, G’) and H” (X, G”) be PFSS’s of HX, G), and
let {U,} be an open covering of X that is endowed with local sectgnéo’,, resp.) of
H’(H" resp.) that are coupled by, (X) = g, (X) a (X). In order for K=H’n H"to be
a PESS of H, it is necessary and sufficient that the functipssauld take their values in
G’OG”and be locally factorizable.

That will always be true, with the single reservatihat:
pH'nH")=X
if G’andG" satisfy the following property:

DEFINITION 1.4.2. —A pair G, G" of subgroups of the topological group G is called
regular if any continuous map of a topological space into G with values’inG3 is
locally factorizable.

PROPOSITION 1.4.3. H one is given a topological group G and two subgroups G
and G then in order for the intersection of a*BFSS Hand a G-PFSS H of a PFS
H(X,G) to be a PFSS as long aglg’'n H") (and for any X, H, H’, H"), it is necessary
and sufficient that the pair GG’ should be a regular pair of subgroups of G.

That condition, which is sufficient from Propoasiti(1.4.2), is in fact necessary if one
is given a topological spacéand a continuous functian: X - G’'0G". LetH =X x
G, 0’ (x) = (x, €). ¢’is a section oH, andH’ (X, G") = | Jo'(x [G' is a PFSS (Prop.

xadX

1.3.1). o', as defined byo’ = o’ (x) Og(x), is a section oH, andH” (X, G") =
U o' (X)[G" is a PFSS. Hencp,(H'n H”) =X, sinceg (X) 0 G'OG" for anyx [0 X. If

xadX
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H’ n H”is a PFSS then from Proposition (1.4.@will be locally factorizable. Sinck¥
andg are arbitrary, the proposition is established.

We shall now seek to find the conditions under whigtai of subgroups will be
regular. LetG’, G” be a regular pair of subgroups of the topological grGup The
identity map ofG’ OOG" is, in particular, locally factorizable, and thereséxian open

covering {O,} of G’ OG" and some continuous mags (g, , resp.) ofO, into G’ (G",
resp.) such that fay 0 O,, one will have:

9=9,(9),.

Therefore lef be a continuous map of the topological spdaeto G’ [0G", so theY,
=1 (0,) will form an open covering oY that is endowed with continuous maps=
g,°f (0,= g, f, resp.) intoG’ (G", resp.), and foy O Y,, one will havef (y) =
0,(9) L, ; i.e., the pairG’, G" is regular when the identity map @Y OG" is locally
factorizable.

G’[05" is a saturated subspace®for the left equivalence relation modu®) and if
the canonical mapr of G onto G / G’ is a fibration then upon restricting the fiber
structure orG to B = /7(G’'05"), G’ 5" will admit a principal fiber structure with group
G". LetV be an open subset Bfthat is endowed with a local sectisny — s (y) O
G'[G". Since the paiG’, G" is regulars will be locally factorizable, and one will have:

sy)=g'(ym' (), goyuGc, g yoc

locally inV, since the functiong”andg” are continuous. Now:

y=rm(s(y)=m@ ()@ ) =m@y),

in such a way thag’is a local section with values @’ Conversely, suppose that the
fiber structure of5’0G" admits a local sectioswith values inG’in a neighborhoodl

of yo = 77 (€), where one can suppose tdl) = e. There exists such a section in the
neighborhood of any; 0 B. Indeedy; = 7(g; (&) =71(g;) (9,0 G’, g/ 0 G"), and the

left-translationg +— g,[g is a homeomorphism d& that preserve&’ OG", and its

restriction toG’ 0G", which is endowed with the induced topology, is once n@re
homeomorphism. Similarly, the map— g, [y (y O B) is a homeomorphism & [V =

g, U is a neighborhood af, and the map df into G’ 05":

yOVi g 'yOU - s(g™ Y- d0g g Oy =t(y)

is continuous and has valuesdrn Since:



14 On the Differential Geometry &-structures

() =0 0(s(d™0y) = g, dg "0y =y,

t will be the aforementioned local section\bf Hence, the ma@y of V x G” onto 77+
V) :
¥ g) - te) I, yov, ¢'0G”

will be a local chart on the fiber structure@f0G", in such a way that there will exist a
continuous functiorg,, onto 77" (V) with values inG ”such that:

g =y (77(0), 9y(9)) =t (77(g) Doy (9)), 9O 77 (V).

t takes its values i, which signifies that the identity map Gf O0G" is factorizable in
77t (V), and since ther* (V) coverG’ 03", that the coupl&’, G" is regular. Therefore:

PROPOSITION 1.4.4. 4n order for a pair G, G" of subgroups of the topological
group G to be regular, it is necessary and sufficient that the igemtetp of G OG”
should be locally factorizable. If one of the subgroupq®&, resp.) is (L.T.) then it is
necessary and sufficient that the fibration of G’ by the left classes moduld' @ight
modulo G; resp.) should admit a local section with values i{@&, resp.).

The latter condition expresses the idea that theiatsn 77 of 777 to G admits local
lifts. Letx OB, g 07" (X), g, 07" (x). Hence,g, =g’y", g" 0 G", sog" O
G'n G'=T. Since conversely one has(g’T) = 7 (Q’) =y, 7 ' (x) =g’T (y O B)
will be a left class moduld. Hence, one finds that one has defined a bijectivefriap
G'/T ontoB by:

f(9'0)=m(9")=9'0G,

in such a way that i is the canonical map @&’ onto G’/ I' then one will have the

commutative diagram:
G /
f/

Sinceq is open and7’ is continuousf’ will be continuous. Isis a lift ofp overV [0 B
then oo f' will be a lift of g overf’™ (V) that is open irG’/ T, in such a way thaj is a
fibration. Conversely, ifjf admits local lifts, and if”is a homeomorphism, moreover
(which one cannot generally state), ti&mwill admit local lifts, and the paiG’, G” will

be regular. Iff” denotes the bijective map &/ T onto G’ 0G”/ G’that is defined
analogously td'then one will deduce that:

B G’'IT
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THEOREM 1.4. —In order for a pair G, G” of subgroups (L.T.) of a topological
group G to be regular, it is necessary and sufficient that G’ n G” should be a
subgroup (L.T.) of Gand G” If one of the maps’for f” defined above is a
homeomorphism then that condition will be sufficient; in particular, litlvé true in the
following two cases:

1. G'(orG”)isopeninG
2. G’/T (or G’/ T)is compact.

In order to prove that, it remains to be shown that f” is bi-continuous in the two
indicated cases; we shall show it for

1. In order forf’ * to be continuous, it is necessary and sufficient tfiahould be
open, or even that the saturationGfby an open subset & should be open iG’'0G".
That will be the case if an open subseGdis an open subset & ; i.e., ifG’is open in
G.

2. SinceG”is a subgroup (L.T.) o&, it will be closed, s&s / G”andB 0 G / G”
will be separable. Hence, @'/ I' is compact the’ will be continuous, since it is a
continuous bijection of a compactum onto a separable space.

5. — Principal fiber spaces and subspaces in the diffemtiable case.

“Differentiable” will always mean “an arbitrary clof differentiability (including
analytic) that is compatible with the givens,” and dotual class will be specified only
when necessary.

DEFINITION 1.5.1. —A differentiable principal fiber space (a differentiable FS,
resp.) is defined by Definition (1.1.1) (I.1.2., resp.) whensupposes, moreover, that the
base X, as well as the connected components of H and F, are differentabfelds and
that G is a Lie group. All maps that enter into the definition areewdfftiable;
homeomorphisms are differentiable and regular (viz., they have non-zeroalajobi

REMARK 1.5. — LetH be aset that is endowed with a projectiom onto the
differentiable manifoldX, let R be an open covering & and for anyy [ R, let there
be a bijective magy of U x G ontop™ (U), such that:

a) pedy(x, g =xx0U,gOCG.

b) Forany pair O R,V O R, U n V£, there exists a differentiable function
v onU n Vwith values inG such that:
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Plod, (X, 9) = (x, suv (X) D).

Hence, there exists a unique structure of a differentRB&H (X, G) with projection
p such that th&y are local charts.

The constructions of paragraph 1.2 (associated PFS, mqdetient by a closed
subgroup of the structure group, fiber product) lead to differielet FS’'s. The theorem
of super-fibration (Prop. 1.2.2) is valid for closed suagps G” [0 G’ 0 G with no
supplementary hypotheses, since the spaces and maps idigipam are all
differentiable. Finally, the homomorphisms of a PFS @efined as in paragraph (1.3),
whenf is simply supposed to be differentiable and regular.

Nonetheless, the most natural notion of differdai@FSS differs from that of PFSS
in the topological case (Def. 1.3.1), to the exterdtth submanifold differs from a
subspace: It is generally endowed with a topology thatifferent from the induced
topology. More precisely, in what follows, submanifoldwill refer to a regularly-
embedded manifold with no double poinf$, @nd one will say that aubmanifold is
proper if its topology coincides with the induced topologySimilarly, we sayLie
subgroupof a Lie groupG to mean an abstract subgra@pof G that is itself a Lie group,
and its connected component of the identity (for the priggology ofG”) is an analytic
subgroup ofG (). If G’is a proper submanifold d& then G’ will be a proper Lie
subgroup.

DEFINITION 1.5.2. —Let H (X, G) be a differentiable PFS and let’®e a Lie
subgroup of G. A differentiable ‘®FSS of HX, G) is a differentiable PFS HX, G’
for which:

a) The subordinate differentiable manifold id a submanifold of Hor if H andH’
are not connected then each connected componéttisfa submanifold of a connected
component oH).

b) The projection pis the restriction of the projection p to"H

c) The right-translation by 'g] G’is the restriction to Hof the right-translation |
that acts on H.

() For example, one can take the definition that wasnghwe Chevalley ([1], pp. 85, def. 1) for
analytic submanifolds by supposing that the givens arelyngifferentiable.

() One can deduce the construction of all topologies cabatract subgrou@’ of G for which it will
be a Lie subgroup d& from a theorem of Yamab@T] on the arc-wise connected subgroups of a Lie
group. Those topologies correspond bijectively to thendisished subgroups of G’that are arc-wise
connected inG. If K is given then the corresponding topoldfyG*, K) of G’ will admit the arc-wise
connected components®fn the open neighborhoods efor the induced topology dd as a fundamental
system of neighborhoods of the idengty One of those topologies is coarser than all ofother ones. It
is obtained by taking to be the arc-wise connected compon@hitof e in G’for the induced topology. In

particular, the former will coincide with the induced taypl if G’is closed.
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With that definition,G’is endowed with a well-defined structure of a Lie subgrdup o
G, which is associated with a topolo@y Let7; be a topology that is coarser thafor
which G” will again be a Lie subgroup @, and letp be the identity homomorphism
from G, endowed withZ; to G, endowed with7; (which will be denoted bys, ); it is a

continuous homomorphism of Lie groups, and thus analyfitere exists a unique
structure of a differentiable PFS'HX, G/) on H’such that the identity map of H is a

homomorphism of differentiable PFS’s that is compatible wind takes H(X, G")
onto H' (X, G]), and H"is once more a differentiable PFSS of H for that structure.

Indeed, let {py} be a family of charts that coveét’ for the structuréd’ (X, G’). In order
for the identity magf of H to be a homomorphism, it is necessary that®bhe(more
precisely, théo ®y) should once more be charts fof (X, G,), because one must have:

fody (X, g) =f [Py (x, € O] =f [Py (%, €)] .

Sincef is differentiablef [Py (X, €)] will be a differentiable local section &f (X, G,)
overU, and:

Py x g) = f[Pu(x, €]

must then be a local chart, from axiady of Definition (I.1.1). Now, ifsy v is the
function onU n V with values inG’that is associated with a change of local coordinates
Dlo®, = od,, (cf., Remark 1.5.1) then it will again be a differahtie map into

G,, sincep is analytic, in such a way that the charg, {u} will effectively define a
structureH’ (X, G/) onH". In order to show thdil’ (X, G)) is a differentiable PFSS of

H, it remains to show thatl’ will be a submanifold when it is endowed with the
differentiable structure that is subordinatet6(X, G;). Letj be the identity map dfi’

into H. The mapgy of U into H that is defined by (X) =) o« ®y (X, €) is a differentiable
local section oH, and:

®,: X~ o, xO0UgOG

is a local chart oH whose restriction tdJ x G’is jo ®y, from axiomc) of Definition
(1.5.2). Inthe chart®y (or ®;y) and @, , j is the map:

X d)OUxG - (x,g)0UxG,

which is a map that is differentiable and regular &t as well as folG’, sinceG is a

Lie subgroup of5". That concludes the proof.

Sincep' ™ (U) (p(V), resp.) is an open subsettdf (X, G) [H (X, G), resp.], the
associated chartgy and @, will show, moreover, thatl’is a proper submanifold ¢f
if and only ifG”is a proper Lie subgroup &
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In particular, upon taking@: to be the coarsest topology @Gf for which it is a Lie

subgroup ofs (%), one will get aminimal structure of a differentiable PFSS of H fot H
The latter topology o6’ is not an induced topology, in general, so the topolb§HES
that is subordinate té1” (X, G;) will not generally be a topological PFSS of the

topological PFS that is subordinateHo Since the subspa¢®’ of H obviously satisfies
the hypotheses of Proposition (1.3.1), the differentidddal sections oH’ (X, G/) will

provide local lifts ofp’ that are continuous for the induced topology, ardvill also
admit the structure of a topological PFSSHof The latter coincides with the structure
that is subordinate td ' (X, G)) if and only ifH"is a proper submanifold ¢f or G’is a

proper Lie subgroup d&. In particular, the same thing will be trueHf is closed inH,
since from Proposition (1.3.28 " will then be closed i%. Hence:

PROPOSITION I.5.1. +et H' (X, G") be a differentiable PFSS of €, G) that is
endowed with its minimal structure. In order for the structure dbpological PFSS
subordinate to H(X, G”) to coincide with the structure of a topological PFSS on
H(X,G) on H’, it is necessary and sufficient that §hould be a proper Lie subgroup of

G (or, what is equivalent, that #$hould be a proper submanifold of H). One wiérth
say that His aproper PFSS of H; in particular, that will be the case if 1 closed.

We shall now establish the analogue of Propos(ti®nal).

PROPOSITION 1.5.2. et G’" be a Lie subgroup of G, and let (X, G) be a
differentiable PFS. In order for a subset ¢f H to admit the structure of a‘®@FSS of
G, it is necessary and sufficient that the resoictp of p to H should enjoy the
following properties:

1. pP(H) =X
2. Pt (x)=z0G’if zOH andx = p [E.
3. p' admits local lifts that are differentiable sectiaofsH.

We shall show that these conditions are sufficidrgét R be an open covering of
for which eachU 0 R is endowed with a differentiable local sectian with values in
H. ForxOU n V,UOR,VUOR, one will haveay (X) = ov (X) Osuv (X) . suvis a

differentiable map oU n V into G that takes its values @’ from hypothesis 2: It is a
differentiable map int&’ (). Let®dy be the map ) x G’ ontop ™ (x):

() See note’j on page 16.

() This will follow from Lemma (1.6.2), whefB’is considered to be an integral of the Pfaff system tha
is composed of the field of planes that is generated byréeislation when one starts with the Lie algebra
G of G-
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Dy (xd)=ov (X b, g oG, xOU;

The change of chart®,' - ®,, is the map:

xd)— xXsuv®¥y), xOU gOG,

and consequently, the collectio®{} will define a structure orH’ of a differentiable
PFS H'(X,G) with projectionp’. In order to establish the proposition completély
remains to be established thétis a submanifold ol with that structure, which derives

from a consideration of the chartstdfthat are associated with the same sectmnef
H.

Since the subgrous’of a Lie group for whiclc — G / G’is an analytical fibration
are identical to its closed subgroups, one can aedbe following proposition from
Proposition (1.5.2) by the same proof that perrditbee to establish Proposition (1.3.3)
when starting from (1.3.1):

PROPOSITION 1.5.3%). — Theclosed differentiable PFSS’s of a differentiable PFS
H (X, G) correspond bijectively to the differentiable sesti®f the space H / Gwhere
G’is an arbitrary closed subgroup of G.

6. — Intersection of closed differentiable principal fibe subspaces.

The same analysis as in the beginning of sectibfeads to the following definitions
and propositions:

DEFINITION I.6.1. —A differentiable map of a manifold Y into a Lie gpoG with
values in GOG” (G” and G” are Lie subgroups of G) is calladifferentiably locally
factorizablein G"OG”if it is locally factorizable in the sense of thefinition (1.4.1) and
the factorsg,, (g, , resp.) are differentiable maps intd &, resp.).

PROPOSITION 1.6.1. et H (X, G") and H” (X, G”) be differentiable PFSS’s of
H(X,G), and let{ Va} be an open covering of X that is endowed with idiffeable local
sectionso), of H’ (sectionso, of H” resp.) that are coupled by, (X) = o,(x) Oa (X)
(x O Va). In order for K=H’n H”to be a differentiable PFSS of H, it is necessargt

sufficient that the functionsaghould take their values in ‘GIG” and be differentiably
locally factorizable.

Recall the proof of Proposition (1.4.2) with itetations and our new hypotheses. If
we suppose th& is a differentiable PFSS then will be a differentiable local section of
H with values inH” (H” resp.), and the functiong, (g, , resp.) will be differentiable

maps intoG with values inG” (G” resp.). g, (g, , resp.) will then be differentiable

(*% Cf., J. Frenkel5], Proposition 19.2.
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maps intoG’ (G”, resp.) t), andg will then be differentiably locally factorizable. &h
converse will follow from Proposition (1.5.2).

DEFINITION 1.6.2. —A pair G, G” of Lie subgroups of G is callegeneric if any
differentiable map into G with values in" 35 ”is differentiably locally factorizable.

PROPOSITION 1.6.2. -Given a pair of Lie subgroups’G5”of G, in order for the
intersection of two differentiable PFSS’s (X, G”) and H” (X, G”) of the differentiable
PFS H(X, G) to be a PFSS of H such thaflp’n H”) = X (and that must be true for all
X, H, H, H”), it is necessary and sufficient that the pair G” should be a generic pair
of subgroups of G.

We shall now establish some sufficient conditionsafgair of closed subgroups of a
Lie groupG to be generic. In order to do that, we shall need the:

LEMMA 1.6.1. — Let \,, be a proper submanifold of a differentiable manifolg W
and let g be a differentiable map of a manifolglitto W, that takes its values in,V g
will then be a differentiable map of,thto \, .

Indeed, if one supposes only thatis a submanifold that is not necessarily proper
then for anyg O V, there will exist a neighborhoo@ of V, (for the proper topology on
V,) that is endowed with local coordinat¥s' (i = 1, 2, ...,n) and cubic for those
coordinates (i.e., X' - X, |) <b), and a neighborhoo®’ on Wy, that is endowed with

local coordinateg” (a = 1, 2, ...,m) and cubic for the” (i.e., |27 - z{ | <b), such tha¥
[0 O’ and the restriction t® of the identity ma of V, into Wi, is:

z' =X, Z**=0 k=1,..m-n.

If Vi, is a proper submanifold, moreover, then since any opeetsob, is the trace
onV, of an open subset ®¥,, one can restria® andO’in such a way thad = O'nV,.

Hence, letr 00 Uy, g (r) = g, and letg: be the map intd/, that is defined by. Since
g (O")is an open subset bk,, there will exist an open neighborhoawfr in U, that is

endowed with local coordinated (a = 1, ...,p) such thag («) 0 O’. Sinceg () O V,,
g () OVhn O'=0, and the restriction af to wwill be expressed by:

2= (0 ...¥) (=1, ..n), "% =0 k=1,...m—n,

in which the functiong' are differentiable forf® — x5 | <b. One will then have; (o) =
g (o) O O, and the restriction af; to wwill be expressed by:

(Y Cf., footnote Y), pp. 18.
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X'=g' (%4 .., xP) i=1,..n).
Q.E.D.

Recall the notations of 1.4, but with the present hypethed he natural projectian
of G’onto G’/ I' defines a structure o6’ of an analytic PFS5’ (G’ /T, ). The
associated fiber space with fib8r, whenl™ acts onG” by left translation, is the analytic
FSG”(G’) that is obtained by taking the quotient®fx G’ by the equivalence relation
p (Def. 1.2.1):

(gn’ gr) _ (yl:gn, gr I:b/_l), gr |:| GI, gn |:| G", y|:| r
The map of”x G’into G:
(g"’ gl) Hg’ Eg"
passes to the quotient, singg(}) dyg") =g Oy'. If ais the natural map d” x G’
ontoG" (G’) then the mapofG" (G’) into G :
a(g", gl) H gl Eg"

that one obtains will be a bijection on@®’ 0OG”, which will define the structure of an
analytic manifold on that set, in particular. lpebe the projection o&" (G”) onto the
baseG'/T :

pea(g',.9)=q(d)=9g 0,
SO
fopea (g’ g)=f'(g O0)=gG"
On the other handgo f o (9", d)=a (g g') =g 0G”; i.e.:
7o f=1"0p.

If i denotes the injection @&’in G then one will have the commutative diagram:

G"(G) G
p i
(D) G’ ln
~ i
G'IT G/IG”

Sincef’is injective, it will also define an analytic manifodtructure on its imagB =
(G'[G"). We shall show thdtandf” are everywhere-regular analytic mapad that,
as a resultG'0G” (B, resp.) will be an analytic submanifold of GAG”, resp.).

Let xo = q(e), and letU be an open neighborhood xf that is endowed with an
analytic sectiors of the fibrationg, with s(xg) =e. f = /moios in U : The latter is then a
composition of analytic maps, $avill be analytic inU. We let¢ be the linear map that

is tangent to a mag, denote the vector space that is tangei@ tbl" atx, by T, , and

21



22 On the Differential Geometry &-structures

let G (G',G", [, resp.) denote the tangent spacestatG (G, G”, I', resp.). Lenh be
the dimension off, . The fact thaigo s= identity onU leads to the fact tha& (T, ) isn-
dimension and is supplementary o Since i is injective, one can identiffc’ and
i@G). s(T,) OG impliesthats(T, ) n G'OG NG =I,s0s(T,) n G0 s(T,)

n [, which is zero, since(T, ) is supplementary té . Hence,s(T,) n G"=0, and
sinceG" is the kernel ofz, dim 7_T(§(Tx0)) =dim s(T, )=n; i.e., upon returning to the
complete notationsi’(TXO) = moios(T, ) isn-dimension.f’is then regular at the point

X . By homogeneity, one then deduces tHais everywhere-analytic and regular.
Indeed,G’ acts on botlis’/ I andG / G”, and transitively oG’/ ', since its actions are
analytic isomorphisms of the two spaces that coramutth .

