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On thetheory of capillary phenomena
By J. BERTRAND

Translated by D. H. Delphenich

The theory that Laplace proposed in order to explapillasy phenomena was
vigorously criticized by Poisson. The objections of tkeéebrated geometer led him to
propose a hypothesis that was not generally adopted, hiwh Wwossibly still leaves
many difficulties, moreover. Meanwhile, one mustogatze that those objections have
some basis to them and that there is an obvious contoadio the manner by which
Laplace envisioned the question. The hypothesis of ammipessible fluid whose
disjoint molecules act upon each other according tanatibn of the distance is indeed
impossible, mathematically speaking. However, it wilffisa that this hypothesis,
although not rigorously exact, is very close to realityhat its consequences agree with
experiments. | shall add (and it seems that this siwipdervation had escaped Poisson)
that Laplace, despite his inexact hypothesis on the ipoessibility of fluids, had
proposed a question that is not absurd from a mathemagegpoint. The introduction
of force, which he called “pressure” and whose valugeigrmined precisely in such a
manner that it does not change the volume, will ingesrdhit one to regard the fluid as
incompressible. It is quite true that in a compresspdigsical fluid, that pressure cannot
be distinguished from the resultant of the molecutioas and must be calculated, as
Poisson had often remarked, by means of the functatrréipresents it. However, from
the abstract viewpoint that the geometers assumefuthation will define a force that is
different in nature from the ones that one ofterohtices into mechanics under the name
of constraint forcesand which in each case can give rise to analogous abjsdfione
contests the right to introduce a question into theestant that involves the notion of
rigid bodies, fixed axes, etc. In a word, if one refu$o replace a question of physics
with an abstract question that is analogous to it, buideotical.

The principle of virtual velocities, when applied tosystem that is defined in an
analogous manner, will permit one to avoid that appatifintulty that comes from the
constraint forces, which will acquire a new forceha theory of capillary phenomena by
the introduction of molecular forces that are producedreality and which one
meanwhile regards as being completely independent of tidmre is no doubt that this
is the reason why Gauss, in his beautiful paper on aapifihenomena, was inclined to
take the principle of virtual velocities as the sole bemsidis argument. However, as he
himself said, he had, at the same time, the objectivgivong an example of the
application of the calculus of variations to a questiat relates to multiple integrals. In
order to present that theory in a general manner, héohagect the numerous geometric
simplifications that had presented themselves to hime gdal that | shall set in this
paper is precisely that of making Gauss’s method knowmgalith the simplifications
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that it admits that will render it simpler than theesrthat have been proposed up to now,
if | am not mistaken.

After giving a new proof of the results that Gauss obtgin will endeavor to apply
his method to some very simple questions in order to leetaldompare the experiments
with the results that analysis implies. The foliogvtheorems, which will beigorously
true, if the theory is exact, seem to me to fulfiittisondition:

1. If a capillary tube us immersed in a liquid and themol of liquid that is raised
in it is separated into several parts by air bubblesateintroduced artificially, then the
total mass of the raised liquid will depend upon neitherrtumber of those bubbles, nor
their volume.

2. When a column of liquid is suspended in a capillary thheis open at both ends
and placed vertically in free air, the total volumetlmdt column isat mostequal to the
product of the volume that is raised in the tube wheninhmsersed in a vessel that is full

cos
surface that is formed by that liquid cuts the wall the vessel.

of the same liquid with the suﬁ‘mij , In whichi is the angle at which the capillary

3. If several liquids are superimposed in the saag@llary tube and that tube is
immersed in a vessel of the same nature as the lawél then the sum of the weights of
the raised liquids will depend upon only the natafehe tube and that of the lower
liquid.

4. Upon calling the volume of a drop of mercMyletting b denote the area of the
base of that drop, letting denote the length of the contour of that base, farally,
letting h denote the height to which the liquid will be esin a very large vessel that
communicates with the drop by a full tube of meydinen one will have the relation:

V =bh+ @*L sini,

in which a is a constant andis the angle that was defined above.

