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1. 

 

Forces of cohesion and adhesion. 

 

 Each element of a fluid is subject to the action of the elements that surround it and are in its 

vicinity, which manifests itself in liquids by the resistance that they present when one wishes to 

reduce them to separate parts, and in aeroform fluids when one removes the obstacles to their 

expansion. An element of a fluid that is found in the neighborhood of a solid is also subject to the 

action of that solid that manifests itself by the resistance that is encountered when one tries to 

separate the fluid from the solid. Without investigating the regions of those actions, one can always 

regard them as the product of the forces that the fluid elements exert upon each other and that the 

solid elements exert upon the fluids, and reciprocally, and which depend upon only the relative 

positions of the elements when the temperature is invariable. The forces that act between the 

elements of such a fluid are called forces of cohesion, and the ones that act between the elements 

of the different fluids or between a fluid and a solid are called forces of adhesion. 

 Both types of force are exerted only at a small distance, because their actions are independent 

of the masses of the fluids or solids that are found at a distance from the point where the action is 

exerted that is not small. 

 Those forces have another property that is deduced from the fundamental principle of modern 

physics, viz., the principle of the conservation of forces, and that consists of them having a 

potential function. 

 Indeed, let a fluid system A be in contact with a solid system B, and let X, Y, Z be the 

components along the three axes of the forces of cohesion and adhesion on a point (x, y, z) of the 

fluid. If the density of the fluid varies continuously from one point to another then X, Y, Z will be 

continuous functions of the points of the space that is occupied by the fluid. Now suppose that the 

forces of cohesion and adhesion do not have a force potential, i.e., that the trinomial: 

 

X dx + Y dy + Z dz 

 

is not an exact differential of a function that would be called a potential function if it were to exist. 

The three quantities: 
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  = 
dY dZ

dz dy
− , 

  = 
dZ dX

dx dz
− , 

  = 
dX dY

dy dx
−  

 

will not be zero, except for special values of x, y, and z. 

 If we let v denote the velocity of the element dm of the fluid and let v0 denote the initial velocity 

then we will have the known vis viva equation: 

 

2 21 1
02 2

v dm v dm−   = 
0

s
dx dy dz

dm X Y Z ds
ds ds ds

 
+ + 

 
  , 

 

in which the integrals that relate to dm are triple integrals that must be extended over all of the 

space that is occupied by the fluid, and the integrals that relate to ds are extended over all the lines 

that traverse each point during the passage from the initial state to the state in which it is animated 

with the velocity v. 

 If one now imagines that the system returns to its original state after an arbitrary motion when 

the forces that act upon it have a potential function  then one will have: 

 

X dx + Y dy + Z dz = d , 

and therefore: 
2 21 1

02 2
v dm v dm−   = 0( ) dm − . 

 

Moreover, if the forces depend upon only the relative positions of the elements of the elements of 

the system then when it returns to that state, it is clear that the potential function must return to the 

same value, so  = 0 , and one will have: 

 
2v dm  = 2

0v dm , 

 

i.e., when the system returns to the original state, regardless of the motions that it passes through, 

the vis viva will neither be increased or decreased. However, when a potential function does not 

exist – i.e., when , ,  are non-zero – the integral: 

 

I = ( )X dx Y dy Z dz+ + , 

 

when extended along the entire line that is traversed by the elements that comprise it (even when 

that line is closed) and the element around the precise point of departure, will no longer be equal 

to zero. Indeed, if c is the closed curve that is traversed by the point (x, y, z), and one imagines that 
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the curve lies in a continuous surface S that does not extend to infinity and has only one sheet then 

one will have: 

p = 
dz

dx
, q = 

dz

dy
, 

 

in which the derivatives dz / dx, dz / dy are obtained from the equation of the surface S. Since the 

integral I must be taken along the line c that is found on the surface S, one will have: 

 

dz = p dx + q dy , 

and therefore: 

 I = 
0

( ) ( )

l
dx dy

X Z p Y Z q ds
ds ds

 
+ + + 

 
  

 

  = 
( ) ( )d X Z p d Y Z p

dx dy
dy dx

 + +
− 

 
 , 

 

in which l is the length of the line c, and the double integral must be extended over all of the 

projection of the surface S onto the xy-plane. 

 When one performs the differentiations, one will have: 

 

I = ( )p q dx dy  − − . 

Set: 
2 2 2  + +  = 

2 , 

 

   =  cos  ,  

   =  cos  ,  

   =  cos  ,  

 

and let , ,  denote the angles that the normal to the surface S makes with the three axes. One 

will have: 

I = (cos cos cos cos cos cos )
cos

dx dy
      


+ + , 

so: 

I = cos ( , )n dS  , 

 

in which (, n) is the angle that the normal makes with the line whose direction makes the angles 

, ,  with the axes. 

 Now one can take the line c and the surface S in such a way that cos (, n) always keeps the 

same sign, and therefore I will be non-zero, and since traversing the line c in the opposite sense 

will change the sign of I, one can always have a positive value for I, so: 
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I dm  

 

will have nothing but positive elements and will then be non-zero. Therefore, one can give motions 

to the system such that when it returns to its original state, one will have that: 

 
2 21 1

02 2
v dm v dm−   

 

is non-zero, and therefore one will have a variation of the vis viva of the system without the system 

being altered and without any external action. That would contradict the principle of the 

conservation of force. 

 A third property of the forces of cohesion and adhesion is deduced from the principle of the 

equivalence of action and reaction, and it is that when one has two systems B and A that upon each 

other, the potential of B with respect to A is equal to the potential of A with respect to B. 

 Those three properties are the fundamentals of the theory of capillarity, which I shall proceed 

to discuss. 

 

 

2. 

 

Potential of a system of fluids in contact with each other and with solid bodies. 

 

 Suppose that one is given some fluids A1, A2, …, An in contact with each other and with some 

solid bodies B1, B2, …, Bn . Let: 

 

   1,  2, …,  n  be the respective densities of the fluid, 

 

  V1, V2, …, Vn  be the spaces that they occupy, 

 

  S1, S2, …, Sn  be their free surfaces, 

 

  Stt   be the surface that separates At from At , 

 

  ttS 
    be the surface that separates At from Bt , 

 

  1,  2, …,  n  be the potentials of the fluids over their elements, 

 

  1,  2, …,  n  be the potentials of all the solids B with respect to the fluids, 

 

  tt   be the potential function of the fluid At with respect to the fluid At . 

