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 The theory that Laplace proposed in order to explain capillary phenomena was 
vigorously criticized by Poisson.  The objections of the celebrated geometer led him to 
propose a hypothesis that was not generally adopted, and which possibly still leaves 
many difficulties, moreover.  Meanwhile, one must recognize that those objections have 
some basis to them and that there is an obvious contradiction in the manner by which 
Laplace envisioned the question.  The hypothesis of an incompressible fluid whose 
disjoint molecules act upon each other according to a function of the distance is indeed 
impossible, mathematically speaking.  However, it will suffice that this hypothesis, 
although not rigorously exact, is very close to reality in that its consequences agree with 
experiments.  I shall add (and it seems that this simple observation had escaped Poisson) 
that Laplace, despite his inexact hypothesis on the incompressibility of fluids, had 
proposed a question that is not absurd from a mathematical viewpoint.  The introduction 
of force, which he called “pressure” and whose value is determined precisely in such a 
manner that it does not change the volume, will indeed permit one to regard the fluid as 
incompressible.  It is quite true that in a compressible, physical fluid, that pressure cannot 
be distinguished from the resultant of the molecular actions and must be calculated, as 
Poisson had often remarked, by means of the function that represents it.  However, from 
the abstract viewpoint that the geometers assume, that function will define a force that is 
different in nature from the ones that one often introduces into mechanics under the name 
of constraint forces, and which in each case can give rise to analogous objections if one 
contests the right to introduce a question into the statement that involves the notion of 
rigid bodies, fixed axes, etc.  In a word, if one refuses to replace a question of physics 
with an abstract question that is analogous to it, but not identical. 
 The principle of virtual velocities, when applied to a system that is defined in an 
analogous manner, will permit one to avoid that apparent difficulty that comes from the 
constraint forces, which will acquire a new force in the theory of capillary phenomena by 
the introduction of molecular forces that are produced in reality and which one 
meanwhile regards as being completely independent of them.  There is no doubt that this 
is the reason why Gauss, in his beautiful paper on capillary phenomena, was inclined to 
take the principle of virtual velocities as the sole basis for his argument.  However, as he 
himself said, he had, at the same time, the objective of giving an example of the 
application of the calculus of variations to a question that relates to multiple integrals.  In 
order to present that theory in a general manner, he had to reject the numerous geometric 
simplifications that had presented themselves to him.  The goal that I shall set in this 
paper is precisely that of making Gauss’s method known, along with the simplifications 
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that it admits that will render it simpler than the ones that have been proposed up to now, 
if I am not mistaken. 
 After giving a new proof of the results that Gauss obtained, I will endeavor to apply 
his method to some very simple questions in order to be able to compare the experiments 
with the results that analysis implies.  The following theorems, which will be rigorously 
true, if the theory is exact, seem to me to fulfill that condition: 
 
 1. If a capillary tube us immersed in a liquid and the column of liquid that is raised  
in it is separated into several parts by air bubbles that are introduced artificially, then the 
total mass of the raised liquid will depend upon neither the number of those bubbles, nor 
their volume. 
 
 2. When a column of liquid is suspended in a capillary tube that is open at both ends 
and placed vertically in free air, the total volume of that column is at most equal to the 
product of the volume that is raised in the tube when it is immersed in a vessel that is full 

of the same liquid with the sum 
1

1
cosi

 + 
 

, in which i is the angle at which the capillary 

surface that is formed by that liquid cuts the walls of the vessel. 
 
 3. If several liquids are superimposed in the same capillary tube and that tube is 
immersed in a vessel of the same nature as the lower liquid then the sum of the weights of 
the raised liquids will depend upon only the nature of the tube and that of the lower 
liquid. 
 
 4. Upon calling the volume of a drop of mercury V, letting b denote the area of the 
base of that drop, letting L denote the length of the contour of that base, and finally, 
letting h denote the height to which the liquid will be raised in a very large vessel that 
communicates with the drop by a full tube of mercury then one will have the relation: 
 

V = bh + α2 L sin i, 
 

in which α is a constant and i is the angle that was defined above. 
 
 

I. 
 

 Consider a liquid to be composed of material molecules m, m′, m″, … that act upon 
each other according to a function of their mutual distance and proportionally to the 
product of their masses, while supposing that the liquid is contained in a fixed tube whose 
various molecules have masses M, M′, M″, … that attract m, m′, m″, … according to 

another function of distance.  If one adopts the notation mm′  in order to represent the 
distance between the points m and m′, and one represents the forces that are exerted 

between m, m′ and m, M by mm′ f (mm′ ) and mM f (mM ), resp., then the principle of 
virtual velocities will teach us that for all of the displacements that leave the total volume 
invariant, one must have: 
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(1)   0 =
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

g dz m f m m d m m m f m m d m m
m

M F m M d m M M F m M d m M

′ ′ ′ ′′ ′′ ′′− − − 
 ′ ′ ′− − 

∑
⋯

⋯
, 

 
in which the variations d (m, m′), d (m, M) refer to the virtual displacement of the point 
m. 
 Replace the functions f and F with their integrals ϕ and Φ, or, in other words, set: 
 

