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Chapter X

Systems obo® rays or rectilinear congruences

Rectilinear congruences. — Limit points and principalesgs. — Ribaucour’s isotropic congruences. — Foci
and developables of a congruence. — Normal congruencedtranBs theorem. — The Malus-Dupin
theorem. — Congruences with assigned spherical imdgéeio principal surfaces. — Formulas that
relate to two focal surfaces. — Pseudo-spherical congeser Guichard congruences. — Guichard-
Voss surfaces.

§ 137.
The fundamental form of a congruence.

The theory that we shall develop in the present chapteoncerned with doubly-
infinite systems of lines that are distributed in spacgich a manner that one (or a finite
number) of lines of the system will pass through any tpmirspace (or a convenient
region of space). Such a systemodf lines (i.e., rays) is also called ractilinear
congruence or simply, acongruence The totality of normals to a surface is not a
particular case of those systems.

That theory, which was born in geometrical optics, leeern on an increasing
importance for the theory of surfaces, and there sdent® no doubt that it should
contribute increasingly to progress in geometry from now

In this and the following chapter, we shall establisé fundamentals, which are
taken from the classic paper of Kumm&t éspecially, and exhibit some of the principal
applications.

To begin with, we shall address the analytical dedinibf a congruence. In order to
do that, we cut the entire system of lines with a sef&and we regard the point (or one
of the points) where any ray of the system mé&:&s a starting point. We refer the
surface S to a system of curvilinear coordinates, ), and define the congruence
analytically by expressing the coordinates:

XY Z

of the starting point and the direction cosines of #ye which we denote by:

() “Allgemeine Theorie der geradlinigen Strahlensystemegll€s Journal, v. 57.
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XY, Z,
as functions oé, v.
In regard to the functions vy, z X, Y, Z of u, v, we suppose that they are finite and
continuous, along with all of their partial derivatives.
Draw the ray through the center of the sphere:

X+y+Z=1

that is parallel to the positive direction of a rétlze congruence, so the coordinates of
its extreme poinM; will be X, Y, Z; one regards that point as the spherical imageeof th
line (u, v) of the congruence. If one varies the lingy of the system then the poikt;
will describe thespherical imagef the congruence.

Observe that the coordinatéss, ¢ of any pointP on the ray(, v) are given in the
form:
1) E=x+tX, n=y+tyY, {=z+tZ

in whicht is theabscisseof the pointP on the ray that contacts the starting p&E (x,
Yy, 2) as its origin.
With Kummer, we introduce the following fundamentahfollas:

X\’ aX X X\’
2 — | =E, ———=F, —| =G,
@ Z(auj ou dv Z(avj
0X ox _ 0X 0x _ oxX ox _, 0X 0x _
(3) TZoe Y Tof, YO Top 30Ty
du du du ov ov du ov ov

by which, one expresses the two quadratic differentialsorm

(4) ds? =2, dX2=E dif + 2F du dv+ G dV,

(5) Y dxdX=eddf + (f+f) du dv+g dV,

which are called the twtundamental forms The first one represents the square of the
line element of the spherical representation; one oltlerve thatls, also measures the
infinitesimal angle between two successive generatpg,((u + du, v + dv).

Let dp denote the infinitesimal length of the minimum diseafrom the rayy, v) to
the infinitely-close ray, while coa, cosb, cosb denote the direction cosines of that
minimum distance, and finally denotes the value of the abscissd the foot ofdp on
the ray (i, v).

We will have:

cosa:cosb:cosc =(YdZ—-ZdY: (ZdX-XdX: (XdY-YdX
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cosa : cosb : cosc :{(YG_Z_ZG_Y du+( GZ Zan }
ov

ou oJu
: (Za—x—xa—Z du+(Za—X— Xa—zj d
ou oJu ov ov

: (XG—Y—Ya—X du+( 6Y Xj dy.
ou Ju 6v ov

From the identity that was observed in § 77, page 162 (fa)trarie can write:

cosa: cosb : cosc = (EG_X_FG_de (Ga—x Fa—xjd
ov oJu Jdu ov

(e -

( j ( j ’
6v au au 6v
al Id it Wi” tI|e|| result t|lat2

( X axjd { ax Gaxj dv
v oJu v Jdu

JEG-F2JEdi+2Fdudw Gd¥/’
( o and +(F6Y—G6de

(6) cosh = v ou ov ou

JEG-F2 Ed@+2 Fdudw Gd¥

( 0Z Fazjdu{ F9Z _ :azj dv
v du v ou
JEG-F? Edf+2 Fdudw Gd¥

CO0Ssa =

COSC =

Now, one has:

dp= Y cosa dx
or, from the preceding:

e Edu+ Fdv Fdw Gd
/EG F2dg| edu+ fdv € du fdy

If one letsr be the abscissa of the footdy on the rayy, v), and letd be that of the
point where it meets the ray ¢ du, v + dv) then one will have:

X+rX+dpcosa=x+dx+t (X +dX),
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with analogous expressions fgrz, or:

rX +dpcosa= dx+ t(X+ dX),
ry + dpcosb= dy+ t(Y+ dY),
rZ +dpcosc= dz+ t(Z+ d2.

If one multiplies these equations By Y, Z in succession and sums them then that
will give:

t:r—Zde;

i.e., t will differ from r only infinitely little, which is natural. On the cwary, if one
multiplies bydX, dY, dZ in succession and sums then one will get:

Dodx dX+ (r -2, X dy D dXx?=0,

or, if one neglects higher-order infinitesimals:

> dxdX
r=-—4&=&—;
>, dx?
ie..
®) r:_edlf+(f+ ') dudw gd%/.