 

 The potential of the system of n fluids will be: 
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P = 1
2

1

( 2 2 2 )

t

n

t t t t t

t V

g z dv   

=

+ + +  . 

 

 The equilibrium of the system is obtained by setting equal to zero the first variation of P that 

results from varying the densities of the fluids and the displacements of the points that do not 

change the densities under the condition that the total mass of each fluid should remain constant. 

 One can separately consider the variations that are due to the changes in densities and the ones 

that are derived from the displacements that do not change the densities. 

 In order to account for the variability of mass, one can equate the variation of the function: 

 

W = 1
2

1

( 2 2 2 2 )

t

n

t t t t t t

t V

g z k dv   

=

+ + + +   

 

to zero, in which kt is a constant when the mass of the entire liquid At is invariable. Therefore, if 

the particles of the liquid are not perfectly mobile and one finds an impediment to the passage from 

one layer of the medium to the other in which the mass of each of those layers is invariable then kt 

must be set to a constant in each of those layers, but vary from one to the other. 

 Varying t will vary only the functions: 

 

t ,  t,1 , t,2 , …, t, t−1 , t, t+1 , …, t,n . 

Therefore: 

 

  W = 1
2

1

( 2 2 2 2 )

t

n

t t t t t t

t V

g z k dv   

=


+ + + +


   

  + 

1 2

1 ,1 2 ,22 2t t

V V

dv dv   +  + … 

  + 

1 1

1 , 1 1 , 12 2

t t

t t t t t t

V V

dv dv   

− +

− − + ++  + … 

  + 

t

t t

V

dv 




  . 

 

 Now if 1 is the potential function of a system A2 with respect to the points of a system A1 and 

2 is the potential function of the system A1 with respect to the points of the system A2 , while 1 

is the density of A1 and  2 is the density of A2 , and V1 and V2 are the spaces that are occupied by 

A1 and A2, respectively, then from the third property of the forces of adhesion and cohesion, one 

will have: 

1

1 1

V

dv  = 

2

2 2

V

dv , 
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and that equivalence will persist even when the spaces V1 and V2 coincide wholly or partially. That 

theorem is the generalization of one that Gauss gave for the forces that act according to Newton’s 

law (1). 

 Meanwhile, one has: 

  

t

t t

V

dv    = 

t

t t

V

dv  , 

  

t

t tt

V

dv 



    = 

t

t t t

V

dv  , 

and therefore: 

 

W = 1, 2, 1, 1, ,( 2 2 2 2 2 )

t

t t t t t t t t n t t t

V

gz k dv       − ++ + + + + + + + + + , 

 

and that variation must be equal to zero for any variations t at the different points in the space 

Vt . We then have: 

 

(1)     t + t + 2 t t   + g z + kt = 0 . 

 

If one uses those equations to reduce to the value of W then one will have: 

 

(2)     W = ( )

t

t t t

V

k gz dv + + . 

 

 At the points that are found inside the fluid At far from the surface that bounds the space that 

it occupies at distances that are greater than the distance over which the action of the force of 

adhesion extends, the functions t and tt will be constants, and they can be set equal to zero, 

because any potential function contains an arbitrary constant plus the variable part whose 

derivative gives the components of the action. Therefore, one deduces from (1) that for those 

points: 

 

(3)      t + g z + kt = 0 , 

 

and since that internal mass is invariable, so kt is also constant, t will vary by a quantity of order 

g dz, which is very small compared to the forces of cohesion, or the function t will vary only by 

the weight of the liquid that is above any point. Now the value of t at any point of At with an 

invariable temperature depends uniquely upon the distribution of the density that it has around that 

point. Therefore, the densities at the points of At that are at a greater distance from the surface than 

the extent of the forces of adhesion can be regarded as constant, and t  will denote their values. 

 
 (1) See Journal de Liouville (1842), pp. 301.  



Betti – Theory of capillarity. 7 
 

 Now consider the points of At whose distance from St is less than the extent of the action of the 

forces of cohesion and whose distance from the surfaces Stt and ttS 
  is greater than the extent of 

the action of the forces of adhesion. 

 Divide the layer that is compressed between the surface St and a surface that is parallel and far 

from the radius of activity of the forces of cohesion into a very large  number of parallel layers in 

each of which one can regard t , kt , and t as constant with no appreciable error. However, those 

quantities cannot all preserve the same values when passing from one layer to the other, and there 

can then be three cases: 

 

 1. t can be constant, as Laplace and Gauss supposed. Since an innermost layer will receive 

the same action as the internal part of the fluid At and a greater action than the external part of the 

fluid in a layer that is less internal, t will necessarily vary from layer to layer, and therefore from 

equation (3), the same thing will also be true for kt . 

 

 2. kt can be constant. One then deduces from equation (3) that t can also be regarded as 

constant, not only in any partial layer, but in all of the layer that is as thick as the radius of activity 

of the forces of cohesion, and therefore t will vary with distance from the surface in that layer, 

while t , kt can be set equal to zero. 

 

 3. t , kt , and therefore also t will vary with distance from the surface. 

 

 The first case can take place only if the forces of cohesion are not capable of varying with the 

density of the liquid. The second one leads to the consequence that there can be no action of any 

force of cohesion on the surface St, and therefore the liquid will be subject to only the force of 

gravity at the points at a greater distance from the surfaces Stt and ttS 
  than the radius of activity 

of the forces of adhesion, and therefore the surface St must be planar, which contradicts experience. 

All that remains is the last case. 

 The same thing can be said for the layers that adhere to the surfaces Stt and ttS 
 . 

 The variability of kt from one surface layer to another leads to the consequence that in each of 

those layers, the mass of the liquid will be invariable, as we have pointed out before, and that the 

particles of the liquid are therefore not perfectly mobile in the vicinity of the surface, but there will 

be an impediment to their passage from one layer to another. If kt varies with time then that means 

that the passage can take place but will require a certain amount of time to complete. 