( )
r

f r dr
∞

∫  = − ϕ (r),  ( )
r

F r dr
∞

∫ = − Φ (r), 

 
so equation (1) will become: 
 

( , ) ( , )

( , ) ( , )

g dz m d m m m d m m
m

M d m M M d m M

ϕ ϕ
ϕ ϕ

′ ′ ′′ ′′− + + + 
 ′ ′+ + + 

∑
⋯

⋯
, 

 
in which the differentiations again refer to only the displacement of the point m.  
However, it is obvious that each of those partial differentials can be combined with 
another differential that will complete it and define the total variation of the function 
together with it.  For example, upon summing relative to the point m, we will have the 
term: 

m m′ dϕ (m, m′), 
and in the sum that relates to m′ : 

m′ m dϕ (m, m′) . 
 
The first variation refers to the displacement of m and the second one, to that of m′.  The 
sum of those terms can be written: 

m m′ dϕ (m, m′), 
 

in which the symbol d expresses the total variation of the function ϕ. 
 From that, the sum of the virtual moments of the forces that act upon the system can 
be considered to be the total variation of the expression: 
 

Ω = 
1 1
2 2( , ) ( , )

( , ) ( , )

g z m m m m m m
m

M m M M m M

ϕ ϕ′ ′ ′′ ′′− + + + 
 ′ ′+ Φ + Φ + 

∑
⋯

⋯
; 

 
the terms m′ ϕ (m, m′) and m″ ϕ (m, m″) are divided by 2, because each of them will be 
duplicated in the summation. 
 If we now suppose that the molecules m, m′, …, M, M′, M″, … form two continuous 
masses then, upon calling the volume that is occupied by the liquid v and its density ρ, 
while v′ and ρ′ are the volume and density, resp., of the solid matter that the tube is 
composed of, then the preceding expression will become: 
 

Ω = − 21
1 12 ( , ) ( , )g z dv dvdv dv dv dv dv dv dvρ ρ ϕ ρρ′ ′ ′+ + Φ∫ ∫∫ ∫∫ ; 
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here, dv and dv1 denote two arbitrary elements of the liquid volume, in such a way that 
the second term of the value of Ω represents a sextuple integral, in reality; the same thing 
is true for the third one. 
 
 

II. 
 

 The two sextuples that enter into the values of Ω can be considered to provide one 
solution and the other to the following problem: 
 
 If two bounded spaces are given then take the sum of the products that are obtained 
by multiplying an arbitrary element of the first one with an arbitrary element of the 
second one and with a function of the distance between those two elements. 
 
 The first of our two integrals refers to the case in which the two spaces are identical, 
and the second one refers to the one in which one of them is the volume that is occupied 
by the liquid and the other is the volume that is occupied by the vessel, while those two 
spaces are entirely distinct.  We consider, in a general manner, the reduction of the 
sextuple integral that expresses the solution of the problem upon supposing that the two 
volumes in question are completely arbitrary in form, as well as in relative position. 
 Upon calling the elements of those two volumes dv, dv′, one will be dealing with the 
sextuple integral: 

( , )dvdv dv dvϕ′ ′∫∫ . 

 
We shall see that, in any case, one can come down to a quadruple integral. 
 Let µ be an element of the volume v′ (which might or might not belong to the volume 
v), and first consider the triple integral: 
 

( , )dv dvϕ µ∫ , 

 
which we extend over the entire volume v.  Imagine a sphere of radius 1 that is described 
about the point µ as its center and is divided into infinitely-small elements; let d Π be one 
of those elements.  Consider d Π to be the base of a cone that has one of the points of dµ 
for its summit, and let p′, p″, p″′, … be the points where that cone cuts the surface s that 
bounds the volume v, the number of those points will obviously be odd or even according 
to whether µ does or does not belong to v, resp.  Let dt′, dt″, dt″′ denote the elements that 
the cone cuts out from the surface s, and let q′, q″, q″′, … denote the angles that are 
formed by the generators with the exterior normals to those elements, and finally let υ′, 
υ″, υ″′, … denote the distances µ p′, µ p″, µ p″′, …, resp.  We will obviously have: 
 

d Π = 
2

cosdt ϕ
υ
′ ′

±
′

= 
2

cosdt ϕ
υ

′′ ′′
′′

∓ = 
2

cosdt ϕ
υ

′′′ ′′′
±

′′′
, …, 
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in which the upper signs refer to the case where the point µ is external to v and the lower 
signs refer to the contrary case. 
 If one now forms the portion of the triple integral that relates to the elements of v that 
are situated inside the cone considered then that portion will obviously represent: 
 
 1. If the point µ is external to v: 
 

2 2( ) ( )
ivr r

r r
d r r dr r r drϕ ϕ

′′

′ ′′′

 Π + +  ∫ ∫ ⋯ . 