Consider a liquid to be composed of material maesm, nt, m’, ... that act upon
each other according to a function of their mutdigtance and proportionally to the
product of their masses, while supposing thatithed is contained in a fixed tube whose
various molecules have masdds M, M” ... that attractm, n’, m’, ... according to
another function of distance. If one adopts theatimn mm in order to represent the
distance between the poims and ', and one represents the forces that are exerted
betweerm, m andm, M by mni f (m) andmM f(m), resp., then the principle of

virtual velocities will teach us that for all ofdéldisplacements that leave the total volume
invariant, one must have:
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@ 0 :Zm{_gdz_ M) ¢ m e m (d,m')n}

-MF(mM)dim M)- M Hm M) d m M)--

in which the variationsl (m, m'), d (m, M) refer to the virtual displacement of the point
m.
Replace the functiorfsandF with their integralsp and®, or, in other words, set:

jr‘” f(r)ydr =-¢ (), jr‘”F(r)dr:—qa(r),
so equation (1) will become:

Sm —gdz+ m @#(m M+ md( mh...
+M dg(m M)+ M dp(m M)+---|

in which the differentiations again refer to only tHesplacement of the poinm.
However, it is obvious that each of those partial déffitials can be combined with
another differential that will complete it and defitlee total variation of the function
together with it. For example, upon summing relatvehe pointm, we will have the
term:

m i dg (m, n1),
and in the sum that relatesrto:

m m dp (m, nT) .

The first variation refers to the displacementroénd the second one, to thatndf The
sum of those terms can be written:
m m d¢ (m, ),

in which the symbodl expresses the total variation of the functgbn
From that, the sum of the virtual moments of thedsrthat act upon the system can
be considered to be the total variation of the expressio

Q=Ym —gz+img(m m+3 g m M+
+M D(m, M)+ M d(m M)+

the terman’ ¢ (m, m’) andm” ¢ (m, m") are divided by 2, because each of them will be
duplicated in the summation.

If we now suppose that the molecutasn, ...,M, M, M”, ... form two continuous
masses then, upon calling the volume that is occupiethébliquid v and its densityp,
while v’ and p” are the volume and density, resp., of the solid maltiar the tube is
composed of, then the preceding expression will become:

Q :—gpjzdw%pzﬂ dvdyg( dv q\)+pp'ﬂ dva®( dvq;
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here,dv anddwv; denote two arbitrary elements of the liquid volumesuch a way that
the second term of the value @frepresents a sextuple integral, in reality; the sdnneg t
is true for the third one.

The two sextuples that enter into the value€dafan be considered to provide one
solution and the other to the following problem:

If two bounded spaces are given then take the sum of the products tbataned
by multiplying an arbitrary element of the first one with an arbitrelgment of the
second one and with a function of the distance between those two elements.

The first of our two integrals refers to the casevimch the two spaces are identical,
and the second one refers to the one in which oneeaf th the volume that is occupied
by the liquid and the other is the volume that is occupiethe vessel, while those two
spaces are entirely distinct. We consider, in a gémeamner, the reduction of the
sextuple integral that expresses the solution of the gmobion supposing that the two
volumes in question are completely arbitrary in foasiwell as in relative position.

Upon calling the elements of those two volurdesdv’, one will be dealing with the
sextuple integral:

jjdvdw(dv ).

We shall see that, in any case, one can come dowigtiadruple integral.

Let i be an element of the volunaé(which might or might not belong to the volume
v), and first consider the triple integral:

Jave(u, dv,

which we extend over the entire volume Imagine a sphere of radius 1 that is described
about the points as its center and is divided into infinitely-smallkments; letl 1 be one

of those elements. Consid#f1 to be the base of a cone that has one of thespofij

for its summit, and lep’, p”, p"”', ... be the points where that cone cuts the suddhat
bounds the volume, the number of those points will obviously be addeven according

to whether does or does not belong\tpresp. Ledt, dt’, dt" denote the elements that
the cone cuts out from the surfageand letq’ q", ", ... denote the angles that are
formed by the generators with the exterior nornalghose elements, and finally let,

U', U", ... denote the distanceso, u p’, up", ..., resp. We will obviously have:

OII_Izidtcos¢ :_dt cosg :idt cosy

1 + " " L
U'? u"? "
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in which the upper signs refer to the case where the posméexternal tor and the lower
signs refer to the contrary case.