The sectiors of G’ onU is associated with the analytic chéronG” (G”) [cf., Def.
1.2.1]:

UxG” > G”(G), * g) = ®(xg)=a(g, sX),
S0
(1) fod(x,g") =s(x) ",

which shows that is analytic in the open subsét (U x G”). If Te is the tangent to
G"(G) at the pointb (xo, €) =f ™ () then it will follow from (1) that:

2) f(T) =s(T,)+ G

Now, we have shown tha(T, ) is transversal t&" and that the right-hand side of
(2) is a direct sum, so:

dim f (T,) = dim T, + dim G" = dim G"(G)

which shows thaf is regular at the point * (¢). On the other hand, sinc@" =
s(T, )+ and[ O G” one will see that:

3 f(T) =G +G~

Finally, in order to show thdtis everywhere analytic and regular, we shall shtioay
the analytic isomorphism of G :

g~ ¢0@=900, 6 0G g; 0 G"fixed, g0G,

which will leave G’ OG” invariant, induces an analytic isomorphism. Fr@j the
restriction of the induced transformatidn*cgo f to® (U x G”) is defined by:

(4) fhogofod(xg)=1"op(s(x, g") = (g HX0gOd).
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Let obe the sectiondd’ -~ G’/T overV =g, [U:
yP o) =g g0y,
and let¥ be the associated chart@f(G)):
y.g)PPy.g)=a(@ o) ydVv, g oG
One will then havd - ¥ (y, g") = o(y) ", and ifx [J U then:
(5) foW(g,x g 0d)=0(g, N Y g = g, (KX Od O .
Upon comparing (4) and (5), one will get:
frogofod(x g") = W(gxd ),
which means that in the analytic chattsindW of G"(G), f togo f is expressed by:
(x,g") = (9, g' 1),
which is obviously an analytic isomorphism. Q.E.D.

The following proposition will serve to establishe two theorems that we have in
mind:

PROPOSITION 1.6.3. Any differentiable map into GIG”, when it is endowed with
the analytic structure was just defined, is différ@bly locally factorizable.

Such a majh is a differentiable map of a manifolf into G”(G”). Let {O,} be an

open covering oG’/ I, with eachO, being endowed with an analytic local sectaof
G - G’/T andG”(G’) being endowed with the associated cHést

% g") = Ya(x,g") = a(g", gz (x), xU Oa, g'0G”

TheW, = h™o p™(0,) constitute an open covering ¥ The restrictiorh, of h to
W, is a differentiable map into* (O,); i.e., there exist differentiable mapgof W, into
Ou (g. of W, into G) such that:

he (@ =Wa(Xa (2, 9;(2) for  zOW,.
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One then hat(h, (2) =f [a (g;(z)), Oa (Xa (2)] = 02 (Xa (2)) @, (2) ), So sincegy is

!

an analytic map inG, g,= o,°x, wil be a differentiable map int&’, which
establishes the proposition.

Consider the diagranD] once more. Sincp and /rare open maps and the image
underf of a set that is saturated fprwill be saturated fovz it is obvious that if is a
homeomorphism (onto a subspace) then the same thingenitue forf”. Conversely,
suppose that’ is a homeomorphism. Letbe a section o66” - G’/ over an open
subsetU. V =f’(U) is an open subset relativeBo= 77(G’'0G”), ando = ioso f'tis a
lift of /7overV that is continuous for the induced topology. It wikh be a local section
of the restriction td of the topological PFS that is subordinateso- G / G”. In the
local charts that are associated veidind g, f will translate into:

x g") = (). 9", xOu, g G’

and as a resulf,will be a homeomorphism. Whérandf’are homeomorphism&’ 0G”
will be a proper submanifold o, and [Lemma (1.6.1)] a differentiable magpof a
manifold W into G with values inG’0G”will be a differentiable map intG’ 0G”[more
precisely,h = f'og will be a differentiable map int&G” (G’)]. As a result of
Proposition (1.6.3)g will be differentiably locally factorizable. We hapeoved:

THEOREM 1.6.1. et G’and G”be closed subgroups of the Lie group G. 1f1G”

is a proper subgroup of G then the paif G” will be generic. In particular, that will be
the case in the following two cases:

1. G’(or G”)is an open subset in G.
2. G’/T (G”IT,resp.)is compact.

The double classeg, = G’ g OG”, (g [l G) are also analytic submanifolds Gf
sinceVy = ¢ O(g" OG’ Og) OG” From formula (3), the tangent space eato
(07" G )G is (adg™)G + G, and the tangent spacegab Vg will then be:

(6) Tg=Ly(adg"[G+G')= D, [G'+L,[C" = G'[y+ gL,

with notations that should be clear. TWgconstitute an analytic foliatiod onV. A
point go O G will be called regular for the foliation F if there exists an open
neighborhood? of go such that dimVg = dimV, , or dimTg =dim T, forgJ O. The
setQ of regular points will then be an open set. Basurated for the foliatioA because
if go is regular andy; O V, then there will existg, [0 G”and g/ 0 G”such thatg; =
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g, y. 0= 9, 0Ly is an open neighborhood gf , and forg, O O, there will
exist ag [J O such that: = g, LYy, in such a way tha¥, =V, and:

dimV, =dimV, =dimV, .
From (6), the regularity condition is equivalent to:

dim(adg‘l)g;’ nG = dim(adg;l)g;’ nG for gOO.

(&g’l) G depends upog analytically. Consequently, once a basis @rhas been
chosen, the preceding condition will signify thag trankr (g) of a certain homogeneous
linear systenS whose coefficients are analytic functions @nis constant inO. The
minors of order (go) + 1 of S are therefore analytic functions @that are zero on an
open setD. They are identically zero on the connected careppbC, of G, in such a
way that for anyg UC, , one will haver (g) <r (9o) . 1fg. UC, s regular then the same
argument will show that (g) < r (1) forg C, . Those two inequalities will imply that
r (go) =r (qu); i.e., that ifgy is regular then:

(7) r(Qo) = SURyee,, T (9 =r,
namely:
(8) dim(adg;l)g’ nG= inngCgodim(adg‘l)Q’ nG.

Conversely, iy satisfies (7) then there will be a minoréf orderp that is not zero
atdo . That minor will be non-zero in an open neigltaard © U C,  of go , in such a

way that forg O O, r (g) = p, and as a result of (7), one will havé) = p. There will
then be an identity between the pointshf n Q and the ones that satisfy (7). That will
show thatQ is not empty, and that the complement@fn Q in C, is the set of zeroes
of the minors ofS of order p, which are analytic functions o€, that are not all
identically zero. C, n Q will then be dense irlC, , andQ will be everywhere dense in

G.

Suppose thae [0 Q. One will then have that’ OG” [0 Q and thatQ is an open
neighborhood o5 0G”. Furthermore, to simplify the presentation, siggpthatQ and
G’ OG” are connected (otherwise the same argument wquidly ao the connected
components), tha® is a connected open subsetGthat is an analytic manifold with
G'[G" as a submanifold, and that tig (g [X2) and their tangent plandg all have the
same dimension. Since, from formula (&),depends analytically upoy the field of
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planesT, g 0 Q - Ty will define a completely-integrable Pfaff system @rfor which
theVy, and in particularye = G'0G” are the maximal integrals. Now:

LEMMA I.6.2. —Let T be an analytic Pfaff system on an analytic manfipldnd let
V be an integral manifold of T that is denumerable. If h is a diffedele map of class
C°(s=1, 2, ...,9, o of a manifold W inQ with values in V then h will be a
differentiable map &in V.

That proposition was proved in Chevallé@y] (Chap. IlI, 89, pp. 94, Prop. 1) fos =
aw It can be extended with no changes to an arbigal§inceG is connected, it will be
denumerable, and its submanifddd 0OG” will also be soipid., Prop. 2). One can then
apply Lemma (1.6.2) t&/ = G’ 0G”. A C>-differentiable magh of W into G with values
G’ 0G”is a differentiable map int@, and as a result, intG’0G”. Proposition (1.6.3)
will then show thah is differentiably locally factorizable.

Finally, letg; 0 G, and letg;* O0G’[x, G” be a pair of closed subgroups. Met be

the double classes, I * be the foliation, and leT * be the field of planes that are
defined by starting with that pairF* and T * are deduced fronoF and T by right-
translation byg;*:

Vy=(g 05'0y) MOG"= g, V.

%9’

so TS =g O

TR

As a result, in order foe to be regular fotF %, it is necessary and sufficient thgt
should be that way faF. One has thus established the:

THEOREM 1.6.2. —The pairs of closed subgroups of the Lie group G are “almost
always” generic in the following sense: Let G”be a pair of closed subgroups. The set
of g0 G such that the paiad g 0OG’, G” is generic contains an open subset that is
everywhere-dense in G. In order for that pair to be generis, sufficient that g should
be regular for the foliation of G by the double classéSi§I 5"

EXAMPLES. — Letr, r’, r” be the dimensions d&, G’, G”, resp. The regularity
condition is certainly realized at the po@i:

a) Upon utilizing the condition (8), dis'n G" = 0; i.e., iff =G ' n G" is discrete.

b) Upon using the condition (7),(e) = —r") + (r—r"), namelyr’+r" — (r—r (e))
=r;ie.
dmG +dmG"-dmG' n G =dimG
or
dim (G'+G") =dim G or G'+G'=G.
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¢) One of the group&’ (or G”) is distinguished, in which cas@adg™ G )n G’ =
G' n G" has a constant dimension a@d-= G.

d) ' =G’n G”is distinguished, becau& O ' will then imply that(adg™)G O
[,s0(adg™)G nGOTl,and:

dim (adg™)G n G >dim(C=G' n G"),

which implies the regularity o, from (8).

REMARK. — The criterion of genericity that is givdoy Theorem (1.6.3) is hardly
necessary. For example, I&9)(G = CLn, G”=Ln, G’=CL (n1, n,) be matrix groups,
and the last of them is defined by:

(g\ gj AOCL,, BOCL, (M + Nz =m).

One easily sees that the padis not regular for the foliatioft that is associated with
the pairG’, G”; however:

PROPOSITION 1.6.3. Fhe pair Ly, CL (n;, nz) (m=n; + ny) is a generic pair of
subgroups of Ci.

We first remark that in order for a p&r, G” [0 G to be generic, it is sufficient that
there should exist a neighborho@dof e in G’ OG” for the induced topology such that
any differentiable map int@& with values inO is locally differentiably factorizable.
Indeed, iff is a differentiable map of into G with values inG’0G”, and ifg; [ O f ()
thenV = g, [© [y will be a neighborhood ofy, [, and letW = f ™ (V) be an open
subset ofY. Let ¢ be the restriction ofto W, and let¢y = L; o D_'>¢. There will then
exist two differentiable functiong (g", resp.) ontoN with values inG’ (G", resp.) such

that fory 0 W, one will havey (y) =g’ (y) " (y). Henceg (y) = g,L g’ (y) Og,{y) ¢",

which shows tha is differentiably factorizable. Since the neightmodsW coverY, f
will be differentiably locally factorizable, andelpairG’, G” will be generic.

Return to the case in which the groups are thes dhat were indicated at the
beginning of this remark. The g6tof matrices:

(*) We shall generally use the notations of C. Cheydlld] for the classical groups. Nonetheless, the
groupGl (n, R) [GI (n, C), resp.] will be denoted ky, (CL,, resp.).
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C D
g:(E FJDCLm, inwhich ~ CcOCL,  and FOCL,

is a neighborhood of the identity. Lebe a differentiable map intG@ with values in
C(y) D(y)

E(y) F(y)

. (A O P
functions. For any 00'Y, there exs{o Bj O CL (ng, np) and(R (3 0 Lm such that:

C D) (A O\ (P Q) (AP BQ

E F) (0 BJ{R S/ (AR BS)
soC = AP (P is then a regular matrix), afitl= AR, in such a way thaf*E =P R i.e.,
thatC™ Eis real. SimilarlyF* D =S"Qis real. Now, one has:

C D) (C O E, F'D

E F) (0 FJIcE E )
The two matrices in the right-hand side are diffaedaté and belong t&L (n, ny) and
Lm , which establishes the proposition.

OnG'[G":f(y) = ( j in which the four partial matrices are differentiable




CHAPTER I

DIFFERENTIAL FORMS
WITH VALUES IN A VECTOR SPACE
CONNECTIONS

As far as this chapter is concerned, the reader canteefA. Lichnerowicz 22], and
we shall adopt most of his definitions and notations, dsaseA. Aragnol [L]. We think
that the systematic use of vector-valued forms thatdafined globally on a principal
fiber space and the operations that one can define oa thoss permit a particularly
simple presentation of the questions of differentialngetoy that are coupled with the
theory of connections. Without giving a formal preseotaof those methods here, we
wish to develop certain rules in sufficient detail anthveufficient rigor (although from
an intentionally “naive” viewpoint) for us to be able fiply them as often as possible in
the rest of this study.

To simplify the presentation, we shall employ thexeanotation in this chapter for a
differentiable map and its tangent linear map. On ther didued, in all of this work, the
summation over repeated indices will not be indicatedeneral.

1. — Forms with values in a vector space.

Let V be a differentiable manifold, 18t be the tangent vector spaceat the point
X, and letT.” be its dual. On the other hand, Mtbe a real vector space of finite

dimensionm. An exterior form with values in M at the poinisxa linear max of DTX
into M ; i.e., an element of the vector spate] DTXD. If a basis €} (A=1, 2, ....m)is
chosen irM thengy can be written:

(2) b= Y elgl =ealp),

A=1

in which the¢” belong toDTXD; l.e., they are scalar exterior forms Bythat we call the

components ofy in the basi§ea}. Conversely, any finite sum such as (1) will determine
an exterior form with values iNl, even if the vectorsy do not constitute a basis fi.
Let:

en=e, M2, en=e,M%

be the formulas for passing from the basg} {o the basis €}, in which the matrix
(M,’j) Is consequently the inverse @ﬂ,ﬁ‘) . From the bilinearity of the tensor product:

d=e0 ¢} =g, My O ¢ =, 0MLPS,
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so the relation between the componentg,ah the two bases will be:
(2) g0 = MIgy.

If an exterior formgy with values inM is defined at any point O V then if its
componentsp depend differentiably upanand have class %, moreover [from (2), that

will be independent of the chosen basisNtr we say that the collectiong{} defines an
exterior differential formy on V with values in M of class*Cand we further write:

(3 p=e0 ¢

in which ¢" is the (scalar) exterior differential form whossstriction toTy is Pt We
will further have the relation:

(4) ¢=Mip"

between the differential formg™ and ¢", which are the components gfin the bases
{ea} and {exn}, resp.

We shall now utilize the same notatigh ¢" for ¢, , ¢, resp. If theg" are
homogeneous and have the same degi@éich is an intrinsic property, from (4)] then
@ will be ag-form with values M If ¢ is not homogeneous then it will once more have

an intrinsic character, since the decomposit;im:12¢G| Is a sum of homogeneous forms
that are obtained by performing that decomposition @ dbmponents; one letg
denote the forn@ = > (-1)4, .

The value of the forng for 70 [l is:

(5) ¢ (T)=ea<g’, T>,

X

in which < ., . > denotes the canonical bilinear forn(@lTx) X (DTD) By abuse of
language, it will sometimes be convenient to use thevialip notation:

(6) P(T)=<p,7T>.
For a decomposabtgvector,7="7, 07, 0 ...007q, one will also use the notation:
(7) pIT)=¢(11, 12, ...T)) .

Let  be a differentiable map &¥ into V: one can define thaverse imagg/ ¢ to be
the form onW with values inM such that:
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(8) dp=e0 g

It will follow from (4) that this definition is intnsic. f7Z, [ DTX, y O W then, from (5)
and (6), one will have:
<U P Ty>=ea<ti ¢ Ty> =ea <’ T, >,
namely:
9) U Ty>=<p uTy>.

Finally, letd be the symbol of exterior differentiation. It oncersmdllows from (4)
that the form with values i :

(10) d¢ =ex O dg’
does not depend upon the bagg{lt is the exterior differentialof .

The operatorg/ andd are linear over R, and from their definition in adas M,
they will satisfy the usual relations:

(11) (oo th) = wuy,
(12) dy =4 d,
(13) d=0.

2. — Composition of vector-valued forms.

A) Let L, M, P be three finite-dimensional vector spaces, and Blireear map oL
M into P be denoted by:
[, m—(l, m), [dL, mOM.

One can associate a form,(¢) with values inP to any pair that consists of a foxdn
with values inL and a formg with values inM, in such a fashion that if:

p=al¢ whereg 0 M are finite in number,
and

® =h, 0 P, whereh, 0 M are finite in number,
one will have:
(1) @, 8=, e) D0 g

Indeed, it suffices to takea} ({ ho}, resp.) to be a basis fo (L, resp.), as well as a
basis §,} for P. If (h,, €) = C,'j‘i f, then, from (1), ®, ¢) will necessarily be:

2) © ¢ =f.0 C2 oy,
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and by changing bases, one can verify the fact thatg] thus-defined depends upon
only ® andg¢ . The operationd, @) enjoys the following properties, which are obvious
from (2):

a) It satisfies formula (1) for any decomposition ¢fand ® into sums of tensor
products.

b) If @ is ag-form andg is ag-form then @, ¢) will be a @ + ')-form.

c) ltis bilinear:

(3) AP+ A B2, @) = A1 (P1, @) + 42 (P2, 9),
(4) (CD ’ Al ¢l + AZ ¢2) = Al (CD, ¢1) + /12 (CD, ¢2), Al, Az UR.

d) For a differentiable map of W into V:

(5) H (@ 9) =, 19,

e) If ®is ag-form then:

(6) d(®, §) = [d®, §) + (P, dg) = (AP, ) + (- 1) (P, dg) .

We shall now study the operatiorB, (¢) for differentiable bilinear mapls m — (l,
m): Those operations will then enjoy properig@sb), c), d), €) above, which we shall not
recall.

B) Product of a vectorial form with a homomorphism formLet M and P be as
above, and let. = £ (M, P) =P O M " be the vector space of linear mapsvbinto P.
We leth OX denote the transform &[] M byh O L : The maph, X — h [Xs a bilinear
map ofL x M into P, and if¢ (®, resp.) is a form with values M [in £ (M, P), resp.]
then the fornt [ will be a form with values iR that is well-defined by paragraph A).

If M (P, resp.) is referred to the base) ({ fa}, resp.) then refe (M, P) to its basis
{&2} that is associated with the preceding two and is defined by:

(7) el B, = L f (0 is the Kronecker symbol).

a

One will then have:
p=es0 g° O =003

for any formg (P, resp.), so:

O = e, 003 Lp® = 52f, 003 Lg®,

namely:
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(8) o Op=1f, 002 Llg®.
Case in whichb is a0-form. Let:
®=h,0®% and ¢=g0¢'

be arbitrary decompositions into sums of tensor products.
From formulas (1) and [(5), 8, for Zx O T« , one must have:

<o 04, > = h, (g <o) g}, 7, >,
and since thap? are scalars:
<O O, T > = (h, @) (& <4}, T, >= D (K ¢, Tr>;
i.e., with the simplest notations:
9) O P, > =0 (7))

If ® is O-form, moreover (i.e., a well-defined homomorphisinMointo P), then it
will be convenient for what follows to use the specahtion:

hp=h(g),
and formulas (1), (5), (6) will become:
(10) h@Dg¢)=h@D¢';
hence, from [(5), §]:
<h(#),T>=h(e)<¢' . T>=h(¢ (7)),
(11) K h(g)=h @)
(12) dh(¢) =h(dg) .

C) Case in which =M and L= £L(M) is a vector space of endomorphismavbn If
g andh O £(M) then the produag [h of endomorphisms will be a bilinear function with
values in£(M). Paragraph A) will then permit one to define the prodiidid of two
formsW¥ and® with values in(M), which is a product that again has its valueS(iM).
If one refersM to a basis €.}, and £(M) to the corresponding badis/} , such that:

(13) g8, = O (&,
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then one will haveb = £/ 0 ®% [we say thal(CDi) is the matrix ofd in the basis €.})]
and¥ = &5 0W2, and we can deduce the rule for calculatih@® with the aid of the
components o and® from the multiplication table i€ (M):

(14) & &y = 056p,
namely:
(15) WOb =g, OW, ODE;

i.e., the matrix of the product is the product of therimas. In addition to having the
usual properties in paragraph A), that product is doubly-ass@cia

(16) YOO ) =(WDOd) 9,
(17) oOw op) = (O O¥) B,

in which ¢ has values i, while ©, W, ® have values irC(M). Of course, one has a

product®, [P, of a form®d; with values inL(M, P) with a form®, with values inZ(P,
Q), and it will have analogous properties.

D) Case in which M is a Lie algebra k& Since the bracket of the algeliras a

bilinear function with values i, paragraph A) will permit one to extend the bracket
operation to forms with values in If:

P=e 0" and W=egOW°
then formula (1) will become:
(18) [, W] =&, & O (@ OW5).

Besides the properties in paragraph A), that bracket emjby a commutation
property:

(19) o, W] = (- )M W, 9]
and satisfy a generalized Jacobi identity:
(20) DY@, [W, O] + (- [, [W, O] + (- 1Y [®, [W, ©]] =0,

in whichq, q’, q” are the degrees df, ¥, ©, respectively.
In particular, considet. = £(M). While keeping the notations of the preceding
paragraph, one will have:
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® =gl00%, W=gs0W2,
[, W] =[e5, 5] 0(PROWY) .
Now, from (14):
[0, 5] = 05 &5 =05 &5,
so:
[, W] = g5 O(®R0W) -, 0(P0W ),
or, from (15):

(21) [, W] = W — (- 1) W Op.
In particular, if® is a form of odd degree then one will have:
(22) [P, P] =2 Ob.