 
 2. If the point µ belongs to the volume v: 
 

2 2

0
( ) ( )

r r

r
d r r dr r r drϕ ϕ

′ ′′′

′′
 Π + +
  ∫ ∫ ⋯ , 

 
in such a way that if one sets: 

2

0
( )r r drϕ

∞

∫  = − ψ (r) 

then that integral will become: 
 

d Π [ψ (r′) – ψ (r″) + ψ (r″′) …] = 
2 2

cos ( ) cosdt q r dt q dt

r

ψ
υ

′ ′ ′′ ′′ ′′
+

′ ′′
 + … 

 
in the former case and: 
 

d Π ψ (0) + 
2 2

cos cos
( )

dt q dt q
r dt

r
ψ

υ
′ ′ ′′ ′′′ ′′+

′ ′′
+ … 

 
in the latter.  If one now sums those results for all possible positions of the element d Π 
then one will get: 

2

cos
( )

dt q
rψ

υ∫  

in the former case and: 

4 Π ψ (0) + 
2

cos
( )

dt q
rψ

υ∫  

 
in the latter, where the two integrals must be extended over the entire surface that bounds 
the volume v. 
 When one denotes the volume that both v and v′ belong to by s, one will easily 
deduce from the preceding results that the sextuple integral that we would like to evaluate 
is equal to: 

4 Π σ ψ (0) + 2

cos ( , )

( , )

dt dv q dt dv

dt dv

ψ
∫∫ , 
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in such a way that in order to calculate this, it will suffice to define a quintuple integral in 
which one successively considers the volume elements v, when they are combined with 
those of the surface t. 
 In order to reduce that quintuple integral, consider a fixed element dt of the surface t 
and first define the triple integral that refers to the combination of that element with all of 
the volume elements dv ; that integral will become: 
 

2

cos ( , )

( , )

dv q dt dv

dt dv

ψ
∫ , 

 
in which q denotes the angle that the line (dv, dt) makes with the exterior normal to dt. 
 Imagine a sphere of radius 1 that is described about dt as its center.  Once more, let 
dΠ be an element of the surface of that sphere.  Consider the cone that has its summit at 
the point of dt and dΠ for its base.  Suppose that this cone cuts the surface T that bounds 
the volume v at the points P′, P″, P″′, …  Let R′, R″, R″′, …, resp., be the distances from 
those various points to the point µ, let dT′, dT″, dT″′, resp., be the portions of the surface 
T that are cut out by that infinitely-small cone, and finally, let Q′, Q″, Q″′, resp., be the 
angles between the cone and the exterior normal to those elements.  We will have: 
 

d Π = 
2

cosdT Q

R

′ ′
±

′
= 

2

cosdT Q

R

′′ ′′
′′

∓ = 
2

cosdT Q

R

′′′ ′′′
±

′′′
, 

 
in which the upper or lower signs must be adopted according to whether dt is exterior or 
interior to the volume v, resp.  If we now integrate over the entire extent of the infinitely-
small cone that was considered above then q must be considered to be constant over the 
entire extent of the integration, and if we set: 
 

( )
r

r drψ
∞

∫  = − θ (r) 

 
then we will see, as in the preceding case, that when the integral: 
 

2

cos ( , )

( , )

dv q v dt

dv dt

ψ
∫  

 
is extended over all of the elements of the infinitely-small cone, it will be equal to: 
 

cos q 2 2

cos cos
( ) ( )

dT Q dT Q
R R

R R
θ θ

′ ′ ′′ ′′ ′ ′′+ + ′ ′′ 
⋯  

 
in the former case and to: 
 

d Π cos q θ (0) + cos q 2

cos
( )

dT Q
R

R
θ

′ ′ ′ + ′ 
⋯  
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in the latter. 
 If we now integrate over d Π then we will get: 
 
 1. 

2

cos ( , )

( , )

dv q v dt

dv dt

ψ
∫ = 

2

cos ( , )dT q Q v dt

R

θ
∫  

 
in the case where the element dt is exterior to v, in which dT denotes any of the elements 
of the surface that bounds v. 
 
 2. In the case where dt is located inside of v, one must add the term: 
 

q (0) cosd qΠ∫  

to the preceding expression. 
 
 It is easy to see that if that integral is extended over all elements of the sphere of 
radius 1 then the parts that it is comprised of will cancel pair-wise, and its total value will 
be 0.  However, if the element dt belongs to the surface that bounds v; i.e., if the spaces v 
and v′ are partly bounded by a common surface, and that if dt denotes the element of that 
surface then the integral: 

θ (0) cosd qΠ∫  

 
must be extended over only those elements of the spherical surface for which the line (dt, 
dΠ) is found interior to the volume v in the neighborhood of dt; i.e., for all of the 
elements that are found on the same side of the tangent plane to dt and for which the 
angle q is acute, if the volumes v and v′ are situated on different sides of the surface that 
is common to them and obtuse in the contrary case.  One will very easily find the 
integral: 

cosd qΠ∫ = + Π 

in the first case and: 

cosd qΠ∫ = − Π 

 
in the second one.  It will result from the preceding considerations that the sextuple 
integral: 

( , )dvdv dv dvϕ′ ′∫∫  

can reduce to the following forms: 
 
 1.  If the volumes v and v′ have a common part σ, while their surfaces are entirely 
distinct: 

( , )dvdv dv dvϕ′ ′∫∫  = 4 Π σ ψ (0) + 2

cos cos

( , )

dt dT Q

dt dT

ϕ
∫∫ θ (dt, dΓ). 
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 2. If the surfaces t, T that bound the volumes v and v′, resp., have a common part σ, 
which we call S, then: 
 

( , )dvdv dv dvϕ′ ′∫∫  = 4 Π σ ψ (0) ∓  Π ρ S θ (0) + 2

cos cos ( , )

( , )

dt dT Q dt dT

dt dT

ϕ θ
∫∫ , 

 
in which the upper sign refers to the case in which v and v′ are on the same side of their 
separating surface, and the lower sign refers to the contrary case. 
 