If one now forms the portion of the triple integtiadt relates to the elementswathat
are situated inside the cone considered then that pevillbobviously represent:

1. If the pointu is external tov:

dri U:,"gb(r)rzdr +j (r)r 2dr +}
2. If the pointi belongs to the volume

dn[jor@(r)rzdr +jrr"”¢(r)r 2qr +}

in such a way that if one sets:

[Cemrzdr =-y )

then that integral will become:

dt’ cosq’ z//(r) dt’ cosd dt’
r'z U"?

difg)-wh")+¢ ") ..]=

in the former case and:

dt’ cosq’ t' cod dt" +

dn ¢ (0) + ——u(r )+ o

in the latter. If one now sums those results fopaBsible positions of the elemeahfl
then one will get:

J-dtcosqw( N

in the former case and:

dtcos
ANy +[=7 d

w(r)

in the latter, where the two integrals must be extendedtbe entire surface that bounds
the volumev.

When one denotes the volume that bethnd V' belong to bys, one will easily
deduce from the preceding results that the sextuple ihtbgtave would like to evaluate
is equal to:
dtdvcosqy (dt, dv)

(dt, dv)®

AN o) +|
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in such a way that in order to calculate this, it wilffice to define a quintuple integral in
which one successively considers the volume elememntdien they are combined with
those of the surfade

In order to reduce that quintuple integral, considexkedfielementt of the surface
and first define the triple integral that refers to ¢benbination of that element with all of
the volume elementv ; that integral will become:

J dvcosqy (dt,dv)
(dt, dv)®

in whichqg denotes the angle that the link,(dt) makes with the exterior normal ¢tib

Imagine a sphere of radius 1 that is describeditaditoas its center. Once more, let
drn be an element of the surface of that sphere. i@emthe cone that has its summit at
the point ofdt anddr for its base. Suppose that this cone cuts tHaif that bounds
the volumev at the point®’, P” P”, ... LetR,R” R”, ..., resp., be the distances from
those various points to the pojpatletdT’, dT” dT", resp., be the portions of the surface
T that are cut out by that infinitely-small coneddmally, letQ’, Q" Q" resp., be the
angles between the cone and the exterior norntabe elements. We will have:

_ . dT'cosQ _ _dT"cos@ _ N dT" cos@"

d I_I Rr 2 + Rn 2 - Rm 2

in which the upper or lower signs must be adoptad@ing to whethedt is exterior or
interior to the volume, resp. If we now integrate over the entire extdrthe infinitely-
small cone that was considered above thenmust be considered to be constant over the
entire extent of the integration, and if we set:

jr‘”w(r)dr =-6(

then we will see, as in the preceding case, thanwhe integral:

J dvcosqy (v, dt)
(dv, dt)®

is extended over all of the elements of the indilgtsmall cone, it will be equal to:

cosq [—dT F‘;‘zsq 6(R) +—dT RJCISSQ 6(R) +}

in the former case and to:

dT'cosqQ

d M cosq €(0) + coxy ( 7

6’(R’)+..-j
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in the latter.
If we now integrate oved 'l then we will get:

1.
J dvcosqy (v,dt)  dTcosqQé (v, dt)

(dv, dt)® R?

in the case where the elemelttis exterior tov, in whichdT denotes any of the elements
of the surface that boungs

2. Inthe case whert is located inside of, one must add the term:

q(0) j drlcosq
to the preceding expression.

It is easy to see that if that integral is extehdeer all elements of the sphere of
radius 1 then the parts that it is comprised of @&ahcel pair-wise, and its total value will
be 0. However, if the elemedt belongs to the surface that boungise., if the spaceg
andv’are partly bounded by a common surface, and tlatitdenotes the element of that
surface then the integral:

8(0) j dcosq

must be extended over only those elements of thergal surface for which the linet(
drt) is found interior to the volume in the neighborhood ofit; i.e., for all of the
elements that are found on the same side of tlgetarplane tadt and for which the
angleq is acute, if the volumesandv’are situated odifferent sides of the surface that
is common to them and obtuse in the contrary ca@me will very easily find the
integral:

jdl‘l cosg= +T1
in the first case and:
jdl‘l cosg=-—1T1

in the second one. It will result from the precgdiconsiderations that the sextuple
integral:

jjdvd\w(dv d¥)

can reduce to the following forms:

1. If the volumesr andv’ have a common pat; while their surfaces are entirely
distinct:
dtdTcosp co

(dt, dT)?

jjdvd\w(dv d) = 4N oy (0) +jj o (dt, dr).
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2. If the surfaceg T that bound the volumesandv’, resp., have a common part
which we callS then:

dtdTcosg cosQé @t dT'
(dt, dT)?

jjdvdw(dv d) =4M ow(©)F N pSH(0) +jj

in which the upper sign refers to the case in whigmdv’are on the same side of their
separating surface, and the lower sign referseatimtrary case.