 We shall not go into the explanation for the impediments that make it possible for both of the 

quantities t and t to vary from layer to layer, but simply take the medium to be an experimental 

fact. We should observe only that the internal equilibrium does not exist in the bodies and that the 

notions that the facts of thermodynamics have brought to science allow us to believe that the 

apparent equilibrium is nothing but a permanent state of rapid motion. Hence, if one treats a fluid 

as if it were composed of points that are in equilibrium under the action of forces that act between 

the media then one can probably substitute an ideal state for the real one, and in order to obtain 

results that conform to experience, one needs to take the data that is necessary to establish the 
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equivalence between the supposed state of equilibrium and the permanence of the motions from 

the facts that have been observed so far that reveal their existence, but not their nature. 

 Let t denote the thickness of the layer near the free surface in which kt and the density t vary. 

Let tt be the thickness of the layer of variable density near the surface Stt , and let tt 
  be the 

thickness of the layer of variable density near the surface ttS 
  . 

 It is clear that when tV   denotes the space inside of At in which the density of the liquid At can 

be regarded as constant, one will have: 

 

W = 
1

t t

n

t t

t V V

k dv z dv
= 

 +    

  +  
0

( ) ( )
t

t

t t t t t t t t t

S

ds dp k g z



      + + + −   

  +  
0

( ) ( )
tt

tt

tt tt tt t t t t t t

S

ds dp k g z



     




   + + + −   

  +  
0

( ) ( )
tt

tt

tt tt tt t t t t t t

S

ds dp k g z



     






   




   + + + − 


  . 

 

 In that expression, t dpt dst , tt dptt dstt , tt tt ttdp ds   
    are the elements of the layers that 

adhere to the surfaces St, Stt , ttS 
 , respectively, and therefore t , tt , tt 

  are functions of the 

distances between those surfaces and the points of the media. 

 Set: 

  
0

( )
t

t t t t tdp k



  +  = at , 

  
0

( )
tt

tt tt t t tdp k



  


  +  = att , 

  
0

( )
tt

tt tt t tdp k



 


 
  +  = btt , 

  
0

( )
tt

tt tt t tdp



  


 
  −  = tt . 

 

Ignoring the weight that results from the condensation on the surfaces St and Stt, regarding z as 

constant under the variation of the normal ttp 
 , and adding gives: 

 

1
t

n

t

t V

c dv
=

   



Betti – Theory of capillarity. 9 
 

for expressing the condition of the invariability of the mass of each fluid. The function W whose 

variation that results from the displacements that do not change the densities will give equilibrium 

when it is set equal to zero will then be: 

 

(4)   W = 
1

( )

t tt tt tt t

n

t t t t tt tt tt t t

t S S S S V

k V a ds a ds b ds g z ds g z c dv  

  

  

=  

  
  + + + + + + 

  
       . 

 

3. 

 

Variation of the potential. 

 

 If one sets: 

p = 
dz

dx
, q = 

dz

dy
, 

 

P = 2 21 p q+ + , 

 

in which the derivatives of z are deduced from the equation of the surface S, then one will have: 

 

S

a ds  = a P dx dy , 

 

in which the double integral is extended over the entire projection of the surface S onto the xy-

plane. 

 Now observe that the a that appear in the integral in formula (4) have the following form: 

 

a = ( )a dp k  + , 

 

in which  has a constant value at distances from the contour of the surface S that are not very 

small, and if that contour is above the surface of a solid, it will vary rapidly and continuously in 

the vicinity of the contour. It can be said to have a density , which will also vary in the vicinity 

of the contour, even when it is found above other fluids. Therefore, a can be regarded as constant 

at a distance from the contour, but rapidly-varying in the vicinity of it, and on the contour, it will 

have a value that is appreciably different from the one that it has at the other points of the surface 

and that depends upon nature of the liquids and the solids that intersect over that contour, and it 

can also depend upon the greater or lesser curvatures of the surfaces of the solids over which one 

finds that contour. 

 One can repeat that argument for the b that appears in the integrals in formula (4), and it can 

be regarded as constant for all of the surface except for the points that are close to the contour, 

where it will have values that depend upon the nature of the fluids that terminate there. 



Betti – Theory of capillarity. 10 
 

 In addition, observe that if the quantities a and b vary appreciably from one point to another 

on the surface, even at a distance from the contour, then they could be considered to be independent 

of the variations of the form of the surface, assuming that the variations of the distributions of 

density in the surface layers require a certain time to complete, as the experiments of Quinke on 

the mutability of the capillary surface of mercury (1) would tend to show and which we would tend 

to believe would explain the variability of kt that was noted above. 

 Meanwhile, if 1z denotes the variation of z under the deformation of the surface and x, y, 

z denote the variations of the coordinates that are due to the displacement of the points of the 

surface for which: 

z = 1z + p x + q y , 

 

then for an arbitrary displacement of the points of the surface S, one will have the variation: 

 

S

a ds   = 
( ] ( ]d a P x d a P y dP dP

dx dy a p q
dx dy dp dq

 
 

  
+ + +  

  
  

 

= 
0 0 1

0

l
ap aq

d d
p dx p dy P Pa d P y z P x z z dx dy
P d P d dx dy

     
 

 
     

+ − + − +     
      

 

  , 

in which l expresses the length of the contour  . 

 Now let , ,  be the cosines of the angles that the normal N to the surface S makes with the 

three axes, while , ,  are those of the angles for the tangent T to the contour , and , ,  

are the cosines of the angles that the line T that is normal to T and N make with the axes. One has: 

 

  = − 
p

P
,  = − 

q

P
,  = − 

1

P
, 

 

  = 
dx

d
,  = 

dy

d
,  = 

dz

d
, 

 

 =    –   ,  =   –   ,  =   –   . 

Thus: 

1z = 
x y z     



+ +
, 

 

1 1

p dx p dy
P y z P x z

P d P d
   

 

   
+ − +   

   
 

 

 
 (1) See Poggendorff’s Ann. der Physik und Chemie, Bd. 105.  
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= 
( )( )y x x y z             



   − + − + +
 

 

=  x +  y +  z . 

