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1. 

 

 Let z1, z2, …, zn be n variables that can take on all real values from −  to + . The n-fold 

infinite domain of systems of values of those variables is called an n-dimensional space and will 

be denoted by Sn . A system 0 0 0

1 2( , , , )nz z z  will determine a point L0 of that space, and 0

1z , 0

2z , …, 

0

nz  will be called the coordinates of that point. 

 A system of m equations will determine a domain of systems of values of n – m independent 

variables that will be a space Sn−m of many dimensions that is contained in Sn . A space of only one 

dimension that forms a simple continuum will be called a line. 

 Let: 

F (z1, z2, …, zn) = 0      (1) 

 

be the equation of an (n – 1)-dimensional space Sn−1 . If the function F is continuous and has just 

one value for all real values of the coordinate then the space Sn−1 will generally separate Sn into 

two regions, in one of which one will have F < 0, and in the other F > 0. Moreover, one cannot 

continuously vary the system of values of the coordinates of a point in the first region and pass to 

a system of values of the coordinates of a point in the other region without passing through a 

system of values that satisfies equation (1). The two regions will be two n-dimensional spaces that 

are bounded by the space Sn−1 . If one can always pass from the system of values of the coordinates 

of an arbitrary point in one of the two regions to the system of values of the coordinates of any 

other point in the same region by a continuous variation without passing through the values of a 

point in Sn−1 then one will say that the region is a connected space. 

 Let: 
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be such continuous, single-valued functions that will satisfy equation (1) identically when they are 

substituted. The space Sn−1 can be regarded as the domain of the systems of values of the n – 1 real 

variables u1, u2, …, un−1 . 

 It is obvious that Sn−1 will satisfy the n – 1 equations: 

 

1 2

1 2

n

m m n m

dzdz dzdF dF dF

dz du dz du dz du
+ + + = 0 ,    (3) 

 

which are obtained by taking m to be the numbers 1, 2, …, n – 1, in succession. 

 Let A1, A2, …, An denote arbitrary indeterminate quantities and set: 
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2  = 

2

1

n

m m

dF

dz=

 
 
 

 ,       (5) 

 

2M  = 

2

1

n

m m

d

dz=

 
 
 

 .       (6) 

 

One will then get from equations (3) that: 

 

m

dF

dz
 = 

m

d

M dA

 
 .      (7) 

 

Now let L be a line that is determined by the equations: 

 

z1 = l1 (t), z2 = l2 (t), …, zn = ln (t) .    (8) 

 

 If equation (1) is satisfied by only a finite number of real values of t when those values are 

substituted then the line L will intersect the space Sn−1 at only a finite number of points. Let T0 be 

one of those points of intersection that corresponds to t = t0 . One will have: 
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F (l1 (t0), l2 (t0), …, ln (t0)) = 0 . 

 

Now consider the two points of L that correspond to: 

 

  t = t0 + t0 , 

  t = t0 − t0 , 

in which t0 is an infinitesimal. 

 For the first of those values of t, the function F will become: 

 

F = 
0

1 0

n
m

m m

dldF
t

dz dt


=

 , 

and for the second one: 

 F = −
0

1 0

n
m

m m

dldF
t

dz dt


=

 . 

Recalling equations (7), one will get: 
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in which D is the determinant  when the quantities dlm / dt0 are substituted for the Am . 

 If one now takes the radicals that give positive signs to  and M and conveniently fixes the 

ordering of z1, z2, …, zm while traversing the line L by continuously increasing t then one can 

deduce from equations (9) that if D > 0 when L intersects Sn−1 at the point T0 then one will leave 

the region in which F < 0 and enter the one in which F > 0, and conversely, if D < 0 then one will 

leave the region in which F > 0 and enter the one in which F < 0. 