 

III. 
 

 From the reduction formula to which we have arrived, the quantity Ω, whose 
variation represents the sum of the virtual moments of the forces that act upon the system, 
can be put into the following form: 
 

Ω = − 2 21 1
2 2(0) (0) (0)g z dv v t Tρ ρ ψ ρ θ ρρ′+ − Π + Π Θ∫  

 

+ 
2 2

cos cos ( ) cos cos ( )dt dt q q r dt dT q Q rθ θ
υ υ

′ ′
+∫∫ ∫∫ , 

 
in which ρ denotes the density of the liquid, as we said above, and ρ′ denotes that of the 
glass.  v is the volume of the liquid, t is the area of the surface that bounds that volume, 
and T is the area of the portion of that surface that is in contact with the walls of the tube 
or with those of the vessel.  The functions ψ, θ, and Θ are deduced from the functions ϕ 
and Φ by way of the following equations: 
 

 2 ( )
r

r r drϕ
∞

∫ = − ψ (r), ( )
r

r drψ
∞

∫ = − θ (r), 

 

 2 ( )
r

r r dr
∞

Φ∫ = − Ψ (r), ( )
r

r dr
∞

Ψ∫ = − Θ (r) . 

 
The functions ϕ and Φ are totally unknown, so the same thing will be true for θ and Θ, 
which are deduced from them.  One can nevertheless assume that those two functions, 
just like ϕ and ψ, are annulled for all of the meaningful values of the variable.  In order to 
do that, it will suffice to remark that the action of the molecules that are located at an 
appreciable distance has no influence on the phenomena, so it will not change anything if 
one assumes that ϕ and Φ are rigorously zero for finite values of the variable, which will 
obviously imply the same condition for the functions θ and Θ. 
 From that remark, one will effortlessly see that the two quadruple integrals that enter 
into the value of Ω are both negligible. 
 Indeed, consider the first of those two integrals: 
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2

cos cos
( )

dt dt q q
rθ

υ
′ ′

∫∫ . 

 
We can write it in the following manner: 
 

2

cos cos
( )

dt q q
dt rθ

υ
′ ′

∫ ∫ . 

 
However, upon letting d Π denote the element of the spherical surface of radius 1 that is 
described about dt as its center, one can set: 
 

2

cosdt q

υ
′

= d Π, 

 
which will reduce the integral in question to: 
 

cos ( )dt d q rθΠ ⋅∫ ∫ . 

 
Now, in that form, it is obvious that: 

cos ( )d q rθΠ ⋅∫  

 
will have a negligible effect, because if r is not very small then θ (r) will be negligible, 
and if r is very small then the line (dt, dt′ ) will be very close to the tangent plane, and cos 
q will differ only slightly from zero.  An entirely similar argument will show that one can 
neglect the second quadruple integral and consequently take the following expression for 
Ω: 

Ω = − 2 21 1
2 2(0) (0) (0)g z dv v t Tρ ρ ψ ρ θ ρρ ′+ − Π + Π Θ∫ . 

 
That sum must be zero in order for there to be equilibrium.  Now, it is obvious that one 
can suppress the term 21

2 (0)vρ ψ , which is constant.  If one divides by gρ, in addition, 

and one changes the sign of Ω, after setting: 
 

 
(0)

2g

ρ θΠ
= α2, 

 

 
(0)

2g

ρ ′Π Θ
= β 2, 

 
and that function K must be a minimum. 
 If one lets U denote the area of the free surface of the liquid then one will have: 
 

t = U + T, 
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in such a way that the expression that one must minimize will take the form: 
 

z dv∫  + (α2 – β 2) T + α2 U = K, 

 
in which U is the area of the free surface of the liquid, and T is the area of the portion of 
that surface that is in contact with the walls of the tube or those of the vessel. 
 
 

IV. 
 

 The preceding result was obtained by Gauss, and all of the preceding was extracted 
from his paper.  However, instead of solving the problem of the minimum to which we 
will be led with the calculus of variations, as he did, we shall deduce the differential 
equation for the surface U that renders K a minimum from very simple geometric 
considerations, as well as the conditions that must be fulfilled on the boundary. 
 In order for K to be a minimum, while the volume v remains constant, it is necessary 
that the variation of the sum K + λv must be zero, where λ denotes a constant that must 
be ultimately determined. 
 First suppose that one subjects the free surface U to an infinitely-small variation that 
preserves the same contour; i.e., one leaves invariable the portion of the surface of the 
tube that is wet by the liquid, which has been denoted by T1 . 
 In my paper on orthogonal isothermal surfaces, I showed that if one considers an 
infinitely-small rectangle dω on the surface U that is composed of four lines of curvature 
then the normals that are drawn through the various points of the contour of that element 
will cut out a corresponding infinitely-small element from the neighboring surface that is 
equal to: 

1 1
d

R R
ω ε + ′ 

+ dω, 

 
in which ε is the infinitely-small distance between the two surfaces that one compares. 
 From that theorem, whose geometric proof is quite simple, the variation of α 2 U will 
be equal to: 

2 1 1
d

R R
α ω ε + ′ 
∫ . 