[1.
From the reduction formula to which we have adijvéhe quantityQ, whose

variation represents the sum of the virtual momehtke forces that act upon the system,
can be put into the following form:

Q =-gp[ zdw1 0" Ww(0)-3Mp* B(0)+N pp' TO(0)

N ” dtdt cosgzcosdé? (r)+II dtdT colsjrg cosy (’
in which p denotes the density of the liquid, as we said epando’ denotes that of the
glass. v is the volume of the liquid, is the area of the surface that bounds that vglume
andT is the area of the portion of that surface that isontact with the walls of the tube
or with those of the vessel. The functigisg, and® are deduced from the functiogs
and® by way of the following equations:

[Trpmydr=-w(),  [Twmndr=-60)
Irmrz d(r)dr =-W (r), IrmW(r)dr =-0(0).

The functionsg and® are totally unknown, so the same thing will bestfar & and©,
which are deduced from them. One can neverthasssme that those two functions,
just like ¢ and ¢, are annulled for all of the meaningful valuesha& variable. In order to
do that, it will suffice to remark that the actiohthe molecules that are located at an
appreciable distance has no influence on the phenanso it will not change anything if
one assumes thgtand® are rigorously zero for finite values of the vaieg which will
obviously imply the same condition for the funcsahand®.

From that remark, one will effortlessly see tha two quadruple integrals that enter
into the value of2 are both negligible.

Indeed, consider the first of those two integrals:
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” dtdt coszq coyy o).

We can write it in the following manner:

J-dtJ- dt’cozq2 coy a(r).

However, upon lettingl 'l denote the element of the spherical surface of radihst is
described aboudt as its center, one can set:

dt’z(Zqu —dn.
which will reduce the integral in question to:
jdtj drf cosqlé@ (r).
Now, in that form, it is obvious that:
jdl‘l cosqld (r)

will have a negligible effect, becauserifs not very small thed (r) will be negligible,
and ifr is very small then the linel{, dt”) will be very close to the tangent plane, and cos
g will differ only slightly from zero. An entirelgimilar argument will show that one can
neglect the second quadruple integral and conségueake the following expression for
Q:

Q =~ gpf zdw+1 p* W(0)-4N p* B(0)+N pp' TO(0).

That sum must be zero in order for there to belibguim. Now, it is obvious that one
can suppress the terp®vy/(0), which is constant. If one divides Iy, in addition,

and one changes the signtpfafter setting:

Mpo0)_ 2
29 ’

Np'o0)_ .
29 - ﬁ ’

and that functiorK must be a minimum.
If one letsU denote the area of the free surface of the lithaeeth one will have:

t=U+T,
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in such a way that the expression that one must naeimill take the form:
jzdv+ (@ -B)T+dPU=K,

in which U is the area of the free surface of the liquid, &nsl the area of the portion of
that surface that is in contact with the walls @& thbe or those of the vessel.

V.

The preceding result was obtained by Gauss, and #tkeopreceding was extracted
from his paper. However, instead of solving the problenhefrhinimum to which we
will be led with the calculus of variations, as he dice shall deduce the differential
equation for the surfac®) that rendersK a minimum from very simple geometric
considerations, as well as the conditions that meigulilled on the boundary.

In order forK to be a minimum, while the volumeremains constant, it is necessary
that the variation of the suk + Av must be zero, wher& denotes a constant that must
be ultimately determined.

First suppose that one subjects the free sutfatte an infinitely-small variation that
preserves the same contour; i.e., one leaves invariadlpdrtion of the surface of the
tube that is wet by the liquid, which has been denoteqn by

In my paper on orthogonal isothermal surfaces, Wwslbthat if one considers an
infinitely-small rectanglelwon the surfac® that is composed of four lines of curvature
then the normals that are drawn through the variouggofrthe contour of that element
will cut out a corresponding infinitely-small elemerarfr the neighboring surface that is
equal to:

1 1
dow| —+— |e+d
(R Rj “

in which ¢ is the infinitely-small distance between the twofaces that one compares.
From that theorem, whose geometric proof is gsiiteple, the variation ofr 2 U will

be equal to:
1 1
a’ldw =+= |€.
faol )
As for jzdv, it is obvious that its variation will be:

j z¢& dw,
and finally, the variation of will be equal to:

jsda).
One must then have:
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[edw a2(1+ij+ z+1|=0,
R R
and since that result must be true for angne can conclude that:
a2(1+—1j+ z+A=0,
R R

which is indeed the known differential equationtioe capillary surface.