 If one sets: 
2

nds  = 2 2 2

1 2 ndz dz dz+ + +  , 

 

and dsn is the line element on Sn (in which case, RIEMANN called the space Sn planar) then the 

line element dsn−1 in the space Sn−1 will be given by the formula: 

 
2

1nds −
 = rs r sE du du , 

in which: 

Ers = m m

r s

dz dz

du du
 , 

 

and from a known property of determinants, one will have: 
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If: 

  dSn = dz1 dz2 … dzm 

 

is the spatial element of Sn then the element of Sn−1 will be: 

 

dSn−1 = M du1 du2 … dun−1 .              (11) 

Now let: 

F1 (u1 , u2 , …, un−1) = 0 

 

be the equation of a space Sn−2 that is contained in Sn−1 . If F1 is a continuous function and has just 

one value then Sn−2 will generally separate Sn−1 into two regions, one of which will have F1 < 0 and 

the other of which will have F1 > 0 . One can regard Sn−2 as the domain of n – 2 real variables, and 

one can repeat everything that was said for Sn−2 . The line element will always be a homogeneous 

form of degree 2, but the coefficients will have a different form, as well as the coefficient M by 

means of which one obtains the spatial element of Sn−2 . Analogous observations will be true for 

spaces with a lower number of dimensions. 

 

 

2. 

 

 One says that an (n – m)-dimensional space Sn−m is linearly connected if one can take any two 

points in it and pass a continuous line that goes from one of those points to the other without 

leaving Sn−m . Say that a space Sn−m is closed if one can divide Sn into two linearly-connected spaces 

in such a way that when one is given one of them, one cannot pass a continuous line from any 

point to another that does not intersect Sn−1 . One says that a linearly-connected space is closed if 

it divides a closed space Sn−1 into two regions, each of which is linearly connected and is such that 

one cannot pass a continuous line that is entirely contained in Sn−1 from one of them to any point 

in the other that does not intersect Sn−2 , and so on. 

 However, instead of considering just one, now consider an arbitrary number of inequalities: 

 

F1 < 0 ,      F2 < 0 ,      …,      Fm < 0 , 

 

which will determine a subset R of a space St that can be linearly connected. The totality of those 

(t – 1)-dimensional spaces: 

F1 = 0 ,      F2 = 0 ,      …,      Fm = 0 
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that bound R in such a way that one can pass a continuous line from any point of R to a point 

outside of R that does not intersect any of those spaces can be called the contour of R. 

 One says that a space is finite if the coordinates of all of its points have finite values. 

 A space is either finite and linearly connected or closed or it will have a contour. 

 

 

3. 

 

 A finite space has properties that are independent of the magnitude of its dimensions and the 

form of its elements. Those properties that refer to only the way that its parts are connected were 

considered by LISTING for ordinary spaces in a treatise that was entitled “Der Census räumlicher 

Complexe” and were determined for surfaces by RIEMANN. 

 Other than the linear connections, which are the only ones that present themselves in surfaces, 

I have observed that one can consider other types of connections in spaces with a number of 

dimensions that is greater than two. 

 If any closed m-dimensional space (with m < n) in an n-dimensional space R that is bounded 

by one or more (n – 1)-dimensional spaces is the contour of a subset of an (m + 1)-dimensional 

linearly-connected space that is completely contained in R then it will be (m + 1)-dimensional 

connected, and one will simply say that R has a connection of the mth kind that is simple. If all of 

the connections in a space R are simple then one says that it is simply connected. However, if one 

can imagine a number pm of closed m-dimensional spaces in R that do not form the contour of a 

linearly-connected subset of an (m + 1)-dimensional space that is completely contained in R and 

is such that any other closed m-dimensional space forms, by itself or with all or part of the contour, 

the contour of a linear-connected subset of an (m + 1)-dimensional line that is contained completely 

in R then one will say that R has a (pm + 1)th-order connection of the mth kind. 

 

 Examples. – In the ordinary space, the space that is found between two concentric spheres has 

a second-order connection of the second kind and a simple one of the first kind. 

 The space inside an annulus has a simple connection of the second kind and a second order 

connection of the first kind. 

 Both connections in the space between a sphere and an annulus have second order. 