 

If r denotes the displacement whose projections onto the three axes are x, y, z then one will 

have: 

 x = r cos (x, r) , 

 y = r cos (y, r) , 

 z = r cos (z, r) , 

so 

1z = 
cos ( , )N r

r


. 

 

 Let u, v, w denote the projections of the displacement r of the points of the contour s onto 

two arbitrary orthogonal directions u and v in the plane that is normal to the contour  and above 

the tangent to ; one will have: 

 

 x = u cos (u, x) + v cos (v, x) +  w, 

 y = u cos (u, y) + v cos (v, y) +  w, 

 z = u cos (u, z) + v cos (v, z) +  w . 

Now observe that one has: 

  +    +    = 0 , 

so one gets: 

 x +  y +  z = u cos (T, u) + v cos (T, v) . 

In addition, one has: 

p q
d d

P P

dx dy
+  = − 

1 1

R R

 
+ 

 
 , 

 

in which R and R are the radii of the maximum and minimum curvature of the surface. 

 If one substitutes those values in the variation of the integral and also takes P ds, instead of dy 

dy, then one will get: 

 

(5)  
S

a ds   

=  
0

cos ( , ) cos ( , )

l

a d u T u v T v   +  +
1 1

cos( , )
S

da da
ds r N r a

R R dx dy
  

  
+ + +    

 . 

 

 Now since a can be regarded as constant over the surface S at points that are distant from the 

contour and have a value a0 on the points of the contour that is different from a, one will have: 
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(6)  
S

a ds  =  0

0

cos ( , ) cos ( , )

l

a d u T u v T v   +  + 
1 1

cos( , )
S

ds r N r
R R


 

+ 
 

  . 

 

 If the contour of S is on the surface S of a solid then the fluid will be obliged to move over the 

surface of that solid. Therefore, take v to be the direction of the normal T to the tangent to  in 

the plane that is tangent to the surface S, while u is equal to zero. Take: 

 

cos (T, v) = cos (T, T) = cos  , 

 

in which  denotes the angle between the tangent planes to the surfaces S and S along their line 

of intersection. Therefore: 

 

(7)   
S

a ds   = 0

0

cos

l

a d T    + 
1 1

cos( , )
S

ds r N r
R R


 

+ 
 

  . 

 

If the surface S then has an invariable form, since it is the surface of a solid, as in the integrals: 

 

tt

tt

S

b ds







  

 

that appear in formula (4), then one will have: 

 

1z = r cos (N, r) = 0, 

 

and if one takes v to have the direction of T then one will have: 

 

u = 0 , 

 

because the fluid does not move normally to the surface and cos (T, v) = cos (T, T) = 1. Thus: 

 

(8)      
S

bds   = 0

0

l

b T d  . 

 

The triple integrals that appear in formula (4) have the form: 

 

V

a dv , 

 

in which a is a function of the coordinates x, y, z. If one varies the form of the surface S that bounds 

the space V and displaces the elements in any way then one will have: 
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V

a ds   = a dx dy dz  = 
( ) ( ) ( )d a x d a y d a z

dx dy dz
dx dy dz

   
+ + 

 
  

 

= ( )
S

a x y z ds     + +  = 
1

S

a ds z  , 

 

in which , ,  denote the cosines of the angles that the normal to S makes with the axes. 

 For the portions of the surface that close the space V that belongs to a solid body and which 

have an invariable form, one has: 

1z = 0 , 

and if: 

 1z = r cos (N, r) 

then one will get: 

(9)     
V

a ds   = cos( , )
S

ads r N r , 

 

in which the integral on the right-hand side must be extended over just the part of the surface that 

closes the space V that is free or that is in contact with another fluid. 

 With formulas (6), (7), (8), and (9), we have the variations of each of the terms in the value of 

W that is given in formula (4). 

 

4. 

 

Surfaces of capillarity. 

 

 In order to determine the free surface St of the fluid At or the surface Stt that separates the fluid 

tA , it is enough to set the first variation of the potential W that is derived from deforming one or 

the other surface equal to zero. Consider just the surface Stt, because the surface St can be regarded 

as the surface Stt for which the fluid tA  has a density equal to zero. 

 Deforming the surface Stt will produce variations in only the following part of the potential W: 

 

( ) ( )

tt t t

tt t t t t

S V V

a ds g z c dv g z c dv 





 

 + + + +   , 

 

when one does not give any displacement to the points that are found on the intersection of Stt with 

the other fluids and the solids. 

 From formula (5), one can set: 

u = 0 , v = 0 , 

 

because the points of the contour are supposed to be immobile, and: 
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da

dx
 = 0 , 

da

dy
 = 0 . 

One gets: 

tt

tt

S

a ds




 = 

1 1
cos ( , )

tt

tt

S

a ds r N r
R R







 
 + 

 
 , 

and from formula (9): 

 

 ( )

t

t t

V

g z c dv  +  = ( ) cos ( , )

tt

t t

S

g z c ds r N r 



+ , 

 

 ( )

t

t t

V

g z c dv 



 +  = − ( ) cos ( , )

tt

t t

S

g z c ds r N r 



 + , 

 

because the normals to the spaces Vt and Vt point in opposite directions. 

 Meanwhile, the first variation that is due to the deformation of Stt is: 

 

1 1
cos ( , ) ( )

tt

t t t t tt

S

ds r N r c c g z a
R R

  





  
  − + − + +    

 , 

 

which must be annulled for any values of r at each point of the surface, which will give: 

 

(10)   
1 1

( )t t t t ttc c g z a
R R

  

 
  − + − + + 

 
 = 0 , 

 

and that will be the equation of the separating surface of the two liquids At and tA . 

 For the free surface St , one must set: 

t   = 0 , 

and have: 

(11)    
1 1

t t ttc g z a
R R

 

 
+ + + 

 
 = 0 , 

 

 Equation (10) contains two indeterminate constants ct and tc , and equation (11) contains one 

indeterminate constant ct . They are determined by means of the values of z at the points where the 

surface is planar, and where one has: 

R =  ,  R =  

 

as a consequence, and the values of z at those points are obtained from the known laws of 

hydrostatics. 
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 However, since the sum of the inverses of the radii of curvature contain the second derivatives 

of z, neither equations (10) nor (11) are sufficient to determine the respective surface of capillarity, 

and one must also know other some boundary conditions. 

