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§ 54. 
 

The second fundamental quadratic form. 
 

 We saw just one differential form intervene in the properties that were studied in the 
preceding chapter, and it gave the line element of the surface: 
 

f = ds2 = E du2 + 2F du dv + G dv2, 
 
namely, the first fundamental form.  However, when one studies the properties that are 
inherent to the actual form that the surface has in space, a second fundamental form will 
intervene, in addition to the preceding one, and as we shall soon see: The theory of 
surfaces, when considered from our viewpoint, reduces essentially to the study of two 
simultaneous quadratic differential forms. 
 In order to introduce the second differential form that was just mentioned, we begin 
by fixing the cosines of the positive direction of the normal to the surface, which shall 
always be denoted by: 

X, Y, Z. 
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 As in § 42, we establish that the positive face of the tangent plane is the one on which 
the positive direction of the tangent to the line u lies to the left of that of the line v (1). 
 The positive direction of the normal will be the one around which the positive face of 
the tangent plane revolves.  From known formulas of analytical geometry, one will then 
have: 

X = 

1 1

1

1 1sin

y z
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v vG G

ω

∂ ∂
∂ ∂

∂ ∂
∂ ∂
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1 1sin

x y
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x y
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ω

∂ ∂
∂ ∂

∂ ∂
∂ ∂

, 

 
in which ω is the angle between the coordinate lines that were defined in § 41.  It will 
then result from (6*) of that § (pp. 88) that: 
 

(1)  X = 
2

1
y z

u u
y zEG F
v v

∂ ∂
∂ ∂
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2

1
x y

u u
x yEG F
v v

∂ ∂
∂ ∂
∂ ∂−
∂ ∂

. 

 
 The second differential form that one introduces will be: 
 

ϕ = − (dx dX + dy dY + dz dZ), 
 
for which one always adopts the notation (2): 
 

(2)    ϕ = − ∑ dx dX = D du2 + 2D′ du dv + D″ dv2. 
 

                                                
 (1) We always agree upon the convention that the positive direction Oy lies to the left of Ox on the 
positive face of the xy-plane. 
 (2) Here and in what follows, the summation symbol Σ denotes a sum of three terms that can be deduced 
from the first one by changing x, X into y, Y, z, Z, resp. 
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 One observes immediately the various forms that the coefficients D, D′, D″ of ϕ can 
take.  If one differentiates the identities: 
 

x
X

u

∂
∂∑  = 0,  

x
X

v

∂
∂∑  = 0, 

 
with respect to u, v then some other ones will follow: 
 

    

2

2

2

2

2

,

,

.

x X X
X

u u v

x X x X x
X

u v v u u v

x X x
X

v v v

 ∂ ∂ ∂= − ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ = − = − ∂ ∂ ∂ ∂ ∂ ∂
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 One will then have: 

(3)    

2

2

2

2

2

,

,

.

x x X
D X
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x x X x X
D X

u v u v v u

x x X
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 ∂ ∂ ∂= = − ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ′ = = − = − ∂ ∂ ∂ ∂ ∂ ∂
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 From (1), one can also writes D, D′, D″ in the form of determinants: 
 

(3*) D = 

2 2 2

2 2 2

2

1
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1
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∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂−
∂ ∂ ∂
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 , 

 

D″ = 

2 2 2

2 2 2

2

1

x y z

v v v
x y z

u u uEG F
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂
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∂ ∂ ∂

 . 

 
 The two quadratic differential forms: 
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 f  =     ∑ dx2  = E du2 + 2F  du dv +  G  dv2, 

 ϕ  = − ∑ dx dX = D du2 + 2D′ du dv + D″ dv2 
 
are called the first and second fundamental forms of the surface S. 
 
 It is clear that when one switches the variables u, v, they will be transformed into new 
fundamental forms. 
 
 

§ 55. 
 

Fundamental equations. 
 

 In this paragraph, we shall establish the fundamental equations of our theory.  First, 
let us make the following observation: If A, B, C are three arbitrary functions of u, v then 
we can determine three unknown coefficients α, β, γ in such a manner that we will have: 
 

(a)     

,

,

,

x x
A X

u v
y y

B Y
u v
z z

C Z
u v

α β γ

α β γ

α β γ

∂ ∂ = + + ∂ ∂


∂ ∂ = + + ∂ ∂
∂ ∂ = + + ∂ ∂

 

so the determinant: 
x x

X
u v
x y

Y
u u
z z

Z
u v

∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂

 = 2EG F−  

will not be zero. 
 Having said that, recall for the moment the index notation, and take: 
 
 u = u1, v = u2, 
 E = a11, F  = a12, G  = a22, 
 D = b11, D′ = b12, D″ = b22 . 
 Since: 

ars = 
r s

x x

u u

∂ ∂
∂ ∂∑ , 

it will then follow that: 
2

t r s

x x

u u u

∂ ∂
∂ ∂ ∂∑ = 

r s

t

 
 
 

. 
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 If one sets: 

A = 
2

r s

x

u u

∂
∂ ∂

, B = 
2

r s

y

u u

∂
∂ ∂

, C = 
2

r s

z

u u

∂
∂ ∂

 

  

in (a) then if one first multiplies by 
1

x

u

∂
∂

,
1

y

u
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∂
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1
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u

∂
∂
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2

x

u

∂
∂

,
2

y

u

∂
∂

,
2

z

u

∂
∂

, and finally multiplies by X, Y, Z, and then sums, the result will be: 

 

11 12

12 22

,
1

,
2

r s
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r s
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α β

α β

  
+ =  

  


  + =    

 

 
γ = brs , 

so: 

 α = A11 
1

r s 
 
 

 + A12 
2

r s 
 
 

 = 
1

r s 
 
 

, 

 β = A21 
1

r s 
 
 

 + A22 
2

r s 
 
 

 = 
2

r s 
 
 

, 

and therefore: 
2

r s

x

u u

∂
∂ ∂

 = 
1 21 2

r s r sx x

u u

   ∂ ∂+   ∂ ∂   
+ brs X, 

 
or, more briefly, with the notation of the second covariant derivative (§ 32). 
 

xrs = brs X .  
 