In order to determind, one should point out th& = o, R” = « for the points that
belong to the surface of the liquid that is outsidehe tube, s@ + A = 0. If one then
measureg by starting from the level of the liquid in thesgel thend = 0, and the
equation that one finds will be:

z+a’® (1 +ij: 0.
R

R

In order to get the condition that relates to shefaceU, we shall suppose that one
varies the figure of the liquid without preservithgg same contour fdd. The difference
betweenU and thecorrespondingportion of the infinitely-close surface that rega it

will always be:
jsda}(1+ij.
R R

However, one must further add the portion of the sarface that does not correspond to
any point ofU; i.e., the small zone that is found between thee tand the curve along
which the normals to the different points of thentoar toU cut the surface infinitely
closely. Now, one effortlessly sees that when @ate dP denote the contour that
terminatedJ and lets denote the angle between the tangent plane tubieeand that of
U, the small zone will have the expression:

j dP&coti;
the variation of the volume will be composed of them that was written out before:
j dwe,

which represents the volume that is found betwdeand the corresponding portion of
the neighboring surface, and another term thatesgass the second-order infinitesimal
volume that is found between the walls of the tabe the skew surface that is the locus
of the normals tdJ that go through the various points of its contodowever, the latter

term can be neglected as infinitely small compawedhe preceding ones. The same

thing will then be true for the analogous term tisgbrovided by the variation qﬁ‘z dv.
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As for the ared, which did not vary in the preceding case, one effssljesees that it is
increased by the area of the portion of the surfacdeftube that found between the
curve that bounds and the new contour that replaces it; i.e., thegnatle

edP
sini ’

so the terms that are due to the variation of the boyrada:

2 _~p2
IsdP[ﬂﬂrzcotij.
sini

In order for this to vanish for ang it is necessary that one must have:

2232 .
uﬂrzcotl =0;
sini
i.e., that:
. a*-23?

a’

which proves that the anglenust have a constant value that depends uporatieenof
the liquid and that of the tube.

2 2

If 2’[1701 is greater than 1 (i.e., B2 exceedsr %) then the preceding formula will

give an imaginary value for the angle One must then conclude that in that case, the
hypotheses that were made up to now would be iredohe, and that the liquid would
have to form an extremely thin layer that wets Wedls well above the surface that
bounds the mass of the raised liquid. In that,ceetwo quadruple integrals that we
have neglected could not have a very small val@ne would then suppose that
everything happens as if the tube were closed éweéhy thin liquid layer that wets the
walls, in which case, one would ha#é = a?, and as a result cos 1.

V.

We have obtained two results that permit us taicedhe solution of any problem
that relates to capillary phenomena to a questi@malysis. The differential equation of
the capillary surface was obtained by Laplace sfightly simpler way, but the argument
by means of which he proved that the angle thdéimted by is constant was much less
satisfactory, as Gauss remarked. One of the memeankable results that Laplace
deduced from his formulas was the rigorous expoeskr the total volume of the raise
liquid in the case of a cylindrical tube with vedi walls whose section could be
arbitrary, moreover. | believe that the followipgoof has the advantage of simplicity
over that of Laplace:
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Upon taking thexy-plane to be the level of the external liquid, thé&fedential
equation of the capillary surface will be:

Multiply the two sides of that equation by dyand integrate over the entire extent of the
surface that serves as the base of the right @dimdwhich the liquid is raised. The left-
hand side is obviously the total volume of theediquid, and in order to understand the
value in the right-hand side, it will suffice torfirm the integration:

1 1
dxdy| =+—|.
ffaxy| &+ ]
Now, one can obviously regard that integral aswsical component of a system of

forces that will have an intensity on each elentkothat is equal taw (%+—;j when

they are exerted upon any liquid surface. Howesech a system can be replaced with
two other systems that are much simpler in th@¥alhg manner: Imagine a surface that
is parallel to that of the liquid and located atiafinitely-small distances; by that, |
mean a surface that is obtained by moving alondy @acmal by a constant length

Suppose that each elemelat’ of that surface is acted upon by a for%—:elaj, and that
£

each elemendwof the first surface is acted upon in the oppostese by a forcc-;?da).
£