 

 

5. 

 

Angles between surfaces of capillarity and each other, as well as with solids. 

 

 The contour of the surface Stt can be composed of just one closed curve if the surface is simply 

connected or also more than one if the surface is multiply connected. However, one can always 

consider each of the closed curves separately when there are more than one. One must examine 

two cases: 

 

 10. The closed curve that makes up part of the contour is on a solid Bt , and therefore it is the 

intersection of three surfaces Stt , ttS 
 , t tS  

 . 

 

 20. The closed curve is on another fluid At in such a way that it is the intersection of three 

surfaces Stt , t tS  
 , Stt . 

 

 In the first case, the displacements of the points of the contour of Stt  will produce variations 

of only the following part of the potential W : 

 

tt tt tt

tt tt tt

S S S

a ds b ds b ds

  

  

 

 + +   . 

From equation (7), one can set: 

r = 0 

and get: 

tt

tt

S

a ds




  = 0

0

cos

l

tta d T  . 

 

 One deduces from equation (8) that: 

 

  

tt

tt

S

b ds







  =    0

0

l

ttb d T  , 

  

t t

t t

S

b ds

 

 



  = − 0

0

l

t tb d T   , 
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since dT has the opposite sign with respect to the two surfaces t tS  
  and ttS 

  as T is the perpendicular 

to the tangent to the contour s and to the normal to the surface of the solid that points towards the 

part that is external to the part of the surface considered. Thus, one must have: 

 

0 0 0

0

( cos )

l

tt tt t tds T a b b    + −  

for equilibrium, and therefore: 

 

(12)     0

tta  cos  = 0 0

t t ttb b  − , 

 

in which the values of a and b near the contour are distinguished by a superscript 0. 

 If the quantity 0

tta   depends upon only the nature of the fluids At and At , and the quantity 0

ttb   

depends upon only the nature of the fluid At and the solid Bt then we will have the following 

theorem: 

 

 The angle at which a capillary surface meets a solid is constant for any form of the solid and 

the space that is occupied by the liquid, and it depends upon only the nature of the liquid and the 

solid. 

 

 However, the experiments of Wertheim (1) and Wilhelmy (2) show that the angle also varies 

with the curvature of the surface of the solid, and those of Quinke (3) prove that the angle varies 

appreciably with time, as well as without producing any alteration in the nature of the liquid when 

that liquid is mercury. 

 What we have previously discussed about the nature of the quantities a and b explains the 

results of those experiments and indicates the limitations of posing the stated theorem. 

 In the second case, i.e., when the contour of the surface Stt is a closed curve that is the 

intersection of three surfaces: 

Stt , Stt , Stt , 

 

the displacements of the points of the contour will produce variations in only the following part of 

the potential W : 

tt t t t t

tt t t t t

S S S

a ds a ds a ds

   

   + +   . 

 

However, in that case of equation (7), if one sets: 

 

 
 (1) Annales de Phy. et Ch., t. 63. 

 (2) Poggendorff’s Ann. der Ph. und Ch., Bd. 119.  

 (3) Poggendorff’s Ann. der Ph. und Ch., Bd. 105. 
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tt

tt

S

a ds



  =  0

0

cos ( , ) cos ( , )

l

tta d u T u v T v  
 + , 

 

 

t t

t t

S

a ds

 

  =  0

0

cos ( , ) cos ( , )

l

t ta d u T u v T v    + , 

 

 

t t

t t

S

a ds



  =  0

0

cos ( , ) cos ( , )

l

t ta d u T u v T v  
 + , 

so: 

 0 0 0

0

cos ( , ) cos ( , ) cos ( , )

l

tt t t t td u a T u a T u a T u     
  + +   

 + 0 0 0

0

cos ( , ) cos ( , ) cos ( , )

l

tt t t t td v a T v a T v a T v     
  + +   = 0, 

and therefore: 

 0 0 0cos( , ) cos( , ) cos( , )tt t t t ta T u a T u a T u   
 + +  = 0 , 

 

 0 0 0cos( , ) cos( , ) cos( , )tt t t t ta T v a T v a T v   
 + +  = 0 . 

 

 The mutually-orthogonal directions u and v are arbitrary in the plane that is normal to the 

contour , and one also finds the three directions T, T, T in that plane. One can take one of those 

directions – T, for example – to be the direction v, and the let , ,  denote the angles that are 

subtended between T and T, T and T, and T and T, resp., or the angles between the planes that 

are tangent to the surfaces Stt and Stt , Stt and Stt , and Stt and Stt , resp., and one will have: 

 

 cos (T, v) = cos (T, T) = 1 , 

 

 cos (T, v)  = cos (T, T)  = cos  , 

 

 cos (T, v)  = cos (T, T)  = cos  , 

 

 cos (T, u)  = 0 , 

 

 cos (T, u) = cos ( , )
2

T T
 

+ 
 

 = − sin  , 

 

 cos (T, u) = cos ( , )
2

T T
 

 + 
 

 = − sin  , 

so 
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0 0sin sint t t ta a   
+  = 0 , 

 
0 0 0cos cost t t t tta a a    

+ +  = 0 , 

 

from which, if one observes that one has: 

 

 +  +  = 2 , 

one will deduce the three relations: 

 

(13)  

0 2 0 2 0 2 0 0

0 2 0 2 0 2 0 0

0 2 0 2 0 2 0 0

( ) ( ) ( ) 2 cos ,

( ) ( ) ( ) 2 cos ,

( ) ( ) ( ) 2 cos .

t t tt t t tt tt

t t tt tt tt t t

tt t t t t t t t t

a a a a a

a a a a a

a a a a a







     

     

      

 = + +


= + +
 = + +

 

 

 If the quantity att has the same values on the contour that it has at the other points of the surface 

S tt  (which is a value that depends upon only the nature of the liquids At and At ) then one will 

have the following theorem, which was communicated by Paul Du Bois-Reymond to Prof. I. 