 

As for z dv∫ , it is obvious that its variation will be: 

 

z dε ω∫ , 

 
and finally, the variation of v will be equal to: 
 

dε ω∫ . 

One must then have: 
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2 1 1
d z

R R
ε ω α λ  + + +  ′  
∫ = 0, 

 
and since that result must be true for any ε, one can conclude that: 
 

2 1 1
z

R R
α λ + + + ′ 

= 0, 

 
which is indeed the known differential equation for the capillary surface. 
 In order to determine λ, one should point out that R = ∞, R′ = ∞ for the points that 
belong to the surface of the liquid that is outside of the tube, so z + λ = 0.  If one then 
measures z by starting from the level of the liquid in the vessel then λ = 0, and the 
equation that one finds will be: 

z + 2 1 1

R R
α  + ′ 

= 0. 

 
 In order to get the condition that relates to the surface U, we shall suppose that one 
varies the figure of the liquid without preserving the same contour for U.  The difference 
between U and the corresponding portion of the infinitely-close surface that replaces it 
will always be: 

1 1
d

R R
ε ω  + ′ 
∫ . 

 
However, one must further add the portion of the new surface that does not correspond to 
any point of U; i.e., the small zone that is found between the tube and the curve along 
which the normals to the different points of the contour to U cut the surface infinitely 
closely.  Now, one effortlessly sees that when one lets dP denote the contour that 
terminates U and lets i denote the angle between the tangent plane to the tube and that of 
U, the small zone will have the expression: 
 

cotdP iε∫ ; 

 
the variation of the volume will be composed of the term that was written out before: 
 

dω ε∫ , 

 
which represents the volume that is found between U and the corresponding portion of 
the neighboring surface, and another term that expresses the second-order infinitesimal 
volume that is found between the walls of the tube and the skew surface that is the locus 
of the normals to U that go through the various points of its contour.  However, the latter 
term can be neglected as infinitely small compared to the preceding ones.  The same 

thing will then be true for the analogous term that is provided by the variation of z dv∫ .  
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As for the area T, which did not vary in the preceding case, one effortlessly sees that it is 
increased by the area of the portion of the surface of the tube that found between the 
curve that bounds U and the new contour that replaces it; i.e., the integral: 
 

sin

dP

i

ε
∫ , 

 
so the terms that are due to the variation of the boundary are: 
 

2 2
22
cot

sin
dP i

i

α βε α − + 
 

∫ . 

 
In order for this to vanish for any ε, it is necessary that one must have: 
 

2 2
22
cot

sin
i

i

α β α− +  = 0 ; 

i.e., that: 

cos i = 
2 2

2

2α β
α
−

, 

 
which proves that the angle i must have a constant value that depends upon the nature of 
the liquid and that of the tube. 

 If 
2 2

2

2β α
α

−
 is greater than 1 (i.e., if β 2 exceeds α 2) then the preceding formula will 

give an imaginary value for the angle i.  One must then conclude that in that case, the 
hypotheses that were made up to now would be inadmissible, and that the liquid would 
have to form an extremely thin layer that wets the walls well above the surface that 
bounds the mass of the raised liquid.  In that case, the two quadruple integrals that we 
have neglected could not have a very small value.  One would then suppose that 
everything happens as if the tube were closed by the very thin liquid layer that wets the 
walls, in which case, one would have β 2 = α 2, and as a result cos i = 1. 
 
 

V. 
 

 We have obtained two results that permit us to reduce the solution of any problem 
that relates to capillary phenomena to a question of analysis.  The differential equation of 
the capillary surface was obtained by Laplace in a slightly simpler way, but the argument 
by means of which he proved that the angle that is denoted by i is constant was much less 
satisfactory, as Gauss remarked.  One of the more remarkable results that Laplace 
deduced from his formulas was the rigorous expression for the total volume of the raise 
liquid in the case of a cylindrical tube with vertical walls whose section could be 
arbitrary, moreover.  I believe that the following proof has the advantage of simplicity 
over that of Laplace: 
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 Upon taking the xy-plane to be the level of the external liquid, the differential 
equation of the capillary surface will be: 
 

z = − 2 1 1

R R
α  + ′ 

. 

 
Multiply the two sides of that equation by dx dy and integrate over the entire extent of the 
surface that serves as the base of the right cylinder in which the liquid is raised.  The left-
hand side is obviously the total volume of the raised liquid, and in order to understand the 
value in the right-hand side, it will suffice to perform the integration: 
 

1 1
dxdy

R R
 + ′ 

∫∫ . 