 In order to justify the definition that was given for the various kinds of connections, it is 

necessary to prove that the number pm is well-defined for any bounded space R – i.e., that no matter 

how one defines the m-dimensional spaces that possess the stated property, the number of them is 

always the same. We will base that upon the following lemma, as RIEMANN did in order to prove 

the corresponding theorem that relates to surfaces: 

 

 If a system of closed m-dimensional spaces A, along with another system C, forms the contour 

of a linearly-connected (m + 1)-dimensional space Sm+1 that is contained completely with R, and 

if another system of closed m-dimensional spaces B, along with the system C, forms the contour of 

a linearly-connected space 1mS +
   that is contained completely in R then the system A, together with 

the system B, will form the contour of a linearly-connected (m + 1)-dimensional space that is 

contained completely in R. 
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 Indeed, the two spaces Sm+1 and 1mS +
  will either be on opposite sides of the contour C or on the 

same side. In the former case, the contour of the space that is composed of Sm+1 and 1mS +
  will be 

the system A, along with the system B. In the latter case, if one removes 1mS +
  from Sm+1 then what 

will remain will be a space whose contour is the system A, along with the system B. 

 

 If t closed m-dimensional spaces A1, A2, …, At, by themselves or with any other closed m-

dimensional space, cannot form the contour of a linearly-connected (m + 1)-dimensional space 

that is contained completely in R, and if another system of t closed m-dimensional spaces B1, B2, 

…, Bt possesses that property then one will have t = t. 

 

 Indeed, suppose that t > t . If C is any closed m-dimensional space then either the system (A1, 

A2, …, At,  C) or the system (A1, A2, …, At, B1) will form the contour of a linearly-connected m-

dimensional space that is contained completely in R. Therefore, either the system (A2, A3, …, At, 

C) or the system (A2, A3, …, At, B1), together with A1, will form the contour of a linearly-connected 

(m + 1)-dimensional space that is contained completely in R, and as a consequence, from the 

preceding lemma, the system (A2, A3, …, At, C), along with the system (A2, A3, …, At, B1) – i.e., 

the system (B1, A2, A3, …, At, C) – will form the contour of an (m + 1)-dimensional space that is 

contained completely in R. Therefore, when the system (B1, A1, A2, …, At) is united with any closed 

space C, it will form the contour of a linearly-connected (m + 1)-dimensional space, and if one 

now continues to substitute one of the spaces B for one of the spaces A, in succession, then one 

will finally have that the system (B1, B2, …, Bt), along with any closed space, and therefore also 

with Bt+1, will form the contour of a linearly-connected (m + 1)-dimensional space that is contained 

completely in R, but that will contradict what we have supposed when t > t. One likewise proves 

that one cannot have t > t. Therefore, t = t, which was to be proved. 

 

 

4. 

 

 When one supposes that the connection of a bounded space R is routed along a space with a 

lower number of dimensions that has its contour on the contour of R, one says that one has made 

a transverse section in R. 

 If one is given an m-dimensional space and one separates from it an infinitesimal part with an 

infinitesimal (m – 1)-dimensional space for its contour then one says that one has made a point 

section. 

 If a bounded space R can be reduced to another one R without making any transverse section, 

and only by means of continuous enlargements and reductions of its parts, then one will say that 

R can be reduced to R by continuous transformation. 

 Two bounded spaces R and R that can be reduced to each other by means of continuous 

transformation will have equal orders for their connections of each kind. Now, a point is simply 

connected, so any space that can be reduced to a point by continuous transformation will be simply 

connected. 
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 One can always make a space with a contour lose one dimension by continuous transformation. 

 

 Indeed, let R be that space, let m be its number of dimensions, let C be its contour, let Sm be 

the space that it belongs to, and let u1, u2, u3, …, um denote a system of coordinates in Sm . Imagine 

an (m – 1)-fold infinite system of lines that occupies all of Sm continuously. For example, take the 

lines whose equations are: 

u2 = a2 ,      u3 = a3 ,      …,      um−1 = am−1 , 

 

where a2 , a3 , …, am−1 take all values from –  to + , and consider only that part of the system 

that contains the lines that meet the contour C of R. When each of those lines is continued by 

increasing u1 until it meets C, where it enters R many times and leaves it just as many times, one 

can approach each entry point indefinitely with the following exit point and thus make R lose one 

dimension, as we wished to show. 