 When written in this way in the old notation, one will get the first group of 
fundamental equations: 

(I)     

2

2

2

2

2

11 11
,

1 2

1 2 1 2
,

1 2

2 2 2 2
,

1 2

x x x
DX

u u v

x x x
D X

u v u v

x x x
D X

v u v

    ∂ ∂ ∂= + +    ∂ ∂ ∂   
    ∂ ∂ ∂ ′= + +    ∂ ∂ ∂ ∂   
    ∂ ∂ ∂
 ′′= + +   ∂ ∂ ∂    

 

 
in which we have omitted the expressions for y, z, which are perfectly to similar to these 
and are deduced from them by changing X into Y, Z, respectively. 
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 The second group of fundamental formulas will be the ones that express the first 

partial derivatives of X, Y, Z in terms of 
x

u

∂
∂

, 
x

v

∂
∂

, X, etc.  If one sets: 

 

 A = 
X

u

∂
∂

, B = 
Y

u

∂
∂

, C = 
Z

u

∂
∂

, 

 A = 
X

v

∂
∂

, B = 
Y

v

∂
∂

, C = 
Z

v

∂
∂

, 

 
in (a) in sequence then one will find that the formulas in question are: 
 

(II)    
2 2

2 2

,

,

X FD GD x FD ED x

u EG F u EG F v
X FD GD x FD ED x

v EG F u EG F v

′ ′∂ − ∂ − ∂ = + ∂ − ∂ − ∂
 ′′ ′ ′ ′′∂ − ∂ − ∂ = +
 ∂ − ∂ − ∂

 

 
in which we have again suppressed the analogous equations for Y, Z. 
 As one sees, the coefficients of the right-hand sides of formulas (I), (II) are composed 
of nothing but the coefficients of the two fundamental forms f, ϕ (1). 
 
 

§ 56. 
 

Equations of Gauss and Codazzi. 
 

 The six coefficients: 
E, F, G; D, D′, D″, 

 
of the two fundamental forms are not mutually independent, but rather they are coupled 
by three important relations that we shall now establish.  For that, we write the 
integrability conditions of the system (I): 
 

 
2 2

2

x x

v u u u v

   ∂ ∂ ∂ ∂−   ∂ ∂ ∂ ∂ ∂   
 = 0, 

 
2 2

2

x x

u v v u v

   ∂ ∂ ∂ ∂−   ∂ ∂ ∂ ∂ ∂   
 = 0, 

i.e.: 

                                                

 (1) In particular, one must always recall that the Christoffel symbols 
r s

t

  
 
  

 that appear in (I) are 

constructed from the first fundamental form f. 
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(b) 

11 11 1 2 1 2
0,

1 2 1 2

2 2 2 2 1 2 1 2
0.

1 2 1 2

x x x x
DX D X

v u v u u v

x x x x
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           ∂ ∂ ∂ ∂ ∂ ∂ ′+ + − + + =           ∂ ∂ ∂ ∂ ∂ ∂           


          ∂ ∂ ∂ ∂ ∂ ∂ ′′ ′+ + − + + =           ∂ ∂ ∂ ∂ ∂ ∂          

 

 
 It is clear that if one makes use of the fundamental formulas (I), (II) in this then the 
left-hand sides of (b) can be put into the forms: 
 

 α  x

u

∂
∂

 + β  
x

u

∂
∂

+ γ  X, 

 α′ x

u

∂
∂

 + β′ x

u

∂
∂

+ γ′ X 

identically, while the equations: 
 

 

0,

0,

0,

x x
X

u v
y y

Y
u v
z z

Z
u v

α β γ

α β γ

α β γ

∂ ∂ + + = ∂ ∂


∂ ∂ + + = ∂ ∂
∂ ∂ + + = ∂ ∂

 

0,

0,

0

x x
X

u v
y y

Y
u v
z z

Z
u v

α β γ

α β γ

α β γ

∂ ∂ ′ ′ ′+ + = ∂ ∂


∂ ∂ ′ ′ ′+ + = ∂ ∂
∂ ∂ ′ ′ ′+ + = ∂ ∂

 

 
must also persist, and one will get the integrability conditions: 
 
 α = 0, β = 0, γ = 0, 
 α′ = 0, β′ = 0, γ′ = 0. 
 The four conditions: 

α = 0,      β = 0,      α′ = 0,      β′ = 0 
 

can be written in terms of the four Christoffel indices (§ 34, page. 72) as: 
 

 
2

2

DD D

EG F

′′ ′−
−

E = {12, 12}, 

 
2

2

DD D

EG F

′′ ′−
−

F = {11, 21}, 

 
2

2

DD D

EG F

′′ ′−
−

F = {22, 12}, 

 
2

2

DD D

EG F

′′ ′−
−

G = {21, 21}. 

 
 If one lets K denote the curvature of the first fundamental form then they will give 
uniquely [§ 37, formula (IV)]: 
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(III)     
2

2

DD D

EG F

′′ ′−
−

 = K. 

 
In words, that says: The quotient of the discriminants of the two fundamental forms ϕ, f is 
equal to the curvature K of the first fundamental form f. 
 As for the other two conditions, viz.: 
 

γ = 0, γ′ = 0, 
 
when they are developed they will become: 
 

(IV)  

1 2 11 1 2 11
0,

1 1 2 2

2 2 2 2 1 2 1 2
0,

1 2 1 2

D D
D D D

v u

D D
D D D

u v

  ′        ∂ ∂ ′ ′′− − + + + =         ∂ ∂          


 ′′ ′        ∂ ∂ ′ ′′− + + + + =         ∂ ∂         

 

 
and according to § 38 (page 81), they express the idea that the trilinear covariant form (f, 
ϕ) that is constructed from the second fundamental form ϕ with respect to the first one f 
is identically zero. 
 Equation (III) was given by Gauss in his Disquisitiones, etc., where he already found 
all of its elements by deducing them from (IV).  The last one is more commonly referred 
to by the name of the Codazzi formula, since it is precisely equivalent to the equations 
that were given by that geometer (1); it was, however, given for the very first time in 
another form by Mainardi (1856) (2). 
 One can given another useful form to formulas (IV) when one observes that if one 
avails oneself of formulas (20), § 31: 
 

 

2

2

11 1 2log
,

1 2

2 2 1 2log
;

2 1

EG F

u

EG F

v

 ∂ −    
= +    ∂    


∂ −    = +    ∂    

 

 
that result is, in fact, equivalent to the following system: 
 

                                                
 (1) Annali di mat. 2 (1868), pp. 273.  
 (2) Giornale dell’Istituto Lombardo, t. IX, pp. 395.  
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(IV *)      

2 2 2 2

2

2 2 2 2

2

2 2 1 2
2

2 2

11
0,

2

2 2 1 2
2

1 1

11
0.