 
Now, one can obviously regard that integral as the vertical component of a system of 

forces that will have an intensity on each element dω that is equal to dω 
1 1

R R
 + ′ 

 when 

they are exerted upon any liquid surface.  However, such a system can be replaced with 
two other systems that are much simpler in the following manner: Imagine a surface that 
is parallel to that of the liquid and located at an infinitely-small distance ε ; by that, I 
mean a surface that is obtained by moving along each normal by a constant length ε.  

Suppose that each element dω′ of that surface is acted upon by a force 
1

dω
ε

′ , and that 

each element dω of the first surface is acted upon in the opposite sense by a force 
1

dω
ε

.  

If dω and dω′ are two corresponding elements then from a theorem that was cited before 
in this paper, one will have: 

dω′ − dω = dω 
1 1

R R
 + ′ 

ε, 

 
in such a way that the difference between the two forces is equal to precisely: 
 

dω 
1 1

R R
 + ′ 

. 

 
Instead of composing the proposed forces in order to look for their vertical component, 
one can then look for the component that is provided by each of the two systems that we 
spoke of separately.  Now, one knows that an arbitrary surface is subject to a constant 
normal pressure, so the resultant of the forces that act upon it will give a vertical 
component that is equal to the product of the pressure per unit area with the horizontal 
projection of the area considered.  If we call the projections of the areas of the liquid and 
the parallel surface P1 and P2 , resp., then we will have: 
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1 1
dxdy

R R
 + ′ 

∫∫  = (P1 − P2) 
1

ε
. 

 
Now, P1 − P2 is obviously the projection of the area of the skew surface that is composed 
of the normals of length ε that are drawn through the points of the contour, which is a 
projection that is, as one easily sees (due to the constant inclination of those normals), 
equal to the product of the perimeter of the cross-section with ε cos i, where i is the angle 
that the normal to the surface U makes with the normal to the cylindrical surface.  Upon 
calling the length of the contour of the cross-section of the tube L and the volume of the 
raised liquid V, we will finally have: 

V = α2 L cos i, 
 

which is Laplace’s result, up to notations. 
 
 

VI. 
 

 Gauss’s method supposed that no other external force acted upon the liquid besides 
weight.  If one assumes, for example, that the atmospheric pressure is not the same inside 
the tube and outside of it then one must draw one’s attention to the forces of pressure in 
the evaluation of the virtual moments of the forces of the system, and consequently, in 
place of equating the variation of the function that was denoted by Ω above to zero, it is 
convenient to write that it is equal and opposite to the sum of the virtual moments of the 
forces of pressure.  Suppose that the pressure that is exerted upon the external level of the 
liquid is P, and let P′ denote the pressure that acts upon the raised liquid in the tube.  
Recall the expression for Ω that was calculated above: 
 

Ω = − 2 21 1
2 2(0) (0) (0)g z dv v t Tρ ρ ψ ρ θ ρρ θ′+ − Π + Π∫ . 

 
Upon introducing the conventions: 

 α2 = 
(0)

2g

ρ θΠ
, 

 

 β 2 = 
(0)

2g

ρ ′Π Θ
, 

 

Ω = − 2 2 2 21
2 (0) 2g z dv v t g Tρ ρ ψ ρ α ρ α+ − +∫ , 

 
or, upon setting t = T + U : 
 

Ω = − 2 2 2 21
2 (0) (2 )g z dv v g U gTρ ρ ψ ρ α ρ β α+ − + −∫ . 
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In order for there to be equilibrium, the variation δ Ω must be equal and opposite to the 
sum of the virtual moments of the forces of pressure.  Suppose that the tube is a vertical 
right cylinder and write down that this condition is fulfilled for a virtual displacement that 
consists of lowering all of the points of the portion of the surface U that corresponds to 
the liquid that is found inside of the tube by the same quantity dh in the sense of the 
vertical, and at the same time, raise all of the points of the external surface by another 
quantity dh′.  The ratio of dh to dh′ is calculated in such a manner that the total volume 
will remain invariable, so one will effortlessly see that the surface U will not change for 
such a displacement, and if one calls the length of the contour of the interior section of 
the tube L and that of the section of the vessel that is also supposed to be cylindrical L′ 
then the variation of Ω will be: 
 

− 2 2( 2 )( )g z dv g L dh L dhρ ρ α β ′ ′+ − − +∫ . 

 

Now, z dvδ ∫  is the sum of the moments of the various truncated cylinders of height dh 

or dh′ whose liquid volume is diminished or augmented.  Any one of those cylinders will 
have a measure that is equal to the product of dh with its cross-section, which one can 
represent by dx dy, one will have: 
 

z dvδ ∫ = − dh z dx dy dh z dxdy′+∫ ∫ . 

 
The first integral extends over the portion of the liquid that is inside of the tube, so it can 
represent the volume of the raised liquid if z is measured by starting from the level of the 
external liquid, which is a hypothesis that will annul the second integral. 

 If one replaces z dvδ ∫  with that values and remarks that the ratio of dh to dh′ must 

be the inverse of the ratio of the area of the section of the cylinder to that of the vessel in 
which is it immersed, while calling those areas b and B, then one will have: 
 

δ Ω = 2 2(2 )
bL

Vg g L
B

ρ ρ β α  − + − −  
  

 dh. 