Finally, leth be a fixed representation of the Lie algebria the Lie algebrd; . In
particular, it is a homomorphism of vector spaces angaitsfies the properties in
paragraph B). Furthermore, from (10) and (18):

h([®, W) =h(&, &) 0" 0WE=h(&) h(s)] 0 OWe
=[h (&) O ®* h (&) O WE;
ie.:

(23) h ([, ¥]) = [h (®), h(W)].

E) Finally, letw=¢e O w' be a 1-form with values ikl. We let ﬁa) denote they-

form with values in BM whose restriction tdly is ﬁwx. In order to calculate its

components, it will suffice to calculate its valug Bodecomposablg-vector. Now, by
the definition of the exterior power of a linear map:

B (G0..07) = w(T) 0.0 0(Ty)

1 .
= e (T (T) g DD,

:il<aj1 O-.-0a?, 7T, 0---07,>e O Oe
g’ ' !
= Z <t D---Da)iq,TlD---DTq >g 0---Oe,

ig<--<iq
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and from [(5), 81], that will show that the components S]a) in the basisg [---[J S

(ir < ... <ig) for LIM areat O0--Oed*; one will then have:

(24) N = Y e OO Oaf OO

ig<--<iq

:ilq 0--O¢ Dot O Oa .
gt q

3. — Tensors and tensor-valued forms on a principal fiber gze.

We shall use the terminology of A. Lichnérowicattiwe shall first recall briefly. Let
H (X, G) be a PFS, leM be a vector space, and fetbe a linear representation Gfin

M. A tensor orH of typeR (G) with values inM is a continuous functiohon H with
values inM such that:

tzm) =R (g 14 (2, gO0G, zOH.

There is a canonical isomorphism between the vesgace of tensors da of type
R(G) with values inM, and the vector space of sections of theViF&1) that is obtained

by modelingM onH, while G operates oM by way ofR (G) (cf., Def. 1.2). The section
that corresponds tiounder that isomorphism is:

X a2, 2, (pz=2),
which is well-defined, since:

(tm),zm)=R @@ z20)~ Q. 2.
If H (X, G) is a differentiable PFS, moreover, then we@gt(V;,, resp.) denote the
tangent vector space td ath O H (to the fiberHpn at h, resp.). Ag-form A onH with
values inM said to have typ& (G) if:

1) DA =R (G) D\.

It is a tensoriaf)-form of typeR (G) if one also has:

(2) AN(T)=0 whenever p7=0, 70 ﬂeh,
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in which p represents thg" exterior power of the tangent linear maptat the point,
which is a simplified notation that will be used systeoadly in this paragraph for all
linear maps and their exterior powers. Consider aotemgerH to be a 0-form, and let
{U,} be an open covering &1 that is endowed with local sectiogssuch that:

(3) S5 (X) =S¢ (X) @ap (X) for any XxUOUgn Ug,

in which g is a differentiable map intG. One will establish that the local forms
(functions, resp.) oX with values invi:

(4) A= SN
are coupled itJ, n Ugby:
(5) Ap= R(9,5) MNa,

and conversely, a family of local forms; that satisfy (5) will determine a unique forin
onH in M of typeR (G) by the single condition (4). That property considtthe remark

that a tensorial form is well-defined by the form thahduces on the submanifolds that
are transversal to the fibers that constitute the imajge¢he sections. One sees, more
generally, that it is well-defined by the tensorial faimat it induces on a PR$' n H.

Let f be aX-homomorphism oH’ (X, G”) in H (X, G) that is compatible with a
homomorphismp : G’ - G. f A is a tensoriat;-form onH’ with values inM and type

R'(G), whereR' =Ro p. Conversely, if one is given a tensorial fo#hronH of type
R'(G”) with values infM then if there exists a linear representafionf G in M such that
R' =TRo p(and for that to be true, @ is surjective then it will suffice that the kerradl
R' should be contained in that @f, there will exist a well-defined tensorial forilnonH

of typeR (G) such thatV =f 'A. We say tha¥ is projectable onto H along\ (although

H’only projectanto H).
We shall now specify the notation of ttensor associated with a tensorial forin
Let E be the PFS of linear frames on the manif&l@cf., Chap. Ill, 81) with structure

groupL, =Gl (n, R). zO E is an isomorphism d®, ontoTy. Let h, 2) O HE (puh=
pez=X) (Def. 1.2.2). A\ defines a linear map(h, 2) of ij into M by way of:

t(h 2 L=A(T,),
© {

it 7.00e, uolIR, zu= gT,

That map is well-defined, since from (2), the wabf A\ (7,) depends upon only that

of pZn, and thap is surjective. Since linearity is obviough, 2 O M [ mRP. | say that
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the functiont, (h, 2 — t (h, 2) is a tensor 0|h1 E. Indeed, calculate(h (g, zO), | O
Lh,gUG:
t(hLg, zH) Lu=A(T7,,),

it uwolR, 7,,000e,, (o= g,

Let v =1 Ou Dm&, soz Ov = p OZng = p ;' 7,,,, in which D7, 0 © ;
consequently, from (6):
t(h 2 v =A(D,'T,,) =R (9) N (ZTny
and
A (Tng =R (@) Ot (h, 2 Ou] =t (h Oy, z0) U,
or
[R(@Yot(h2ollu=t(hy, zO) L

for anyu O D&; l.e., upon returning to the complete notations:
(7) thz0)=REH001 302,

in which t is a tensor of type (G x L,) with p (g, 1) =R (g O Dl’l. One sees

immediately with the aid of sections that it isfeliEntiable of the same class/as
One can give a very simple form to the relatiotwleen/\ andt. We first remark that
the relations (6) are equivalent to:

A (Tr) =t (h,2) Z* b 07y, inwhich P=pH.

Letf (g, resp.) be the natural projection }ebE ontoH (E, resp.). One obviously

haspy o f=pe o g. W =f A is a tensorial form ohiE that is projectable ontdl
whose givens are equivalent to thosé\of

W (Tha) =A ( (To) =t (0, 2) B'p (F (Tirg) =t (0, 2 B'pe 9 (F (Tno)) -
Now, Z 'py is the fundamental 1-forflon E (cf., Chap. 1112) and:
Z'pe 9 (f (Tn2) = <9 6, Tinn >,

in such a way that:
W (Tna) =t (h, 2 OKg 6, Tnay> = <t 6 Tiny>,
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and from the relation (9), 8 which expresses théit =t g 6. Upon returning to the
complete notations, we state the:

DEFINITION II.3. —=If A'is a g-form on the PFS KX, G) of typeR (G) with values
in M then the associated tensorAo— namely t A — will be the tensor on lEE with

values in MO [IR™ and of typen (G x Ly, in which o (g, 1) = R (g) 0 LI, which is
defined uniquely by the relation:

) FA = (tA) :(ngej.

From formula (24), 8, the components of the three forms that enter (8jan a
basis €'} of M, the canonical basis for"Rand the associated bases in the other space,
are coupled by the explicit formulas:

N = Y N (09 O---0(g8)")

<<y

- é(t/\);j_,_iq g(6" O--- 06"

in the second line of WhiCﬁ/\)ilA...iq is antisymmetric ifiy, iy, ...,0q .

In the right-hand side of (8), one finds the praidaf a tensoriad-form by a tensorial
0-form, and that product will be a tensogalorm. More generally:

PROPOSITION 11.3.1. 4 ¢ is a tensorial form of typ@ (G) with values in the
vector space M and is a tensorial form with values i (M, P) of typeZ (G), where

7(9) =R (g) O p(g™), then the formb Og will be a tensorial form of typ® (G) with
values in P

Indeed, from formula (5), &
D (® §) = (D,®)UD#) = (Z (g™) Ob) T (g™) ).

Now, Z (g™ OP = R (g™) OP Op (g) [which is a product of the constant O-fo(g)
with values inC (M) by the form® with values inC (M, P), times the constant O-form

R(g™) with values inC (P), and from [C), §2], that product is associative], and by
associativity:

Dy(® 0p) = (R (@) BP To(9)) o(g™) =R (g™) O 0p),

so® [ has typeR (G). In order to show that:
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<® [ Th>=0,

moreover, for anyZ, [0 ©, such thapZ, = 0, it will suffice to show that this is true for
decomposabld;, , and that will be obvious for the componed§ O ¢" of ® Op when

one expresses them in a basis@mwhose first vectors generaig .
Proposition (11.3.1) contains a converse to the defimiof the associated tensor:

PROPOSITION 11.3.2. — While preserving the notations efifdtion (ll, 8 3), if A is

a tensor on HE with values in M DR”Dand typeo (G x L) then there will exist a
unique tensorial g-form of typR (G) with values in M whose associated tensot.is

Indeed, it is immediate thdﬁgme is a tensoriatj-form onH E with values in

DR”D and typeo (G x Ly), in whichp (g, 1) = DI . If one letskR' (G x L) denote the
representation iV such thatR’ (g, 1) = R(g) then p(g,1) =R' (g,1) O o1 (g% I™). One

can then apply Proposition (11.3.1) to the fogh= A D(ngej, which is a tensoriad-

form onH E with values inM of typeR' (G x L,) . One the other hand, sinte a
homomorphism oH E into H that is compatible with the trivial homomorphigm G
XL, - G,andR' =R o Z, ¢ will be projectable ontél along a tensorial form\ of type
R (G) with values inM, andA =t A.

4. — Connections.

A) LetH (X, G) be a differentiable PFS. For the time beidgyill not be identified

with its associated PFS (Chap. I), and lez [0 H be the differentiable homomorphism
of GontoH;:

Z: gz 9gOGzOH.

Its tangent linear map at the identityf G — namely, Z — is an isomorphism of the
Lie algebraG of G ontoV,. ForA O0G, we further writez(A)=z[A. LetSbe the 1-
form on the fibersof H (and not onH itself) whose restriction td/; is the inverse
isomorphismz™. On each fiber, it is a form of type “the adjoiepresentation o®”
(we shall say, moreover, briefly, “adjoint type”) :

D, = (adg™) 0B
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An infinitesimal connectiolg onH (X, G) is defined by the given of a differential 1-
form ronH with values inG that has adjoint type and its restriction to theeds will

coincide withg.

The latter condition and a simple dimensional caersiion will show that the vector
subspacét, = 77,*(0) of ©, is supplementary t¥, , which then decomposes into a direct
sum:

O,=V,0OH,.

That decomposition defines two projector©ut

V: 0, - Vg, which is called the “vertical part,”
H: O; - H,, which is called the “horizontal part.”

Following the conventions that were employed beforeskhadl again let the same letter
V (H, resp.) denote the extensions of those operatio|n_£l;®3.

Finally, the field of planeg — H;, or theconnection fielddepends differentiably on
zand is invariant under the right-translationsGy Conversely, one shows that a field of
planes’H, that is supplementary t¥, and enjoys the latter properties will define an
infinitesimal connection oHl.

The connection field defines a Pfaff systemtanf it is completely integrable then
the connectiorywill be calledintegrable. A path inH that is the image of a segment [0,
1] by a differentiable map is calledharizontal pathif it is an integral manifold of that
system. The holonomy groufs (restricted holonomy groug;) at the poinz O H of the
connection is the set of J G such that [0g is connected witlz by a horizontal path (a
horizontal path whose projection &his a loop that is homotopic to 0). One knows that
o, which is an arcwise-connected subgroup, is an analyigrsup ofG and ¢°) that it
is the arcwise-connected component of the identity,of ¢, is then a Lie subgroup &
(cf., Chap. 1.5).

One calls the set of al [J H that can be joined to a poimt] H by a horizontal path
theholonomy sheell, at z Letp' be the restriction gf to H,.

1. p'(H,) =X, sinceX is arcwise-connected and there exists a horizonthlgadr
any path inX.

2. One knows') that ifzOH! thenyy = ¢, sop ™ (p 2) = Z .

3. p’ admits local lifts that are differentiable locatBens ofH. They will appear in
the construction of a special local section téffor the connection(), and the

1 3)

() A. Lichnerowicz R2], pp. 65.
(14) A

. Lichnerowicz P2, pp. 117.
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differentiability of the section is deduced from the d#fetiability of the solutions of a
system of ordinary differentiable equations in regarahiteal givens. From Proposition
(1.5.2), that will show thatH’ is a differentiableg,-PFSS ofH. That will give one an

example of a PFSS, but one does not know if it is dloseeven proper, in general.

B) Comparing connections: Letf be anX-homomorphism oH’ (X, G”) into H (X,
G) that is compatible with the homomorphignof G’ into G. Let )/ be a connection on
H’ will the form 77, and letH{’ be its connection field. Lét,=f H,» O O, be a vector

subspace at the point=f (Z) 0 H. It follows from the single relatiop - f = p' thatH,
will be supplementary t&%,. H; is defined for ang O f (H”) and uniquely, since i =
f(z) then one will have:

z=zZ0y (@O0OG"), with f(Zy)=2z=f(z)0p(9)=200(9),

in such a way thgp (g') = e andDy) = identity onH. Hence,H, = D, H,, sinceH’
(viz., the connection field) is invariant under righdstslation orH, and:

fH,= (foDy )M, = (D, F)H, =f H,..

p(g)
One likewise shows that the field onf (H”) O H is invariant under right-translation by
p(G") OG. Itthen extends by right-translation to a fieldttisadefined on anid that we
will again denote byH. That field, which is invariant under right-transiatioby
construction, depends differentiably o{one sees this with the aid of a local chart on

H": It then defines a connectign=f () onH that we call themage of)” under the
homomorphism.fLet p be the representation of the Lie algel@ain G that is defined

by p (tangent linear map at the poid), and let/zbe the form of connectiop One
easily sees that:

(1) f = p(r),

and that relation characterizas

In particular, ifH" (X, G") O H (X, G) is aG~PFSS oH then the preceding study will
apply tof (o, resp.), which is the identity map Bif into H (G’into G, resp.). In either
case, we say that=f () ) is the extension of the Honnectiony’ to H, or if no
ambiguity is possible, thatis anH ~connection. Formula (1) then expresses the idea that
7'is the form that is induced dth’by 7z

Now, letf be aG-representation (Chap. 1,3 of H' (X, G) in H (X, G) that induces
the mapu : X’ — X. One likewise sees thatifis a connection form oH thenz=f 77

will be a connection form oH’, since the connection field “will then be projectable by
f alongH.
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Finally, if )4 and)s are two connections dt (X, G), with forms 7z and 7z, then7s —
78 = u will be a tensorial 1-form okl with values inG and adjoint type. Conversely, if

uis a tensorial 1-form of that type them+ u will be a connection form oH.

C) Absolute differential. Fundamental formulas.If A is a tensorialg-form on
H(X,G) of typeR (G) with values inM then, from formulas [(1), 8] and [(12), &2],

one will get ng/\: R (g ™) WA by exterior differentiation. 1f/is a connection oHl

with field H, and the associated projector©ipare’H andV then it will be obvious that
the @ + 1)-form that is defined at the point

(OA)z=(dA); o H

is a tensorial  + 1)-form of typeR (G) with values inM. It is theabsolute differential

of A.
One establishes (for example, by using a localtaraH) the global expression for
LIA:

(2) OA=dA + R () DN,

in which R denotes the representation &f in £ (M) that is defined byR. The term
R (71) OA then denotes the product 2§ of a form with values iM times a form with
values in the spacé (M) of endomorphisms d¥l.

Thecurvature formQ of the connectioryonH is the tensorial 2-form with values in
G and adjoint type:

(3) Q=dr+i[7 17 .
Its absolute differentidllQ is the tensorial 3-form:
0Q =dQ + R (m) X,

in which R is the adjoint representation 6f. If A, O G then:

RA)Du=[A A,
o)

R(A)Qu=A, 4, (82
and:
0Q =id [ 7t + [ d7t +1[ 77 [75 7]

=1[dr 72 +3 [ drk +1[ 7 [75 4] .
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Now, drrhas even degree, sg; [d74 = — [d77 74 [(19), §2], and when the Jacobi identity
[(20), 82] is applied to three equal forms, it will givg[[7z 73] = 0. One will then have:

(4) 0Q=dQ+ [ Q] =0,

which is theBianchi identityfor curvature.

If A'is a tensorial form of typ® (G) onH then we shall calculate its second absolute
differential 0°A = O (OA). SinceOA has the same type As the formula (2) will give
O°A =d (OA) + R (77) DA, in which:

d OA =d (R (m) DN) = ((dR () D\ =R (77) THA, [(6), §2]
=R (dm) O\ =R (77) THA, [(12), § 2]
and
R(mM A= R(m) A + R(m) QR (m) DN) .
Now:
R(m) O R (m) I\) = (R () R (m) ) DN [(16), §2]
= 1[R(mR(m] [(22), 82]
= 3[R ([75 ) O\ [(23), 82]

One will then have:

O°A= (R (Am) N =R (m) I\) +(R () WA +1 R ([, 7) TN\
=R (d7m) I\ +£ R ([77, ) O\

=(R (dm I\ +3R ([, ) ) I\ [(3).§2]
=R(dm+i[m )N [(4), 82]
so finally:
(5) O°A = R(Q)N.

We shall now calculate the absolute differentfaihe tensorial fornt Og that was
defined in Proposition (11.3.1).® is a form with values irC (M, P) of typeZ (G), in

whichZ (g) =R () O p (g™, and:
(6) Ob=d® + 7 () Ob.
If { &5 ({ ha}, resp.) is a basis fo& [£ (M, P), resp.] then one will have:

p=g0 ", I(m=I(s,)0n°, ®=h,00"
SO:
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) T(mBb=1(e,) 0 77007

in which the forms7” and®“ are scalar forms. One will then be reduced toutaling
Z(A)h[AOG,hOL (M, P)]. By definition, foru O R:

7()h= hrr(n)% (Z (expAu) Th—h).

Now:
Z(g)th=R (g hp(g™),
o)
7 (expAu) Ch="R (expAu) [h 0o (exp ¢ Au))
= expR (Au) [Ch Cexp (0 (- Au))
= [[R(0) +uR (1) +--](hDA0) — up(A) +--]
=h+u[R(A) h— h(p(A)] +---,

and finally, Z (A)th = R (A)th-h(p(A). Upon referring this to (7), and then (6)dif
has degrep then one will get:

I(mDP =[R(e,) D, ~h, [p(e,)] 0 770"
= R(mM@®-[h, [p(e,)] O (- 1P ®7 O 7°;

I (mBb =R (m)®~(-1)°Dp(n),
SO
Ob=d® +R (m) - (-1)PDLH (7).

On the other hand, since:
Hg=dg+p(mg,
one will have:
0P+ (-1 Mg =dd O+ (- 1)° ® g + R (77) P Op
=d(® 0p) + R(m) QP [P),

namely:
(8) O(® ) =0 I + @ g,

if @ is not supposed to be homogeneous.
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5. — Complex vectorial forms.

Let N be a real vector space, Bt be its complexification, leM be a complex
vector space, and let all of them be finite-dimersiorf f is a linear map (over C) &f€
into M, sof O M Oc (N ), then its restrictionf toN O N will be a linear map (over

R) intoM : f DM OrN': Conversely, iy 0M Or N then it will extend by linearity to
complex numbers into a C-linear m@pof N ©intoM . Anyu O N © can be writteru =
x+iy (x, y O N ;i =-1), so it will suffice to setg(u) = g(x) +i g (y) and
gOM O, (N©)". Hence, the mag — g will be a canonical isomorphism of vector
spaces over C that takés O, N” to M 0. (N®)". If one takeM to be the complex

field then one will find that the spac*e[G]q N " of forms onN with complex values is
canonically isomorphic to the dusd £)" of N ©.

If N = [T thenN € = DTXC (Tx is the tangent vector space to the manillat x).
Let ¢« be a (real) exterior form atwith values infM. It is writtengy=¢ 0 ¢! (=1, 2,
..., 2p), where g} is a basis oM over R, and the! are exterior forms with real values.
Now, let @_be the extension dad, to T.°, and let £} be a basis oM over C A = 1, 2,
..., P). Since g, OM O, (OT,°)", one will haved, = ex O ¢, where theg” are
(complex) exterior forms off,°. When considered to be the restrictiongyfto Ty, ¢«
can then be written ag, = ex U ¢_f where the¢_f, which are restrictions of thg, to

Ty, are exterior forms ifiy with complex values. From now on, we shall idignii, and
P (¢2 andg., resp.), in such a way thain exterior form with complex values (in M) at

the point x will be written:
1) g=enl @,

in which theg” are exterior forms on Jwith complex values, angk can be interpreted

as either a (real) linear map cme into M or a (complex) linear map cmeC into M.

Finally, if ¢ is an exterior differential form ovi with values inM then one can again
write:

(2 ¢x:eAD¢A1

in which theg” are exterior differential forms with complex vadueAs in section 1, that
notation signifies simply that the restrictiongdfo Ty is given by (1).

With these clarifications, all of the operatiomhstt were studied in sections 1 and 2
can be expressed formally with the aid of complemponents that were defined by (2)
just as they were expressed in the real case.

One likewise has the equivalent of Definition3)land Proposition (11.3.2):
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PROPOSITION II.5. -Let A be a tensorial g-form on HX, G) with values in a
complex vector space M and tyRe(G). The complex tensor that is associated With

(viz.,t °A\) is the tensor on I-}E E with values in Ml¢ DC’“D and typeo (G x CLy), in
whichp(g,1) =R (g) O [Ic™ is defined uniquely by:

) F'A=(tCA) (ﬂeﬂecj.

Conversely, if ©A is a given tensor of that type then it will be teasor that is
associated with a well-defined forinon H by(2).

In that statemen€ © is the space of complex frames XChap. I, §1), and8°€ is
its fundamental formF (G, resp.) is the canonical map}df E € ontoH (E ©, resp.).
We remark that if\ defines a real tensorial form with values in teal vector space that
is subordinate t&/ thent A will be a tensor o E with values inM Or DR”’D. One
sees thatA is the restriction of “A to H EOH E €, which is meaningful, since

there is a canonical isomorphism\afic [Ic™ ontom Or (R,




CHAPTER IlI

SPACES OF FRAMES.G-STRUCTURES.

1. — Spaces of real or complex frames.

Let T =T (X, R") be the FS of tangent vectors to the differentiabémifold X of

classC °. The associated PAES=E (X) = T (X, Ly) is a PFS that is differentiable of class
C*!. LetzOE be a frame (cf., 1.3) at the point] X of the fiber structure ofi ; i.e., an
isomorphism of vector spaces of Bn T, (x = p 2. zcan be identified with the image
{e} of the canonical basisf§ on R™ underz, in such a way thd will be identified with
the space of bases of the vector spiage [1 X). We shall utilize both interpretation&
will be called thespace of real linear frames in, X¥r more simply, thepace of frames in
X.