1

D D D D

v uEG F EG F EG F EG F

D

EG F

D D D D

u vEG F EG F EG F EG F

D

EG F

    ′ ′   ∂ ∂
    − + −      ∂ ∂ − − − −      


′′  + = 
− 


    ′′ ′ ′   ∂ ∂
   − + −       ∂ ∂− − − −       

 ′′  + =  − 

 

 
 The relations (III), (IV) that exist between the coefficients of the two fundamental 
forms give the necessary and sufficient conditions that must be satisfied.  We state that 
property in the more precise form as the following fundamental theorem: 
 
 If one is given two quadratic differential forms: 
 
  f  = E du2 + 2 F  du dv +  G  dv2, 
 ϕ  = D du2 + 2D′ du dv + D″ dv2, 
 
the first of which is definite, then for there to exist a surface that admits these forms as its 
first and second fundamental forms, it is necessary and sufficient that the relations (III), 
(IV) must be verified.  If those conditions are verified then the corresponding surface will 
be unique and determinate, up to motions in space. 
 
 From the proof of that theorem, which we will now carry out, the terms “fundamental 
forms” that are given to f, ϕ will be justified, and we intend that all of the properties that 
are inherent to the form of the surface can depend upon only the six coefficients of the 
fundamental forms.  In analogy with the name of “intrinsic equation” for a curve (chap. I, 
§ 8), one can say, in summation, that the equations: 
 
  f  = E du2 + 2 F  du dv +  G  dv2, 
 ϕ  = D du2 + 2D′ du dv + D″ dv2 
 
are the intrinsic equations for the surface. 
 
 

§ 57. 
 

Integration of the intrinsic equations. 
 

 From the invariant character of the fundamental equations (III), (IV), one can, 
moreover, conveniently introduce the independent variables u, v into the proof of the 
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stated theorem, and then, utilizing the result in § 38, assume that the variables u, v reduce 
them simultaneously to: 

F = 0, D′ = 0. 
 

 As we saw in the cited number, except for the case in which the proportions: 
 

D : D′ : D″ = E : F : G 
 

are valid (which are true only in the case of a spherical (or planar) surface (1), as one 
easily sees], these new variables u, v will be completely determinate.  When one equates 
                                                
 (1) And indeed, one will have: 

D = λ E,      D′ = λ F,      D″ = λ G 
 
in that case.  However, if substitutes that in (IV), while recalling (§ 38) that one has: 
 

 
1 2 11 1 2 11

1 1 2 2
E F G

E F

v u

          
 − + − +                  

∂ ∂
−

∂ ∂
 = 0, 

 

 
2 2 2 2 1 2 1 2

1 2 1 2
E F G

G F

u v

          
 − + − +                  

∂ ∂
−

∂ ∂
 = 0 

 
identically, then it will result that: 

 E F
v u

λ λ∂ ∂
−

∂ ∂
 = 0, 

 F G
v u

λ λ∂ ∂
−

∂ ∂
 = 0, 

and therefore: 
 λ = constant. 
 If one takes: 

 λ = − 1
R

  (R constant) 

then (II), page. 117, will give: 
 

 

,

,

u X
R

x u

x X
R

v v

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂







 

,

,

y Y
R

u u

y Y
R

v v

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂







  

,

,

z Z
R

u u

z Z
R

v v

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂







 

which will give: 
x = RX + a, y = RY + b, z = RZ + c 

 
when they are integrated, with a, b, c, and therefore: 
 

(x – a)2 + (y – b)2 + (z – c)2 = R2, 
 
which is the equation of a sphere of radius R.  In the case λ = 0, it then results that X, Y, Z are constants; 
i.e., the surface is a plane.  In fact, with no loss of generality, one can then suppose that: 
 

X = 0,      Y = 0,      Z = 1, 
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them to constants, that will give what one calls the lines of curvature of the surface (cf., § 
60). 
 When one replaces the symbols in the last of the fundamental equations (III), (IV*) 
with their actual values [Table (A), page 92] and takes the value for K that was given in 
(18) on page 93, those equations will become: 
 

(V)    

1 1
0,

0,

0.

G EDD

u u v vEG E G

ED D

v G vE

GD D

u G uG

    ′′ ∂ ∂∂ ∂+ + =       ∂ ∂ ∂ ∂    


  ′′ ∂∂ − =   ∂ ∂  


 ′′ ∂∂ − =   ∂ ∂ 

 

 
For the surface whose existence and uniqueness we would like to prove [under the 
hypothesis that (V) are verified], consider a tri-rectangular trihedron at any point, which 
one calls the principal trihedron, that is composed of the positive directions of the 
tangent to the line v, the tangent to the line u, and the normal to the surface.  If (X1, Y1, 
Z1), (X2, Y2, Z2), (X3, Y3, Z3) denote the cosines of those three directions, respectively, 
then we will have: 

    

1 1 1

2 2 2

3 3 3

1 1 1
, , ,

1 1 1
, , ,

, , .

x y z
X Y Z

u u uE E E

x y z
X Y Z

v v vG G G

X X Y Y Z Z

∂ ∂ ∂ = = = ∂ ∂ ∂

 ∂ ∂ ∂= = = ∂ ∂ ∂
 = = =



 

 
 From the fundamental formulas (I), (II), page 116-117, we replace the Christoffel 
symbols with their present effective values, and deduce the following formulas: 
 

 

1
2 3

1
1

1
,

1
,

EX D
X X

u vG E

GX
X

v uE

 ∂∂ = − +
∂ ∂


∂∂ = ∂ ∂

 

                                                                                                                                            
and from (1) on page 113, it will then result that: 
 

z

u

∂

∂
 = 0, 

z

v

∂

∂
= 0; 

i.e., z = constant. 
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2
1

2
1 3

1
,

1
,

EX
X

u vG

GX D
X X

v uE E

 ∂∂ =
∂ ∂


∂ ′′∂ = − + ∂ ∂

 

 

 

3
1

3
2

,

.

X D
X

u E

X D
X

v G

∂ = ∂
 ′′∂ = −
 ∂

 

 
 The unknown functions X1, X2, X3 must then satisfy the three homogeneous linear 
equations in total differentials: 
 

(4)  

1 2 33 2

2 2 1 3

3 1 2

1 1
,

1 1
,

.

E GD
dX X X du X dv

v uG E E

E G D
dX X du X X dv

v uG E G

D D
dX X du X dv

E G

  ∂ ∂ = − + +  ∂ ∂   


 ∂ ∂ ′′  = + − +  ∂ ∂   
 ′′
 = − −



 

 
(Y1, Y2, Y3), (Z1, Z2, Z3) must also satisfy system (4). 
 Now, the system (4) is an unlimited integrable system, since the integrability 
conditions will reduce to precisely three relations (V) that one assumes to be satisfied. 
 