Edu +2F dudw Gd¥

§ 138.
Limit points and Hamilton’s formula.

The formulas that were established lead to some natteyvoonclusions, which will
serve as a convenient transformation of the curviliceardinatesy, v) when they are
defined in the simplest way. For that, we initiallckexie the case in which the two
fundamental forms (4), (5) have proportional coefficiemts,, in which one has the
proportions:

E:F:G=e: UL

One can then simultaneously make:
F=0 f+f'=0

by awell-definedreal transformation of the coordinates.
Suppose that this transformation has been performe8l) be¢omes:
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N __ed#+ gdy
®) T TEdfrGav

If one denotes the value ofthat corresponds tdv = O byr; and the one that
corresponds tdu = 0 byr, then one will have:

g

n=—2 r,=-9
l E b 2 G b
in which the case af, =r; is still excluded by the hypotheses that were made. w@
then be written:

_ Er du’ + Gr, dv

©) = Edi+ Gdv

and if supposes that, e.z,>r; then one will have:

N G(r,—r)dv’ _ E(r, —r,)du?
r=ri+—=2 Y=~ —-yr,—-_—2 1777
Edu + G dv Edu + Gdv
hence:
r<r<rs.

Let L;, L, be the feet of the minimum distances from the ({@ayv) to the two
infinitely-close rays  + du, v), (u, v + dv), respectively; their abscissas afer,. From
the preceding, the foot of the minimum distance from thy (1, v) to any other
infinitely-close ray ¢ + du, v + dv) falls on the segment; L, ; the extremek;, L, of that
segment will then be calldomit points.

If one denotes the values of @yscosb, cosc at the limit pointd s, L, by:

cosay, cosby, COSCy,
cosay, cosby, COSCy,

respectively, then from (6), one will have:

cosa; = ia—x cosbh; = ia—Y COSCy = ia—z
! \/Eav’ ! \/Eav’ ' \/Eav’
0Z
cosap = osh, = COSC, =

A
JGou’

C0Sa; cosa, + cosh; cosb, + cosc; cosc, = 0.

1 oX
JGou’
S0:

One then has the theorem:
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The directions of the minimum distances from the(taw) to the two rays of the
congruences for which the feet of the distance falls betweenmthepbints L, L, are
mutually orthogonal

We call the planes that go through the rayJ normally to the ray of minimum
distance therincipal planesof the former ray; the preceding result can thestaged:

The two principal planes of any ray are mutually orthogonal.
One can now write (9) in another way by introducing éimglecwthat the minimum

distancedp from the ray ¢, v) to the ray @ + du, v + dv) forms withdp; relative to the
limit point L, . In fact, one has:

JEdu
JEdP+Gd¢

COSw= ) cOoSa Ccosa; =

C052 w= E—duz Sil’? w= &
EdU+Gdv’ Edi+ Gdv’
so (9) will giveHamilton’s formula
(10) r =ry co$ w+r; sirf w
8 139.

Isotropic congruences.
We now examine the excluded case:

f+f'
2

e: g=E:F:G

The considerations of the preceding number still remppliGable, with the difference
that the transformations that are performed can noacbemplished in an infinitude of
ways. It then results that = r,, the limit pointsLi, L, coincide at just one point on any
ray, and the feet of all the minimum distances toitffiaitely-close rays will fall upon
that point. These singular congruences were considerdtid first time by Ribaucour,
who gave them the name sbtropic congruences.Their study is of great interest in
regard to the relationship between these congruences dadesuof minimal area, which
we will establish shortly.
We make the following observations, here: An equation:

¢, v)=0
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between the coordinatesv of a ray of any congruence represents a ruled surfdmesewr
generators are rays of the congruence, or, as one sags bmefly, aruling of the
congruence.For any ruling of an isotropic congruence, it is ctéat the line of striction
will coincide with the locus of limit points of its ray However, for a general
congruence, that will happen only for the two seriesileltr surfaces:

u = constant, v = constant,

in which the variablel, v are the ones that were introduced in the preceding nuriioer.
any surfacer = constant, the line of striction will be the locuslimit points L; on the
corresponding rays, and similarly for amy constant, it will be the locus of limit points
L,. The ruled surfaces of those two series are theadc#ieprincipal surfacesof the
congruence. For isotropic congruences (and only for theemg)ruling of the congruence
will be a principal surface.

If one chooses an orthogonal system on the sghertde line (i, v) in an isotropic
congruence, and takes the starting surface to be theddbdasit points (which is called
themiddle surfacef the congruence) then one have:

ri=r2=0,
SO
e=0, f+f'=0, g=0;
i.e., one will have:
dx dX+dy dY+dz dZ= 0,
identically.

If one then represents the middle surf&aen the sphere as Gauss did, but directing
the ray of the sphere parallel to the directiothaf ray of the isotropic congruence, then
the preceding formula will teach us that any line elermé®twill be perpendicular to the
corresponding one on the sphere. One then has Rib&itdweorem:

The middle surface of an isotropic congruence S corresponds to the eledtdres
sphere by orthogonality.

Conversely, one sees immediately that if a surfcerresponds to the elements of
the sphere by orthogonality then if one draws the thAgsugh the points o% that are
parallel to the rays that go to the corresponding paifitshe sphere then one will
describe an isotropic congruence.