The inverse homomorphisgh=z"*, T, 0 R™is acoframeat x. It is a 1-form at the
point x with values in R (cf., Il.1). Its componentg ' in the canonical basis for'Rare
the scalar 1-forms ofy that are defined by:

(1) ¢=fi0 ¢

Hencefi=z' (zO0)=<4¢, e >=fj< ¢, a> so<g!,e>=79';ie., themformsg' are
linearly independent and constitute the basisTforthat is dual to the basig}, which is

a basis that one can then identify wgthand for that reason, it will be called the cofeam
that isdual to the frame.z Conversely, a basigp{} for T,” will determine a coframe by

(1), and the inverse franze= ¢ will be thedual frame tog.

Let T,° be the complexification of, andT © = | JT,C; let EC be the set of bases
XX

(over C) of T,° andE© = | JEC. Any basis foiT, is a basis foiT," over C, in such a
xaX

way thatES 0 Ex andE © O E. The grougCLy acts on the right on ead® by way of:
z={ey} O ES, l=(1)0CLn—~{e, I3} =200 Ef,

so one sees immediately (Remark 1.5) tétis naturally endowed with the structure of
a PFSE © (X, CLy) for whichE is anL,-PFSS of ©.

Let a be the canonical projection of"& E © onto the model space™GE ©) (cf.,
Definition 1.2), while CLy, acts naturally on T It follows from the inclusiorR™ xE O
C"xE®, whereE is a PFSS of © and ¢ is the complexification of B that on the one
hand, a(R™xE) = T and on the other hand, the fiber of' (E ©) at x is the
complexification of the fibefl, of T ; i.e., that & (E ©) = T €, which then has a fiber

structureT © (X, CLn , C"). SinceCL,, is effective on €, the associated PF!/SE is
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nothing butE ©, and anyz O E © will be identified with an isomorphism of"Gnto TC.
That is whyE © = E © (X) will be called thespace of complex frames on X.
The inverse isomorphism = 77, TS - C" will be further called theeomplex

coframe at x that is dual to zt is a 1-form onT.S with values in the complex vector

space C. It is then identified (cf., 11.5) with a linear ma T into C", and if {f;} is the
canonical basis Tthen it can be further written:

(1) ¢=f0 ¢/

in which this time thep! are forms oy with complex values. The same calculation as
in the real case will show that those forms are fiyemdependent over the complex
numbers. Converselyn linear forms atx with complex values that are linearly-
independent over C will determine a cofragnby way of (1) whose inverse frame is the
frame that is dual t@.

If h is a differentiable local section &f(E ©, resp.) over an open sub&&tand & =
h(X)™ is the coframe that is dual to(x) then, by abuse of language, the 1-formlbn

with values in R (C", resp.) whose restriction to the pointis & will be called the
coframe on U that is dual ta hits component®’ (j = 1, 2, ...,m) aremreal Pfaff forms
(with complex values, resp.) that are linearly-independeet R (C, resp.) on any, and
converselym such forms will be the components of a coframé&Jon _

In particular, ifh (x) is the natural frame atof a system of local coordinated(i = 1,
2, ...,m) onU then the dual cofram@&on U will have componentdx, in such a way that
dé= 0. Conversely, a cofranmon U such thadd = 0 is locally a natural coframe for
the local coordinates. Those remarks extend to fraamelscomplex coframes upon
calling a a system ah differentiable functions with complex values On] X that are
independent over the complex numbelscal system of complex coordinatasX.

DEFINITION 11I.1. — We call any differentiable principal fiber subspace for the
space E of linear frames (the space” Bf complex frames, resp.) on X thmce of
frames (space of complex frames, resp.)on the differentiable manifold X. One calls the
structure S= S (G, H) that is determined by the given of a space of frames H (space of
complex frames, resp.) on X with structure group G-girGcture (complex G-structure,
resp.)

G is then a Lie subgroup &f, (CLn , resp.).Sis said to have class' if H is a PFSS
of E (EC, resp.) of clas€". z O H, (x 0 X) can be called distinguished frame on X at x
for the structure Sor more briefly, adistinguished frame of SThe dual coframe to a
distinguished frame is distinguished coframe A G-structure H [0 E) will often be
called areal G-structure as opposed to@mplexG-structure(H 0 E ©).

It follows from Proposition (1.5.2.) thad (andS) can be determined by a family§,
ha}, where {U,} is an open covering of, andh, is a local section df (E ©, resp.) over
Uy, with:

() hs (X) = ha (X) Wag (X) for  xOUgn Ug,
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in whichgggsis a differentiable function od, n Ugwith values inG. Hence, ifg, is the
coframe orlJ, that is dual tdy, then one will have:

(3) Oz = Qap G

in Uy n Ug, with the notations of Chapter Il. Conversely, {&t,, 8,;} be a family,
where {U,} is a covering ofX, and letg, be a coframe obl,, and let those coframes be
coupled inU, n Ugby (3). That will determine &-structure orX.

The latter way of determining &-structure is the most conventional way of
determining one locally; cf., S. S. CheBj.[ A large number of more-or-less classiGal
structures in differential geometry can be determinethbygiven of aG-structure; one
will find some examples below. The monograph by P. Lile@mmRQ] includes an
abundant list.

First examples-—

a) The PFS of orthonormal frames on a Riemannian manXadefines arO (m)-
structure, and conversely.

b) The complex (real, resp.) almost-product structufes 7szstructures f[&-
structures, resp.)]. — These were envisioned by D. C. Spgiend studied in detail by
G. Legrand 18 and independently by the author. If d¥n=m =n; + n; then arr
structure {&-structure, resp.) oKX is defined when one is given two fields of complex
(real, resp.) vectors subspade®f TS (Tx, resp.) that have dimension(i = 1, 2) and

are supplementary. The bases Tgr (Tx, resp.) whose first; vectors belong td@; and

whose followingn, vectors belong td, constitute a space of complex (real, resp.) frames
with structure groujL (ny, ny) [L(ny, np), resp.] (cf., Chap. I, §). Conversely, €L (n,
ny)-structure orX will determine arrstructure; a redl (n, ny)-structure will determine a
TR-Structure.

c) A 7estructure for whiclT; is the complex conjugate ®f (son; =n; =n, andm =
2n) defines an almost-complex structure (c22][ § 101). An adapted basis iff,°,
which is composed of a basisf (a, f=1, 2, ...,n) in T; and the complex-conjugate
basis {¢ , = Tkq } (a =a+n)inT,, defines a space of frame® (X) 0 E€ that has the

groupCL® of matrices:

A O .
(O EJ’ whereA I CL, , A = complex-conjugate &,

which is a group that is isomorphic @i, for its structure group. ConverselyCa® —
structureS determines an almost-complex structure if and onlpifanyx [0 X there
exists a distinguished frame) (i = 1, 2, ..., A) such thate , =T fora=1, 2, ...,
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n. In particular, an almost-complex structure Xis perfectly determined by its space
E°(X).

Thereal bases that are adapted the almost-complex structure are the base3.for
that are deduced from the preceding ones by:

e =

1 I
€=—=(&,+€ ), —(&,—€.).
a \/E a a \/E a
They constitute apace of real frames®#X) 00 E whose structure grou@gl? is the real
representation dL, in Ly, ; i.e., the group of matrices:

B C . )
( c Bj , B, Care real matrices with B+iC=A0CL,.

Conversely, a reaCL:—structure orX will determine an almost-complex structure.

d) Let X =G/ Hbe a homogeneous space of the Lie gr@ufet p be its canonical
projection, and leE be the PFS of frames ot If Ky denotes the action of (] G onX
then that action will prolong t&: If z[J By, thenK oz =gz [ Eg (K, is the tangent

linear map toKy). Let 7z be fixed such thape 0z = pe= X, . Let H be the linear
isotropy group oK atxo , and letH, O Ly be the groupz;* [H [z, which is isomorphic

to H. The magd of Ginto E, g — g 0% =f (g), is anX-homomorphism of the PFS that
is compatible with the homomorphism:

P:H - Ln, hOH> 'K 7 O H, OLn;

indeed:
Fg) =@ 2= Ky, 02 = K oK, 07,

namely:
f@mh) =K oz0(5 ° Ko z) =f(g) Ooh).

The imageP, (X)=f (G) is then (Proposition 1.5.2.) a(H)-PFSS of ; i.e., a space
of frames with group:IZO. In particular, ifG / H is a reductive homogeneous space then

H will be isomorphic toH, o andf will be isomorphisms, an6 will be isomorphic to
P (X):
Z

PROPOSITION IIl.1. 4 X =G / H is a homogeneous space with Lie group G then
will be naturally endowed with akl , —Structure, whereH . 1S the representation of the

linear isotropy groupH in a frame gon X at the pointg= pe. The corresponding space
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of frames will be homomorphic to the PFSSGG / H: It will be isomorphic to itif G/ H
is reductive.

2. —G-structures defined by a tensor.

The first three examples above belong to the samensth LetR be a linear

representation df,, in a vector spackl and letG [ L, be a subgroup that leaves] M
invariant. On the other hand, B{G, H) be aG-structure orX. The constant maid -

uis a tensor ol with values inM and typeR (G), which then extends (Chap. 11.3§to

a tensort on E with values inM and typeR (Lw): That tensor takes its values in the
intransitivity clasdM, of u for R (L), since ifz 0 E then there will exist [ H such that
z=7 0 (I U L), and one will then have:

t@=tZM=RIHT @ =R (1Y DO M,.

Conversely, suppose thétis the largest subgroupf L, thatleaves u invarian{G
will then be closed i), and lett be a tensor ok of type R (L) with values inM, .
Let H [J E be the set of framessuch that (2) = u.

1. p(H) =X, because ify [J Ex thent (z) O My . There will then exisly [J Ly, such
thatt (z) =R (I1) b andt (z O1) = R(,;) @@ (zz) = u, in such a way tha 0, O H.

2. LetzZOHy,Z=zO(lOLyandt(Z)=R (1 )t(2;ie., R (I‘l) u=uandl O
G. One will then havél, =z [1G.

From Proposition (1.5.2), in order fot to be aG-PFSS ofE, it is necessary and
sufficient, moreover, thdE should admit local sections with valuestén Let us analyze
that last condition. Letrbe the canonical map, - Ln / G and letf be the injection

L,/G - M, I 0G —R () ull M (which is a bijective differentiable map o). fis
analytic and everywhere regular, in such a waythawill be an analytic submanifold of
M. Let I\7Iu denote that submanifold and identify it with / G by way off in such a way
that:

(1) () =10G=R () L.

t, which is a differentiable map intd that takes its values M, , is not necessarily a
differentiable map intaVl,. Suppose thatl is a PFSS oF, and letV be an open subset
of X that is endowed with a sectiarwith values inH. ForxO V,| O Ly ,t(z(X) O) =
R(I™) b ; i.e., in the chart oR that is associated with the sectipithe mag, Ey — I\7Iu

is expressed by:
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x ) > (™),

which is a map that is therefore differentiable. hdes for H to be a PFSS, it is
necessary then thashould be a differentiable map, not onlyMn but also inM,. That
condition is sufficient. Indeed, &t be an open subset &f that is endowed with a
sections of E. tos= g is a differentiable map of into M, and if one restrict¥ in such

a fashion thag (V) is included in an open subsetlgf/ G= M, thenl = oo g wil be a

differentiable map oV intoLn. x — z(X) =s(X) O (x) is a local differentiable section
of E overV and:

tZM)=tE®OIK=RIXHITEE)=RIK™) DX,

and sincerreo = identity onLy,/ G, g (X) = 77(1 (X)) =R (I (X)) u, from (1), sot (z (X)) =
u, andz will take its values oiid. If one takes Lemma (1.6.1) into account then oné wil
have established:

PROPOSITION 1l1I.2. -Let R be a linear representation of,L(CL,, resp) in a

vector space M, and let G be the subgroup @f(CL, , resp.) that leaves Ul M
invariant, while M, is the intransitivity class of u byw(CL,, , resp.), which is endowed
with its analytic structure of a homogeneous spagé& . Being given a G-structure on

Vi is equivalent to being given a tensor on(\&,) [E © (Vi), resp] of typeR (L)

[R(CLy), resp] with values in M, provided that t is a differentiable map intq, kAnd

not just in M). The latter condition is always realized if,; a proper submanifold of
M, and in particular, if I,/ G is compact.

Except for the compact case, the problem of the exister distinguished local
sections is always well-posed then. Recall the eleswgf the preceding paragraph.

a) Let M be the space of bilinear forms off,Rind letu be the bilinear fornx, y O

R™ > z X'y whose matrix in the canonical basis fof R the identity matrix: One
i=1,...m

will then haveG = O (m), while M, will be the set of symmetric, positive-definite,
bilinear forms.t is the “metric tensor” that defines the Riemanniaacstre orvy, that is
associated with th® (m)-structure. If the differentiable tensbmwith values inM is
given then the existence of orthonormal local sestisrproved directly by constructing
such a section by starting from an arbitrary localiseabf E and applying a procedure
that does not affect its continuity, such as the “Sdhorthogonalization procedure.”

b) LetM =L (C"), and letR (I) (I O CLy) be the canonical transformatitnil M
— R () = 1"t th O, while CL (ny, ny) is the subgroup dEL,, that leaves the matrix:
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E, O
u= "
5

invariant. My is the set of automorphisms of @hose square is the identity, and whose
space of proper vectors that correspond to the proper valusm-dimensionalt is the
tensor onE © (V) that defines an automorphism ®f at each poink O Vi whose

square is the identity. Being giveis equivalent to being givenzastructure ).

c) An almost-complex structure that is determined by & @4 —structure can be
defined in an analogous fashiav:= £ (R*); R (1) (I O CLy) is once more the canonical
transformation. CL: is then the subgroup @f, that leaves the matrix:

U= 0 E,
-E, O
invariant. M, is the set of automorphisms of"Rvith the identity for their squaresis
the almost-complex tensor.

3. — Equivalent and subordinateG-structures.
A)

DEFINITION I111.3.1. —Let S= S(G, H) be a (real or complex) structure. A structure
S’'=S5(G, H") is said to bequivalent to S if there existsl L, (CLy , resp.) such that
"= H . A complex S is said to lequivalent to a real one if it admitsan equivalent
real structure. If Sis real (complex, resp.) then astficture that is equivalent to S (H
= H 0O) will once more be a real (complex, resp.) G-structure if anlg if | belongs to
the normalizer of NG) (N © (G), resp.)of G in Ln (CLm, resp.): One will then say that S
is areal (complex, resp.) G-structure that isssociated with S.

The structurés of the frame spadd ‘= H [ has a structure group that is conjugate to
G inCLy, namely,G =1 0G O, because it 0 Hy, Hy=zO0Gthen=z0G 0 =z0 (1™ O
G 0O) (xO X). In order to hav&’ = G, it will then be necessary and sufficient that N
(G) [N€ (G), resp.].

We see in the examples above and in Chapter IV thavadgot structures must be
considered to be things that define the same infinitesstnatture orX. If a clas<C of

conjugate subgroups &f, is given then one can call the set of@GHstructures that are
equivalent to a give®-structure G, G’[J C) aC-structure Each of thé& “structures can

(*® Cf., G. Legrand1g).
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then be envisioned to be a “representative” of ghstructure. The problem of

determining all possibl&-structures orX is then solved by Proposition (1.5.3) when the
givenG is closed irL,, . They correspond bijectively to the differentiable et of the

spaceE/G. The problem of determining allstructures can then be posed as follows:
Once a representativ@ [1 C is chosen, as long &¢ (G) # G, a givenC-structure will
admit several representatives that deestructures, and those structures will be
associated. The grolyp= N (G) / G acts orE / G, as well as on the she&fof germs of
differentiable sections d& / G, which one can call theheaf of germs of G-structures.

N is endowed with the discrete topology then the quospateZ / N will again be a
sheaf, and ifj is the canonical mag — F / N then in order for two sections & to
define two associate@-structures, it is necessary and sufficient that gteuld have the
same image under. One can then calf / N the sheaf ofC-structures on XThere is a
bijective correspondence between ghstructures orX and the sections of the sheaf that

have a lift toF. The same analysis will obviously be valid in thenptex case.
Examples— Recall some of the examples id,8vith the same notations.

a) The various HZo-structures that are defined on a homogeneous spateH

(exampled) are equivalent: Ik, is replaced by, =z O (I O L) andf is replaced with;
then one will have:

fl(g):ﬁo Z]_:ﬁozlolzf(g)l:l’

SO
P,(X) =R, (X)0.

b) The CL:-structureS’ and the CL?-structureS® that are defined by an almost-
complex structure (examplg are equivalent, becausezf= {&; , € .} U E° (X) is a
complex adapted basis add= {e,, e .} [ E? (X) is the corresponding real basis then

one will have:

) ) 1 ( E, E,
Z=z0, in which | = — )

J2UE, -iE,

Hence, E? (X) = EP (X Ol and CL, (X) = It [T (X)Ol, which one can verify
immediately. IfS*is real ther8® will be equivalent to real.

c¢) The existence oB-structures that are not equivalent to real onesbigous: It
will suffice that dimG > n? in order for aG-structure to not be equivalent to a real one.
Hence,a 7rstructure(exampleb) will never be equivalent to a real one.
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B)

DEFINITION 111.3.2. —Let S(G, H) and S (G’, H’) be two structuresif H [0 H’
(henceG [0 G”) then one will say that S ssibordinateto S’ or that S'is anextension of
S

If G”is given then the problem of the existence @-structure that is subordinate to
S’is solved by Proposition (1.5.3). If one is given anosteuctureS’' (G", H") then one
can pose the problem of the existence of a stru@ubhat is subordinate to bo®f and
S If H'n H" is again a space of frames then it will define sucutsire with groupg”
=G’'n G" (the largest one). ConverselyHf(l] H'J H" defines a common subordinate
structure thetd’n H" = H O will also determine one. Our problem is then reduced to
this one: IsH" n H" a space of frames? It was in order to solve thatlgmolhat we
carried out our study in section (1.6). Proposition (l.&2) Theorem (I.6) then permit
us to state:

THEOREM 111.3. —In order for there to exist a common subordinate structure to a
G=tstructure Sand a G-structure S over X, it is necessary that they should admit a
common distinguished frame at each poift X. That condition is sufficient if the pair
G’, G' is a generic pair of subgroups of, (CL, , resp.); for example, if GTI (G" /T,
resp.) is compadiG = G’ n G"). In particular, in order for a complex G-structure S to
be the extension of a real structure, it is necessary that S shduoid a distinguished
real frame at each point. That condition will be sufficient if the @ailL, is a general
pair of subgroups of G}, and in particular, if G T (L /T is compact).

The existence condition for a distinguished frama #tat is common t&” andS’,
H, n H; # 0, can be put into the forrdl, O H; O0G’; it is realized for anyx O X if:

(2) H'OH'0OG"

In particular, in order for the comple3-structureS to admit a real distinguished
frame at any point, it is necessary and sufficient tha

(2 H O E [G.

If z, O Ex then the fiber oE OG at x will be z [, G, and as long aky, 0G # ClLy,
(for example, dinG < i), one can state thatcomplex G-structure is not generally the
extension of a real structuréOn the contrary, the condition (2) will alwaysrealized if
and only if:

Lm 05 =CLny.

Since that condition implies that the p&ir , G is a generic pair of subgroups
[Theorem (1.6.2), examplb], such aG-structure will always be the extension of a real
structure.
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Examples—

a) Since O (m) is compact, if an arbitrary structut® (G, H) over X admits a
distinguished orthonormal frame at any point then, ftben preceding theoreng will
admit a structure that is subordinate to the gi@up O (m). In the most common cases,
that fact can result directly from the manner by whitcé distinguished orthonormal
frame is determined (although the proof is omitted by mottoas), and here it follows
from a general theorem.

b) An almost-Hermitian structure that is subordin@teamn almost-complex structure
on X of dimension B can be determined by a space of fram&gX) O E  (X) that has a
structure group in the form of the groug (n) O CL> of matrices:

A 0
(0 Aj’ ATU (n),

which is isomorphic taU (n), andU® (n) = CL n U (2n). It can just as well be
determined by the space of real frangX) = & (X) Ol [l is the matrix defined in
exampleb) of paragraph A)], whose group' (n) = O (2n) n CL%. It is therefore the

largest subordinate structure that is common to the &ieran structure that is defined
by the orthonormal frameg (X) OO (2n) and the almost-complex structure that is
defined by the adapted real fram#¢X) OCL2 = E* (X). Conversely, when one is given

a Riemannian metric ox and an almost-complex operat@isuch that the operatgk at

any pointx is Hermitian with respect to the metdg [®y (v, Jw) = Py (v, w) for any

v, w0 Ty, the fact that the spae@ (X) of real adapted frames at each point of those two
structures is indeed a “space of frames” supposes thdttasre proof (which is generally
omitted) that there exist local sectionstofX) that are both orthonormal and adapted to
the almost-complex structure. Our theorem (whiclpieable, since one of the groups
is compact) reduces that proof to a proof of the existerficlecal sections that are
orthonormal for the metrid, on the one hand, and local sections that are adaptkd to
almost-complex structure, on the other.

c) In order for asestructureS to be the extension of &-structure, it is necessary
and sufficient thatS should admit a distinguished real frame at each poirat is
obvious here, because since the field of plahéis= 1, 2) is differentiable, as well as the
field Tx, the field of plane3; n Tx will also be differentiable. That can also regtdim
Theorem l11.3, since the paBL (ns, ny), Lm of subgroups o€L;, is generic (Proposition
.6.4).
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C)

DEFINITION 111.3.3. —A G*-structure Sis said to besubordinate in thelarger sense
to a structure S if it is subordinate to a structure that is equivateSt(or equivalent to a
structure that is subordinate to S). S will then be&dension in the larger sense of S.

In particular, let us study the conditions under whicdomplex structur& (G, H) is
an extension in the larger sense of a real structureorder for that to be true, it is
necessary and sufficient that there should exi$tfa€Ly, such thas’ (I 0 O, H O™
should admit a real subordinate structure. From (19,tlien necessary that there should
exist anl such thaH O™ O E O 0G O™, namely:

3) HOEO .