 

§ 58. 
 

Existence and uniqueness. 
 

 We now appeal to the known theorem that there always exists an integral system for 
an unlimited integrable system of total differential equations such that for the initial 
values: 

u = u0,  v = v0 
 

the variables will reduce to arbitrarily-given initial values, which can easily lead to the 
conclusion of our proof.  For that, it is further convenient to observe that if (X1, X2, X3), 

1(X ′ , 2X ′ , 3X ′ ) are two (distinct or coincident) integral systems of equations (4) then due 

to the special form of those equations, one must have: 
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1 1 2 2 3 3X X X X X X′ ′ ′+ +  = constant, 

 
since the total differential of the left-hand side proves to be zero identically as a result of 
equations (4) and the analogous ones for 1X ′ , 2X ′ , 3X ′ . 

 Having said that, let (X1, X2, X3), (Y1, Y2, Y3), (Z1, Z2, Z3) be three integral systems of 
(4) that reduce to the nine coefficients of an orthogonal substitution: 
 
 (0)

1X  (0)
2X  (0)

3X  

 (0)
1Y  (0)

2Y  (0)
3Y  

 (0)
1Z  (0)

2Z  (0)
3Z  

 
for u = u0, v = v0 .  It results from the preceding observation that for any values of u, v: 
 
 X1 X2 X3 
 Y1 Y2 Y3 
 Z1 Z2 Z3 
 
will be the coefficients of an orthogonal substitution; in particular, one will have: 
 
 2 2 2

1 1 1X Y Z+ +  = 1, 

 X1 X2 + Y1 Y2 + Z1 Z2 = 0, etc. 
 
   Now, from (4) itself, the three expressions: 
 

E X1 du + G X2 dv,      E Y1 du + G Y2 dv,      E Z1 du + G Z2 dv 

 
will be exact differentials, and if one takes: 
 

x = ∫ ( E X1 du + G X2 dv), y = ∫ ( E Y1 du + G Y2 dv), 

z = ∫ ( E Z1 du + G Z2 dv), 

 
in which one regards x, y, z as the current coordinates of a point on a surface, then one 
will verify that this surface has the two assigned forms for its fundamental forms. 
 Finally, as for the part of the fundamental theorem that refers to uniqueness, that will 
result from either the linear form of (4) or by repeating the argument that was made 
already for the curve in § 8. 
 
 Observation: In the proof of the stated theorem, one refers, for simplicity, to a 
particular system of line coordinates (viz., the lines of curvature).  However, one should 
observe that one can also choose the independent variables to be completely general and 
introduce a principal trihedron that is, e.g., the one that is composed of the bisectors to 
the tangents to the line coordinates and the normal at any point of the surface.  The nine 
cosines of those three directions will again define a linear system of total differential 
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equations, and like system (4), it will be unlimited integrable by virtue of the fundamental 
equations (III), (IV).  Moreover, as in § 9, one can reduce the problem of the 
determination of the surface to the integration of one (total differential) equation of 
Ricatti type, from which, it results that: 
 
 In order to actually find the surface that corresponds to two given fundamental forms, 
one must integrate an equation of Ricatti type. 
 
 

§ 59. 
 

Lines of curvature. 
 

 If one considers an arbitrary line L on a surface S, and one follows the normals to the 
surface along it, then that will generally define a non-developable ruled surface.  In the 
particular case in which the ruled surface is developable – i.e., the normals to S along L 
are the tangents to a curve in space (or pass through one of its points) – the line L will be 
called a line of curvature of the surface. 
 Observe immediately that according to that definition, any line that is traced on a 
plane or sphere will be considered to be a line of curvature, since the ruled surface of the 
corresponding normals is a cylinder or a cone. 
 For any other surface, as we shall now prove, there exists only a simple infinitude of 
lines of curvature that form a doubly orthogonal system of lines that are always real. 
 In the first place, we shall note some properties of lines of curvature that follow from 
their definition itself and theorems (A), (B) on the evolute that were given in § 18 (page. 
38). 
 
 If the intersection C of two surfaces is a line of curvature for both of them then the 
angle by which the surfaces intersect along C will be constant.  Conversely, if two 
surfaces meet at a constant angle and their intersection is the line of curvature for one of 
the surfaces then that will also be true for the other one. 
 
 Furthermore, since any line on a plane or a sphere is a line of curvature, one will have 
as a corollary: 
 
 If a plane or a sphere cuts a surface S along a line of curvature then it will cut S at a 
constant angle.  Conversely, if a plane or a sphere cuts S at a constant angle then the 
intersection will be a line of curvature on S. 
 
 Hence, e.g., the meridians and parallels on a surface of revolution will be lines of 
curvature. 
 We look for the analytic conditions that will characterize a line of curvature L.  u, v; 
x, y, z; X, Y, Z are regarded as functions of just one variables along it; e.g., the arc length s 
along L.  If M ≡ (x, y, z) is a point of L, and M1 ≡ (x1, y1, z1) is the contact point of the 
normal to M along the edge of regression C1 of the developable that is generated by the 
normals to S along L then we will have: 
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(5)    x1 = x – r X, y1 = y – r Y, z1 = z – r Z, 
 
in which r denotes the algebraic value of the line segment M1M (in which r will then be 
positive or negative according to whether the direction from M1 to M coincides with the 
positive direction of the normal or its opposite). 
 If one differentiates (5) with respect to s and observes that: 
 

1dx

ds
, 1dz

ds
, 1dz

ds
 

 
are proportional to X, Y, Z, by hypothesis, then one will have: 
 

,

,

.

dx dX dr
X r X

ds ds ds
dy dY dr

Y r Y
ds ds ds
dz dZ dr

Z r Z
ds ds ds

λ

λ

λ

 = − −

 = − −

 = − −


 

 
 If one multiplies these by X, Y, Z in succession and then sums then the result will be: 
 

λ = − 
dr

ds
, 

so 
dx

ds
= r 

dX

ds
, 

dy

ds
= r 

dY

ds
, 

dz

ds
= r 

dZ

ds
, 

 
or: When one moves along the line of curvature L, the proportions: 
 
(6)     dx: dy : dz = dX : dY : dZ 
must remain valid. 
 Conversely, if the proportions (6) are valid along L, and r denotes the common value 
of the three ratios: 

dx

dX
= 

dy

dY
 = 

dz

dZ
 

 
then one will see immediately that (5) defines a curve C1 whose tangents will be the 
normals to S along L.  Hence: The proportion (6) is characteristic of the lines of 
curvature. 
 We exclude the case in which the curve C1 reduces to a point from this; one will then 
have simply: 

dx1 = dy1 = dz1 = 0, 
so dr = 0; i.e., r = constant. 
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§ 60. 
 