Neumann (1): 

 

 The angles between the separating surfaces of three fluids that intersect along a closed line 

are the supplements to the angles of a triangle whose sides are proportional to three quantities, 

each of which depends upon only the nature of those two fluids. 

 

 As a consequence of the considerations in regard to the coefficients att that were presented 

above, only the last part of that theorem must be modified. That is, the three sides of the triangle 

that determine the angles between the three surfaces are proportional to three quantities that each 

depend upon the nature of all three of the fluids. 

 

(to be continued) 

 

__________ 

 
 (1) Du Bois-Reymond, De aequilibrio fluidorum, Dissertatio inauguralis. 



“Teoria della capillarita” Il Nuovo Cimento 25 (1867), 225-237. 
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Translated by D. H. Delphenich 

__________ 

 

 

6. 

 

Equilibrium of fluids in communicating vessels. 

 

 Consider a vessel that is composed of three parts: Two cylindrical arms B and B1 that are united 

below by a transverse arm C of arbitrary form. Let S and S1 be sections of the cylinders that are 

made normal to their generators. The cylinder B contains the fluids A1, A2, …, Am , and the order 

in which they are arranged from top to bottom is given by the respective indices. The cylinder B 

contains the fluids Am, Am+1, …, An−1, An, and the order from top to bottom is the same as the order 

in which they are written. The transverse arm C is filled with only the fluid Am . Finally, let 1, 2, 

…, n be the respective densities of the fluids, let S1, Sn be the free surfaces of the fluids A1 and 

An, and let St,t+1 be the separating surface of the two fluids At, At+1 . 

 The equations of the surfaces: 

 

S1 ,      S12 ,      S12 ,      …,      Sn,n−1 ,      Sn , 

 

which are deduced from formulas (10) and (11), when they are added to the terms that result from 

the variability of the coefficients: 

 

a1 ,      a12 ,      a12 ,      …,      an,n−1 ,      an 

 

in the vicinity of the walls, will be: 

 

 
 (1) Continuation, see page 81.  
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(14) 

1 1 1 1
1 1 1

12 12 12 12
2 1 2 1 1

( ) ( )
0,

( ) ( )
( ) 0,

................................................................................

..............................................

d a d a
c g z

dx dy

d a d a
c c g z

dx dy

 


 
 

+ − − =

− + − − − =

, 1 , 1 , 1 , 1

1 1

..................................

( ) ( )
( ) 0,

m m m m m m m m

m m m m m

d a d a
c c g z

dx dy

 
  − − − −

− −











 − + − − − =


 

 

(15) 

. 1 , 1 , 1 , 1

1 1 1

( ) ( )
( ) 0,

................................................................................

...........................................................

m m m m m m m m

m m m m m

d a d a
c c g z

dx dy

 
  + + − −

+ + +− + − − − =

1, 1, 1, 1,

1 1

1 1

.....................

( ) ( )
( ) 0,

( ) ( )
0.

n n n n n n n n

n n n n n

n n n n
n n n n

d a d a
c c g z

dx dy

d a d a
c c g z

dx dy

 
 

 


− − − −

− −

− +








 − + − − − =


 − + − − =



 

 

 If one sums equations (14) and (15) separately then one will have: 

 

(16) 

1
1, 1, 1, 1,

1

1 1

1 1
1, 1, 1, 1,

1 1

1 1

( ) ( )
( ) ,

( ) ( )
( ) ,

m m
s s s s s s s s

m s s s m m

s s

n n
s s s s s s s s

m s s s m m

s m s m

d a d a
c g z z z

dx dy

d a d a
c g z z z

dx dy

 
 

 
 

−
− − − −

+

= =

+ +
− − − −

+ +

= + = +

   
+ − + = +   

   


   − − + = +      

 

 

 

 

in which one needs to set: 

 

 a01 = a1 , 01 = 1 , 01 = 1 , 

 

 an,n+1 = an , n,n+1 = n , n,n+1 = n . 

 

 Now observe that in the functions a, a, one must take the derivatives with respect to x and 

y after one supposes that the coordinate z in them has been replaced with its value that is determined 

as a function of x and y from the equation of the surface. Therefore: 

 

( ) ( )d a d a

dx dy

 
+ = ( )

d d d d da da da
a p q p q

dx dy dz dy dx dy dz

   
   

 
+ + + + + + + 

 
, 

and if: 
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2 2 2  + +  = 1 , 

so: 

d d d

dz dz dz

  
  + +  = 0 , 

then one will get: 

d d
p q

dz dz

 
+  = 

d

dz


 . 

In addition, one has: 

 = p  + q  . 

Therefore, substitute: 

 

( ) ( )d a d a

dx dy

 
+  = 

d d d da da da
a

dx dy dz dx dy dz

  
  

 
+ + + + + 

 
. 

 

As Cauchy has proved (1), that will not change under orthogonal transformations of the 

coordinates. Therefore, if one takes the origin of the coordinates to be the point where the 

horizontal xy-plane meets the line that is parallel to the generators of the cylinder and passes 

through the centers of gravity of the sections S, and one orthogonally transforms the coordinates 

so that the new z-axis is the line that passes through the centers of gravity of the sections S and 

lets , ,  denote the cosines of the angles that the vertical (or original z-axis) makes with the new 

axes then one will have: 

z =  x +  y +  z , 

 

and the first of equations (16) will become: 

 

 
1

1 1 1

1

( ) ( ) ( ) ( )
m

m s s s s s s s m m m m

s

c g x x y y z z g x y z       
−

+ + +

=

        + − + − + − + + +  

= 
1, 1, 1, 1,

1

( (m
s s s s s s s s

s

d a d a

dx dy

 − − − −

=

  
− 

  
  . 