Finally, observe that if one starts on the middleaag$ then if one goes along any
ray through a constant distartdden the coordinates of the extreme point will be:

F=x+tX, {E=x+tX < {=x+tX
and the line element of the surface that is the lo€egtoeme points will be given by:

dé?+dn?+d¢?=d¥ +dy’ +dZ +t2 (dX? +dY? +dz?),
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and will not vary when one changemto —t. The two surfaceS;, $ that one forms by
going a constant segmehton one side or the other can be mapped to each other,
corresponding to the points on the same ray, and te@nde between the two
corresponding points is constant and equat.tdCdnversely, it is clear that:

If the distance between corresponding points of a pair of surfaces that caapped
to each other is constant then connecting the corresponding points will define an
isotropic congruence.

8§ 140.
Abscissas of the limit points.

We now return to the general results of 8§ 138, which wbtained by introducing a
particular system of variables, i.e., the ones thate gde principal surfaces of the
congruence when they were equated to constants. Nowsaifiiad the variablag v are
arbitrary, so we wish to establish the fundamentahida that gives the abscissasr,
of the limit points. The differential equation of tpeincipal surfaces is obtained by
equating the Jacobian of the two fundamental forms $}p(zero; i.e., the determinant:

E du+ F dv Fdur Gdv
f+f"  f+f
\Y;

edu+ d dur gdy
2 2
That determinant can then be written:
®) {f;f E—eF}de+{ gE- e dudv{ gFf;f }s d=0.

For the values alv/ duthat satisfy the latter equation, equation (8mely:

(eo|u+f+2f d\a du{fzf du- gd} d
r=-

(Edu+ Fdy dur( Fd# Gdv dv

can be written as:

edu+f+fdv U

Edu+ Fdv F du+ Gdv

du+ gdv

and one will then have:
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f+f'

(Er+e) du+( Fr+ jdv: 0,

(Fr+f;f jdu+(Gr+g)dv:O.

If one eliminates the ratiolu : dv from this then one will obtain the following
equation, which is of degree tworin

(B) (EG—FZ)r2+{gE—(f+f')F+eG}r+eg—(f;f'j =0,

whose roots are the abscissas of the limit points.

8§ 141.
Foci and developables of a congruence.

We now search among the ruled surfaces of the corngguemn the ones that are
developables. For such a surface:

(11) ¢ (u,v) =0,
one must havdp = 0; i.e., from (7):

Edu+ Fdv Fduw Gdy _
edu+ fdv f du gd
or, upon developing this:

(@) fE—ePhdil+{gE+(f' -)F—-e G dudv+ @F-fQ dvV=0.
Therefore:

The rays of a congruence can be associated with two series (reabgmamry) of
developable surfaces.

One can arrive at the same differential equatioh for the developables of the
congruence in the following way, which will provide anothmaportant element, as well.
Suppose that (11) is the equation for a developable ofaihgraeence, lep denote the
abscissa of the poirit where the rayy, v) meets the edge of regression of (11); the
coordinates oF will be:

X1=X+pX, vi=y+pY, z=z+pL
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If one differentiates these formulas, whilev are still related by (11), then sindg,, dy,
dz are proportional t&, Y, Z, resp., by hypothesis, one will have that:

dx+pdX=AX,  dy+pdY=AY, dz+pdz=17

in which A is an (infinitesimal) proportionality factor. If onmaultiplies these three

) . oX dY 0Z oX dY 09z
equations, first by—, —, —, and secondl b%— —, —, and then sums them
q du Ou odu y vV oOv ov

then one will get:
edu+fdv+p(Edu+Fdv) =0,
f’"du+gdv+p(Fdu+Gdy =0.

If one eliminateso then one will get the differential equatio@) (of the developables
of the congruence precisely. If one eliminates the dhtiodv instead then one will get
the following second-degree equation for

(D) (EG-F) p?’+{gE-(f+f)F+e G p+eg-ff'=0.

Its rootsp, p» are obviously the abscissas of the two poitsF, along the rayl v)

that touch the edge of regression of one or the othezlajgble of the two series that

pass through that ray. Those two points are cédleibf the ray ¢, v), and they can also

be considered to be the two points at which the wvay)(is met by the two infinitely

close rays that belong to one or the other of theldpables t). They will be real or

imaginary according to whether the developables of thgraence are real or imaginary.
It results from a comparison witB), (D) that:

PrtP2=r1+12
so:
The midpoint of the limit points coincides with the midpoint of the foc

That point is then called thenidpoint of the ray, and the surface that is the locus of
midpoints is called theniddle surface.It then results fromB), (D) that one also has:

,Olpz_l’r+—(f_f’)2
P 4EG-F?)
SO
f_fr)Z
1= (- pp= U1
(f=r) = (o= p) = -0

If one then lets @denote the distance between the limit points aetgl? denote the
distance between the foci then one will have:

() That contact is meaningful only up to higher-order indisiinals; i.e.dpis an infinitesimal of order
higher than one ik, F; .
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f—f')?
(12) d*-0°= (—)2 .
4(EG- F°)
When the two foci are real, they will lie alongetline segment of the limit points, as

would also follow from § 138.
For simplicity, take the starting surface to be thiddle surface. Then take:

r.=d, r,=-d,
in Hamilton’s formula (10) (page 6), so it can betten:
r=dcos
and one will see that when the foot of the minimdistance from the rayu(v) to an
infinitely-close ray traverses the line segmentheflimit points from 4d to —d, the angle

w will increase from O taz/ 2 and assume the value/ 4 at the midpoint of the ray.
Denote its values at the foci oy, w, so:

PL=0 p=-0
and one will have:
o o
cos =, cos =—_,
&4 d e d
and therefore:
Ww+w=2
>

One calls the planes that go through the ray enditfinitely-close rays that meet it
the focal planes. It then results thaffhe focal planes have the same bisecting planes as
the principal planes.