Lines of curvature in curvilinear coordinates. 
 

 We now transform the equations: 
 

dx = r dX, dy = r dY, dz = r dZ, 
 
which are characteristic of a line of curvature, into curvilinear coordinates.  For that, we 
write: 

   

,

,

,

x x X X
du dv r du dv

u v u v

y y Y Y
du dv r du dv

u v u v

z z Z Z
du dv r du dv

u v u v

 ∂ ∂ ∂ ∂ + = +  ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ + = +  ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ + = +  ∂ ∂ ∂ ∂ 

 

 
which can be replaced with the equivalent system that one will obtain upon first 

multiplying by 
x

u

∂
∂

, 
y

u

∂
∂

, 
z

u

∂
∂

, resp., then by 
x

v

∂
∂

, 
y

v

∂
∂

, 
z

v

∂
∂

, resp., and finally by X, Y, Z, 

resp., and summing them. 
 One will obtain an identity the last time, and then find the equations (cf., § 54): 
 

(7)     
( ),

( ).

E du F dv r D du D dv

F du G dv r D du D dv

′+ = − +
 ′ ′′+ = − +

 

 
 If one eliminates r from these two then one will obtain: 
 

(8)     
E du F dv F du G dv

Ddu D dv D du D dv

+ +
′ ′ ′′+ +

 = 0 

 
as the differential equation for the lines of curvature. 
 The determinant that was just written is precisely the Jacobian of the two fundamental 
forms.  If one therefore excludes the case: 
 

D : D′ : D″ = E : F : G, 
 
in which the surface is a sphere or a plane (1), and recalls the results of § 39, page 83, 
then one will have the theorem: 

                                                
 (1) It is easy to add a simple geometric proof of this fact to the analytical proof that was given in the 
footnote in § 57.  In the case of the proportion: 

D : D′ : D″ = E : F : G, 
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 There exists a doubly-orthogonal system of lines of curvature on any surface that are 
always real.  One will have indeterminacy only for the sphere and the plane, for which 
any line will be a line of curvature. 
 
 Two lines of curvature L1, L2 pass through any point M of the surface S that will meet 
at a right angle there.  The normal at M touches the edge of regression of the developable, 
which is generated by the normals to S along L1, at a point that shall be denoted by M1.  
That point is called the center of curvature of the surface at M relative to the line of 
curvature L1.  Similarly, one has a second center of curvature M2 relative to L2 on the 
normal at M, and the segments (1): 
 

r1 = 1M M , r2 = 2M M  

   
bear the names of principal radii of curvature of the surface at M for a reason that we 
shall now see. 
 If we eliminate the ratio du : dv from our equations (7) then we will obviously get the 
following result: 
 
 The principal radii of curvature r1, r2 of the surface at any point are given at any 
point by the roots of the second-degree equation in r: 
 
(9)   (D D″ – D′2) r2 + (E D″ + G D – 2F D′) r + E G – F2 = 0. 
 
 

§ 61. 
 

Curvature of the normal sections. 
 

 We now pass on to the examination of the relations that exist between the radii of 
(first) curvature of the infinitude of lines that are traced on a surface through the same 
point M. 
 Let C be one such curve, along which, u, v; x, y, z are functions of the arc length s of 
C.  Keep the notations of chap. I for C, so one will have, first of all, the direction cosines 
of its tangent: 

(10)  α = 
x du x dv

u ds v ds

∂ ∂+
∂ ∂

, β = 
y du y dv

u ds v ds

∂ ∂+
∂ ∂

, αγ = 
z du z dv

u ds v ds

∂ ∂+
∂ ∂

. 

                                                                                                                                            
any line that is traced on the surface S will be, from (8), a line of curvature.   It will then follow that if M, 
M′ are two arbitrary points of S then the normals at M, M′ will lie in a plane.  Indeed, one can pass a plane 
through the normals at M and M′ that cuts S along the curve C.  The normals to S along C form a 
developable – i.e., they are tangents to an evolute of C – and since the normal at M lies in the plane at C, 
any other normal along C (in particular, the one at M′) will lie in that plane.  Therefore, all of the normals 
to S intersect pair-wise, and thus they cannot lie in a plane that passes through the same point O.  If O is at 
a finite distance then S will consequently be a sphere (whose center is at O), while if O is at infinity then S 
will be a plane. 
 (1) Recall that r1, r2 are regarded as positive or negative according to whether the direction from M1 to 
M (or from M2 to M) coincides with the positive direction of the normal or its opposite, respectively. 
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 If one lets σ denote the angle from 0 to π that is defined by the positive directions of 
the principal normal to X and the normal to the surface then, from Frenet’s formula, one 
will have: 

d
X

ds

α
∑  = 

cosσ
ρ

, 

so, from (10): 

     
cosσ

ρ
= 

2 2

2

2D du D du dv D dv

ds

′ ′′+ +
, 

or: 

(11)    
cosσ

ρ
 = 

2 2

2 2

2

2

D du D du dv D dv

E du F du dv G dv

′ ′′+ +
+ +

. 

 
 One can pass a plane through the normal to the surface at M and the tangent to C at 
M; it will produce a section Γ of the surface that is called the normal section tangent to C.  
The first curvature 1 / R of Γ at M will be given by the same formula (11), in which one 
sets: 

cos σ = ± 1 
 
according to whether the concavity of Γ rises up towards the positive or negative 
direction of the normal, respectively.  At the same, the formula: 
 

ρ = ± R cos σ 
will result; i.e., Meunier’s theorem: 
 
 The radius of first curvature of a curve C that is traced on a surface S is equal at any 
point M to the radius of curvature of the normal section that is tangent to the curve C at 
M, multiplied by the cosine of the angle that the plane of the section makes with the 
osculating plane of the curve. 
 
 We can thus limit our studies to a study of normal sections. 
 Formula (11) will become: 

 
1

R
 = ± 

2 2

2 2

2

2

D du D du dv D dv

E du F du dv G dv

′ ′′+ +
+ +

, 

 
in which the choice of upper or lower sign is linked with the situation that was described 
above.  With that choice (according to the convention that was made in the theory of 
curves of always giving the first curvature a positive value), the actual sign of the right-
hand side will prove to be positive in any case. 
 However, since all along the length R (for the infinitude of normal sections) one 
contacts the same line here − viz., the normal at M (on which one has already established 
a positive sign) − it is better to also attribute a sign to R.  Moreover, we agree to count R 
as positive when the direction that goes from the center of curvature of the normal section 
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to the foot M of the normal coincides with its positive sense and negative in the contrary 
case.  (Cf., the preceding number.)  With this new convention, one will certainly have: 
 

(12)    
1

R
 = − 

2 2

2 2

2

2

D du D du dv D dv

E du F du dv G dv

′ ′′+ +
+ +

 

in any case. 
 