That condition is sufficient if the palr, , | 0G O is a generic pair of subgroups of
CLm.

The set€ O 0OG, | O CLy, (double classes module : G) define equivalence classes
over E€ that correspond bijectively to the double classe8lgf moduloL, : G. If there
exist more than one such class (i.eLnf(0G # CLy) thenthere will surely exist complex
G-structures that do not admit real structures that are subordinate ilatger sense.Iln
that sense, the compleX-structures constitute a true generalization of the @al
structures.

4. — Characterization of a space of frames by the fundamentaifdrm.

DEFINITION 111.4.1. —Let H(X, G) be a space if real (complex, resp.) frames on the
m-dimensional manifold X. One says thadamental 1-form on H to mean the 1-form

w with values inR™ (C™, resp.) that makes the vector (complex vector, regpthat is
tangent to H at the point z correspond to the vector:

(1) w(h)=2'DpLOR" (C", resp.) .

The fundamental 1-form oB (E ©, resp.) will be denoted bg (6 €, resp.). The
restriction of the form offE that is induced by  to the real tangent vectors coincides
with 8. IfH O E (E €, resp.) then the fundamental 1-formon H will be the form that is
induced byd (8, resp.) orH. When no ambiguity is possibléC will be again denoted
by &.

The 1-formwthat was defined in Definition (l11.4.1) satisfies tiwe properties:

(2) Dyw=g" OwgOG,
(3) w(7)=0 - p7=0



Chapter 1l — Spaces of frame&-structures. 59

(7 is a real or complex vector that is tangenH)o Indeed, if7; is tangent tdH at the
point zthenDy7Z, will be tangent to the poirzt[, and:

w(DgT) = ) 'p(DgT) =97 2 p =g w(T),

from (2). On the other handy(7;) = 0 = Z*(p 7;) = 0, which is equivalent tp 7; = 0,
sincez is an isomorphism of R(C", resp.) withTpy (Tpi, resp.); w will then be a

tensorial 1-form: We interpret the last property by sayiag the 1-form igegular and
its type by saying that it is\&ectorial 1-form.

Let s be a section off over the open subsét O X ; s wis a 1-form ovelU with
values in R (C™, resp.). fZx O T« (T.%, resp.) thers w(Z) = (S (X) [P) (sT) =S ' (X)
(T) ; i.e., 6 Wx =5 *(x) ands wis the coframe that is dual to the sectorThat remark

can serve as the definition af(cf., Chap. 11.3).
The fundamental form characterizes the spaces oEfam

PROPOSITION I111.4.1. +et G be a Lie subgroup ofl{CLn, resp.). In order for a
PFS H(X, G) to be G-isomorphic to a space of frames on X, it is necessaryuiuient
that it can be endowed with a tensorial 1-formwith values inR™ (C", resp) that
satisfies(2) and (3). There will then exist a unique homomorphism f of H in(X)HE ©
(X), resp) that is compatible with the identity map of G intp(CL, resp.) and is such
that:

(4) f' 0=
in which @is the fundamental 1-form on E {Fresp).
First, letf be aG-isomorphism oH (X, G) onto a space of framét’ (X, G) O E. Itis

a homomorphism int&, and one knows (Chap. 11.3) that=f " @is a tensorial 1-form on
H of the same typawis regular since:

WwT)=0 = BFT)=0 < pef%=0 < pyT=0@En=peof).

Conversely, iH (X, G) satisfies the hypotheses of Proposition (l1.4.Bntuppose
that there exists G-isomorphismf of H into E such thaf "8=w If 7, O Ty (h O H)

thenw(7,) = 6(f 7v), and sincé 7, [ T; ny , one will then havew(7,) = [f )] ™ pefn;
le.:

() w(T,) = [f (] ™ pe T
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Let t, be the tensor associated wah(Def. 11.3), which is a tensor oH E with
values in B 0 R™ of typep (G x L) such thap (g,1) =g O I™* ; i.e., such that, (h [,
z0)=g™* O, (h 2 0. It can be defined by the formulas [(6), Chap. 11.3]:

©) { t(h, 9= (7)),

if 70T, (h20HOE W R then D& pT,

As a result of 3)tn (h, 2 Ou =0 < u =0, andt, (h, 2 O Ly, . (6) implies that
t (h,2Z' p7, = w(7n), in such a way that (5) is equivalent to:

(7) t,(h, 202" R 7, = [f ()] ™ pu OTh
and sincepy O7h = Zon, (7) will be equivalent to the equality between opegator

(8) f(h)=zOtw(h, 2] 7

which is meaningful, sincg, (h, 2 O L, . Up to now, we have established that in order
for a mapf of H into E to satisfy (4), it is necessary and sufficient tihahould satisfy
(8). Now, the right-hand side of (8) does not depend apbut only uporh, because if:

(hz)OHX E pez=pauh=pez and z'=z0O (0L
then
z’ Oty (h, )] =20 Otw(h, zO)]™ = 0) [t (h, 2] = zOtw (h, 2]

(8) then defines a unique mapf H into E. That map is differentiable, since (8) can be
written:

f(h) =s(ph) [to Oh, s (ph)]

over an open subseét [ X that is endowed with a differentiable sect®of E, andt,, is
itself a differentiable function oH E. Finally,fis a homomorphism because:

f(h) =z[to(h [, 2] =2[g7 Ou(h 2] =2[tu(h, 2] y=f (h) .

The proof is completed immediately by applying Propasi{ics.3). It extends with
no modifications to spaces of complex frames provided ¢ime utilizes the complex
tensort wthat is associated wittvand has its values L, .

We have established (Chap. Il, 88and 5) a bijective correspondence between
tensorial forms on a PFS and associated tensorshawéeseen that the property (3)cof
is equivalent td,, taking its values i, . Since the tensors of a certain type on a PFS
correspond bijectively to the sections of a certain@ased FS, Proposition (111.4.1) will
have the:
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COROLLARY. —Let H(X, G) be a PFS, in which G is a Lie subgroup @f(CLn ,
resp.) (m=dimX). The structures of the space of frames on H correspond bglgcto

the sections of the fiber space with fibgr (CLy, resp.) that is associated with E
H E, resp.), while Gx L, (G x CLy, resp.) acts on the fiber by way of:

(g,1),t— g'00, gOG;l, t0Ly (CLm, resp.).

For a tensorial forrh on a space of framés (X, G), one can define a simpler notion
of an associated tensor than the one on an arbitFeBy FFirst, suppose thhltis a space
of real frames and thdt has values in a real vectorial spa¢e t A will then be a tensor
onH E. Consider the following maps:
i:H - E inclusion,
ji'H-H[X|E, hOH> (hhOHXE,

which is a map that identifi¢d with the diagonal of the PFSS[X| HO H [X] E;
f:H[X E - H, (h2+—>h hOH, zOE, pyh=pez,

g:HXE-E (2w 2z hOH z0OE pah=pez.

One then has:
9) foi =identityonH and goj =i.

t’A =jt A is a tensor oH, sincej is a homomorphism of a PFS. It follows from (9) that
A =jt A\, and formula [(8), Chap. II, § will become:

A= jﬂ[(t/\) Eﬁﬁgﬂ = (tA) E(ﬂjﬂ(gﬂe)j
A= @A) E(ﬂjﬂgﬂej,

A=('A) E(ﬂiﬂej,
or, sincei’ @is nothing but the fundamental foraon H:

(10) A=(t'A) :(ij .

or

namely, from (9):
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Conversely, an application of Proposition (11.3.19\8k that if1 is a tensor okl with

values inM [J BR'“D and typeo, (G) [ (@) =R @ O Dg‘l] then/\ = A E(Da)j will

be a tensoriad-form such tha#t =t’A.
Similarly, if H is a space of complex frames ahdas values in theomplex vector

space Mthent “A will be a tensor ot |X| E€. The inclusiorH O E© permits one to

define map$, J, ... that are analogous ig, ..., andt’“A =J " t °A will be a tensor of
that is coupled t@\ by a formula that is analogous to (10), since adberespondence
betweem\ andt’“A is once more bijective.

If H is aspace of real frameandM is acomplex vector spadben one will find that
two associated tensors bincan be defined according to whether one usesthesionH

0 E (which defineg’A to have values iM Og DR'“D) orH O E® (which defineg’“A to
have values i O¢ DC’“D): The remark that was made in Chap. 15 $hows that these
two tensors will coincide modulo the canonical igsation of M [¢ Dcmmwith

M O, (IR,
On the contrary, iH is aspace of complex framesdM is areal vector space
[which does not admit a complex structure for whiohR (g) are linear transformations

over C] then one cannot define an associated tensor that corresponds bijectivetynto
H itself by a formula that is analogous to (10). Indeegpsge that such a tenséis
defined such that:

(11) A:Ac(ﬂwj,

so one will then have that for(J H, it is necessary that(h) 0 M g DC’“D. Now, A\ is
defined only on the spa&, that is tangent tél ath and not on its complexificatio® :

A (h) is then restricted by (11) only by way of the claion:

A (T0) = A () E<ﬁw,7>, ole,

=A™ DT

(with the simplified notations of Chap. 1l). Whénp describesm(ah, pZn will describe

mh‘lTx (x = ph) andh™ p7;, will describe a (realin-dimensional vector subspace dt C

A (h) will not be determined completely by (11) then.
In order to define\ by a tensor o, one can meanwhile proceed as follows: Met

be a complex vector space such thet] M andM’'=M + iM, andR (g) extends to a
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complex automorphism of1’, moreover. For example, one can tdW{é to be the
complexification ofM . (That is not necessarily the most convenient chofcevill then

be a complex tensorial form with valuesMiiand typeR (G) that takes its values M [J
M for real tangent vectorsA will now be associated with the tensotSA (t A, resp.)

onH (H E ©, resp.) with values iM’ Oc DC'“D, as well as witht A onH E,

which has values iM’ [Og mRmD. Since the tensotts A correspond bijectively ta-
formsA onH with values inM’, we seek to characterize the ones for witdias values
in M. Now, t'°’A is determined bijectively by“A, whose restriction téf EistA
(Chap. 11.5), in such a way th&t“A is determined by A. In order forA to have values

in M, it is necessary and sufficient thaf\ should have values ™ = M Ogr mRmDD
MO, mRmD; t°A andt’ “A will then take their values in the orbit ¥funderCLy, ,

which is an orbit that is not generally a (realgtee subspace d¥l’ ¢ DC’“D, in such a
way that the condition oirf“A generally translates intor@nlinear condition.

That is why in what follows we will speak of trensor orH that is associated with a
form A onH with values inM only if H is a space of real frames and M is arbitray
whenH is a space of complex frames and M is compl&€kere will be no ambiguity
then, and that tensor will always be denoted Ay We state:

PROPOSITION 111.4.2. +tet H (X, G) be a space of real (complex, resp.) frames
with a fundamental fornay and let M be a vector space (complex vector spasp.).
The g-formsA on H with values in M correspond bijectively to tiemsors on H with

values in Mg DR”@( M O¢ DC’“D, resp.)and typeo: (G), in which o (g) =R (g) O

Dg‘l. The tensor that corresponds £ois the associated tensor/t on H, which is
defined by:

(12) A=A E(ma)j

In the basis €} for M and the canonical basis of"RC ™, resp.), (12) can be
written:

(13) A = %(t/\){j_,_ichl O---Oa*,

in which thew' components ofv are linearly-independent global forms Bnand the
components(t/\)il’*_._iq of the associated tensor are functions with reamplex, resp.)
values that are supposed to be antisymmetric w&pect to the indices

If H = E (ES, resp.) then one will recover the usual notiontttd canonically-
associated tensor by taking the inverse image3)fl§§ some local section. In particular,
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if one applies (12) tavitself then one will getv= (t &) Ow which shows thatwis the
constant tensor ad which equals the identity doy, (Cly, resp.).

5. — Connections on spaces of frames.

A) We shall call a connection da(X) (E© (X), resp.) dinear (complex lineartesp)
connectionon X. If S(G, H) is a givenG-structure then we shall call a connectiontbn
an H-connectionor S-connectionindifferently. When only the grou@ O Ly is given,
we will call an arbitraryH-connection &-connection

Let ybe anH-connection, and lef be its extension t& (ES, resp.); their forms argr
and 77, respectively. A path ikl that is horizontal for/ will also be horizontal fory,
sincerris the form that is induced d#h by 77. The uniqueness of the horizontal path for
a connection over a given pathXrwith a given origirz will then lead to the fact that the
holonomy sheet with origim [ H is the same for the two connections, and consélyuen
the holonomy groups for the two connections, asl;wial particular, ¢, O G.

Conversely, ifl is a linear connection and the holonomy sheet of the holonomy
group ¢, O G at a pointz O E (ES, resp.) is a differentiablg,-PFSS (Chap. Il, 8) then
H = H, 0G will define G-structureS. On the other hand, since the holonomy fieldl et
any pointz’ O H, is tangent toH, and therefore tél, one will see immediately that the

holonomy field ofl” is tangent tdd at any point oH, sol" will be the extension of af-
connection. We have established:

THEOREM 111.5.1. {%. — In order for there to exist a G-structure S in X, it is
necessary and sufficient that there should exist a linear conneltion X whose
holonomy group for a frame E (X) (E“(X), resp.) is a subgroup of G: will then be
the extension of an S-connection.

Now, letG be a group such th&-structures can be defined by a tentsaith values
in M in the sense of Proposition (ll1.2), and recallnbtations. 15 is the subgroup af

U Lmsuch thatk (g) [l =uthenG will be the subalgebra af] L, such thatR (1) L
=0.
Let S (G, H) be aG-structure, lety be anS-connection, and letfy be the linear

connection that is an extensionypfvhile ;rand 77 are the respective forms andand 0
are the corresponding absolute differentials, @t be the tensor ok that defines the
structure. From [(2), Chap. 11.4], one has:

Ot =dt+ R(7) O,

so ifi is the injectiorH - E then:

(*®) This result contains those &7, § 118and [L8], Chap. IlI, §5.
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it =dit+R3%) Ot
=dit+R(m) Ot=0it,

in whichi't is constant ol and equal ta :
(1) it =R(m) u;
i.e., if m=¢,0 1° ({ &4} is a basis forG) then:

iTt = R(e,) O 7°=0,
which implies thatJt = 0.
Conversely, lety be a linear connection whose formisand is such thaflt= 0. 77
= i"7r is a 1-form orH of adjoint type with values irhm whose restriction to the fibers

of H coincides with the forng that relates tdd (Chap. Il, 84.A) because the right
translations bys onH are the restrictions of the right translationgahat act ork (Def.

[.5.2). In order forrto be a connection form dth, it will then suffice, moreover, that it
should take its values 5. Let {¢ , &} be a basis forL, that is obtained by

completing the basisgf} for G: 7= ¢,00 77+ & 0 7% it is once more given by (1)
onH, and is zero, by hypothesis; now:

R(M =R (e,) D 7°+ R(g,) O 7= R(e,) O 77,
sinceg, 0G. Our hypothesis then will imply that:
2 R(s,) O 7 =0.

The vectorsk (&,) Qu are linearly independent, becauEa,ua 7€(£a) [ = 0 implies
that Zﬁ(yasa) (b =0;ie.,u? &0 G, which is absurd. Consequently, (2) will imply

the vanishing of the formr®, andzwill have values inG. We have then established:

THEOREM 111.5.2. -f the G-structure S on X can be defined by thedeton E(X)
(E® (X), resp.) then the necessary and sufficient condifimna linear connection
(complex connection, resp.) on X to be the extansioan S-connection is that the
absolute differential of t under that connectiowa be zero.

That theorem contains the characterization ofitlear connections that are Euclidian
for a given metric @2], 8 51), as well as almost-complex ([22], 1®9), and almost-
Hermitian. (An almost-Hermitian structure is definey two tensors, namely, the metric
tensor and the almost complex tensor, so it wilbihg to our class of structures: Two
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tensors can be considered to be just one tensor witles/ah the direct sum of their
spaces of value spaces.) It likewise contains the ctaiization of the complex linear
connections that arerconnections for a givenestructure (18], Chap. Il, 86) and
complex linear connections that are almost-Hermit@mections in the larger sense for
an almost-Hermitian structure in the larger sen§e(ibid., Chap. Ill, §4).

B) Torsion.— In these two paragraphs,= H (X, G) will be a space of frames that is
endowed with a well-defined connectigny K will denote either of the fields R or C,
according to whethel is real or complex, resp. The existence of the foretdal 1-
form wwith values in K' onH implies the existence of a supplementary invariantHer t
connectiony, namely, theorsion form:

(2) > =lw=dw+ mlw

(since the representation Gfin K™ that defines the type abis its representation as a
linear group in K). The tensot S that is associated with onH is thetorsion tensorf

y. Naturally,> andt % are, respectively, the form and the tensor thatraheced orH by
the torsion:

(3) S>=06 =do+ 7B

of the linear connectiory, which is an extension of and its canonically-associated
tensorts. The identity [(5), Chap. I, 8] provides the absolute differential bf

(4) 03 = DPw=Q Ow
That is theBianchi identity for torsion
C) Covariant derivative. Generalized Ricci identiylf A is a tensoriaf-form (g =

0, 1, ...,m) on the space of framés$ (X, G) with values in the vectorial spabté (which
is real ifH is real and complex H is complex) then we shall call the tensortbn

(5) DA =t Ot A

the covariant derivative oA\.
The action of the covariant derivative is intreg» the spaces of frames, and it differs
from the absolute differentiation that acts on differentiable PFS.

If tA is a tensor of typ® (g) [ Dg‘l with values inM O D(Km[’) thenOt A will

be a 1-form of the same type, ddd will be a tensofR (g) [ Dg‘lD g ! with values in

() An almost-Hermitian structure in the larger serssdéfined by G. Legrand §] by the given of a
complex metrigb and a field of operatorgon TXC with identity squares, such that(Ju, /) =-®(u, V),

uvOTC.
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M Ok m(Km[) Oy K™. Sincelt A is a 1-form, formula [(12), 8], which defines the

associated tensor, can be written:
(6) Ot A = (DA) Ow

WhenA is a tensoW, sincetW = W, (5) will becomeDW =t OW, and (6) will
become:

(7 OW = (DW) O

One will recover the usual notion of covariant demxeain that case, and i = E, or
even if A\ is a form of identity type (viz., the inverse imageaoform onX). On the

contrary, wherg > 0,t OA will be a tensor with values il [J TﬂKmD and typeR (g) O

Tf]g‘l, so there will then be no reason for it to coiecwdith DA . Upon applying the
differentiation formula for a product of the tyd@), Chap. I, &], one will deduce from

the relation [(12), 3]:
A=(A) [(ﬂwj,
that:

®) OA = (Ot A) E(ij F @A) I:(D Da}j |
From (6), that formula, which can also be written:

) OA = [t A) E(ma)j - DA ) I:(ma)j FEA) IZ(D ij,

will permit one to calculate the absolute diffei@htas a function of the covariant

derivative and] Da).
Let us first apply this to the case in whith= 0@ [® is a tensoriald — 1)-form]:

0% = ((DOP) [k :(ij + (t OA) I:(D Dw)

Since, on the other hanf?® =R (Q) OP [(5), Chap. Il, §4], one will obtain the
identity:

(10) (©OO®) o) Ol Jw = R(Q) Bb - (t OA) I:(D D“’j (degreed = q— 1),
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to which one can give the name of generalized Ricci identitylndeed, take the case in
which® is a tensoW (q = 1). SincéV =tW andDW =t [JW, one will have:

DOW =t Ot Ot W=t Ot DW= D?W,
and (10) can then be written:
(11) O*W [y Ow= R (Q) OV - DW) [E.

That formula is théRicci identity properly speaking (which is more general than the
usual identity, moreover, since the representailor arbitrary). In order to see that, we

write it out explicitly whenw =V is a vector field by taking the usual notations for the
components of the covariant derivative. (11) is wmitte

(12) 0%V Y Ow=Q IV - PV) [F,
namely:
(13) 0.V &) D = Q OV - O V' 5
Since:
Q =iR, « 0w and S =-sd 0w

with the usual normalizations, aerM and Sﬂ"ﬂ are antisymmetric id andz, one will
get:

(14) 10V -0 V) ¢ Dw'=1(R V' +0,V 0Y) o 0w,

A
so finally, one will have:
0,0,V -0,0,V' =R,V +0,V O3,
In order to now obtain the explicit form for (9), walculatel] Da). It follows from

the definition of Da) (Chap. II.2., E) and the tensorial characteraothat Da) IS a

tensorial form of typéﬁ(G) and:

() ot P
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in which {g} is the canonical basis for"K Formula [(24), Chap. I, 8] gives the
expression forma) with the aid of the components' of win that basis:
o= 2 000
w=—§ O0---Oe Dw O--- Ow?*
ql * !

in which:
1 . | i
(15) d(ma}j = aZ(—l)"’l g U-0O¢ D 00w OO
* k=1

On the other hand, an easy calculation will shiat in the basis = {g [---Ueg , i1

<iz ... <ig} for BK’“, the operationm()l) ADO L., CL,, resp.) will be given by its
components’):

Gl = ze'%._;_._. i

in which ‘si'll_f_'i'; is the indicator of the permutation add are the components dfin the

canonical basis foh (C_Lm, resp.). The components ¢f= {m(n) Eﬁﬂa)j in the basis

B will be then:

o =y Lol qtﬁﬂwj

I1< <I

q
> > e.%._,:_._, 7 0ab O O

k=1 <<y

1
:—. &'y, 0 0ak O 0

or, upon movinga* andp to the first position:

|1...p...|

lp-dg 1 Iy g K i k1 ke q
¢ —azts (7° 0)) Oad O+~ 0 O O-+- O

and then, upon suppressing the summation kaver

(*®) A sequence of indicés ... p ... iq represents the sequence that is obtained by replaciith p in
ih

the sequencg ... iy ... ig. Similarly, the sequende ... i, ... iq represents the sequerge.. iy when the
termiy, is suppressed.
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! grte , (7" D) Do O- D

AT

The sum of terms in that sum for whigl* | is:

(qll)l g Iq (7 0a/) Do O--- O = (7 D ) Oa? O--- O,

and upon proceeding similarly for each indleane will get:

e = i(_l)k—lajl 0.0 0@ D/ )Oab O--- D

k=1

Since that expression is antisymmetric with respek:

¢ ZQD D¢D¢Ilq__q|] ell]¢i1...iq,

ip<--<iq

and upon comparing (15) and (16), one will obthgncomponents CE‘D ma)j in B):

(17) (D ﬁw) = Zp‘,(—l)k‘laﬁ 0--0(dda +7* 0 ) O-+- O

()t O--- 0% Oa O--- Dad” .

o |l
[y

=
!