If one lets:

g=@-w=—--2a

N Y

denote the angle between the two focal planes them,the preceding, one will have the
formulas:

d*-9?

. o
13 siny= —, cosy=
(13) 4 g y "
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8 142.
Focal surfaces.

We must consider five surfaces that relate to a givegroence, namely, thaiddle
surface which is the locus of midpoints, the twwmit surfaces which are the loci of limit
points, and finally, the twéocal surfaceswhich are loci of the focif. The first three
are all real, while the last two are real only for comgrces that have real developables.
The congruence is then composed of the tangents thabem®@on to the two sheeSs,

S of the focal surface. The rays of the congruence eneelystem ofo’ curves ors,

that are edges of regressibn of the developable of one of the two systems, and
analogously forS; . One will see immediately that the osculating pleméhe curve ;
(which passes through it) &t is also the tangent plane $ atF, . The two series of
developables of the congruence cut each of the focakssrédong a conjugate system.

Can focal surfaces coincideth that case, the enveloping line of the focal surfades
the rays of the congruence will coincide with thathef conjugate system; i.e., it will be
the asymptote of one system. Moreover, one easilyegrthat the distanced between
the limit points is then given by:

2d= 2,
J-K
in whichK is the curvature of the focal surface.
Indeed, take the starting surface to be the focal sirthe coordinate line to be the
asymptotic linev, its the orthogonal trajectory to beand let:
ds =E df +G dV

be the linear element of the surface. We will have:

for the coefficients of the second fundamental form.

Set:
1 o0x 1 oy 1 oz
X1 = ——, Y= ——, 1= ——,
T JE tTJE ' JE au
1 o0x Y, = 1 oy _ 1 oz

Xzzﬁa, z—ﬁa, Zz—ﬁa,

and from the fundamental formulas (1), (Il), pages 116-1¥/deduce that:

(™) In many studies, it proves to be useful to considexth surface that Ribaucour called tiddle
envelopewhich is the envelope of the normal planes to thealiseir midpoints (viz., the middle planes).
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X, __ 1 a\/_ % axl_ 1 a\/_ X. (2
ou G ov g ou \/E

SinceXy, Y1, Z; are precisely the direction cosines of the ay) of the congruence,
one will find that the fundamental quantities (@), on page 2 are:

_{1afj, _ 1aJ_a\/_’ _{16(} "

"oV \/EG ov adu " du

e:O,fza—\/?, f’=0, g= \/;6\/_

ov oJu

EG-F?= [EaV j
E'G ov
o 1faJEY

eg—(+1)"= 4EE ov J

From B), since the middle term is zero, that will give:

SO

12
?]'ZZD =-K. Q.E.D.

§ 143.
Normal congruences.
A system of rays will be called mormal system or congruence if there exists a
surface that is normal to all of the rays, anddfae (8 133) a series of such surfaces.
If a congruence is normal then it must be possiblassume in (1), page 1, thas a

function ofu, v such that the surface that is the locus of pdiitg, ¢) is normal to the
rays. The differentialdé, dr, d{ must then satisfy the condition:

Xdé+Ydn+2Zd¢ =0.
Now, one has:

dé=dx+dt X +t X dn =dy+dty +t Oy, d{=dz+dt[Z +t [HZ
and therefore the required condition will become:

dt+> Xdx=0.
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If one sets:

1) 1)
14 U=)» X—, V=) X—
(14) 2 X 2. X

then one will get the relation:
dt=-(Udu+Vdy

for the determination df so the required condition will translate into the éguey

(15) a_U = 6_V ,
ov du

which can also be written, from (3):

(15) f=f

Suppose that (15) or ()5s satisfied, so there will exist a series of (dafasurfaces
that are orthogonal to the congruence, which are giveheébformula:

(16) t=C-J(Udu+Vdv.
Sincef =f’, one will have:
Vid
o=d, y=—,
4 2

and conversely from one or the other of these, it uliimately follow thatf = f".
Therefore:

The necessary and sufficient condition for a congruence to be normal théhiaici
must coincide with the limit points, or that the focal planes mustmikually
perpendicular(®).

The two focal surfaces for a congruence obviously coingittethe two sheets of the
evolute of the surfaces that are orthogonal to the rays

§ 144.

Malus-Dupin theorem.

Put (15) into another form, and introduce the anglef that the ray{, v) makes
with the coordinate lineg u of the starting surfacg If:

d€ =E’d + 2F’du dv+ G’ dV

() This theorem will also result immediately from theometric considerations of § 142.
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is the line element of that surface then we will have:

1 ox U 1 ox \%

Jfou JE LG e

cosa = ZX

so (15) can be written:

d(J E'cosa)_ d(/G cosp)
(17 ov - ou ’

and if we suppose that this is satisfied then (i }oecome:
(18) t=C- j(\/ﬁcosadun/ﬁ cog? dv.

Only the anglesr, 5 and the coefficients of the line element of thertsig surface
figure in these formulas. Beltrami has deducedftiiewing interesting consequences:
Suppose that (17) is satisfied, and imagine $iatdeformed in such a way that it carries
along the system of rays that is invariably linkeith the surfaces without changing the
anglesa, S. (17) will always remain satisfied, and the val(#8) oft will not vary under
the deformation. One then has Beltrami’'s theorem:

If the rays of a normal congruence that emanatenftbe points of a surface S are
imagined to terminate on one of the orthogonal atet> then any deformation by
flexion of S that carries along the rays of thegroience that are invariably connected
with the surface that is the locus of their extreméll be an orthogonal surface to the

rays(Y).
In addition, one easily deduces the Malus-Dupgothm from formula (17):

If a normal congruence of light rays is subjectedn arbitrary number of reflections
or refractions then it will always remain a norn@ngruence.