If dwanddw’ are two corresponding elements then from a thedhatwas cited before
in this paper, one will have:

dow' -dw= dw(£+ij &
R R

in such a way that the difference between the twoefs is equal to precisely:

Instead of composing the proposed forces in omldodk for their vertical component,
one can then look for the component that is praliol each of the two systems that we
spoke of separately. Now, one knows that an atyitsurface is subject to a constant
normal pressure, so the resultant of the forces d&loh upon it will give a vertical
component that is equal to the product of the piresper unit area with the horizontal
projection of the area considered. If we callpn@jections of the areas of the liquid and
the parallel surfacB, andP;, resp., then we will have:
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'[ dXd){%‘f‘—;j =(P1—Py) %

Now, P; — P2 is obviously the projection of the area of the skewas@rthat is composed
of the normals of lengtls that are drawn through the points of the contour, wiach
projection that is, as one easily sees (due to thetaoininclination of those normals),
equal to the product of the perimeter of the cross-seutith £ cosi, wherei is the angle
that the normal to the surfatemakes with the normal to the cylindrical surface. Upon
calling the length of the contour of the cross-sectibthe tubel and the volume of the
raised liquidV, we will finally have:

V = d&? L cosi,

which is Laplace’s result, up to notations.

VI.

Gauss’s method supposed that no other external force apte the liquid besides
weight. If one assumes, for example, that the apheric pressure is not the same inside
the tube and outside of it then one must draw one’statiteto the forces of pressure in
the evaluation of the virtual moments of the forceshef system, and consequently, in
place of equating the variation of the function that desoted by above to zero, it is
convenient to write that it is equal and opposite tostira of the virtual moments of the
forces of pressure. Suppose that the pressure thatisgkxpon the external level of the
liquid is P, and letP’ denote the pressure that acts upon the raised liquid itubee
Recall the expression f@) that was calculated above:

Q =-gp[ zdw1 0" Ww(0)-1Mp* B(0)+N po' T6(0).

Upon introducing the conventions:

7= M p6(0)
29
,_ Np'6(0)
B 2g

Q :—gpjzdw%pz W(0)-p’a’w2p gr?T,
or, upon setting=T + U :

Q=-gp[ zdwip* Ww(0)-p @* Ut p gT2B°-a?).
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In order for there to be equilibrium, the variatio® must be equal and opposite to the
sum of the virtual moments of the forces of pressi@eppose that the tube is a vertical
right cylinder and write down that this condition isfiftdd for a virtual displacement that
consists of lowering all of the points of the portimihthe surfaceJ that corresponds to
the liquid that is found inside of the tube by the same dgwyadih in the sense of the
vertical, and at the same time, raise all of the tgoaf the external surface by another
quantitydh’. The ratio ofdh to dh’is calculated in such a manner that the total volume
will remain invariable, so one will effortlessly seattlthe surfac&) will not change for
such a displacement, and if one calls the length otomour of the interior section of
the tubelL and that of the section of the vessel that is alpp@sed to be cylindrical’
then the variation o will be:

—gpjzdv+ g(a?-24%)(- Ldr L db.

Now, 5jzdv is the sum of the moments of the various truncaididders of heightlh

or dh’whose liquid volume is diminished or augmentedy Ane of those cylinders will
have a measure that is equal to the producthakith its cross-section, which one can
represent byx dy one will have:

S| zdv=~dh[ zdxdy dif zdxc

The first integral extends over the portion of ligeid that is inside of the tube, so it can
represent the volume of the raised liquid i§ measured by starting from the level of the
external liquid, which is a hypothesis that willhaihthe second integral.

If one replacesﬁjzdv with that values and remarks that the ratialoto dh” must

be the inverse of the ratio of the area of theisedf the cylinder to that of the vessel in
which is it immersed, while calling those ar&sandB, then one will have:

0Q = {—Vgp+ go (23° —az)( L—%LH dh.