 

 One can always make a closed space lose one dimension by continuous transformation after 

one has made a point section. 

 

 Indeed, after making a point section, the space will acquire a contour, and therefore, from the 

previous theorem, it can always lose one dimension by continuous transformation. 

 

 If one makes only one point section in a closed m-dimensional space R then that will not change 

the orders of its connections. However, if one makes s + 1 point sections then the order of the 
th( 1)m −  kind will increase by unity, while the higher orders of connections will not change. 

 

 Indeed, let  + 1 be the order of the connection of the (m – 1)th kind in a closed m-dimensional 

space R. One can imagine a system A of  closed (m – 1)-dimensional spaces in R that form the 

contour of a subset of R, not by themselves, but with any other closed (m – 1)-dimensional space 

C. Since R is closed, the system A, together with C, will divide it into two separate regions, R and 

R that both have the same contour – i.e., the system A, along with C. Now if one makes a point 

section in R then it will be in one of the two regions; suppose that it is in R. It is then clear that the 

system A, along with C, will no longer form the entire contour of R, but rather, it will always 

comprise the entire contour of R. Therefore, the order of the connection of the (m – 1)th kind of R 

will not change under just one point section. However, if one makes two point sections in R then 

one can always take C in such a way that one of those points is in R and the other is in R, so the 

system A, along with C, will no longer form the contour of part of R, and it will be necessary to 

add another closed (m – 1)-dimensional space in order to get the entire contour from part of R. 

Therefore, one can increase the order of the connection of the (m – 1)th kind of R with two point 

sections. One proves analogously that that order will increase by 2, 3, …, s units with 3, 4, …, s + 

1 point sections, resp. 

 Now let  + 1 be the order of the connection of the (m – t – 1)th kind of R, where 0 < t < m. 

One can imagine a system of closed (m – t – 1)-dimensional spaces in R that does not form the 

contour of an (m – t)-dimensional space T that is contained completely in R by itself. Let as many 
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point sections as one desires be made in R, but still a finite number of them. With the given contour, 

one can always arrange that T does not pass through any of those point sections. Therefore, an 

arbitrary finite number of point sections will not change the orders of the connections of the kinds 

that are lower than the (m – 1)th. 

 Since one does not change the orders of the connections of a closed space R by making just 

one point section, in order to determine those orders, it will make no difference whether one 

regards R as closed or as having an infinitesimal contour. Thus, one can always regard a finite 

space as being bounded by a contour, and therefore one can always make it lose one dimension by 

continuous transformation without changing the orders of its connections. 

 

 

5. 

 

 In order to make a finite space n-dimensional space R simply connected by means of simply-

connected transverse sections, it is necessary and sufficient to make pn−1 linear sections, pn−2 two-

dimensional ones, pn−3 three-dimensional ones, …, and p1 (n – 1)-dimensional ones, if the orders 

of its connection of the 1st, 2nd, …, (n – 1)th kind are p1 + 1, p2 + 1, …, pn−1 + 1, respectively. 

 

 Indeed, let pn−1 + 1 be the order of the connection of the (n – 1)th kind of R. One can imagine a 

system A of  closed (n – 1)-dimensional spaces in it that do not form the contour of part of R, but 

they will form it with any other closed (n – 1)-dimensional space. One will then have more bounded 

regions, each of which will have a contour that is all or part of the system A and part of the contour 

of R. Hence, when one makes that region lose one dimension by a continuous transformation, it 

will reduce to the system A, which is connected along (n – 2)-dimensional spaces. Thus, R can 

reduce to an (n – 1)-dimensional space R1 by continuous transformation, which is a space that is 

composed of pn−1 closed (n – 1)-dimensional spaces A that are connected with each other by (n – 

2)-dimensional spaces, and R1 will have the same orders of its connections of the (n – 2)th, (n – 

3)th, …, 1st kind as R. Now, without changing the orders of the connections of R1, one can make as 

many point sections as the number of closed spaces that comprise it – i.e., pn−1 . Let 1R   be the 

space R1 in which those point sections are made. 