Take the starting surfac8® to be the reflecting or refracting surface, take t
coordinate linesi onSto be the enveloping lines of the orthogonal rigas of the rays
onto the tangent planes & and take the lineg to be the orthogonal trajectories. One
will have:

in which yis the angle between the ray and the norm&l t(7) will then become:

() One can observe that since oBlyG' appear in (17) and (18), one can also assume that thaldlexi
surfaceSis onlypartially inextensiblgi.e., that Beltrami’s theorem can persist along e dinate lineg,
v, and also under those deformations, more generally.
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d(y G'siny) _ 0
ou ’

and if it is satisfied then it will continue to bei¢rif one changeginto )’ by means of the
condition:

siny =nsiny (n constant),
which proves the theorem.

8§ 145.
Congruences that have assigned spherical images of the piijpal surfaces.

We now return to the general congruences in order &b tin® problems in sequence
that can be considered to be generalizations of thelggmoof finding a surface whose
lines of curvature have assigned spherical images, i.éindig a normal congruence
whose developables (8 83) have assigned spherical imagks. developables of a
congruence will coincide with the principal surfaces witeis a normal congruence,
while the two systems are distinct in the case ofreigeg congruence. One then agrees
that one must address two problems in turn:

1. Determine the congruence when the spherical images of itspairsurfaces are
assigned.

2. Determine the congruence when the spherical images of its developables ar
assigned.

In this number, we shall address the first problem, whatkiays has a real
significance, regardless of whether the developablesat@r imaginary.

The spherical systenu,(v) that is the image of the principal surfaces, musaibe
orthogonal system (8 138), and one lets:

d$? =E df + G dv
be the line element of the spherical representatioske The starting surface to be the

middle surface, so the unknowns in our problem will bedberdinatesx, y, z of the
midpoint of the rayy, v). By hypothesis, one must have:

F=0, f+f'=0, e G+gE=0,
and if one denotes the distance between the limit pbyngs then one will have:

(19) %a_x =r E, %a_x :—rG’ %6_X+ZQ(6_X =0.
du du ov ov ov ou Juov
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Upon introducing a new unknown functigntake:

(20) f= Z%a_x_¢J— =y XX __ 4 [EG.

ou ov

The geometrical significance af results immediately fromD)) (page 10) since if
2p denotes the distance between the foci then onédnawk:

(21) p°=r’-p.
9(¢/ EG)
ou

formulas of chap. V (page 152), one will have:

2 11 1
0 >2( = a_x+ a_x— E X

ou 1] ou 2] ov
and in addition, from the first of (19):

3 O 0°x 0X _ 9(rE) Z 12 X, 129X
dudvou v u | 2[av)
If one observes (19) and (20) in this then it walult that:

B

Now, one will have:

- {112}+G {121} “o 6Ioga\l{E_G _ {111}+ {122}

in this case, so:

Calculate from the first of (20), and observe that from thedamental

ox _10(E) |G ¢
@ ZXE T E av E au’

Similarly, if one differentiates the second of Y 2@th respect tos then one will find
that:

o __1006), [E o
(b) ZXau G Jdu ¥ Gav
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It is enough to associata){ (b) with (19), (20), and if solves them fax ﬂ %

ou’ du’ ou’
9 ﬂ 9z then one will get:
ov

ov' ov
X _ \F \E%_ia(re) X
au G au Gov G du
ox _ \F 1a(rE)_\FGa¢
o E au E Ov Ed u

with analogous expressions fgrz

Conversely, ifr, ¢ are two functions ofi, v such that the integrability conditions for
(22) are satisfied then they will define a congueey quadratures that has assigned
spherical images for its principal surfaces. Nafv,one actually calculates the
integrability conditions for (22), while taking mtaccount the fundamental equations that
give the second derivatives XfY, Z (8 72, page 152), then one will find that theyuesl
to the single condition betweerand ¢:

(22)

0°r  ar dlogE or 91ogG | 62 Iog(EG)
23 2 +— +— = JEG (M + 2
(23) Judv Jdu 0dv Jv du G (Bap+ 29),

in whichAz¢ is the second parametric differentialgof

o = Jasal eon) al (80

One then sees that the problem that was poseadadvilit considerable arbitrariness in
its solutions, since one can takend ¢ arbitrarily and successively determigeor r
from the partial differential equations (23).

In particular, if the congruence is normal ther ovill have ¢ = 0 and the equation
for r will become:

(24) o°r alogJ_ar alogJ_ar azlog«/ G

auav ov au Jdu av owv

which is precisely thadjoint equation {) to the other one:

9W _9dlog\/E 9W _dlog\/G aw_

(25)
ouov ov Jdu Jdu ov

() See Darboux, t. I, pp. 7&f seq.
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which we saw in 8§ 83 depends upon the same problem. Onetlmattéise integration of
equation (24) and that of its adjoint (25) are analyyeadjuivalent problems.

§ 146.
Middle envelope of an isotropic congruence.

Here, we confine ourselves to applying (23) to the case @dfadiopic congruence,
for which one has = 0. From (23), the search for isotropic congruencesdejtiend
upon the equation:

A2¢ +2¢:0,

which, from Weingarten’s formulas that relate to thegeanial coordinates (cf., 8§ 81),
one can also interpret as the tangential equationswfface of minimal area.

It was precisely in the theory of isotropic congruentteat Ribaucour proposed the
following fundamental theorem to relate them to midimafaces:

The middle envelop@) of an isotropic congruence is a surface of minimal area.