1

We now calculate each of the terms in (9) in theidb{ea} for M:

a1 0 q
(18) an)" = (q+1)!(tD Yo, & 00,
(19) {(D/\Dw)[éma)ﬂ = (D/\)II i )Da)l O--. e
(q+1)l(;( ' (DAY, i, jwo 0Ol

in order to render the coefficient ef* 0. - D e antisymmetric with respect to tiis.
On the other hand:
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(20) {(t/\ ) [ém ﬂwﬂA
q t/\),l [éD ma)jl q

i(t/\)l Z(—l)k’lfdl 0---Oaf= 02+ 0= O--- D"
Q-

k=1

_—( A2 3P0k O O

(q 1) p|1|
- 1 0 * 2 []... Iq
i (—1)1 )51, 55, D D 0 D
—_Z( 'S, (V\)pl-.-......q W O O
1
= 2 _1k+l V\ CJOD D q
(q+1)! ; =17 s5 ( )p.....k....‘_._lq w
k,1=01,..0

by an antisymmetrization calculation of classigglet Hence, since the coefficients of
o O--- O are all antisymmetric in (18), (19), and (20), (@) become:

(1) (A Y(DOA, = S 21 (W,

'0'1 1)| ey v ...|‘...q '
k,=0.1,..9

PROPOSITION lII.5. -The tensor on a space of frames that is associated with the
absolute differential of a g-form is equal to the antisymmetrization of the covariant
derivative ofA in a connection with zero torsion. When the torsion is not zero]lit wi
differ from it by a term that is bilinear in the torsion and the asded tensor toA
according to formulg?21).

Application.— If a is a scalag-form onX thenA = p a will be ag-form of identity
type andp a =dp a = p da, in such a way that upon taking inverse imageh®ftwo
sides of (21) under an arbitrary local section atitizing the classical notations, the
relation that couples the exterior differentiabofiorm to its covariant derivative will be:

q
(22) da),. ~>0a, .. = Y 20-1S
1=0 k<l
k,=0.1,..9

kl\ p|0...||'<...|‘...'CI '
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6. — Structure tensor of aG-structure.

A) Let Sbe aG-structure on the frame spakkand letw be its fundamental form.
One lets K KLy, resp.) denote the real field (the grdup, resp.) whers is real or the
complex field CLn, resp.) whersis complex.

Let yand y be H-connections with formgz 77, resp., and lek, Z', resp., be their

2
torsions. The torsion tensors are tensorslamith values inP = K™ Ok OK™ and type
R (G), in whichR is the representation &L, in P such that:

2
R®MO=1001", | OKLn.

7T — 1= u is a tensorial 1-form oRl of adjoint type with values il . If S is complex
then suppose thak is a complex vector subspace%. u will then (84) have an

associated tensau = £ onH (and being given the latter is equivalent to begingen u)
with values ilN = Ng = G Ok K™, and is such that:

(1) u=<¢w.

& has typeQ (G), whereQ is the representation &L, in /"= KL Ok K™ such thatQ

(1) = adl O I™* [Ng O NV is obviously an invariant subspace 1G)].

Since N = K™ Ok K™ Ok K™, P can be considered to be the quotienf\oby the
subspacd that is generated by the elements f O f (x 0 K™ f O K™). Let —A be the
natural projectionV' - N/ Z=P,x0Of0f +— xO (fOf’) . Inthe canonical basig}
for K™ (and the associated bases on the other spacddyanslates into:

tjik = (tjik _tlij)!

and it is obvious from the definitions that for dny KL, :
(2) Ao Q () =R (1) o A.

From (1), the components ofin a basis §, = (ajip)} for G (a basis oveK) will be
given by:

©) uf =& af

(&f are the components éfin the basis, 0 x ' for Ng). From the definition of torsion

[(2), 85], one gets:
-2 = (-7 Ow=uw
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(&, 0 w) Oe 0 "
(&) O ¥ 0"
= g,60&¢ Odf

=a 04, & ~d,&) &' Do

Since the expression in parentheses is antisymmefri&,ifrom [(13), 84], that will
give the components ofZ' —%) in the canonical basis fét:

(4) ('[Z' _tz)ijk = aLp C(Jp - ai'jp C(kp .
Since the components éfin the canonical basis fov' aret;, = a;, &7, (4) translates

|
into:
t2 —tX=A40¢,

or upon lettingA denote the restriction of to Ng O NV :
5) t2 —tZ=Ac¢.

SinceNg is invariant undeg@ (G), (2) will become:

(6) AcQ (@ =R (Q) o A gOdG.

Let Ve = A (Ng), M =Mg =P / \5, and leta be the natural projectioR -~ Mg .
From (6),Vs is invariant undeR (G) in such a way that the representatior{G) passes
to the quotient. Lep be the representation Gfthus-obtained iM ; it is defined by:

(8) pP(@ e a=a°R (9.

From (6),a o t2' = a o t Z is then a functiotis on H with values inM (which is
defined globally and independently of the connection)isusdch that:

ts(zp) =a(tx(zy) (zOH,gOG),
namely:

ts(z) =a(R@EHIQZ@)=p(@")0s@ .

ts is then a tensor oH with values inM and typep (G) that depends upon only the
structure: We call it thetructure tensoon S.

B) Conversely, leE; be a vectorial 2-form ol with values in K. Is it the torsion
>' of anH-connectiony’ ? Suppose that the necessary condittont Z; = ts is satisfied,
and letybe an arbitraryH-connection. With the preceding notations, the detetimima
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of yis equivalent to that of the tensorial 1-foum= 777 — 77 which is itself equivalent
(Prop. 111.4.2) to the determination of its associatatsée ¢ with values onN. The
condition imposed o'thatY' =%, is equivalent t&' —% =%; — %, in which the right-
hand side is a given tensorial 2-form of the same E/pand from (5), the conditioh’ —
> =%" s itself equivalent to:

(9) Ao é=t2".
On the other hand, the hypothesis thatt >, =ts= a o t Z is equivalent to:
(20) aotZ"=0.

LetN (H) [P(H), M (H), resp.] be the fiber that is obtained by modeling (D&).N
(P, M, resp.) orH, while G acts on the fiber by way @& (G) [R (G), p (G), resp.], and

let N(H) [P(H),M(H), resp.] be the sheaf of germs of sections of thatespahe
exact sequence of homomorphisms of vector spaces:

A a

corresponds to an exact sequence of sheaf homomorphisms:

A
N

N(H) P(H) i M(H) - 0,

and since all of those sheaves are sheaves of gersestadfns of FS’s with vector fibers,
that sequence will itself correspond to the exact segueihcohomology groups:

ay

(1) Hy (X NCH) ~ H,(X,P(F)) = H,(X,M(F)) - 0.

The tensors ohRl with values inN (P, M, resp.) and typ® (G) [R (G), p (G), resp.]
correspond bijectively to the sectionsh{H) [P (H), M (H), resp.]; i.e., to the elements
of the cohomology groupsH,(X,N(H))[H,(X,P(H)), H,(X,M(H)), resp.].
Therefore, lets OH,(X,N(H)) be the element that corresponds&oand leto [
HO(X,I/D(\I—T)) be the one that corresponds &' ; (9) and (10) are equivalent to:

(12) A9 =0,
(13) a,(o)=0.

Since the sequence (11) is exact, the imagéocwill coincide with the kernel ofy,,

and s that satisfy (12) will exist as long assatisfies (13). We have then shown the
existence of the connectign
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C) Those calculations and proofs do not extend to theinagshichSis complex, so
G is not a complex vector subspace @&fL,. First of all, if G does not admit the

structure of a complex Lie algebra then thegdd O G) will not be automorphisms of the
complex vector space @& , and the formsi onH with values inG of adjoint type will
not admit the associated tensortar{cf., 84). Similarly, if G admits such a structure
that is not induced by the one &1L, then the value spacé ¢ C™ for associated
tensors tau will not be identified with a complex subspace®@f Uc C™, and the proof
will once more break down.

One can then consider proceeding as4 &t G' = G+iG. The adg (g [0 G) are
automorphisms of the complex vector spacés6f so letu be the associated tensor&o
with values onG' Oc C™ O A. The calculations of paragraph A) will then remaadics
and will further permit one to define a “structure teiistlr. However, the ones in B)
will not be valid, sinceé is generally restricted by some supplementary nonlinear
conditions (84). Indeed, there is no reason for that tengoto characterize th&
connections, either. L&’ be the connected subgroup @i, that is generated b@'
and suppose thab is itself connected. One will then ha® 0O G, and S will be
subordinate to & “structureS’, sotg will be nothing but the structure tensorS®fn such

a way that it will characterize the torsions of t&éconnections, which are nd&
connections, in general (cf.,.88D).

D) We shall now state the results that have beenirdst and infer some first
consequences.

DEFINITION I111.6. —A G-structure is said to be tHefirst kindif itis real or if it is
complex and G is a complex Lie subgroup of, CLt will be ofthe second kind in all of
the other cases.

We remark that the condition th&t is a complex Lie subgroup &L, (i.e., the
injectionG - CL is a complex analytic map) is equivalent to the diodithat G is a

complex vector subspace 6L, .

THEOREM 111.6.1. —Let G be a Lie subgroup of,lor a complex Lie subgroup of
CLm . In the former cas& denotes the real field, while it denotes the cexpield in
the latter. That group is canonically associateithva K-linear representatiorp of G in
a vector space W, which is the image of K™ Ok under a homomorphismrin such a
fashion that:

1. For any G-structure S of the first kind, one calffirte a tensor 4 of typep (G)
with values in M on the space H of distinguished frames ots3s thestructure tensor
on S.
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2. The necessary and sufficient for a vectorial 2-f@ren H to be the torsion of an
S-connection is that:
aots =ts.

In certain cases, that theorem will take on a mumplsr form, which is contained in
the known theorems, as we will see:

THEOREM II1.6.2. —If G satisfies the same hypotheses as in The@iés 1) then
suppose, moreover, that the subspace & (0) of P admits a supplement W that is

likewise invariant undefR (G). For any G-structure S of the first kind and any S-

connection, the torsion tensor (on H) will be thensof two tensors, X = (t 2)v + (t 2)w
with values in V and W, respectively:

1. { Z)w does not depend upon the connection and is idedtifiith & [o (G) is
identified with the induced representation/o{G) on W,.

2. ({ 2)v depends upon only the connection and can be chadsgtrarily by a
convenient choice of connection. In particularerth always exists an S-connection
whose torsion tensor reduces §=t(t Z)w exactly.

Under the hypotheses of that theorem, sin&g\(and ¢ Z)w are tensors with values
in P and typeR (G), one can make an analogous statement that give®mpesition of

the torsion form as a sum of two forms. On the oli#erd, letzzbe the connection form
of one of the connections for whichX)y = 0. Hence, from the definition of torsion, one

will have:
dw= —ﬂm+(ts)[éﬁwj,

(13) or do =-7 0 +1(t), o Odf,
or do =&, O +1(t), 0d

globally onH, with the notations of A), and converselysafis anH-connection, and if
one can writalwin the form (13), whilds is a tensor with values W, thents will be the
structure tensor d

Under only the hypothesis of Theorem (l11.6.1}, "¢ be a supplement tg that is
not invariant, in general. For a givéfrconnection of the fornyz one will have a
decompositiort = = (t 2)v + (t2),,. If (t2),(2) = C (2 is the projection ofs (2) onto

Wi under the natural projectian: P/ V - Wy thenC will be a function orH that is
independent of the connection, and one can write:

(14) dw'=- 77 0’ +1(t2), '\ & O +3(C), o O .
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Since {2)W(2) O V for anyz [0 H, the equations for the unknown$ (o=1, ...,r ;k
() = a,n’—a, nt (i,j, k=1, ..,m;j<Kk

are compatible, and since they have constant coeffsziene can find their differentiable
solutions 77 (z) (which are unique only if the maj is injective). Sincen"j = a‘jpn*’,
(14) will then become:

dow' = o 08, (77 -nfe ) +1Cl o O
or
d =) 04 ,7°+1C, o OdJ,
(15)
namely, dw=-77 L+ CEﬁzJa).

In (15), 7= & O '” is a global form orH, but it is not defined canonically.
Furthermore, it is not a connection form Hn since otherwis€ would be the torsion
tensor of that connection, which is contrary to Hypothesis tha¥; is not invariant

underR (G). Finally, although one has written some relai@mH such as (15), in

which the functionC takes its values ik;, C is the projection ont®dV; of the structure
tensor, which is then defined perfectly.
In particular, if one take®/; to be a supplement ¥that is generated by a subset of

the canonical basis fdét, and if one Ietstj‘fk,, denote the coordinates Bf which are zero
onW;, and the other one liyk then (15) can be written:

(16) dw'= o' 0a,7”+1C, o Od .

If one setsF, = a,n?-a,n’ (77 0K) (i), k=1, ...,m;j <K then the indices

(;k) will be characterized by the property that theedin forms F;,. are linearly-

independent and maximal in number. Tﬁ‘(,é'k, are theprimary invariants of the
structure,as they were defined by S S. Chern 9 fpr the real case. Equations (13),
(15), or (16) can be called t&ucture equationsf S

Let r be the dimension db, and lets be the rank oA. One has dinN = mr and
dmP =n? (m=1) / 2 . s, which is less than or equal to those two numbeit,be

equal to the rank of the systemnof (m— 1) / 2 linear formsFJ.‘k . One can specify that:

COROLLARY llI.6.1. —If A is surjective then its torsion can be chosgritearily.

In particular, for anyG-structure S of the first kind there will always exist a&
connection with zero torsion. In that cases m? (m— 1) / 2, which demands that
m(m-1)/2.
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COROLLARY I11.6.1. —If A is injective(*®) then being given the torsioh will
determine the connection, provided thaitz =ts.

That will come about i = mr and one then demands thhak m (m— 1) / 2. If one
satisfies the conditions for applying Theorem (lll.6.2preover, then ang-structure
will admit a canonical connectiorwhose torsion tensor coincides with the structure
tensor (cf., 8B, ex. B, E).

COROLLARY 111.6.3. —If A is bijective which supposes that=m (m—1) / 2, so if
it is closed, then from some results of Weyl-Cartedn V. Klingenberg 28]), G will be
the orthogonal or special orthogonal group of a definitendefinite non-degenerate
guadratic form, and the torsion will be arbitrary andedetned uniquely by the
connection. In particular, there ianonical connection with zero torsion.

COROLLARY 111.6.4. —In order for a G-structure S of the first kind to admit an S-
connection with zero torsion, it is necessary and sufficient tmatstructure tensor
should be zero.

7. — Calculating the structure tensor.

A) Equivalent structures- LetSandS’ be equivalent structures for the frame spaces
H andH’= H O, respectively, with group& andG’= 1" OG OI, resp. One either
considersSandS’to be reall( L, K = R) orSto be complex of the first kind. Hence,
for anyl (ICL,, , S"will be complex of the first kind (K = C).

The various spaces and maps will be denoted as theyiw8® with an index that

!

depends upoBorG (e.g.,N'= N, ...). Hence:

N'=G OkK™ =106 OOk K™ =9 (™) N
and
V=AN)=AQ(H(N)=RIHAN) =R () V,

in such a way that:

a) Since the rank oA = dimV, one will have that the rank &f= rank ofA’, and the
two structures will be in the same situation for theolaries in 8 to be applicable.

b) The automorphisnR (1Y) of P passes to the quotient to give an isomorphism
P :M=P/V- M'=P/Vsuchthar’ e R (™) =p()e-a.

(% In the real case, that hypothesis will be equivalerihis one: The first group is deduced fr@r=
identity (S. S. Chern9]) or G has finite type of degree 2 (P. Libermann). That rentfagk contains a
theorem of P. Libermann frol2]]. Itis also Cherm’s propertyy in [10].
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Let y be aS-connection, and ley be the linear (complex linear, resp.) connection
that is an extension of. j is also the extension of a&connection)’ (from the

invariance of the connection under right-transtat)o and iz andZ' are the torsions (on
H andH’, resp.) ofyandy/, resp., then:

t ) =R(IHYtZ (@ (@OH),
SO
ts@zO)=a'otT(z) = a'o RULT(2) = p1 ) oat2(2) = p( ™M, (2).

One then has the following relation between the $tructure tensors:
(1) Dty = p(1™)ts.
In particular, ifS’is astructure that is associated witht8enl = n O N (G) [N*(G),

resp.]. G’=G implies thatM’'=M, a’=a, and p(I™") is the automorphism &l that is
defined by:

(2) aoR (") =p(n)ea.
P is a representation of (G) in M whose restriction t& [I N (G) is p.

B) Subordinate structures- With the same notations, I&be subordinate t&"
Hence,G O G’will imply that N O N"andV = A (V) OV'= A4 (N in such a way that:

a) If Ais surjective the@' will also be so.

b) If A’ is injective therA will be so: i.e.|f the torsion determines the connection for
a G-structure then the same thing will be truetfer subordinate structures.

The inclusionsy [0 V' O P imply the existence of a projectian : P/ V - P [V,
such thatm ca=a’and ;nop(g) = p’(g) ca’ (g G). Leti be the injectioH —» H’
(H O HY), let ybe anH-connection with fornyz and lety’ be its extension tbl“ with form
7. One will then have thav=i « and77=i" 77’ will imply that = =i'%' andt = =it %',

resp., SO Sincg = got % :

1o ts= oot =qa’o i*t 2 :i*a’o t2,
namely:

(2) (o ts=i'ts,

in whichts is determined by its restrictiorts to H’, so (2) definess..
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Meanwhile, ifSis the largest subordinate structure that is comm®&i &ndS” (H =
H'n H”), N=N’"n N” then sinced (N'n N”) # A (N) n A (N’), the structure tensors
to S”andS” will not generally suffice to determine the oneSftf., §8, E).

C) Local calculations— LetU [0 X, let s be a distinguished local section, and et
be the dual coframe dd. The field of tangent planes to the image of theiaestand
their right-translates bg will determine a connection ady ; it can be extended to a
connection o with a formsz For that connection:

>=dw+ Ty
ST =sdw+s 7B w=d4,,

since, by definitions 77= 0; one will then have the components:
(3) €3)'=d@q =4(C)x & 0,

in which the (CU)}k, which are antisymmetric in k, determine a ma@y : U - P. On

the other hand, one deduces fram (t %) Dﬁa) that:

(4) ST=(st3) Dﬁeu or  (3)'=1i(stY), 404 .
A comparison of (3) and (4) finally gives:

Sts=s (aotY)=ak tz=ally,
so

PROPOSITION 11l.7. 4f 4, is a distinguished coframe on U then the expression for
ts in the dual coframe thus-obtained will be:

(tsu=a Ty,
in which G, : U — P is the map that is defined iy, =1(C,) & 0§, .
COROLLARY IlII.7. —An integrable G-structure has a zero structure tensor.

The converse of this, which is false, in general &8, B), is true in numerous cases
(cf., 88, C, D, F, and Chap. IV, ®. We also pose the:

DEFINITION 1II.7. — A G-structure is calleédlmost-integrable if its structure tensor
is zero.



Chapter 1l — Spaces of frame&-structures. 81

8. — Applications and examples.

A) Let X = G / H be a reductive homogeneous space. Its Cartan conne@ion (
determines a connection with zero torsion for eacrhefl-ﬁZo—structuresS that were

defined in Proposition (Ill.1)Those structures will then have zero structure tensors.

B) Real O(m)-structures— (K = R) LetG be the subalgebra of matrice/s}) 0L,
such that such tha# + A = 0;N is then the subspacetofl \V with coordinateg, such
thatt +t) = 0. Since, on the other hand:

m(m-1) m’ (m-1)

dimG= dimN = =dimP,

and in order to show thétis bijective, it will suffice to show tha&™ (0) = 0. Now, the
system of equations that defin&s (0) :

ti+t; =0, t;-t, =0

is Cramerian (cf., calculating the Christoffel syi#) and A* (0) = 0. Some
consequences are:

a) M =0. AnyO(m)-structureS admits a canonica&-connection with zero torsion,
namely, the Riemannian connection. Furthermor8, 8), for any groupG’ 0 O (m),
one will again havé/ "= 0, and so on fo&' =L, ...

b) Since any closed subgro@ O O (m) is compact, the subspave- [ P that is
invariant undefR (G) will admit a supplementV that is likewise invariant, and Theorem

(11.6.2) will apply to realG*~structuresS’. In particular, there will be ag-connection
whose torsion coincides with the structure tengsopand sincéd’, like A, is injective,
that connection will be unique.

PROPOSITION l11.8.1. +or any G-structure Sthat is subordinate to a Riemannian
structure, there exists @anonical S-connection whose torsion coincides with the
structure tensor. In order for the structure tensmbe zero, it is necessary and sufficient
that this canonical connection should coincide wité Riemannian connection.

C) LetSbe areal (K=R) or complex (K = @most-product structur& = KL (ny,
np). Employ the indicesr, B, ) ... =1, 2, ...mpanda’, B, ), ... =m+1, ...m+n.
Upon denoting a basis for"Kthe dual basis, resp.) f ({ f'}, resp.), G is the algebra
of matrices over K:

(*® A. Lichnerowicz p3], § 37.
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A O
0 B)’
and it will have {¢f =e, 0 f#; £/ =e, 0 f#}for a basis. Hence, there will be a basis

for N :
{e,0fP0fY e, 0fP0f e 0f 0% e, 0fF DOV},

and then fol = A (N):
{e,0fPOfY (B< ), e, 0fP0F e, 0fF0F" e, 0fF0F"(B<y)
V then has the supplemam which is likewise invariant und€ and has a basis:
{e,0fP0F (B'<y) e, D07 (B< )}

ts is then the tensor that is determined by only the compomgmst;'y of the torsion

tensor of no particular S-connectiori-rom [(13), 86], for a connection whose torsion
reduces tds, one will have:

dof =-m; Oof +1t] o 0o,
dof =-m, 0o +1t), o Do,
SO
" { dof =115, o 0o’ (moda’),

dof =it;, o’ O’ (modaf ),

which permits us to identify our structure tensathwthe “torsion tensor of the almost-
product structure” that was defined by G. Legrab8,[and the results of § contain
some of those results.