 If one reduces 1R   to R by continuous transformation then the point sections will acquire one 

dimension and become continuous lines that go from a point of the contour of R to another point 

of the same contour, i.e., they will become transverse linear sections, and therefore the orders of 

the connections of kinds lower than the (n – 1)th will again remain the same. Hence, one can make 

only a number pn−1 of transverse sections in R that do not change the orders of its connections of 

kinds less than the (n – 1)th. 

 Now each of those pn−1 transverse linear sections will traverse one of the pn−1 closed spaces A, 

which can at most be arranged in R such that it will not comprise the contour of a portion of R by 

itself, but it will when one adds another one of dimension n – 1 to it. Therefore, after having made 

that transverse section, each of the spaces A will no longer be closed, and thus any closed (n – 1)-

dimensional space will become the contour of a portion of R, and the connection of R of the 
th( 1)n −  kind will be rendered simple. 
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 Therefore, in order to make the connection of the (n – 1)th kind of R simple by means of simply-

connected transverse sections without changing the orders of the connections of the lower kinds, 

it is necessary and sufficient to make pn−1 transverse linear sections. 

 The (n – 1)-dimensional space 1R   to which the space R in which one makes the pn−1 transverse 

linear sections is reduced by continuous transformation that has a point section in any of the closed 

spaces that comprise it and an order of connection of the (n – 2)th kind that is equal to pn−2 can lose 

one dimension by continuous transformation and reduce to a space R2 that is composed of pn−2 

closed (n – 2)-dimensional spaces that are connected along (n – 3)-dimensional spaces. Now one 

can make at most pn−2 point sections without changing the orders of the connections of R2 . Let 2R  

denote the space R2 in which those point sections are made. When one reduces 2R  to R2 , the point 

sections of 2R  will acquire two dimensions and become two-dimensional spaces that have their 

contours on the contour of R and will be simply connected since they are reducible to a point by 

continuous transformation, and will therefore be two-dimensional transverse sections. Let R 

denote the space R in which one makes the transverse sections in one and two dimensions. The 

two-dimensional sections will make the connection of the (n – 2)th kind simple. Hence, in order to 

reduce R to a space R that has connections of the (n – 1)th and (n – 2)th kind that are simple by 

continuous transformation without changing the orders of the connections of the lower kinds, it is 

necessary and sufficient to make pn−1 transverse linear sections and pn−2 two-dimensional ones. 

One then continues to do that for the connections of the lower kinds. 

 

 When a finite space R is reduced to a simply-connected one by means of simply-connected 

transverse sections, any closed m-dimensional space that is in R that is composed of as many 

closed m-dimensional spaces as the number of transverse (n – m)-dimensional sections that it 

meets, the contour of an (m + 1)-dimensional space will be contained completely in R. 

 

 Indeed, if pm + 1 is the order of the connection of the mth kind of R then any closed m-

dimensional space C, along with a system of pm closed m-dimensional spaces, will form the 

contour of an (m + 1)-dimensional space S that is contained completely in R. Now, each of the 

spaces A will be intersected by one and only one transverse (n – m)-dimensional section that makes 

up part of the one that makes R simply connected, and therefore since each of those sections has a 

contour that is on the contour of R, if C forms the contour of S, along with s of the spaces A, then 

it must intersect precisely those s transverse sections that intersect those s closed spaces in the 

system A. 

 

 For greater clarity, let us make some applications of that to some ordinary spaces. 

 The space between two concentric spheres is made simply connected by means of just one 

transverse linear section that goes from a point of the outer spherical surface to any point of the 

inner one. 

 The space inside an annular surface is made simply connected by means of just one transverse 

surface section that is made along the meridian of the surface. 

 The space between two annular surfaces is made simply connected by means of just one 

transverse linear section that goes from a point of the outer annular surface to a point on the inner 
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one and by means of two transverse surface sections that both go through the linear section, one 

of which is made along the meridian of the surface and one of them is made along the equator. 

 The space between a sphere and a ring is made simply connected by means of a transverse 

linear section that goes from the surface of the sphere to that of the ring, and the other surface 

section that terminates at the linear section also goes from the surface of the ring to that of the 

sphere. 