The sum of the virtual moments that are due toftinees of pressure can be easily
calculated. Indeed, if one considers an elerdendf the surfacé) then the pressure that
it supports will beP dwor P’ day according to whether it belongs to the portiorthef
interior surface of the tube or the external levEhe virtual displacement of the point of
application will be the product afth with the cosine of the angle that the element unde
pressure makes with the vertical, which will give tproduct ofP dhor P’ dh’ by the
projection of the elemerda and consequenthp b dhor — P’ B dh’ for its integral,
according to whether one is dealing with the ligtindt is inside of the tube or outside of
it. Upon remarking thab dh= B dh’, the sum of those two integrals will bé £ P") b

dh. Finally, we will then have:
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-Vgo+gp(28%-a?d (L—%Lj =P-P)b

for the equilibrium equation. If we Iétdenote the height of a liquid column of volume
V that ha% for its base — or, in other words, the mean heighb®fraised liquid — then
we will infer from that equation that:

_2_opan (L LY, (P=P)
h=(a Zﬁ)(b Bj+ go

In that result, one can neglect/ B with respect td / b, and if one simultaneously
replacesa? — 237, with its new value above (vizg? cosi, in whichi is the angle that
the liquid forms with the capillary surface) themeowill have:

P-P
go

| .
h= a®*—cos +

That proves that the heightis composed of two parts, one of which is pregisgjual to
the elevation that was calculated above for the c&® = P’, and the other of which is
equal to the difference in the level thatiseto the excess of external pressure over the
internal pressure.

If, instead of considering, as in the precedinguarent, the case of a tube that is
immersed in a liquid, we suppose that a liquid owluis suspended in a tube and
supports different pressures over its two surfateen we will see that upon giving a
common vertical motion to all point, in the sen$¢he vertical,dJ and dT will be zero,
and 0 Q will reduce to -gpoV, and upon equating that virtual moment 3 € P) b, we
will see that the weight of the column will be siggroportional to the pressure
difference, and that capillarity will have no irdloce on the phenomenon. If we suppose
that P = P/, as a special case, then we will hA¥e 0. When the facts of reality are
contrary to that result, one can explain that leyitfiluence of friction.

One will immediately deduce the preceding resiutim the first of the theorems that
were stated at the beginning of this paper. Iflitpgid column, which is situated in a
capillary tube that is open at both ends, is sepdriamto several parts by air bubbles that
are interposed in the liquid then the total weighthe raised liquid will remain the same,
no matter what the density or number of those @ibkes would be.

VII.

| shall now consider a well-known phenomenon teaéms, on first glance, to
contradict the results of the preceding analysis.

One knows that a capillary tube that is open #t bads can contain a column that is
almost double in height to the one that rises ugg when one immerses it in a liquid
mass. As one knows, it will suffice that the ligwolumn should occupy the lower part
of the tube and form a meniscus whose curvatureawlain that increase in height. In
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order to reconcile that fact with the theory thasysaoved above, one must remark that
in general in the application of the principle of virtualocities, the sum of the virtual
moments that correspond to a certain displacemethieagystem must be zero only when
a displacement that is equal and opposite is possiblpranaies a sum of moments that
has precisely the opposite sign to the one that comdspo the former case. When that
condition is not fulfilled, in order for there to bguelibrium, it will suffice that the sum
of the virtual moments, while not being zero, can ndeaome positive. Now, in the
case that we are addressing, if we give the liquid aatirnhotion that consists of raising
all of the molecules that are contained inside the hybihe same quantity in such a way
that one does not change the surface that is denotedamd T, in order to apply the
argument of the preceding paragraph, then an equal and t@ppisplacement, which is
a displacement for which the constraints will not ogpasything, will imply a change in
the value otJ andT, because the tube no longer extends above the pozsgatr of the
surfaceU, so one cannot lower that surface without supposingtheatiquid forms a
small cylinder below the lower liquid in the tube thatasnpletely external to it, where
the convex surface must be considered to belotyy tdhe variation ofl will cease to be
zero, because the reduction that the surface expesiemeard in the volume will no
longer be compensated by an increase that is equal tonbe part.

From those remarks, upon calling the virtual motion ihgive to the systemh and
letting L andb denote the length of the contour and the area ofrtdss-section, resp., of
the tube, as usual, one will find that:

0Q =gpV dh—gr &*L dh—pg (28%-*) L dh,
and sincedQ must be negative, one will have:
V < 2B7L.

Now, one found above that the volundéthat is raised by immersing the tube into an
indefinite mass of liquid was:

V' =d? L cosi.
One will then have:
2
v
V' a“cos

or, upon remarking that@ / o* =1 + cos :

l<1+i

\& cos

which is precisely the result that was stated atogginning of this paper.