D) Now J be amalmost-complex structur@vith the notations of 8) (m=2n). CL
is not a complex Lie subgroup @fL,, , and our theory will not apply to the complex
CL®-structureS that determines7. One easily sees th&l® +iCL> = CL(n,n), and
since CL(n, n) is connected, the smallest structure of the fiistd to which S is

subordinate will be the complex almost-productcttice that it determines. Now, Ef
(X), (1) will become:

(2)

daf =4t7 00w (modaf),
dof"=1t) o’ D’ (modw™),

which is a relation that characterizes the “alnmstplex torsion.” It is then identified
with the structure tensor of thestructure that is defined kY.
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- . . - - —_ a HD — HD
It is meanwhile obvious that the single conditiofi, = t7 ., T, = tg, does not

suffice to characterize the tensdrsith values inP that are the torsions of an almost-
complex connection. However, we shall see timtthis very special casethe
supplementary conditions that were mentioned én @) are expressed simply.

Leti,j, k=1, 2, ..., 2 be indices, and Iexrji be the components of &+connection
71(in the canonical basis faZL, ). From the definition oCL,, 775, = 7;"= 0 andr;;

= ?[;. Since, on the other hand?” = «f , one will have:
27=daf +715 0¢f and E=daf”+ et Oef = 57

for the torsion. A first condition for a vectoriziform onE® (X) with component& ' to
be the torsion of ai$-connection is thenz® = 3% . The forms that satisfy this are
determined bijectively by the 2-for@ on E° (X) with values in € of vectorial type
(CL acts on €by way of the group that is isomorphic @k,) whose components are

59 =59 t3 has values iP, = C' O E(C2n )” (coordinated ) and typeRl(CLf;) :

On the other hand, if one compares the torsiontketwo connections then one will
gety'?—37=uf 0o, in which the 1-formai are the components af= 77’ 77in the
basis forCL,, . The formsu; alone determine, sinceug, = uz’= 0, ug; = @. They
also constitute the components of a 1-fainwith values inCL, and adjoint type that
admits an associated tensbon H with values inNy = CL, 0 C*" =C'0 C" O C™

and typeQ,(CL,), and one will havel = A Cky namely,u; = A7 o' + A5 @™, If Ny =

Byt

C" O C*™ O C* thenN; will be identified with the complex vector subspaf \; for

which A7, = 0. One will again have a projection4s : V1 - P (1, — t} -t7)and

the commutation relatiod; o NV1(g) =Ni(g) o A1 . Hence:

3) -3 = (A, 0+ Af L) Oaf
=145, -A5) ¢ D' - A of Dw”™,

which is further writtent ' —t> = A; o A (A1 is the restriction of4; to N;). One then

sees that the theory can be developed a$jrbgt in the converse sense. MoreoVYgrs

A (Ny) is the subspace d¥ whose equation is;, , = 0, which admits the invariant

supplementW whose equations argj,= t; = 0. One then finds that one has

£y0
established the:

PROPOSITION 111.8.2. -The *“almost-complex torsion” tensor t of an almost-
complex structure is nothing but the structure ¢en$or the szstructure that it
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determines. In order for a vectorial 2-formon the space E(X) of adapted complex
frames to be the torsion of an almost-complex connection, it is aegessl sufficient
that it should satisfy the two conditions:

1. (t2)a,. = tg

LOy0?
2. sa= 5o

One can get that proposition by a simple applicabbrirheorem (111.6.2) upon
utilizing the space aofeal framesE® (X). It seems more interesting to us to exhibit, on the
one hand, the peculiarities of an almost-complex giracamong the complet-
structures, and on the other hand, the kind of diffiesithat one will encounter for the
complexG-structures of the second kind.

E) For amlmost-Hermitian structurghat is defined by its space of adapted complex
framesé&® (X) O E® (X) (with the notations of 8), one will be in an entirely analogous
situation. While preserving the notations of the precedarggraph, the components of

a will be restricted by the supplementary conditbjn+u_f= 0, and those ofl will be

a B
By +AayD

restricted byA =0 (A2 +A%, =0) . From (3), one will then have:

S-57= 30 - A ) of O - A8 0f Do .

By

Without entering into the details, one will seetthi@e invariant subspacé of P; in
which t=' —t3 takes its values will have the equations:

a — vy _4B
tﬂy_taﬂD tayD’

a _O’

Byn™

and it will admit the supplementy, which will likewise be invariant and have the

equationt? .= 0. Hence, for any connection gh(X), the torsion:
Bya

4) >7=2af, o O +af o Dw"+1a, o D™
will admit the decomposition:

(5) 2= (X (2%,

in which:

(6) Ew = 3@, - a,+ &) e 0o +3 &, o "
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(Z%),, = 3 (@n- a0 o Do + & p0f D™,

Furthermore, since upon passing to real frames®i(X), one can apply Proposition
(11.8.1), one will see that one can recover thastexce of the second canonical
connection for an almost-Hermitian structure [whishthe unique almost-Hermitian
connection whose torsion tensor consists of omiyseof type (2, 0) and (0, 2)], and one
can state, more precisely:

PROPOSITION 111.8.3.4). — The structure tensor of an almost-Hermitian structure
can be identified with the torsion tensor of the second canonical connetti@nder for
a vectorial 2-form(4) to be the torsion of an almost-Hermitian connection, it is necessary
and sufficient that the teri(®) in the decompositio(b) should coincide with the torsion
of the second canonical connection of the structure. An integrable almositide
manifold is K&hlerian.

Indeed, one knows that the latter property is \ent to the coincidence of the
second canonical connection with the Riemanniamection.

F) LetG be the group that S. S. Chern pointed oujrof real matrices of the form:

(7) g= (u>0).

o O <
o L <
L O =

dimX = 3. Leti, |, k=1, 2, 3 beindices. L& be the subalgebra dé with equations
A = A =0, and leN = G 0 R® be the subspace &f with equationst), =t, =0. V=
A (N) is the subspace & with equationss), = 0. The supplementary subsp&ggwith

equationss’, =s!, = 0 is not invariant undeR (G). Forg 0 G ands O W, one will
have:

(R(9)9);, = 6° s (gH(g5 = 97 8l(g)3( g3 ¢ 8 993 §)3= 9" 8s;
i.e., if one identifiedM, with R® upon settingl ' = s,, then the quotient representatjon

in W, will be nothing but the representation®fas a linear group on®R The structure
tensor will then be a vector field.

(*) Cf., A. Lichnerowicz 2], § 112 114 and S. S. Cherri] and W. KlingenbergZ8].
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AUTOMORPHISMS OF A G-STRUCTURE

1. — Local automorphisms.

A) Image and inverse image of a G-structurelet X and X’ be differentiable
manifolds of the same dimensiom and letE andE’ (E © andE’©, resp.) be their real
(complex, resp.) frame spaces. (is a regular map (viz., of rank everywhere) oX
into X’then its tangent linear mag, at the poin will be an isomorphism of, with T,

(T.C with TS, resp.). Foe O Ex (ES, resp.):

1) A(2) = o2

will then be an isomorphism of'Ronto T« (C™ with T, resp.) andiz(z) O E;,, (E,;

X
resp.). Hence,z will be a map ofE into E’ (E © into E’©, resp.), and one will see
immediately from (1) that:

(2) f(zg) = (z)0y g 0Lm(Cly, resp.),
(3 Perofl=H o Pe;

i.e., i1 is anLqrrepresentation oE in E’ (a CL.-representation oE © in E’ €, resp.)
(Chap. |, 8): 1 is the prolongation of/to E (ES, resp.).

Let &’ (6, resp.) be the fundamental form BA(E, resp.): 48, T, > = <&, a7T,>.
Since 17, is tangent tde"at the pointiz(z), it will follow from (1) and (3) that:

<pO . T>=[2(2] e p(AT) =[pod ™ opo p(T) =77 pe(T) =<6, T.>,
namely:
4) 7o =e.

Conversely, (4) characterizes the representations E in E’ that are prolongations

of a mapu of X into X"
Let S (G, H) be aG-structure onX. The imagef(H) is not generally a PFSS,

because i/ (x) = ¢ (xo) then ZH, n fH, =0, in general. From Proposition (1.5.2), it
will nonetheless be true whenis a homeomorphism &f ontoX”. Indeed:
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1. g(H,) = gzo) = (2 05 if zOHy,x=pzOX

2. If ois a local section ofl onV theno’ = ficoo ™ will be a local section of
f1(H) on u (V), which is differentiable becausg and 4* are, as well, under our
hypotheses.

f(H) then determines & “structure S over X that isthe image of S under the
homeomorphisrnr. One will denot&s’= ¢ [0S

M is regular, as before, but not necessarily a homephism, so now let &-
structureS’ (G, H") be given orX”. The seH = U H, , in which:

() He = (4) 7" H,, xOX

(42, denotes the restriction off to H,) is a G-PFSS that is differentiable, from
Proposition (1.5.2), because:

1) Hy=z OGif z. O Hy, from (2).

2) If o’ is a differentiable section ¢4’ over U theno = (&)™ o0’ ou will be a

differentiable local section d& with values inH (it suffices to remark that is locally a
homeomorphism)H is the inverse image &f’ by £, and it will determine &-structure
S that is the inverse image ofu®idery. One will note tha= 1/ S’andH = ¢/ H’, soH

is, moreover, the inverse imagehbfin the sense of the theory of fiber spaces. Hence,
particular, any covering of a spaceé that is endowed with &-structure will be
canonically endowed with@-structure that is the inverse image. f4f is the restriction

of fz toH then &, will be a representation &f = £/ H’onH’and one can deduce from
(4) that:

(5)[sic] Ay = @

Finally, it follows from (5) that ifS’"is determined by V¥, , 6}, in which {V,} is an
open covering oK that is endowed with a distinguished cofrafje thenS = 1/'S’ will
be theG-structure orX that is determined by 4™ (V.), 1 6x}.

Wheny is a homeomorphism, the relatiobs= ¢z 0SandS= /'S’ will be equivalent,
and the preceding remark will permit one to deteay.

B) Let X andX’be endowed witls-structuresS andS’, resp. Anisomorphism of S
onto Sis a regular differentiable homeomorphigiof X ontoX’such tha S=S’.

An automorphism of & an isomorphism d onto itself.

If U is an open subset ofthenHy will be aG-PFSS ofEy and will define theG-
structure § that is induced by S on (if i is the identity mapp) — X thenS, =i'9). A
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local isomorphism of S onto” &ith sourceU and targe¥ (U is open inX, V is open in
X’ is an isomorphism d& onto §,. Two G-structuresSand S are locally isomorphic

if for any pairx O X, X' O X", there exists a local isomorphism®bnto S’ whose source
containsx and whose target contaix's

One defines alocal automorphism of Ssimilarly. The setl(§ of local
automorphisms constitutes @seudogroup of transformations of*%).

Finally, recall £) thatSis calledlocally homogeneout I (S) acts transitively ofX
andisotropicif the prolongation” of I' (S) acts transitively on each fibek of H. It will
then be locally homogeneous and isotropi€ ifacts transitively on any. By abuse of
language, we say th&iis transitive.

A first-order transitive Lie pseudogroupan be defined?{) to be the pseudogroup
(S of local automorphisms of a transitive r&@sktructure, or more restrictively?, as
the pseudogroup O (S of analytic local automorphisms of a re@kstructureS that is
itself analytic. We shall adopt the former definitionth the understanding that certain
converses will not be true when the givens are analyt

C) Transitive G-structures.

PROPOSITION IV.1.1A transitive complex G-structure is equivalent to a real one.

Let f be the prolongation of a regular, locally-differebt&ahomeomorphisrhof X.
If z=2 0,z 0E, | OCLnthen f(2) = f(z) 0, where f(z) OE; i.e., ifz0 E O then
f(z)OEDO. LetSbe transitive, while, O H is fixed andz 0 H is arbitrary. Hence, i

OEO,zOEO, andH O E O then there will exist O I'(S) such thatf(zo) =z Thatis
equivalent taH 0~ O E, and establishes the proposition.

Now, letS’be equivalent t& (H'=H O) andx O T (S . Z(H,)=Hyvand H, =
H, O implies that:
A(H))= a(H,)O=HvO=H, ;

e, 0TI (S. Hence:

PROPOSITION IV.1.2. Fwo equivalent structures admit the same automorphisms,
so in particular, they will both be transitive.

One can say that é&structure J is transitive if aG-structureS 0 J (G O C) is
transitive, and that property will be independent of thesen representati

(*3 For the definition of a pseudogroup of transformatioes,®. Ehresmann or S. S. Chedh [
(*® P. Libermann19.

(*Y) Y. Matushima 24].

(*® C. Ehresmannif] and P. Libermannif].
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It follows from Proposition (1V.1.1) that the automorgms of a transitive complex
G-structure are those of a re@tstructure. From that standpoint, the introduction of
complex G-structures will not bring anything new with it, and in wHatlows, a
transitiveG-structure can always be supposed to be real.

Proposition (1V.1.2) admits the following partial comses:

THEOREM IV.1 €. —Let S be a G-structure and lett® a G-structure that admit
the same local automorphisms:

a) If S is transitive then it will be subordinate tg & the large sense, and
consequently, G will be conjugate to a subgroup 6f G

b) If S’is also transitive then’@nd S will be equivalent.
c) If G’=G then Swill be associated with S.
Indeed:

a) Letz z 0OH (viz., the space of distinguished frames3»n There exispp [ T(S
such that@(z) =z andl O CLy, such thatz =z OH". Sinceg O I'(S), one will have

#(Z)= (200 =2z 0 OH". Hence, for ang [0 H, one will havezy 0 OH’; i.e.:
(6) H' OHO.
Sis subordinate t8’in the large sense and that will imply tigt0 1™ 0G 0.

b) If S’is also transitive then one will deduce frajrthatH 0O H’0~, and when that
is compared with (6), that will yield’=H 0 andG’=1" 05 [.

c) If G’ = G without supposing tha®’ is transitive then (6) will imply thaG’ O
I [G I, sol ON (G) andS’ will be associated witHi.

That theorem shows, in particular, thdt ils a first-order Lie pseudogroup then all of
the G-structures with the aid of which it can be defin@t be equivalent, or furthethe

first-order Lie pseudogroups correspond bijectivielyhetransitive C-structures.

2. — Propetrties relating to the structure tensor.

A) Let S(G, H) be aG-structure or¥, let i be a regular map ofinto X’, and letS=
S’ (G, H’) be the inverse image &fby 1. Let iz also denote the restriction @f to H.

It is aG-representation dfl“in H, and if 77is a connection form oH then &7 = ' will

(*°) D. Bernard 4].
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be (Chap. Il. 8) a connection form oRl’". Let wand «w be the fundamental forms &h
andH’, resp. With some self-evident notations:

> =dw+ iy

Y =dw+ W' = d(f{w) +(@m i w),
from [(4), 81], so:

(1) > =%

Upon passing to the associated tensors, (1) will become:

(ts) e = [P((t ) Eﬁﬁa}j ,
namely:

(t) Dﬁa] = (1'ts) Eﬁja% = (1'ts) Eﬁﬁai,
which is equivalent to:
(2) t> = g3,
Finally, if a (Chap. Ill, 86) is the projection oP ontoM then:
ts=ay =aits = pads) = i, .

PROPOSITION 1V.2.1. # S’is the inverse image of S underthen its structure
tensor ¢ will be the inverse image aflty f7:

(3) U= ot

If one applies that proposition to the local aubophisms of &-structureSthen one
will see that ifSis isotropic at thents will be constant orH, . If S'is transitive therst

will be constant on H.

DEFINITION IV.2.1. —A G-structure S is called most-transitive if it has a constant
structure tenso*’).

B) Almost-transitive G-structures. Cartan conditionslf Sis almost-transitivehen
the constant valueof ts will not be arbitrary inM. In particular, ifts is a tensor of type
AG) thent must be invariant under (G).

(*") Those structures are called “integrable” by S. SereHp] or Y. MatsushimaZ4], as well as by the
author in P] and ).
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Example~ LetSbe arzstructure with the notations of (Chap. 11178C). One has:
(P(9) D%, = g2 t5, (g5 (g, g0G.

If one takesg such thatg®= AJ®, g%i= d% then one must havéo(g) 0%,
Atz . The conditiono (g) t =t then demands thattg, = tg, for any/, sot = 0. An

almost-transitivesestructure is necessarily almost- mtegrable (hence, integrable)at
result applies to almost-complex structures, in paeidef., [9]).

The latter condition is not also sufficient. Somgcessary — and in certain cases,
sufficient — conditions fot 0 M to have the same value as the structure tensor of an
almost-transitives-structure have been determined by E. Cart@nhaiid [7]). We shall
briefly recall them and then interpret them.

Let W, be a supplement t¥: The c‘jk, which are the components of the natural

projectionc = q (ts) of ts ontoW (Chap. Ill, 86, D) in the basis o, are constants here.
We have seen that there exist form$ on H that satisfy the structure equations [(15),
Chap. Ill, 86], namely:

(4) dw' = a o O7° +1d, o 0 .

The formsr’”, along with thew', constitute a basis fof’ at any pointz 0 H; one
will then have:

(5) dr'’=1ys n? On" +uf n° Dd +4v o O |

in which y2=-y~, us, vw=—- v{ are functions om. By exterior differentiation of

g’ Vi

(4),d (dew') = 0 will give:

(6) aijr qja_qa dr: ya[']ralip’
(Cl) in L+ ap ¢n + ahp t‘\[I a‘rjnau;rl - qia u;m’
(CZ) Cipk Clpm+ d'pl C:’|k+ épm de: allp% + 81ip\(1)1k+ % \il'

Since the relation (6) is nothing bt [ &] =y, ¢,, the first equations are always
compatible, because the’ are the structure constants of the Lie gr&m the basis

{ &3
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DEFINITION 1V.2.2. —We say that [ M satisfies the&Cartan conditions relative to
the group G if the relationgC,) and (C,) are compatible for a basis, = (a‘jp) on G,

while thec‘jk are the components ofq (t).

As we have seen, a necessary conditiort forbe the structure tensor of an almost-
transitive structure is that(G) t =t, so ifA 0G then p(A)t= 0, namely, since=a [T:

) o)t =0, A0G.

Sincea o R (g) = p(g) a (g0 G), one will also haver - R(A) =2 (g)° a, and (7)

will be equivalent toa R(A)c=0; i.e., R(A)cO V. SinceV = A(N), that condition can
be expressed as follows: There exist€&nhN such that:

(8) R(A)c=A(d.
Now:
(ﬁ(A)C):m: A} m:llm _Cijm m|j - ¢j mrjn = A} Qin +A|j dl'nj +Arjn éjl )
and (8) can be written:
9) A} Clin+Adelnj+Arjn éjI: a':‘npglp_a;p nfwy’

in such a way that equationS;{ are nothing but that condition (9) when it is bgxbto
all of the elements, of the basis foiG. (C,) then expresses the idea tha{1)t = 0 for

anyA O G. That interpretation is not essentially differénatm the one that was given

by E. Cartan in§], 8 36, but it can be expressed more simply thanks tontite®n of
structure tensor.
Now, letQ be the curvature of &connection. It is a tensorial 2-form with values

G, and ifR=1tQ is its associated tensor with valuesdii ﬁRﬂ then one will have:
Q=R DE ]
The component®” of Q in {£7} are then:
Q°=1R o O

(R? are the components B), and since = &, 0 Q°, one can deduce the components
of Q in the canonical basis fdr, :
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(10) Q/=a,0’=1a, R o Od".

J

As always, we lef be a transitives-structure and address the case in wighis
invariant underR (G), in such a way that there will exist (Theorem IR6an S

connectiony such thatts = ts (= constant). We seek the explicit form for theriihi
identity for that connection:

(11) 02 =Q Ow
The two sides of (11) are tensorial 3-forms whose c@t®nl tensors must be

calculated.
For the right-hand side, one will have:

QW' = Q, 0 = 15, R, 0" Odf
1 . .
= 5@, R+ d, Rt 4, )& 0 0,
namely:

(12) (t(Q |]‘)))iklm: ali<p Rﬁw + 4;) F§k+ am RI'

For the left-hand sidg, [0Z is given by Proposition (ll1.5). Nevertheless, foten
(21) can be simplified, sind2 is constant, s®Z =t[Jt > = 0. The components o =
tsare denoted by, , as always, so one will alst), = - 2S, , and formula (21) will give:

(13) (tDZ)ikIm = Cijk qjm + dn ¢nk + t}m d;l’
in such a way that the Bianchi identity (11) can be @mitt
Cic G ¥ G Guet 6o & = 8, R+ 4, Rt 9, R,

which shows that equation€4) are necessarily compatible ' and admit the solution
V2 = RY. We state the:

PROPOSITION 1V.2.2. The Cartan conditior{C;) expresses the invariance of t
under p(G) and can be writterp(G) [ = 0. Under the hypotheses of Theorem (111.6.2),

the condition(Cy) is simply the translation of the Bianchi identity terms of the
associated tensor.
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3. — Involutive analytic G-structures (*°).

A) Let S (G, H) be an almost-transitive analytig-structure, and lep/ be a local
automorphism o8 with sourcel and target/, while U is restricted in such a way that it
can be endowed with local sections. fifdenotes the prolongation gpfto H, while

and ay denote the restrictions @dto Hy andHy, resp., then will havel'w, = ay from

[(5), 81]. Letsbe a sectiot — Hy, and letf be the mapJ — Hy x Hy, X — (g (X),
f(o(X))). Hence:

f' (@w-w)=0w-0"fw=0(w-iw) =0,
sof will then define an integral manifold of the Pfaffstem:
(1) w =y or A, = (i=12,..m),

which is anm-dimensional integral manifold “that does not imluge any relation

between they, ” (or “with independent variableé ” that are the local coordinates)f
Conversely, such an integral manifold is identifley a mapf : U - Hy x Hy, X

- (o (X), g(x)) such thaf " (aw — a)) = 0. That, in its own right, defines a mapU —

V, £ =p o g, which one easily verifies to be a local autom@aphofS
The system (1) is closed by adding the equations:

daf, = dad,,
namely, from (15) (Chap. Ill, 8) and the hypothesis of almost-transitivity:
a,w 0m’+1¢, o Odf =d, « 07 +1¢, o, Odf,
which are equations that can be written:
2) a,a O(7f - 7f) = 0

when one takes (1) into account.
The involution criteria show that the involutior the closed system (1), (2) with

respect to the independent variabtgs..., X" depends upon only the coefficiealt , and

P
even that it depends upon on®, and not upon the particular choice of the basis
(a‘j ,)- When those conditions are realiz&lwill be calledinvolutive. A G-structure S

is involutiveif G is involutive.
One can then give the following statement to Et&es third fundamental theorem:

(*®® We shall not recall the theory of differential gyss in involution, but only refer the reader & [
[8], and P].