 

6. 

 

 Suppose that one is given an n-dimensional space R that is bounded by an arbitrary number of 

closed (n – 1)-dimensional ones. Let 1nS −
 , 1nS −

 , …, ( )

1

t

nS −
 be the ones whose equations are: 

 

F1 = 0 ,      F2 = 0 ,      …,      Ft = 0 , 

 

and let R be determined from the inequalities: 

 

F1 < 0 ,      F2 < 0 ,      …,      Ft < 0 . 

 

 Let X1, X2, …, Xn be n functions of the points of R that are finite and continuous. Take under 

consideration the n-fold integral: 

 

n = 1 2
1 2

1 2

n
n

nn

dXdX dX
dz dz dz

dz dz dz

 
+ + + 

 
 , 

 

which is extended over all of the space R. 

 Let even indices distinguish the values of Xr at the points where the line Zr that has the 

equations: 

z1 = a1 , z2 = a2 , …, zr−1 = ar−1 , …, zn = an    (2) 

 

when zr increases cross one of the spaces Sn−1 and enter into the space R in which all of the 

inequalities (1) are satisfied. Let odd indices distinguish the values of Xr at the points where the 

line Zr crosses one of the spaces Sn−1 and leaves the space R. One will have: 

 

1

r
r

rn

dX
dz

dz
−

 = 0

r r r rX X X X  − + − +  

 Thus: 

n  = ( )0

1 2 1 1

1

r r r r r r n

n

X X X X dz dz dz dz dz− +

−

  − + − +   . 

 

Now the number of points at which the line Zr meets each of the closed spaces Sn−1 is even, and Zr 

will enter into R as many times as it leaves it. For example, the space 1nS −
  will be met by Zr at the 
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points 0, 2l1 + 1, 2l2 , 2l3 + 1, …, and the part of the integral n that refers to the points of 1nS −
  

will be: 

n
  = ( )32 2 (2 1)(2 1) (2 )0

1 2 1 1

1

ll l

r r r r r r r n

n

X X X X dz dz dz dz dz
++

− +

−

− + − +  . 

 

 Consider 1nS −
  to be the domain of the n – 1 real variables 1u , 2u , …, 1nu −

 . One has: 

 

dz1 dz2 … dzr−1 dzr+1 … dzn  = 1 2 1n

r

d
du du du

dA
−


    , 

 

which will take the + or – sign according to whether d / dAr is > 0 or < 0, resp. 

 Now, as was proved in the first section, it results that one can always take the ordering of the 

z1 , z2 , …, zm  in such a way that the sign of d / dAr is equal to that of dF / dzr , if the equation of 

1nS −
  is F1 = 0. 

 Now, dF / dzr  < 0 at the point of 1nS −
  where Zr enters R, and dF / dzr  > 0 at the point where 

it leaves R.  One then has: 

 

 0

1 2 1 1

1

r r r n

n

X dz dz dz dz dz− +

−

   = − 0

1 2 1

1

r n

rn

d
X du du du

dA
−

−


    , 

 

 1(2 1)

1 2 1 1

1

l

r r r n

n

X dz dz dz dz dz
+

− +

−

  =   1(2 1)

1 2 1

1

l

r n

rn

d
X du du du

dA

+

−

−


    , 

 ………………………………………………………………………... 

Thus: 

n
  = − 1(2 1)0

1 2 1

1

l

r r n

r rn

d d
X X du du du

dA dA

+

−

−

  
  + + 

 
  , 

or 

n
  = −

1 2 1

1

r n

rn

d
X du du du

dA
−

−


    , 

 

which is extended over all of the space 1nS −
  . 

 One can make analogous reductions of the other spaces, and one will get: 

 

n = −
1 2 1 1 2 1

1 1

r n r n

r rn n

d d
X du du du X du du du

dA dA
− −

− −

 
     −   − … 

However: 
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r

r

d
X

dA


  = 

1 1
1

1 1

2 2
2

1 1

1 1

n

n

n n
n

n

dz dz
X

du du

dz dz
X

du du

dz dz
X

du du

−

−

−

 . 