 

 Multiply that by dx dy and integrate it, while extending the integral over the entire area of the 

section S. If one lets the origin be the center of gravity of the section S then one will have: 

 

s s sy dx dy    = 0 ,  s s sx dx dy    = 0 , 

 

and therefore, if one lets P1 , P2 , …, Pm−1 denote the weights of the fluid masses A1 , A2 , …, Am−1, 

resp., and lets Pm denote the weight of the fluid Am that is contained in the cylinder B, when 

prolonged to the original horizontal xy-plane, then one will have: 

 
 (1) Cauchy, Exercises d’Analyse et de Physique Mathématique, t. 1, pp. 102.  
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1

1

m

m s m

s

c S P P 
−

=

+ +  = 0

1, 1,

1

cos
m

s s s s

s

l a − −

=

 , 

 

where s−1,s denotes the angle at which the surface Ss−1,s meets the vessel, and l is the length of the 

perimeter of the section S. 

 Analogously to the second of equations (16), one will get: 

 

1 1

n

m s m

m

c S P P 
+ =

   + +  = 
1

0

1, 1,

1 1

cos
n

s s s s

m

l a 
+

− −

+ =

  . 

 

If one eliminates cm then one will finally get: 

 

(17)  
1

m n

s s

s s m

P P
S S

 

= =


−


   = 

1
0 0

1, 1, 1, 1,

1 1

cos cos
m n

s s s s s s s s

s s m

l l
a a

S S
 

+

− − − −

= = +


−


   . 

 

 From equations (12), one has: 

 

 0 0 0

1, 1, 1coss s s s s sa b b− − −+ −  = 0 , 

 0 0 0

, 1 , 1 1coss s s s s sa b b+ + ++ −  = 0 , 

 

since the nature of the solid in contact with all of the liquids is the same. Nonetheless, observe that 

the value of 0

sb  is not the same those two equations, because it depends upon not only the nature 

of the solid and the liquid As , but also upon that of the other liquid that passes through the same 

contour. Therefore, one agrees to adopt different notations and write: 

 

 0 1

1, 1, 1cos s s

s s s s s sa b b −

− − −+ −  = 0 , 

 

and equation (17) will become: 

 

(18)  
1

m n

s s

s s m

P P
S S

 

= =


−


   = 

1
1 1

1 1

1 1

( ) ( )
m n

s s s s

s s s s

s s m

l l
b b b b

S S

+
− −

− −

= = +


− − −


   . 

 

 If both of the sections S and S are very large then l / S and l / S will both be negligible 

quantities, and therefore: 

1

m

s

s

P
S



=

  = 
n

s

s m

P
S



=





 , 

 

which is the equation of ordinary hydrostatic equilibrium. 

  If one has: 
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(19)     1s

sb −  = 1s

sb + , 

 

as in the theory of Laplace and Poisson, then will have: 

 

1

m n

s s

s s m

P P
S S

 

= =


−


   = 1 1m m

m m

l l
b b

S S

+ −
−


 = m

l l
b

S S

 
− 

 
 , 

 

i.e., the difference between hydrostatic equilibrium and the equilibrium that takes into account the 

forces of cohesion and adhesion will depend upon only the lower fluid, i.e., the correction that is 

due to capillarity will depend upon only the fluid that is found below all of the other ones. It is 

known that Young was the first to observe that this result does not correspond to reality, and he 

inferred from that an objection of the theory of Laplace and Mosotti (1), and in order to make the 

theory agree with the experiments, he rejected equation (19). We have already pointed out the 

conditions under which we cannot apply that equation. 

 Now suppose that the two arms B and B1 are vertical, the sections S and S are circular, and 

they have radii r and r, respectively. One has: 

 

 = 1,   = 1,  l = 2 r, S =  r2, l = 2 r, S =  r2. 

Thus: 

2 2
1

1 1m n

s s

s s m

P P
r r= =

−


   = 
1

1 1

1 1

1 1

2 2
( ) ( )

m n
s s s s

s s s s

s s m

b b b b
r r

  +
− −

− −

= = +

− − −


  . 

 

 Let hs denote the mean height of the fluid As in the arm B, and let sh  denote that of the fluid 

As in the arm B ; one will have: 

Ps =   r2 hs s g , 

sP = 2

sr h    s g , 

so 

1

m n

s s s s

s s m

h h 
= =

−   = 
1

1 1

1 1

1 1

2 2
( ) ( )

m n
s s s s

s s s s

s s m

b b b b
g r g r

+
− −

− −

= = +

− − −


  . 

 

If r is very large compared to r then one will have: 

 

1

m n

s s s s

s s m

h h 
= =

−   = 1

1

1

2
( )

m
s s

s s

s

b b
g r

−

−

=

− . 

 

 If one has only one liquid then one will have: 

 

 
 (1) R. Taylor, Scientific Memoirs, vol. III.  
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1 1h h−  = − 0

1

2
b

g r
, 

 

or the difference between the levels will be inversely proportional to the diameter of the tube. 

 

 

7. 

 

Equilibrium for a floating body. 

 

 Suppose that a body K of arbitrary form floats between two fluids A1 and A2 that are contained 

in a vessel B in such a way that the lower part of K is immersed in the fluid A2, while the upper 

part is in the fluid A1 . 

 Let t1 be the surface of K that is in contact with A1, while t2 is the surface of K that is in contact 

with A2 . Let S be the separation surface between A1 and A2 , while V, V1 , V2 are the spaces that 

are occupied by K, A1 , A2 , resp., and , 1 , 2 are the respective densities of those bodies. 

 For equilibrium, it is sufficient to annul the variation of the potential, which will be: 

 

(20) 

1 2

1 1 2 2( ) ( )
V V V

g z dv g z c dv g z c dv  + + + +    + 

1 1 2

1 1 2

S t

a ds b ds c ds c ds
 

+ + +     

 

in this case, where 1 and 2 denote the parts of the walls of the vessel that are in contact with A1 

and A2 . 

 Since the body K is moving, the variations to be considered at the points of the two fluids are 

partially arbitrary, but vary from one point to the other, and partially derived from the motion of 

the solid body K, and therefore the variations of the coordinates will have the form that is given 

the mechanics of rigid bodies (1): 

 

  x =  1 + [(z – ) 2 − (y – ) 3]  , 

 

(21)  y =  2 + [(x – ) 3 − (z – ) 1]  , 

 

  z =  3 + [(y – ) 1 − (x – ) 2]  . 