§ 62. 
 

Euler’s formula.  
 

 We now assume that the coordinate lines are lines of curvature and if r1, r2 denote the 
quantities that were introduced in § 60 then as we move along the line of curvature u, we 
will have: 
 dx = r1 dX, dy = r1 dY, dz = r1 dZ, 
and along v: 
 dx = r2 dX, dy = r2 dY, dz = r2 dZ ; 
 
i.e. (1): 

(13)  
2 2 2

1 1 1

, , ,

, , ,

x X y Y z Z
r r r

u u u u u u
x X y Y z Z

r r r
v v v v v v

∂ ∂ ∂ ∂ ∂ ∂ = = = ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ = = =
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
so: 

(14)   D = −
2

E

r
,      D′ = 0,      D″ = −

1

G

r
, 

so, from (12): 

1

R
 = 

2 2

2 1
2 2

E G
du dv

r r

E du G dv

+

+
= 

2 2

2 1

E du G dv

r ds r ds
   +   
   

. 

 
 If θ denotes the angle that the normal section considered makes with the line v then 
that will give Euler’s formula: 
 

(15)    
1

R
= 

2 2

2 1

cos sin

r r

θ θ+ . 

 
 Meanwhile it results from this that: r1, r2 are the radii of curvature of the normal 
sections that are tangent to the lines of curvature.  Those sections are called principal 
sections, and r1, r2 are then called the principal radii of curvature, as we said above.  The 

                                                
 (1) These are the formulas that are commonly referred to by the name of Rodrigues’s formulas.  
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centers of curvature of the principal sections are the two points M1, M2 that were 
considered at the end of § 60, which one calls the centers of curvature of the surface at 
M. 
 We now examine how the radius of curvature R of the normal section varies when 
one rotates the plane of the section.  In order to imagine the manner of variation that one 
obtains more clearly, we make use of the following considerations: 
 
 1. Suppose that r1, r2 have the same sign (e.g., positive) at the point under 
consideration.  Establish a system of orthogonal Cartesian axes ξ, η in the tangent plane 
to M that coincide with the tangents to lines of curvature u, v, respectively, and consider 
the ellipse that has the equation: 

(16)     
2 2

1 2r r

ξ η+  = 1. 

 
 A semi-diameter of that ellipse, when it is inclined by angle θ on the η-axis (tangent 
to v) has a length ρ that is given by the formula: 
 

2

1

ρ
 = 

2 2

2 1

cos sin

r r

θ θ+ , 

so one will have, from (15): 
ρ2 = R. 

 
 Therefore: The square of any semi-diameter of the ellipse (16) is equal to the radius 
of curvature of the normal section whose plane goes through that diameter. 
 
 For that reason, the ellipse (16) is called the indicatrix ellipse. 
 One should note that if r1 = r2 then the indicatrix ellipse becomes a circle and all of 
the normal sections through M will have the same radius of curvature.  The point M is 
then called a circular or umbilic point, and the only surface that is circular at every point 
is the sphere (1). 
 
 2.  Now, let r1, r2 have contrary signs, and to fix ideas, suppose that r1 is positive and 
r2 is negative.  Consider the two conjugate hyperbolas in the tangent plane: 
 

(17)     

2 2

1 2

2 2

1 2

1,

1,

r r

r r

ξ η

ξ η


− = −


 − + =
 −

 

 
and one will have the geometric representation of that system of two hyperbolas, which 
will, in fact, be provided by the ellipse (16). 

                                                
 (1) In fact, one will then have: 

D: D′ : D″ = E : F: G . 
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 In the first case, the ellipse (16) [and the system of two hyperbolas (17), in the second 
one] constitutes what one calls the Dupin indicatrix, after the name of the geometer that 
first gave the geometric interpretation above for Euler’s formula. 
 One should observe that, while in the first case, the surface in the vicinity of M all lies 
on part of the tangent plane (the normal sections all rotate around the same part of the 
normal to its concavity), in the second case, the surface will lie on one side or the other of 
the tangent plane (1), and it is precisely the planes of those normal sections that will meet 
the first hyperbola (17) at real points and will all rotate around part of its concavity, while 
the remaining ones (whose planes meet the conjugate hyperbola at real points) will rotate 
around the contrary part.  The passage from one to the other type of section will be valid 
when the normal plane passes through one or the other asymptote of the hyperbola (17), 
and then one will have: 

1

R
 = 0 

 
for the corresponding section, which points to an inflection in the corresponding section.  
These two special directions that emanate from M in the tangent plane at that point then 
take on the name of asymptotic directions.  They divide the surface in the neighborhood 
of M into four sectors that pass from one part of the tangent plane to the other. 
 
 

§ 63. 
 

Mean curvature and total curvature. 
 

 The way in which a surface S is curves in the neighborhood of one of its points M 
depends essentially upon the values of the principal radii of curvature r1, r2, as we will 
now see.  Instead of r1, r2, one can define that manner of curvature by giving two 
combinations of r1, r2 whose values can be inferred inversely from those of r1, r2 .  The 
most important functions of r1, r2 that come under consideration are the products and 
sums of the two principal curvatures 1 / r1, 1 / r2 .  One denotes them by: 
 

                                                
 (1) One will arrive at the same result more briefly as follows: 
 Consider the tangent plane at the point (u, v) of the surface and calculate the distance δ to the infinitely-
close point (u + h, v + k) (in which h, k are regarded as first-order infinitesimals) of that plane; one will 
find: 

δ = 1
2 (D h2 + 2D′ h k + D″ k2) + η, 

 
in which η is a third-order infinitesimal.  The sign of δ then depends upon that of: 
 
(α)     D h2 + 2D′ h k + D″ k2. 
 
 Now, if D D″ − D′2 > 0 – i.e., if the point is elliptic – then the form (α) will be definite, and δ will always 
keep the same sign; if D D″ − D′2 < 0 (viz., hyperbolic point) then the form (α), and therefore δ, will 
assume positive and negative values. 
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K = 
1 2

1

r r
, H = 

1 2

1 1

r r
+ . 