That theorem follows easily from our general form{23a), in which one can assume
that the orthogonal linesu(v) on the representative sphere are arbitrary whenine
dealing with an isotropic congruence, for which the princguaifaces are indeterminate,
and we suppose that they are isothermal by taking:

E=G=4, r=0.
(22) will then become:
OX _ 6¢ ax

6u 6v ¢
OX _ ¢
6v au ¢

and if one denotes the distance from the middle plartee origin byW then one will
have:

W= Xx
SO:

ow _ o X

4 i
ou v Z ou’
ow __9g X

4+ -
6v oJu Z ov

It then follows that:

() Cf., the footnote in § 142 (page 12).
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%z/v 0°W - Y'x [ax axj:—z;lex;

0°W  0°W
+

o av PO

which proves Ribaucour’s theorem.

8 147.
Congruences with assigned spherical images for their dewoglables.

We now go on to the second question that was posed in §viht®h involves much
less arbitrariness in its solution, as we have seere important results that we shall
establish are due to Guichard, who proved them in thexfmitpway ¢):

Let:

ds? =E duf + 2F du dv+ G dV

be the assigned spherical line element, in whighk)(are the images of the developables

of the congruences. Also take the starting surface tohéemiddle surface of the
congruence, while assuming that the unknowns are the cateshny, z of the midpoint

of the ray. If one denotes the distance betweefothdy 2p then:
X+ pX y+p0Y, z+p”Z
will be coordinates of one focus, while:
X=pX y-pY, z-p”Z

will be those of the other. Suppose that the fornoeresponds to the line = constant,
while the latter corresponds to the lme constant. One must then have:

a(X+,0X):hX a(y+'0Y):hY a(Z+'OZ):hZ,
ou ou ’ ou

a(X—,OX):'X a()/—,OY):W a(Z—,OZ):|Z
ov ’ ov ’ ov ’

in whichh, | are convenient proportionality factors. If one esithese equations as:

() “Surfaces rapportées a leurs lignes asymptotiques gtwamces rapportées a leurs dévéloppables,”
Annales scientifiques de I'Ecole Normale Supérieure, t3¥keries.



(26)

with analogous expressionsyinz, and forms the integrability conditions from them:

(%j_i(a_xj -0
Jdu) odu\odv
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9
ov

while observing that:

ouov

then one will find that:

(@)

B

vl

ov du

(26) will then become:

(27)

and when one substitutes the values, &f from (5) in (a), that will give the following

1200p | 0 (13 o1
4| — +—
2/0v |[dul 1] dv| 2

equation ino:

(28)

2
_6,0 + 12 6_,0+
Ju

1

%,
_au

_6v

_6_p+2

% = (h—a_p
ou oJu

6x_(|+6_pjx+p6_x,

oX
x_ ~
j 'Oau

|12 6X+ 120X _
1| du 2| ov

on_al _

9°p
2—E +20F=0,
oJuov 2P

(¥)e}

}ﬂp:o.

21

Conversely, ifp is a solution of that equation then (27) will give a esponding

congruence by quadrature that has assigned images fovets pkebles.

Observe that the Laplace equation (28), upon which the gmoldepends, is the
adjoint of the other one:

o'W

ouov

{

12 aW_ 1
1| ou

2

2+ Fw=0,

2l 0W
ov
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which we saw in 8 82 depends upon the problem of finding thecsuttiat the systenu,(
v) for the spherical image of a conjugate system. Thepiwblems are then equivalent.

8§ 148.
General formulas that relate to spheres.

We would like to express the elements that relatehéotivo sheets of the focal
surface, so we agree to establish a system of forrthdasvill be useful later on in other
research.

Consider the tri-rectangular trinedron at any paint of the sphere that is defined
by the normal to the sphere and the bisecting directibtise coordinate linesi(v). The
cosines of the last two directions will be denoted by:

X1, Y1, Z3,
X2, Yo, Z,,

respectively, and if one 1€ denote the angle between the spherical lingg){ which is
defined by the formulas:

cosQ:L, sinQ:—“EG_FZ,
J EG \J EG

then one will find immediately that:

w o 1 { 19X 1 ax}
1= ~ N (>
25in§22 JEdu JGov

w o1 { 19X, 1ax}
2 = —~ —~ (>
2COS% \/Eau \/Eav

(29)

with analogous formulas fof, Z.
The formulas that must be established express the Ipdetivatives of the nine
direction cosines:
X, X1, X2,
Y, Y1, Yo,
Z, Zy, Z

linearly in terms of the cosines themselves and thédficeats of the spherical line
element.
Meanwhile, from (29), one has:
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g—xz w/Esin%xlh/Ecosg—zX2
u

oxX _ Q
—=—/Gsin—=X, +, Gcos—

o 2 %

and therefore:

> X0 0%, L= X —\/TES n— :
ZX L= x = /Gsi n—,
%, :—z Xza—x:—\/TEcos— :

ax ==y x —\/Ecos— .
Now, calculate the two sums:
Z XZ% =
ou
Z (28 ax

From (29), one has:

x, %o L g 10X 03[ 10X] 10X0[ 10X
“ou  2sinQ=|,/G ovoul JEOu) JEOQudu /[Gav)|’

and since:
1 oX 1 0X
cosQ = Zf%u @\/7%\/
differentiating with respect to will yield:
s L %i{if’_xj sng®2 -y L %i{if’_xj
JG ovoul \/E du JE dudul /G av

such that the preceding can be written:

ox, _ 1 2 «ox o 1 ax
2%, ou ZSinQ{ fzauau{f 6VH'

If one develops this, while observing the formula:

23
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2 12 12
(e

Juov ou ov
then it will result that:

12 12
szaxl =- 1 sing%2 42 g +F _F oGl
ou 2sinQ ou JEG 1 2| 2Gdu
Now, one has:
a_G:2 12 g 12 .G 12’
ou 2 1 2

12 12 -
E +F _FoG_EG-F )12 =Esirf Q 12,
1 2 2G au G 1 1

from which, one will get:

12
ZXZ%:—ZXlaXZ :—Ea_Q_ E{ }SinQ_

SO

ou 2 du G|1
Similarly:

12
ZXZ%:—ZXlax2 109, |G sinQ.
ov ov 2 ov E|2
These two formulas, which are associated vajla(d the identities:
oX oX
X,—1=0, X,—1=0, etc.,
2% ou 2% ov

immediately give the group of requested formulas:

?;: Esm%X +4 Ecos— X, ———Q/ G sm— X+ G cos— X
o0X . 6X .
30 —L==AX, -/ Esm— X, —1= BX+. Gsm— X,
(30) au 2 2 v % 2
0X, Q 0X Q
= AX, -, Ecos— X, Z2=-BX-,/ Gcos— X,
au ! 2 v A 2

in which one sets:

[E (12 12
(31) A= Ea—Q+ E sinQ, B= EG_Q <] sinQ,
2 0du G|1 2 ov E|l2
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to abbreviate.
One should note that from the formula that was dg@ezl in 8§ 86 (page. 184), one

can also expreds, B for the geodetic curvature Jof, 1 /g, of the coordinate lines in the
following way:

(31) A:_E_EG_Q, B:—E_EG_Q_
p, 20u p, 20V

When one is given the spherical line element, fore®®) will give the system of
total differential equations foX, X;, X; that was mentioned already in 8 58, which is
infinitely integrable; its integration depends upon a Rieguation.

8 149.
Elements of the two sheets of a focal surface.
We now return to Guichard’s problem and formulas, mcW the angle€Q between

the spherical linesu( v) presently represents the angle between the foaakp) as well
(). (27) can be written:

x_ |op .12 ] Q Q

—= | =—=+2 X =/ Esin— - Ecos—

ou ou {2}'0 | 2'0X1 2'0)(2
(32) - 1 z

0x op . Q Q

—=—|=—+2 X =4 Gsin— +, Gcos—

v |ov {1}‘)_ 2P 2P %

Let S, S denote two focal surfaces, andXetys, zi; xo, ¥, Z denote the coordinates
of their fociF1, F,, respectively, such that one has:

X1=X+pX, yi=y+pY, z=z+pZ
X=X=pX, Y2=y-pY, Z=2-pZ
let:
Ei, F1,Gi; Dy, D, D/,

Es F2, G2;  Dg, D, Dy,

() The spherical liness, v are the indicatrices of the tangents to the edges oéssign of the
developables, v of the congruence, from which our assertion wiuleimmediately. Analytically, one
can arrive at the same result by observing that one has:

e=-pE f=pF f=-pF g=pG,
so B), page 9, will give:
ﬁzEG—F

2
=sirf Q.
r2 EG
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denote the coefficients of the two fundamental fooh§,, S, respectively. One finds
from (30), (31) that:

0X, op (12 0X, 12 . Q Q
=%, X, =2 =2 X -2/ Gsin= pX, + S- o X,
5 Lu {2 0 Sy 5 (P Si 2,0)(1 2\/_Gc02,0>(2

0X, 12 . Q Q 0, ap (12
— =2 X -2, Esin— -2/ E , — =—-2—+ X
ou {2}'0 JEs 2'0)(1 2\/_0055,0)(2 ov {au 2P

Meanwhile, one gets the formulas:

{3 e ] -

(33) 2
2 2 6_,0 12
E,G, - R’ =16Gp {6u+{2}p} ,

and analogously:

oo o] e {3

(33%) ,
12
E,G,- F’ =16 EpZB—p+{ }p} :
\

1

Now, let &, 771, {1 denote the direction cosines of the normaStand leté,, 7., {
denote those of the normal $g we have:

b= cos% X1+ sin% X5,

Q . Q
= CcosS— X; —Sin— X5
52 2 1 2 2

Calculate:

Di=-) 22—, D =-) 2t "t D/ =—) 2t
! Zau au ! Z:av au ! Z:av v

0¢, 0x , 0¢, 0x ) 0¢, 0x
D - — 202 772 , D - — 202 772 , D - — 252 772 ,
2 Zauau z Z:au v z Z:<3vav
and find that:
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E
» 12
D2=2\/EPB—3+\/E{ l}sinﬂ] D =0.D;=-2/G Sm{g_/\?{ l}p} |

so the curvaturels;, K, of the two sheets will be given by the formulas:

12 12
D,=2 EsinQ{a—p+{ }p] D=0, D'=- 2/Gp| X2+ 9{ }sirﬁ
(34) ou 2 ov 2

\/Esmﬂ{ag+\/€{12}sin§2}
K = ov E|l2
! op (12 ’
wseta)e
(53)
\/EstPQ+\/TE{12}SinQ}
_ Jdu Gl|1
2" op [12
CERY

8 150.
Applications to pseudo-spherical congruences.