 

 If the walls of the vessel are far enough away from the floating body then variations at all 

points of the surface S, except for the ones on the line of intersection with the surface K, will be 

arbitrary. Along that line and on the surface of K, they are partially arbitrary and partially of the 

form (21). If one sets the first part of the variation equal to zero (i.e., the arbitrary one) then one 

will get, as in numbers (5) and (6), the equation of the surface S and the angles that it must make 

with the walls of the vessel and the floating body. All that remains for one to consider is the second 

 
 (1) See Mossotti, Lezioni di Meccanica razionale, Lez. 23.  
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part, in which the variations of the coordinates have the form (21), and which results from only 

the first four integrals of the potentials (20). 

 Set: 

 r = 
2 2 2x y z  + + , 

so one will have: 

1 2 1

1 1 1cos( , ) ( ) cos( , )
t t t

g z ds r r N g z c ds r r N   
+

+ +   

(22) 

+ 

2

0

2 2 2

0

( ) cos ( , ) cos ( , )

l

t

g z c ds r r N a d r r T   + +   = 0 , 

 

in which l denotes the length of the line  that is the intersection of the surface S with the surface 

K, N denotes the direction of the normal to the surface of K, and T denotes the direction that is 

perpendicular to the tangent to the contour  and to the normal to the surface S at the point 

considered. 

 Now imagine that the lower part of the inside of the floating body is filled with the liquid A2 

up to the contour  and the upper part is filled with the liquid A1 , and suppose that the separation 

surface between the two liquids, which is then conceived of as being inside of K, is the capillary 

surface, i.e., it is determined by the equation: 

 

(23)   c2 – c1 + g (2 – 1) z − 
( ) ( )d a d a

dx dy

 
−  = 0 

 

and the condition that the angle that the contour  makes with the surface of K is equal to the one 

that the surface S makes with that surface, i.e., suppose that it is the continuation of S inside of K. 

 If one lets S denote that surface then it will be clear that the displacements of the form (21) 

that are given to all points of K will annul the variation of the integral: 

 

S

a ds


 . 

Therefore, from formula (7): 

 

0

0

cos ( , )

l

a r r T d   = 
( ) ( )

cos ( , )
S

d a d a
r r N ds

dx dy

 




 
+ 

 
  , 

 

and due to equation (23): 

 

0

0

cos ( , )

l

a r r T d   = 2 1 2 1[ ( ) ] cos( , )
S

c c g z ds r r N  


− + −  . 
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Substituting that in equation (22) will give: 

 

1 2 1

1 1 1cos( , ) ( ) cos( , )
t t S t

g z ds r r N g z c ds r r N   
+ +

− +   

(24) 

+

2

2 2 2( ) cos( , )
S t

g z c ds r r N 
+

+  = 0 . 

 

 Now suppose that  = 0, and therefore r is constant, let 1V   and 2V   denote the spaces inside 

of K that are occupied by the two fluids that we have imagined, and observe that we have: 

 

1

cos ( , )
S t

ds r N
+

  = 0 , 

2

cos( , )
S t

ds r N
+

  = 0 . 

We will have: 

g  V = g 1 1V   + g 2 2V   . 

 

We then have the following theorem: 

 

 If a floating body is at the boundary of two fluids, and their separation surface (no matter what 

form it might have) is imagined to be continued inside of the floating body using the same law that 

shapes it outside then the weight of the floating body will be equal to the weight of the volume of 

that body that is situated above and below the separation surface, which is supposed to be filled 

with the fluid in which the body is immersed. 

 

 That generalization of Archimedes’ principle is due to Paul Du Bois-Reymond. 

 

 If one now no longer takes  = 0 in equations (21), but rather just: 

 

 1 =  1 =  1 = 0 , 

then one will have: 

 r cos (r, N) =  x +  y +  z 

 

(25) =  1 [ (y – ) –  (z – )] + 2 [ (z – ) –  (x – )] + 3 [ (x – ) –  (y – )] . 

 

 If one lets X, Y, Z denote the coordinates of the center of gravity of the volume V, while X1, Y1, 

Z1 are those of the center of gravity of V1, and X2, Y2, Z2 are those of the center of gravity of 1V   

then one will have: 
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(26) 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2

2 2

2 2

1 1 1 1

2 2

2 2 2 2

, , 0 , 0 ,

, , 0 , 0 ,

, , 0 , 0 .

t t t t t t t t

S t S t S t S t

S t S t S t S t

V X z x ds V Y z y ds z ds z ds

V X z x ds V Y z y ds z ds z ds

V X z x ds V Y z y ds z ds z ds

   

   

   

+ + + +

+ + + +

   + + + +


= = = =




 = = = =



 = = = =


   

   

   

 

 

 If one substitutes the value (25) in equation (24), sets the coefficients of , ,  and of 1, 2, 

3 equal to zero separately and reduces using formulas (26) then one will get: 

 

   X V = 1 1 1 2 2 2X V X V  +  , 

   Y V = 1 1 1 2 2 2Y V Y V  +  , 

and one will have: 

 V = 1 1 2 2V V  +  , 

in addition. One will also have: 

  X V = 1 1 2 2X V X V +  , 

  Y V = 1 1 2 2Y V Y V +  , 

  V = 1 2V V +  . 

Thus: 

  1 1 1 2 2 2( ) ( )V X X V X X  − + −  = 0 , 

  1 1 2 2( ) ( )V X X V X X − + −  = 0 , 

  1 1 1 2 2 2( ) ( )V Y Y V Y Y  − + −  = 0 , 

  1 1 2 2( ) ( )V Y Y V Y Y − + −  = 0 , 

and therefore: 

X = X1 = X2 , 

Y = Y1 = Y2 . 

 

One then has the following theorem, which is due to Paul Du Bois-Reymond: 

 

 The centers of gravity of the three volumes V, 1V  , and 2V   lie along the same vertical. 

 

 As we have seen, both of those theorems on floating bodies are independent of the supposition 

that was made in the theory of Laplace and Poisson in regard to the quantities that are denoted by 

a and b. 

(to be continued [†]) 

___________ 

 

 
 [†] Translator: Apparently, that statement was not true; no continuation of the article seems to exist. 