Hence: 

n = −

1 1
1 ( ) ( )

1 1

2 2
2 ( ) ( ) ( ) ( ) ( )

1 1 1 2 1

( ) ( )

1 1

t t

n

t t t t t

n n

t

n n
n t t

n

dz dz
X

du du

dz dz
X

du du du du du

dz dz
X

du du

−

− −

−

  . 

 

 If 0 0 0

1 2( , , , )nz z z  is a point of ( )

1

t

nS −
 then a line that passes through that point and has the 

equations: 

  z1 − 0

1z  = 
0

1

tdF

dz




, 

  z2 − 0

2z  = 
0

2

tdF

dz




, 

  ………………… 

  ………………… 

 

  zn − 0

nz  = 
0

t

n

dF

dz




 

 

is called the normal to the space ( )

1

t

nS −
 , and since one has: 

 
2  = 0 2 0 2 0 2

1 1 2 2( ) ( ) ( )n nz z z z z z− + − + + − , 

 

 is called the distance from the point (z1, z2, …, zn) to 0 0 0

1 2( , , , )nz z z . If  is infinitesimal and 

equal to dpt then one will have: 

r

t

dz

dp
 = 

1t

r

dF

dz 
. 

However: 
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t

r

dF

dz
 = 

r

d

dA M


, 

so: 

r

t

dz

dp
 = 

1

r

d

dA M


. 

Thus, when one substitutes: 

 

n = − 
( ) ( ) ( )1 2

1 2 1 2 1

1

t t tn
n n

t t t tn

dzdz dz
X X X M du du du

dp dp dp
−

−

 
+ + + 

 
   . 

 

However, if ( )

1

t

ndS −
 is the spatial element of ( )

1

t

nS −
 then one will have: 

 
( )

1

t

ndS −
 = ( ) ( ) ( )

1 2 1

t t t

nM du du du −
, 

so: 

n = − 
( )

1

( )

1
t

n

tr
r n

t r tS

dz
X dS

dp
−

−   . 

Therefore, if: 

Xr = 
r

dV

dz
 

then one will have: 

n = 
2 2 2

2 2 2

1 2 nR

d V d V d V
dR

dz dz dz

 
+ + + 

 
  = − 

( )
1

( )

1
t

n

t

n

t tS

dV
dS

dp
−

−   , 

and therefore if: 
2 2 2

2 2 2

1 2 n

d V d V d V

dz dz dz
+ + +  = 0 

 

in all of the space R then one will have: 

( )
1

( )

1
t

n

t

n

t tS

dV
dS

dp
−

−   = 0 . 

 

 If the space R has a simple connection of the (n – 1)th kind then any closed (n – 1)-dimensional 

space C that enter into it will form the contour of a portion of R. Thus, if equation (4) is satisfied 

for all R and V, along with its first derivatives, are finite and continuous then one will always have: 

 

CC

dV
dC

dp  = 0 . 
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 If the space R has a connection of the (n – 1)th kind of order pn−1 + 1 and one passes pn−1 closed 

(n – 1)-dimensional spaces A1, A2, …, 
1npA

−
through it then any closed space C that is contained in 

R, together with the system A, will form the contour of part of R, and if a1, a2, …, 
1npa

−
are the 

transverse linear sections that cross the closed spaces A1, A2, …, 
1npA

−
, respectively, and make the 

connection of the (n – 1)th kind in the space R simple then C will form the contour of a part of R 

in which the spaces of the system that are crossed by the sections a will meet C. 

 Then set: 

r

r

tA

dV
dA

dp  = Mr , 

and one will have: 

r

CC

dV
dC M

dp
+   = 0 , 

 

in which the sum extends over all values of r that are indices of the transverse sections that meet 

C, and one will have the following theorem: 

 

 If the space R has a connection of the (n – 1)th kind of order pn + 1 and that connection can be 

made simple by transverse linear sections, and if C is a closed (n – 1)-dimensional space that is 

contained in R then the integral: 

CC

dV
dC

dp  

 

will differ from zero by as many moduli of periodicity as the number of transverse linear sections 

that cross the space C. 