The preceding method does not give the precissevad the ratiov’/ V, but only a
limit of that ratio: One must point out that an eixdetermination of its values is, indeed,
completely impossible, because if, under the cistamces that we have assumed, a
certain liquid column can be maintained in the {ubena fortiori the same thing will be
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true for a lower column. Nonetheless, in order foe solution to be completely
satisfactory, it will be necessary for one to be ablshow that the limit that one finds
can be attained in reality.

VIII.

Upon applying the method that was presented at the beginfitngs goaper in the
case of two liquids that are superposed in the same aabewill find, with no difficulty,
that upon denoting the area of the surface that bouedspier liquid byJ, the area of
the separating surface between the two liquids in the byldJ’, the area of the free
surface of the external liquid that is contained in vhesel byU” the areas of the
portions that belong to the surface of the tube or tedlsurfaces of the vessel that are
wet by the upper and lower liquidandT’, the densities of the upper and lower liquid by
pandp’, and finally, upon denoting the constants that are anafogothe ones that were
defined above by?, B2 a’? B'? a”? "2 it will be necessary for equilibrium that the
sum:

K = ,ojzdv+p’j zd+ P pU+ (@@ -28)pT

+(a2p+ a/2pl_2ﬁ//2pl)U1+(a/2pl_2ﬁ/2pl)T1+ a/2pIU/

should be a minimum.

Now, upon giving a common virtual displacement to athefpoints of the mass that
is inside the tube and the inverse displacement to ednh qfothe external mass, one
must have:

V4 V4 V4 V4 4 V4 V4 4 Lb V4
0=-pbh—p’bh’+ (a?p —Zﬁzp)L—(az—Zﬁz)E o

So one can infer a value fgh + p”h’that does not depend upon the nature of the upper
liquid at all.

IX.

Among the numerous phenomena that are attached to wgpilkene of the simplest
and easiest to study experimentally seems to me toebfertimation of drops of mercury
on a horizontal glass plane. The preceding principledy ajgp the study of those
phenomena with no difficulty and will lead to some restihat one might perhaps take
advantage of.

If the drop of mercury rests upon a horizontal plama tthe differential equation of
the free surface will be the same as that of a litjuadl is placed in a tube; i.e.:

1 1
h—z=a?| =+=|,
&)
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only the constanh, which was determined by the position of the externall levéhe
preceding problems, will remain unknown here and can beneltanly by equating the
volume that is calculated for the drop to the givenundd of the liquid that it is
composed of. In the particular case in which the drogery large,R and R’ can be
considered to be infinite for the points of the uppefasa; in such a way that for those
points, one must suppose that= h and that the constamt will then represent the
thicknessof the drop. In the general case, in order to defia¢ ¢bnstant, one must
suppose that the plate upon which the mercury restsrsegiat the very center of the
drop in such a way that it will communicate by means 6lied liquid channel with a
vessel that is large enough for the liquid in it to beizomtal. h will then denote the
elevation of the level of that liquid above the glpkge.

Upon supposing that one has succeeded in realizing themstances that | just
indicated and has thus determined the value lof experiment, one can obtain a simple
relation between the measurable elements of a drop elingawhose verification seems
important to me.

Consider the equation:

_2(1. 1
h—z=a (R+ Rj'

Multiply this by dx dyand integrate over the entire extent of the ptmacof the drop
and for all points of its free surface; i.e., oakes the ordinates that can answer to the
same value ok andy twice and with opposite signs. Upon calling tledume of the
dropV and the area of the base by which it rests upegldss planb, one will have:

bh —Vzﬂaz(%+%j dx dy

Now, the right-hand side can be considered to sgmtethe vertical component of a
system of forces that are exerted normally on edementdwof the surface of the drop

with an intensity that is equal @ dw (%+—;j but we have seen that such a system

can be replaced with two other ones in which agues? dw/ s is exerted upon each
element of the surface of the drop and the parslighce that is drawn at a distancesof
from it. Now, each of those systems of forces giMe rise to a vertical component that
is equal to the product af dw/ s with the area of the projection of the surfacearnd
pressure. One will easily see that the differeloetsveen those two projectionsasL &
sini, in whichL is the length of the contour of the drop amlthe constant inclination of
its tangent plane over the horizontal plane: Thegral that is in the right-hand side will
then have the value @ ? L £sini, and we will have:

bh —V=-a?Lsini,
SO
V =bh+ a?Lsini,
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which is a relation that can be verified by experiments.