 
The sum of the virtual moments that are due to the forces of pressure can be easily 
calculated.  Indeed, if one considers an element dω of the surface U then the pressure that 
it supports will be P dω or P′ dω, according to whether it belongs to the portion of the 
interior surface of the tube or the external level.  The virtual displacement of the point of 
application will be the product of dh with the cosine of the angle that the element under 
pressure makes with the vertical, which will give the product of P dh or P′ dh′ by the 
projection of the element dω, and consequently, P b dh or – P′ B dh′ for its integral, 
according to whether one is dealing with the liquid that is inside of the tube or outside of 
it.  Upon remarking that b dh = B dh′, the sum of those two integrals will be (P – P′ ) b 
dh.  Finally, we will then have: 
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− V gρ + gρ (2β 2 – α 2) bL
L

B
 − 
 

 = (P – P′ ) b 

 
for the equilibrium equation.  If we let h denote the height of a liquid column of volume 
V that has b for its base – or, in other words, the mean height of the raised liquid – then 
we will infer from that equation that: 
 

h = (α 2 − 2β 2) ( )l L P P

b B gρ
′− − + 

 
. 

 
In that result, one can neglect L / B with respect to l / b, and if one simultaneously 
replaces α 2 − 2β 2, with its new value above (viz., α 2 cos i, in which i is the angle that 
the liquid forms with the capillary surface) then one will have: 
 

h = 2 cos
l P P

i
b g

α
ρ

′−+ . 

 
That proves that the height h is composed of two parts, one of which is precisely equal to 
the elevation that was calculated above for the case of P = P′, and the other of which is 
equal to the difference in the level that is due to the excess of external pressure over the 
internal pressure. 
 If, instead of considering, as in the preceding argument, the case of a tube that is 
immersed in a liquid, we suppose that a liquid column is suspended in a tube and 
supports different pressures over its two surfaces, then we will see that upon giving a 
common vertical motion to all point, in the sense of the vertical, δU and δT will be zero, 
and δ Ω will reduce to – gρ V, and upon equating that virtual moment to (P′ – P) b, we 
will see that the weight of the column will be simply proportional to the pressure 
difference, and that capillarity will have no influence on the phenomenon.  If we suppose 
that P = P′, as a special case, then we will have V = 0.  When the facts of reality are 
contrary to that result, one can explain that by the influence of friction. 
 One will immediately deduce the preceding results from the first of the theorems that 
were stated at the beginning of this paper.  If the liquid column, which is situated in a 
capillary tube that is open at both ends, is separated into several parts by air bubbles that 
are interposed in the liquid then the total weight of the raised liquid will remain the same, 
no matter what the density or number of those air bubbles would be. 
 
 

VII. 
 

 I shall now consider a well-known phenomenon that seems, on first glance, to 
contradict the results of the preceding analysis. 
 One knows that a capillary tube that is open at both ends can contain a column that is 
almost double in height to the one that rises up in it when one immerses it in a liquid 
mass.  As one knows, it will suffice that the liquid column should occupy the lower part 
of the tube and form a meniscus whose curvature will explain that increase in height.  In 
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order to reconcile that fact with the theory that was proved above, one must remark that 
in general in the application of the principle of virtual velocities, the sum of the virtual 
moments that correspond to a certain displacement of the system must be zero only when 
a displacement that is equal and opposite is possible and provides a sum of moments that 
has precisely the opposite sign to the one that corresponds to the former case.  When that 
condition is not fulfilled, in order for there to be equilibrium, it will suffice that the sum 
of the virtual moments, while not being zero, can never become positive.  Now, in the 
case that we are addressing, if we give the liquid a virtual motion that consists of raising 
all of the molecules that are contained inside the tube by the same quantity in such a way 
that one does not change the surface that is denoted by U and T, in order to apply the 
argument of the preceding paragraph, then an equal and opposite displacement, which is 
a displacement for which the constraints will not oppose anything, will imply a change in 
the value of U and T, because the tube no longer extends above the present contour of the 
surface U, so one cannot lower that surface without supposing that the liquid forms a 
small cylinder below the lower liquid in the tube that is completely external to it, where 
the convex surface must be considered to belong to U.  The variation of T will cease to be 
zero, because the reduction that the surface experiences upward in the volume will no 
longer be compensated by an increase that is equal to the lower part. 
 From those remarks, upon calling the virtual motion that is give to the system dh and 
letting L and b denote the length of the contour and the area of the cross-section, resp., of 
the tube, as usual, one will find that: 
 

δ Ω = gρ V dh – gr α2 L dh – ρg (2β 2 – α2) L dh, 
 
and since δ Ω must be negative, one will have: 
 

V < 2β 2L. 
 