Chapter IV — Automorphisms of@-structure. 95

PROPOSITION 1V.3.1. (E. Cartan). G is involutive then the Cartan conditions
will be sufficient for there to exist an almost-transitive anal@tstructure with structure
tensor t.

One see from the criteria, moreover, thak ifs involutive then its conjugates in,
will also be so, in such a way that one can speakvolutive C-structures,or involutive
Lie pseudogroups.

B) LEMMA IV.3. — If G is involutive then if S and’&re two almost-integrable G-
structures such thakt= ts' then there will exist a local isomorphism of S ontdh&t
maps an arbitrary distinguished frame z on S to an arbitrary distinguishee fZaon S.
In particular, those structures are locally isomorphic.

Indeed, while preserving the notations of A), the deternwnatf such a local
isomorphismy amounts to the determination of an integral manifoltidionensionm
with independent variabled ” of the closed system (1), (2) that passes througlpaire
(z, Z). Since that system is in involution with respecthi|x ', because it does not have
finite equations, any paiz(z) [ Hy x H,, is an integral point, and since the system of

forms o], -, is everywhere of rank, it is a regular integral point, and that will suffice
to confirm the existence of our integral manifold. Wé thien deduce that:

THEOREM IV.3. . — If G is involutive then an analytic G-structure S that is
almost-transitive will be transitive, and an almost-integrable onkbsiintegrable.

The first assertion is an immediate consequenceeofémma. On the other hand, let
S be almost-integrable. Th&-structureS’ that is defined on Rby the PFSH’ =
{R G ,yOR", inwhichR, is the natural frame gtwith the canonical coordinatgsis

integrable and analytic. Sint¢e=ts = 0, the lemma shows that for ary] X, there
exists a local isomorphisfin. U 0 X — V O R™, in whichx O U. Hence, if the coframe
dy = {dy} is distinguished foiSthen the coframé = f “dy will be distinguished fo&. Its
components will bed' =f 'dy =d (f'y') = dZ. If f is a regular differentiable
homeomorphism then the functions=f 'y will be local coordinates od. & will then
be a natural coframe for the distinguished local cootdanS, which will then be
integrable.

All of the cases of the integrability of analytiarast-integrableG-structures that
were encountered up to now are included in the applicatibtiedatter theorem, since
their groups are involutive: e.g., almost-product structuadsjost-complex ones,
example F), Chap. llI, 8, almost-symplectic structure¥)(

C) Locally-similar Lie pseudogroup€?). — LetL be the subspace of00 M that
satisfy the Cartan conditions for a certain gréupl L, . If Sis almost-transitive then

(* D. Bernard ?] and .
(% G =Sp(m, R). Cf., P. Libermanrip].
(Y Results of?], up to presentation.
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from formula [(1), Chap. Ill, §], the same thing will be true for any equivalent struestur
viz., it is a property of thé€-structureZ. In particular, all of th&s-structuresS’that are
associated witts are almost-transitive, and Eheir structure tensers L belong to the
same intransitivity class &fl under the grou = p(N(G)) (Chap. I, 87, A).

Conversely, leS (G, H) andS’ (G, H”) be almost-transitive structures gnand X’
such thats = ts moduloG™. Letn O N (G) such thats =p(n™)ts. If S”(G, H”) is
defined byH” = H [h then one will havés = p(n")ts =ts , and if one supposes that
is involutive then, from Lemma (IV.3%” will be locally isomorphic t&”. One can then
say that the conditioty = ts moduloG’ is necessary and sufficient f8ito be equivalent
to a structure that is locally-isomorphic$6 Nonetheless, the result will become clearer
when one expresses it in terms of the pseudogios) andlr (S = G S”).

Indeed, lef : U - V be a local isomorphism & with S”. Letl'y (I'y, resp.) be the
restriction ofl (S to U (of I'(S") to V, resp.). Ifg O Iy then its transmutatioy =
f ogo f™ will be a product of local isomorphisms @fstructures$’ - S” - S” - S'),
so it will be a local automorphism & : ¢ O I',,. One deduces thdt, =f oIy o f*
from this. By analogy with transformation groupse says thaty and I, are similar
and that:

DEFINITION IV.3. — Two pseudogroups of transformatiohson X, “on X" are
locally similar if for any pair x[0 X, X [0 X’ there exists a neighborhood U of x and a
neighborhood V of'xsuch that the restriction’sy and I', are similar.

If SandS’ are locally isomorphic then one will see thd® andl'(S”) are locally
similar. ts=ts moduloG’ then implies: (S is locally similar to (S’).”

Conversely, leSandS’be two almost-transitive-structures such that(S) andrl (S)
are locally similar. If : U - Vrealizes the similarity dfy and I', then theG-structure

onU — namely, f"S, — will admit the same local automorphismsSas; it will then be
associated with it (Theorem IV.1). One then dedubatts = ts moduloG'. If one calls
ts (or the components‘jk of c = g (tg)) a “system of structure constants faiS” (E.

Cartan) and the intransitivity class fmoduloG™ the “family of systems of structure
constants fof (§” (Matsushima 24]), or more simply, theharacteristic familyof (S
then one can state:

THEOREM 1IV.3. — In order for two first-order, transitive, involugv Lie
pseudogroups to be locally similar, it is necessang sufficient that they should have the
same characteristic family.

One deduces from that theorem, along with Thedi¥m) and Proposition (1V.3.1),
that:

COROLLARY. —The first-order, transitive, involutive Lie pseudogps correspond
bijectively to the pairs that consist of a classohjugate involutive linear groups and an
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intransitivity class of L under Gwhen a representative G has been chosen from each
class.

Example.— Letm = 3, and letG be the group that was indicated in paragraph F),
Chap. Ill, 88. We have seen that one can choose the supplemeritV in such a
fashion that = q (ts) has components' = ¢, (i = 1, 2, 3) and), = ¢/, = 0; i.e., that the
structure equations are:

do'=r0d+1' F0d.

The Cartan condition 8" = 0. L will then be a two-dimensional subspaca\vith

coordinatesi?, A°. N (G) is the group of matrices:

a B vy
n={0 g y (detn# 0),
0 p Y

andp (n) acts orL by:

SR o227, e 2y 2 |

By-vB BY -yB
Formulas (3) define the group’. There are only two intransitivity classes with
representativesy = (0, 0) anct; = (1, 0).

Co corresponds to the Lie pseudogroups that are locallyasito the pseudogroup
that acts on Rand has the finite equations:

X=f(x), Y=gX+y, Z=hX +z

(f, g, h are arbitrary analytic functions).
c1 corresponds to the Lie pseudogroups that are locallyasito the pseudogroup
that is defined in the half-spage> 0 of R by the finite equations:

X=f(), Y=g(0D, Z=gXZ+h(x).

4. Infinitesimal automorphisms.

A) Lie derivatives— Letn be a vector field or infinitesimal transformatian.j on X.
The local one-parameter group of transformations thdétiermines will be denoted by

exp t7) (33, and the Lie derivative with respectipby £ (7).
If ® (@, resp.) is a form oX with values inl (M, P) (M, resp.) (Chap. I, &) then
sinceL (n) is a derivation of degree zero on scalar forms, dhe&e immediately that:

(9 In all of this paragraph, the definitions of the niotas that are not specified completely here can be
found in A. Lichnerowicz23].



98 On the Differential Geometry &-structures

(1) L) (@)=L (n) @)+ UL() P).

Just as a transformatignof X has a prolongatioriz to E (X) (cf., 81), similarly, an
i.t. non X will have a prolongationj to E (X). It can be defined by:

exp (t7)= (exp 7))
and will consequently satisfy:

(2) poexp(tg) =exp€n) op
SO
(3) LGP p’=poLMn).

If ® is a tensorial form ore (X) then the formZL(/7)® will be called the “Lie
derivative of® with respect tay,” and is often denoted bg () ® . (We shall avoid

using that notation.) Lefl, be a coframe ok J X. It is a 1-form orJ with values on
R™ L (n) &, is also a 1-form with values orl"Rhen, in such a way thatz is the frame

dual to &, then(L£(17)8,), ° Z, (X will be an endomorphisma, (x) of R" and:

(L(7) Q)x=au (¥) 2,(X);

i.e., there will exist a functioay : U - L, such that:

(4) L(n) &=ay K.

Conversely, the local functios, determines the transform of the cofraeby a
finite transformation of the one-parameter growgt th generated by :

© (exp (1) @) = (exp] 2, XV dr| T,

in which x (7) = exp (/) Ox and in which the exp in the right-hand side desidbe
exponential representati% - Lm.

Let gy be the function oky with values inLy, [ L, that is defined by the local chart
that is associated withy : z=2zy (p2 Ogu (2 forzO Ey . If g.* is the functiornz

(gU (z)’l) then one will have the following representatiortted fundamental forré for
E(X) inEy:



Chapter IV — Automorphisms of@-structure. 99

(6) 6= g;'[p'B,.

Now, it follows from 78 = 8[(4), 81] that £ ()& = 0, and upon applying (1), (3), and
(4), the Lie derivative of (6) will give:

LMNO= LMY+ (Pa)] P8,

SO

) LM =-9,(Pa)
and

(8) L9, = (pa,) Y, .

Let ® be a tensorial form o& (X) with values in a vector spat&and typeR(L,,) .
One will then have a local representatioroih Ey that is analogous to (6):

9) ®=R(gH)PpP,, inwhich Py=27 .
One deduces from (7) by a simple calculation that:
(10) L@7)(9r) =-R(g;HR(pa),

and then, from (9), that:

(11) LA P =R(g;") P1LMN) D, -R(a) [®D,],
namely:
(12) (L7 D), = L) P, ~R(a,) [,

Finally, if 77is a connection form ol then one will have:
(13) = (adg;") [p 7 + g)* Mgy
locally in E, so one will deduce that:
(14) L@ m=(adgy) I [L(7) 7 + [/, au] + da]

by a calculation that involves only formulas thadrerestablished already, in whigth =
z, . That exhibits the tensorial character®7) 77, and can be written as:
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(15) (L) my=L(n) m+ [, a] +day .

B) Infinitesimal automorphisms (i.a.) of a G-structure-$Ani.t. of X is ani.a. of Sif
exp ¢7) is an automorphism &for anyt for which it is defined. Ity is a distinguished
coframe ofSonU then the functiomy with values inﬁ that is defined by (4) such that

L () ay =ay ay will take its values inG. Conversely, from (5), &y has values irG

then exp (77)  aw will be a distinguished coframe 8fand# will be ani.a.
Among theG-structures that we have considered are (Chap. ) tlge ‘G-structures
that are defined by a tensor.” Upon recalling those wotsitiwe shall establish the:

PROPOSITION IV.4.1. # S is a G-structure that is defined by a tensontE (X)
then in order for to be ani.a. of S, it will be necessary and sidfit that£ (7)t = 0.

Indeed, from (12), one will haveC (7)t), = £ (/) tv =R (a,)t, in an open subsat

[0 Xthat is endowed with a distinguished coframeof S Sincewy is a distinguished
coframe,ty = u will be constant, andC (/) tv = 0. In order to haveC (7)t= 0, it is

necessary and sufficient then théi(av)u: 0. Now, in order for that to be true, it is
necessary and sufficient that(x) [ G i.e., thatr should be ana.. Q.E.D.

That shows, in particular, that there is an idgriietween the infinitesimal isometries
of a Riemannian structure and itee of theO (m)-structure that it determines.

Let G be the group of matrices[y (A real > 0,g 1 G) and letS be theG -structure
that is an extension & An automorphismi@., resp.) ofS can be called aonformal
transformation (infinitesimal conformal transformation, or i.G.tresp.) of S In
particular, a conformal transformatignis a “homothety” if there exists ah[J R such
that for any distinguished coframm, of S, (1 /1) i ay will again be a distinguished
coframe ofS In order forn to be annfinitesimal homothety- i.e., in order for exptf)
to be a homothety for arty- it is necessary that, =k | + ay , auy (X) OG. From (5),
that will suffice, because one will then have:

[[a XD ar=ktl+[ a[xD)]dr=kt I+ (x 1), B (1) OG,

and expKt 1+ 4, (x, 1) = e Cexp B (X t), sincekt | and, (%, t) commute. One will
then have:

(exp t 7)) )y = e Cexp (X D(aw)x, inwhich expf (x, ) 0G;

i.e., & O(exp ¢ 1) w) will be a distinguished coframe amgwill be an infinitesimal
homothety.
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The definitions that were given here again coincide wWigh usual notations in the
Riemannian case.

Let S’= SO be aG-structure that is equivalent ® If a is a distinguished coframe
of Sthendj, =17" Ouwy will be a distinguished coframe 8f For ari.t. 77, one has:

L) af, =™ DO (7) ap =1 Dy Oy =17 Chy O O -
IfayOG (C_§, resp.) then™ Cay O DQ’(@’, resp.), in such a way that there will be
an identity between thea.’s (i.c.t’s, resp.) of the structuré&sandS’; they are thea.’s
(i.c.t’s, resp.) of theC-structure that is determined ByandS” The same thing will be

true for infinitesimal homotheties.
If S”is an extension ddthen anyi.a. (i.c.t, resp.) ofSwill also be an.a. (i.c.t., resp.)
of S The converse is obviously not true, in general, aadd one to pose the problem:

P; : If S is subordinate to ‘$hen under what conditions can one assert thatarof
S’will also be ani.a. of

If the G-structuresSfor a groupG admit a canonica-connection of the formg (i.e.,
such thatiz"rr, = 7& for any isomorphisru of aG-structureS on theG-structureS’) then
ani.a. of Swill be an affinei.t. of 7&, since exp(t/) "= 7& implies that L (77) 7z,= 0.

The converse, which is generally false, even wheretégists a canonic&connection,
poses the problem:

P, : If yis an S-connection then when will an affine at.jfbe an i.a. for &

These two problems, which are well-known in the a#sihe orthogonal group and
some of its subgroups (cf23]) have been studied under very general hypotheses by R.
Hermann (L6 and [L7]). We shall conclude by recalling Hermann's method and
deducing some results from it that are generally broadsrope than his are.

C) Hermann’s lemma- LetG 0 G’ L, be subgroups. Suppose tkais reductive
in G, and letG'= G O M be a direct sum decomposition, where @GjiNl [0 M. LetSbe

G-subordinate to & -structureS’, and letn be ani.a. of S. If ay is a distinguished
coframe ofS then its Lie derivative will beC (7)) ay = ay Oay . Decomposey

according to:
ay=buy+ocy, bu(X)0G, cu (X) OM.

PROPOSITION IV.4.2. —
1. The ¢ define a tensor C of adjoint type — i.e., a fiefdendomorphisms of the

tangent space to X — whose vanishing is the negeasd sufficient condition fag to be
ani.a. of S.
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2. If nis an affine i.t. of an S-connectign moreover, then C will have a zero
covariant derivative undey.

If the change of distinguished coframe $fs defined inU n V by ay = Myy Wy
(whereMyy is a function orH n V with values orG) then the functiomy will transform
into ():

av = (adMuwy) au +i (1) (AMuy (Muy) ™),
S0, upon taking the parts on both sides that have thieies inM :

cv = (adMuyy) cu ,
which proves the first result.
If nis an affind.t. of theS-connectionywith the formsrthen upon taking the parts of
the two sides of the relation (15) that have theine@alinM, one will get:

[ 71, cu] +day =0, ie., C)u =0,
which establishes the second result.
D) In regard to Problem P we shall establish the:
THEOREM IV.4.1. t%). —If G a subgroup of @m) and S is aralmost-integrable G-
structure on X then there will be an identity between the infimedsisometries of the
Riemannian structure that is defined by S and the i.a.’s of S in tbeifa cases:

1. Xis compact.

2. X does not admit a 2-form with zero covariant derivative; for examfles
irreducible and does not admit a K&ahlerian structure.

3. Xisirreducible and Kahlerian with non-zero Ricci curvature.

4. X is complete and there is at least one point where it admits a nonetage
Ricci curvature.

G is reductive inO (m) for the decompositiorO(m) = G + M, whereM is the
orthogonal complement t& in O(m) for the metric that is defined b&a'l)tﬁaq") =
Za'ij a;i . If Sis almost-integrable then it will admit &connectionywith zero torsion,
i

which will then induce a Euclidian connection with zercsimm; i.e., the Riemannian

(3 i (17) ® denotes the interior product of the fofmwith the vector field;.
() Theorem 5 of17] gives only the result that X is compact then the second Betti number will be
zero.
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connection. If an infinitesimal isometryis an affina.t. for the Riemannian connection
then it will be an affine.t. for g, and one can apply the lemma to it.

Let ay be a distinguished coframe &fon U O X, and keep the notations of the
lemma. We must show the vanishing®iéinder the various hypotheses.is a tensor of

adjoint type with values itM 0 O(m) with antisymmetric component§!, and aj =
O C}‘ are the components of a 2-foamwith zero covariant derivative (sin€g = [1C =

0). That proves the theorem under hypothesis 2). (Farxample, see A. Lichnerowicz
[22], pp. 266). Under the hypotheses 3) and 4), any 2-form ith @ovariant derivative
will determine an element of the Lie algebra of thenbgeneous holonomy group (cf.,
A. Lichnerowicz P2, pp. 250 andZ3], pp. 104), s&Cy (x) U o, (, U G, sincez, (X),

which is the frame dual toaf)x , is a distinguished frame & andCy (X) 0 G n M
implies thatC = 0.

We shall now address the compact case and utilize dl@wing abbreviated
notations:c) are the components @, , 77‘J are the components af, = z, 7 (rTis the

connection form fon), a‘j (C!, resp.) are the componentsapf (Cu, resp.). Ifrris the
Riemannian connection then one will have:

(16) 7+ 17 =0,
(17) dow'+ 7 0w =0.

Now, £ (1) ay =ay Oy ; 1.e.:

(18) di (7) &' +i(n) do'=a o,

buti (17) @' = ' are the components gfin the basigy (), and (17) will then give:
i () da' + ( (M) 7)) o' - m*=0.

(18) then becomes:

(19) ayw=dp'+ nn -(mm)e =07 -in)7)w

so one will deduce that:

(20) a =0,n-imrn.

First of all, the fact tha is an infinitesimal isometry is equivalent to sayihgtia,
0 O(m), and thus, toa; +g = 0. Since(i(7)7;)0 O(m), one will recover the

necessary and sufficient condition fpto be an infinitesimal isometry:
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(21) 0,7 +0,7'=0.

On the other hand, i#is anS-connection andw, is a distinguished coframe f&
then (i (/7)nj.) [0 G. One will then deduce from (20), with some notations shauld be

obvious, that:
(22) Ci =@y =7
Let the vector fieldf = C 0y have component§' = ¢/’ inzy (X) ; then:

Oié'=c/(0n'), since Oc =0,
and from (21): _
Oi ¢ == ci(0;7) ==2.¢/(g +(0; 7)),

namely, from the orthogonality & andG
Oi é'=->(c))’ ==
i
If X is orientable an#l is the volume element then one will have:
- i - _ 2
O—J'X(Dif)v = jxc v <0,

which demands tha? = 0 andC = 0. The proposition is then proved. One campdhe
hypothesis thaK must be orientable by possibly passing to thentalde covering oX,
when it is endowed with the inverse images of thectures.

One can also deduce our theorem from a studyeoKdstant group that is generated
by 77 (cf., A. Lichnerowicz 23)).

E) In regard to the problemP

THEOREM 1V.4. f G is reductive in | then let X be endowed with a G-structure S
and an S-connectiowr whose holonomy group is irreducible under the demjpield.
Any affine i.t. forywill then be an infinitesimal homothety of S. Bwrer,7 will be an
i.a. of S in the following cases:

1. Gis invariant under homothe(f; =Q).

2. X is compact, G is unimodular, apdhas zero torsiof™).

(*® The last case of our theorem was the object of studiheorem IV of 7] under some slightly-
different hypotheses.
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If the tensor fieldC has a zero covariant derivative then the opei@tdhat it defines
on Ty will belong to the centralizer afx (viz., the homogeneous holonomy group) in the
algebra of endomorphisms ©f (cf., [22], 8 54). Leth I ¢ (i.e.,h OOC, = C, [h), and let
v O Tx be a proper vector @y for the (real or complex) proper valkeandEy is the
space of proper vectors for the proper v&lu®©ne has:

Cxv=kv and C, (hv) =h CGv =hkv=khv;

i.e., v 0 Ex implies thathv O E¢ . Ex is invariant underys , and as a result of the
irreducibility, Ex = T.°. Cxv =k vfor anyv 0T, andCx =k (v) O (x). If C has zero

covariant derivative then one will ge(x) =k, which is constant oK, andC =k 1. One
will then haveay =by +k I, by O G; i.e., 77 is an infinitesimal homothety.

If G is invariant under homothety (i.efaz G), moreover, the® =k | will imply that
CO G;ie.,C=0,andnis ani.a. Finally, if G is unimodular thety, [0 G will imply
thatby = 0, and consequently, thatdy = tr Cy = mk By a calculation that was made
before [formula (20)], the vanishing of the torsminywould imply that:

a =00 -i(mm,
in which 7zis a form with values ifG , tr 7= 77 = 0, and one has & = [ n';ie.

(23) mk=0; ;7.

X is orientable, sinc& is unimodular. Hence, if it is compact ands the volume
elements then the integration of (23) will yield:

ka'Xv = J'X(Din‘)v =0,

sok = 0. One then infers th& = 0, in such a way that will be ani.a. Q.E.D.
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