 
 The first one bears the name of total (or Gaussian) curvature for the surface, while 
the second one bears the name of mean curvature.  If one recalls that in arbitrary 
curvilinear coordinates the principal radii of curvature are the roots of the second-degree 
equation (9), page 17, then one will indeed get the general values of K and H: 
 

(18)    

2

2

2

,

2
,

DD D
K

EG F
FD ED GD

H
EG F

′′ ′ −= −
 ′ ′′− − =
 −

 

 
in which the right-hand sides are absolute invariants of the two fundamental forms (cf., § 
39)(1). 
 However, from the results of § 56, one will further have the most important theorem: 
The total curvature of a surface is equal to the curvature of the first fundamental form. 
 That property of the Gaussian curvature (viz., that it depends upon only the 
coefficients of the form that represents the line element) is the one that gives the 
paramount importance to that curvature in geometric applications (as we will see later in 
the chapter on its applications).  For that reason, it is often endowed with simply the 
name of curvature. 
 The curvature K is positive at the points of the elliptic indicatrix and negative at those 
of the hyperbolic indicatrix.  The former are called elliptic points of the surface, and the 
latter are called hyperbolic points. 
 In general, there will exist a region of elliptic points and a region of hyperbolic points 
on a surface that are bounded by a line of parabolic points, at which the curvature K is 
zero. 
 As a complement to these observations, we shall prove the theorem: A surface that 
has zero curvature at all of its points will be a developable surface. 
 The fact that developables all have zero curvature results immediately from the 
observation that, from the theorems on the evolute of the curve (§ 18), the lines of 
curvature of a developable are the generators of its orthogonal trajectories; the two 
principal curvatures that relate to the generators are always zero. 
 Conversely, if the surface S has zero curvature K then one will have: 
 

D D″ – D′2 = 0, 
 
and if one takes the coordinate lines u, v to be lines of curvature then one will have: 
 

D′ = 0, 
 

                                                
 (1) This corresponds to the fact that total and mean curvature of a surface have a significance that is 
entirely independent of the chosen curvilinear coordinates on the surface. 
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so one will also have the vanishing of either D or D″.  One then sets: 
 

D = 0, D′ = 0. 
 
 From the fundamental formulas (II), page 6, one will then have: 
 

X

u

∂
∂

= 0, 
Y

u

∂
∂

= 0, 
Z

u

∂
∂

= 0; 

 
i.e., X, Y, Z will be functions of only v.  However, from the formulas: 
 

1 1 1
0,

1 1 1
0,

x y z
X Y Z

u u uE E E

x X y Y z Z

u u u u u uE E E

∂ ∂ ∂ + + = ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ + + =
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
the second of which implies that D′ = 0, it will result that the direction cosines: 
 

1 x

uE

∂
∂

, 
1 y

uE

∂
∂

, 
1 z

uE

∂
∂

 

 
of the tangent to the line of curvature v are functions of only v, and thus constant along 
any individual line v.  The lines of curvature v are then straight, and from the theorem 
that was stated on the evolute, S will then be developable. 
 
 

§ 64. 
 

Conjugate tangents. 
 

 Two tangents to a surface that emanate from one of its points M are called (by Dupin) 
conjugate when they are conjugate with respect to the indicatrix. 
 Refer u, v to the lines of curvature, and let θ, θ′ denote the inclinations of the two 
conjugate tangents with respect to the line v.  From their definitions, one will have: 
 

tan θ tan θ′  = − 1

2

r

r
. 

 
 On the other hand, if the symbol d denotes the increments of the curvilinear 
coordinates along the first direction, and δ denotes the ones along the conjugate direction 
then one will have: 

tan θ = 
G dv

E du
, tan θ′  = 

G v

E u

δ
δ

,   
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and therefore: 

(19)    
2

E

r
 du δu + 

1

G

r
 dv δv = 0. 

 
 Considering the conjugate directions on the surface will also lead one to the following 
observation: Let C be an arbitrary curve that is traced on the surface S, which is referred 
to an arbitrary system of curvilinear coordinates (u, v).  The tangent planes to S along C 
envelop a developable that circumscribes S along C.  We prove that the tangent to C at 
any point of that curve is the generator of the developable that is circumscribed by the 
conjugate tangents. (1). 
 Hence, write down the equation of the tangent plane to S at a point (x, y, z) of C: 
 
(20)    (ξ – x) X + (η – y) Y + (ζ – z) Z = 0, 
 
in which ξ, η, ζ denote the current coordinates.  Displace (x, y, z) along C, where x, y, z, 
as well as X, Y, Z, are functions of the arc length s along C, and differentiate (20) with 
respect to s.  The equation that results from this: 
 

(21)    (ξ – x)
dX

ds
+ (η – y)

dY

ds
+ (ζ – z)

dZ

ds
 = 0, 

 
which is associated with (20), gives the generator G of the indicated developable that 
emanates from (x, y, z).  Let the symbol δ denote the increases in x, y, z when one 
displaces it on the surface in the direction G, and observe that the direction cosines of G 
are proportional to: 
 

Y
dZ

ds
− Z dY

ds
,  Z

dX

ds
− X 

dZ

ds
,  X 

dY

ds
− Y 

dX

ds
, 

 
as are δx, δy, δz.  One will get: 
 

δx dX + δy dY + δz dZ = 0, 
 
or, if expresses x, y, z, X, Y, Z in terms of u, v: 
 
(22)   D du δu + D′ (du δv + dv δv) + D″ dv δv = 0. 
 
 If one takes the lines u, v to be the lines of curvature then, from (14), this last 
equation will coincide precisely with (19), and will prove the state property. 
 Observe that (22), which expresses the idea that the two line elements that correspond 
to the increases d, δ are conjugate, is constructed from the second fundamental form in 
the same way that the orthogonality condition (11), § 42, page 91: 
                                                
 (1) It follows from this, in particular, that: On the circumscribed developable to a surface S along a line 
of curvature C, the curve C will be the orthogonal trajectory of the generator.  That is a characteristic 
property of the lines of curvature, which can also serve to define them. 
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E du δu + F (du δv + dv δu) + G dv δv = 0 
 
is constructed from the coefficients of the first fundamental form. 
 A double system of lines that is traced on a surface is called a conjugate system when 
the directions of the lines of the two systems that pass through any point of it are 
conjugate. 
 It is clear that one of the two systems can be taken arbitrarily, and if its equation, 
when solved for the arbitrary constant, is: 
 

ϕ (u, v) = c 
 
then the lines of the conjugate system will be the lines that are integrals of the first-order 
differential equation (cf., § 42): 
 

D D du D D dv
v u v u

ρ ρ ϕ ϕ∂ ∂ ∂ ∂   ′ ′ ′′− + −   ∂ ∂ ∂ ∂   
 = 0. 