Now, one found above that the volume V′ that is raised by immersing the tube into an 
indefinite mass of liquid was: 

V′  = α2 L cos i. 
One will then have: 

V

V ′
 < 

2

2

2

cosi

β
α

, 

 
or, upon remarking that 2β 2 / α2 = 1 + cos i : 
 

V

V ′
 < 1 + 

1

cosi
, 

 
which is precisely the result that was stated at the beginning of this paper. 
 The preceding method does not give the precise value of the ratio V′ / V, but only a 
limit of that ratio: One must point out that an exact determination of its values is, indeed, 
completely impossible, because if, under the circumstances that we have assumed, a 
certain liquid column can be maintained in the tube, then a fortiori the same thing will be 
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true for a lower column.  Nonetheless, in order for the solution to be completely 
satisfactory, it will be necessary for one to be able to show that the limit that one finds 
can be attained in reality. 
 
 

VIII. 
 

 Upon applying the method that was presented at the beginning of this paper in the 
case of two liquids that are superposed in the same tube, one will find, with no difficulty, 
that upon denoting the area of the surface that bounds the upper liquid by U, the area of 
the separating surface between the two liquids in the tube by U′, the area of the free 
surface of the external liquid that is contained in the vessel by U″, the areas of the 
portions that belong to the surface of the tube or to those surfaces of the vessel that are 
wet by the upper and lower liquid T and T′, the densities of the upper and lower liquid by 
ρ and ρ′, and finally, upon denoting the constants that are analogous to the ones that were 
defined above by α2, β 2, α′ 2, β′ 2, α″ 2, β″ 2, it will be necessary for equilibrium that the 
sum: 
 

K = z dv z dvρ ρ ′ ′+∫ ∫ + α2 ρ U + (α2 − 2β 2) ρ T 

 
+ (α2 ρ + α′ 2 ρ′  − 2 β″ 2 ρ′ ) U′ + (α′ 2 ρ′  − 2 β′ 2 ρ′ ) T′ + α′ 2 ρ′ U′ 

 
should be a minimum. 
 Now, upon giving a common virtual displacement to all of the points of the mass that 
is inside the tube and the inverse displacement to each point of the external mass, one 
must have: 

0 = − ρ bh – ρ′ bh′ + (α′ 2 ρ′  − 2 β′ 2 ρ′ ) L − (α′ 2 − 2 β′ 2) Lb

B
 ρ′, 

 
so one can infer a value for ρh + ρ′ h′ that does not depend upon the nature of the upper 
liquid at all. 
 
 

IX. 
 

 Among the numerous phenomena that are attached to capillarity, one of the simplest 
and easiest to study experimentally seems to me to be the formation of drops of mercury 
on a horizontal glass plane.  The preceding principles apply to the study of those 
phenomena with no difficulty and will lead to some results that one might perhaps take 
advantage of. 
 If the drop of mercury rests upon a horizontal plane then the differential equation of 
the free surface will be the same as that of a liquid that is placed in a tube; i.e.: 
 

h – z = α 2 1 1

R R
 + ′ 

, 
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only the constant h, which was determined by the position of the external level in the 
preceding problems, will remain unknown here and can be obtained only by equating the 
volume that is calculated for the drop to the given volume of the liquid that it is 
composed of.  In the particular case in which the drop is very large, R and R′ can be 
considered to be infinite for the points of the upper surface, in such a way that for those 
points, one must suppose that z = h and that the constant h will then represent the 
thickness of the drop.  In the general case, in order to define that constant, one must 
suppose that the plate upon which the mercury rests is pierced at the very center of the 
drop in such a way that it will communicate by means of a filled liquid channel with a 
vessel that is large enough for the liquid in it to be horizontal.  h will then denote the 
elevation of the level of that liquid above the glass plate. 
 Upon supposing that one has succeeded in realizing the circumstances that I just 
indicated and has thus determined the value of h by experiment, one can obtain a simple 
relation between the measurable elements of a drop of mercury whose verification seems 
important to me. 
 Consider the equation: 

h – z = α 2 1 1

R R
 + ′ 

. 

 
Multiply this by dx dy and integrate over the entire extent of the projection of the drop 
and for all points of its free surface; i.e., one takes the ordinates that can answer to the 
same value of x and y twice and with opposite signs.  Upon calling the volume of the 
drop V and the area of the base by which it rests upon the glass plane b, one will have: 
 

bh – V = 2 1 1

R R
α  + ′ 
∫∫  dx dy. 

 
Now, the right-hand side can be considered to represent the vertical component of a 
system of forces that are exerted normally on each element dω of the surface of the drop 

with an intensity that is equal to α2 dω 
1 1

R R
 + ′ 

, but we have seen that such a system 

can be replaced with two other ones in which a pressure α2 dω / s is exerted upon each 
element of the surface of the drop and the parallel surface that is drawn at a distance of ε 
from it.  Now, each of those systems of forces will give rise to a vertical component that 
is equal to the product of α2 dω / s with the area of the projection of the surface under 
pressure.  One will easily see that the difference between those two projections is α L ε 
sin i, in which L is the length of the contour of the drop and i is the constant inclination of 
its tangent plane over the horizontal plane: The integral that is in the right-hand side will 
then have the value − α 2 L ε sin i, and we will have: 
 

bh – V = − α 2 L sin i, 
so 

V = bh + α 2 L sin i, 
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which is a relation that can be verified by experiments. 
 

____________ 