We apply the general formulas of the precedinggaph to two particular cases. In
the first place, we pose the questiddo there exist congruences in which one
simultaneously has the constancy of the distane¢ween the foci and the distances
between the limit points?From § 130, we know that there actually exist ndrma

congruences of that type, and that they are definethe normals to a surfad¥ for
which the radii of curvature, r, are coupled by the relation:

r1 — r, = constant.
Now, if we treat the general question then we rsugpose that:
© = constant, Q = constant

in the formulas of the preceding number; (35) win become:

and since:
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is the distance between the limit points, we wilidghe theorem:

If the distances between the foci and the distances between thepdimis are
constant in a rectilinear congruence then the two focal surface®eaviilseudo-spherical
surfaces whose radii are equal to the distance between the limit.points

The congruences of this kind (whose existence for dliegaof p and Q we will
prove much later) are callggbeudo-spherical congruenceblere, we shall deduce some
further properties of the correspondence between pointbetwo sheets of the focal
surface under the hypothesis that such congruences do @xistfinds from (34) that the
differential equation of the asymptotes of both shesets i

E df -G dv¥ =0,

so the asymptotes on both sheets will correspond. Mergone has:

ds’ = 4p? _[{122}du—{122} dvj2 +G d\9_

ds = 4p? [{122}du—{112} dvjz + EdV

for the line elementsls, ds, from which it will result that the arcs of corpesmding
asymptotes will be equal. From (33), (34), onel wiken find that the differential
equation of the lines of curvature on one or thewosheet is:

AIRCEEL R BILEE BIFE

One will then have the theorem:

The lines of curvature and asymptotic lines onttine sheets of the focal surface of a
pseudo-spherical congruence correspond, and theesponding arcs of the asymptotes
are equal(®).

() It is worth pointing out the consequences that onevelerrom the formulas in § 145 for the
spherical imageu v) of the principal surfaces of a pseudo-spherical comgaie If one lets andp (and

thereforeg = /r?-p® ) be constants then (23) on page 18 will become:

%logJEG
aL =%/EG =cosQ . EG.

ouov
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8§ 151.
Guichard congruences.
The second question that we pose is the following Hne (

For which congruences does it happen that the developables of the congruence c
the focal surface along the lines of curvature?

One must then have:

and the necessary and sufficient conditions for s @bove to exist then result from
(33), (33) (when one suppose that the focal surfaces do not redleceves), namely:

12 12
=0, =0.
1 2
That now expresses (8 76) the idea that the spheneslu, v are the images of the
asymptotes of a pseudo-spherical surface, and one wilhthen

Therefore:When the spherical line element is referred to the ljoew) that are the images of the
principal surfaces of a pseudo-spherical congruence, it will tagddrm:

(a) ds?=E dif + G dV,

in which the product/ EG is a solution of the Liouville equation:

0’ log./EG
(b) % =cosQ ,/ EG (Q constant).
uov

Conversely, it is clear from § 145 that whenever thteedcal line element is reduced to the foragy (
where D) is satisfied, there will exist a corresponding pseudo-ggieongruence.
0’ log[EG -0

ouov

and one can certainly makfEG = 1. If one then regards v as the orthogonal Cartesian coordinates of a

point in a representative plane then one will havepaasentation of the sphere on the plane that pesserv
area and in which the doubly-orthogonal system of lihes are parallel to the coordinate axes in the
representative plane will correspond to a doubly-orthabsystem on the sphere.

From theorem (C) on page 290, one can arrive at thisdault directly by looking for the lines that are
the spherical images of the lines of curvature of théaseW for which the difference between the
principal radii of curvatures is constant.

The case of2 = 0 is also noteworthy. The congruence will thencbmposed of tangents to the
asymptotic lines of a system of pseudo-spherical sesfa€f., § 142, page 12.

() Cf., GUICHARD,loc. cit.

In particular, if the pseudo-spherical congruence is abtinen one will hav€ = 77/ 2,
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The desired congruences are the ones such that the images of tieddpedbles are
the images of the asymptotes of a pseudo-spherical surface, and onlgahgsesnces.

One can then set (8 76):
E=G=1, SO F = cosQ,

so the Laplace equation (28), which defipesvill become:
9°p

36
(36) ouov

+ pcosQ =0.

Any solutionp of this equation will correspond to a congruence of thd khat we
now consider; we call such a congruencguichard congruence.
From (33), one has the simple formulas:

_a[9Y ’
d§_4[6uj A + 407 0V,
_aprdied %)
dg = 4p duz+4[auj oV

for the line elements of the two sheets of thelfeaaface of a Guichard congruence.
In (36),Q denotes an arbitrary solution of the equation:

9°Q

=-sinQ,
ouov

vV
of the two focal sheets will be a sphere then.

The lines of curvature = constant have the rays of the congruence for téwegents
on the Guichard surfac®. Letl; be the evolute o with respect tov = constant. The
normal tol"; at a point is parallel to the corresponding rayhef Guichard congruence,
and since \f, v) are conjugate of1, I'; will have the property that if one takes their
Gaussian spherical representation then the imageeafonjugate system,(v) to I'; will
coincide with the image of the asymptotes of a geespherical surface. It is now

and one can observe, with Guichard, t%e%, %—Q are particular solutions of (36); one
u

rs
enough to refer to formula (25), 8§ 78, page 167@riater to see that »{ . } denote the
1

Christoffel symbols that are constructed frbithen one will have:

()= fale
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i.e., theu, v will be geodetic ori’;. The surfaces of that typeviz., the ones on which
there exists a conjugate system that is composed of getidesie were studied for the
first time by VOSSY) and are calle¥oss surfacesTherefore:

Any Guichard surface has a Voss surface for one sheet of its evolute.
Conversely, one will see immediately that:

The evolutes of a Voss surface with respect to one or the othetigesyséem of the
conjugate system are Guichard surfaces.

We shall return later on to the properties of theam@d that were considered in this
number and their relationships with pseudo-spherical sw:face

() Sitzungsberichte der Miinchener Akademie der Wisserisoh@flarch 1888).