 

 Since two (n – 1)-dimensional spaces that have the same contour together form a closed space, 

one will further have the following theorem: 

 

 If one is given a closed (n – 2)-dimensional space in an n-dimensional space R that has a 

connection of the (n – 1)th kind of order pn−1 + 1, and the former space can make that connection 

simple by means of pn−1 linear sections then when the previous integral is extended over a space 

C that has  for its contour and meets s transverse linear sections, it will differ from the same 

integral, when it is extended over a space C that has the same contour and does not meet any 

section, by moduli of periodicity that relate to those sections, and therefore if the space R has a 

simple connection of the (n – 1)th kind then the integral will always have the same value when it is 

extended over any space C that is contained in R and has  for its contour. 
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7. 

 

 In a closed n-dimensional space R that has a connection of the first kind of order p1 + 2, let s1, 

s2, …, 
1ps  be the simply-connected (n – 1)-dimensional transverse sections that render the 

connection of the first kind in R simple. Let L1, L2, …, 
1pL  be p1 closed lines that cross the sections 

s1, s2, …, 
1ps , respectively, and are such that any other closed line l, together with the line L that 

crosses the same sections that the they go through, will form the contour of a two-dimensional 

space that is contained completely in R. 

 Let: 

z1 = z1 (u) , z2 = z2 (u) , …, zn = zn (u) 

 

be the equations of the line l and take under consideration the integral: 

 

1 = r rX dz  = r
r

dz
X du

du
 , 

 

which extends over the entire line l, in which the Xr are finite and continuous in all of R. 

 Now, if the line l forms part of the contour of C then if the space C is determined by the 

equations: 

z1 = z1 (v1, v2) ,  z2 = z2 (v1, v2) , …, zn = zn (v1, v2) , 

one will have: 

rdz
du

du
 = 1 2

1 2

r rdz dz
dv dv

dv dv
+ , 

and therefore: 

1 = 1 2

1 2

r r
r r

dz dz
X dv X dv

dv dv
+    . 

 

Now, from what was shown in the preceding section: 

 

1 2

2 1 1 2

r r
r r

dz dzd d
X X dv dv

dv dv dv dv

    
−    

    
   = 1 2

1 2

r r
r r

dz dz
X dv X dv

dv dv
+   , 

 

in which the double integral extends over all of the space C, and the simple one extends over the 

entire system of lines l, L1, L2, … that form the contour of C. 

 However, one has: 

1 2

2 1 1 2

r r
r r

dz dzd d
X X dv dv

dv dv dv dv

    
−    

    
   
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= 
1 2

1 2

1 2

r r

r

t tt

dz dz

dv dvdX
dv dv

dz dzdz

dv dv

  = tr
n t

t r

dXdX
dv dv

dz dz

 
− 

 
  . 

 

 Therefore, the double integral will be zero if the equations: 

 

tr

t r

dXdX

dz dz
−  = 0     (2) 

 

are also verified in all of R. Therefore, if the Xr satisfy (2) and are finite and continuous in R then 

the integral: 

r rX dz  

 

will always be zero when it is extended over all of the lines l, L1, L2, … that form the contour of a 

space C, no matter what the closed line l is. One gets the following theorem from that: 

 

 If R is an n-dimensional space that has a connection of the first kind of order p1 and one has 

simply-connected transverse (n – 1)-dimensional sections s1, s2, … 
1ps  of it that make the 

connection of the first kind on R simple, and L1, L2, … 
1pL  are p1 closed lines that meet the sections 

s1, s2, … 
1ps , respectively, and one sets: 

 

Mt = 

t

r r

L

X dz  

then the integral: 
1

0

Z

r r

Z

X dz  , 

 

when extended between two points Z0 and Z1 along a line that meets some sections s, will differ 

from the one that is taken along a line that goes from the point Z0 to the point Z1 without meeting 

any section s by a quantity M that relates to the sections s that are met, which is taken to be positive 

or negative according to whether they are met by proceeding in one direction or the other. If the 

connection of the first kind on the space R is simple then the integral will always have the same 

value when it is taken along any in R that goes from Z0 to Z1. 

 

___________ 

 