 
 In particular, observe that: The necessary and sufficient condition for the coordinate 
lines u, v to form a conjugate system is that one must have D′ = 0. 
 The double system of the lines of curvature is collectively an orthogonal conjugate 
system, and it is the only one that is endowed with those two properties. 
 
 

§ 65. 
 

Asymptotic lines. 
 

 A line that is traced on a surface is called asymptotic when the tangent to the line 
coincides with its own conjugate at any of its points.  If follows from (22) that the 
condition: 
(23)    D du2 + 2D′ du dv + D″ dv2 = 0 
 
must be satisfied along an asymptote, and conversely, if a line of the surface satisfies the 
differential equation (23) then it will be an asymptote.  Like the lines of curvature, the 
asymptotes, which have (23) for their differential equation, define a double system 
(which is not orthogonal, in general), and the directions of the two asymptotes that pass 
through any point of the surface will coincide with the asymptotes of the Dupin 
indicatrix. 
 Naturally, the asymptotes will be real only when D D″ – D′2 < 0 (i.e., in the region of 
hyperbolic points) and imaginary in the region of elliptic points.  It is only for the 
developables (§ 63) that it can happen that the two systems of asymptotic lines will 
coincide (with the generators of the developable). 
 Thus, observe that one will get the following theorem from the definition of 
asymptotic lines itself: 
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 The osculating plane of an asymptotic line A at any of its points will coincides with 
the tangent plane to the surface.  Conversely, if a line A has that property then it will be 
an asymptote. 
 
 In fact, the circumscribed developable to the surface along the asymptote A will have 
the tangent to A for its generator, which is the edge of regression. 
 Conversely, if the circumscribed developable to the surface along A has that line for 
its edge of regression then it will be an asymptote. 
 The property that was just observed also follows immediately and analytically from 
formula (11), page 18, since it results that if one has D du2 + 2D′ du dv + D″ dv2 = 0 

along a curve then one will also have 
cosσ

ρ
= 0, and therefore either cos σ = 0 or 1 / ρ = 

0; i.e., either the osculating plane of the line coincides with the tangent plane to the 
surface or the line is straight.  However, in the latter case, the osculating plane will be 
indeterminate, so one can also regard it as coincident with the tangent plane. 
 
 

§ 66. 
 

Properties of conjugate systems. 
 

 Following Darboux (1), we now proceed to give some important properties of 
conjugate systems and asymptotic lines. 
 Suppose that the formulas: 
 

x = x (u, v), y = y (u, v), z = z (u, v) 
 
define a surface that is referred to a conjugate system (u, v).  The equation that one 
connects with the fundamental equations (I) of § 55, page 5 will then be D′ = 0, which 
gives the theorem: 
 
 The Cartesian coordinates x, y, z of a point that moves on the surface are solutions of 
the same Laplace equation, which takes the form: 
 

(24)   
2

u v

θ∂
∂ ∂

= a b
u v

θ θ∂ ∂+
∂ ∂

  
1 2 1 2

,
1 2

a b
    

= =    
    

. 

 
 Conversely, one has the theorem: If x(u, v), y(u, v), z(u, v) are solutions of the same 
Laplace equation (24) then the lines (u, v) on the surface: 
 

x = x (u, v), y = y (u, v), z = z (u, v) 
 
will indicate a conjugate system 

                                                
 (1) V. I, pp. 127, et seq.  
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 Moreover, one will then have, in fact: 
 

2 2 2x y z

u v u v u v

x y z

u u u
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 0; 

i.e., D′ = 0. 
 Now, suppose that the lines u, v are asymptotes.  In such a case, one will have, from 
(23): 

D = 0, D″ = 0, 
 

and equations (I), § 55 will give the theorem: 
 
 The coordinates x, y, z of a point that moves on a surface, when expressed as 
functions of the parameters u, v of the asymptotic lines, simultaneously satisfy two 
equations of the form: 

(25)   

2

2

2

2

11 11
, , ,

1 2

2 2 11
, , .

1 1

u u v

v u v

θ θ θα β α β

θ θ θγ δ γ δ

    ∂ ∂ ∂= + = =    ∂ ∂ ∂    


   ∂ ∂ ∂ = + = =    ∂ ∂ ∂    

 

 
 Conversely, if two simultaneous equations (25) admit three common linearly-
independent solutions x, y, z (1) then the formulas: 
 

x = x (u, v), y = y (u, v), z = z (u, v) 
 
will define a surface that is referred to its asymptotic lines. 
 This property can serve to give the analytic proof of the theorem: 
 
 Projective transformations preserve the conjugate systems and asymptotic lines of a 
surface (2). 
 
 A projective transformation is given by the formulas: 
 

x′ = 
α
δ

, y′ = 
β
δ

, z′ = 
γ
δ

, 

                                                
 (1) The system (25) must then constitute an unlimited integrable system.  
 (2) Geometrically, this results immediately from the fact that the circumscribed developable to a surface 
along a curve will change into the circumscribed developable to a transformed surface along the 
transformed curved under a projective transformation. 
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in which α, β, γ are complete linear expressions in x, y, z, and will therefore be solutions 
of (24) if (u, v) is a conjugate system or of the system (25) if u, v are asymptotic.  
However, if one sets: 

θ′ = 
θ
δ

 

 
then (24) will be transformed in an analogous equation for θ′, and similarly, the system 
(25) will be transformed into a system of the same form, which proves that asserted 
property.  In the next chapter, which treats tangential coordinates, one will similarly see 
that the dualistic – or spatial reciprocal – transformations also possess that property (see § 
82). 
 One also has systems of lines of curvature for the conjugate systems (u, v).  One can 
then ask what special properties belong to equation (24) that x, y, z satisfy.  In that case, 
one can see, with Darboux, that: 

x2 + y2 + z2 
   
will also be a solution of (24).  In fact, set: 
 

ρ = x2 + y2 + z2, 
so it will result from (I), § 55 that: 
 

2 1 2 1 2

1 2u v u v

ρ ρ ρ   ∂ ∂ ∂− −   ∂ ∂ ∂ ∂   
 = 2F, 

 
and then ρ will be a solution of (24) if and only if F = 0. 
 With that observation, Darboux gave an elegant proof of the theorem: The inversion 
by reciprocal radius vectors preserves the lines of curvature.  The known formulas for 
that inversion are, in their simplest form: 
 

x′ = 
2

2 2 2

R x

x y z+ +
, y′ = 

2

2 2 2

R y

x y z+ +
, z′ = 

2

2 2 2

R z

x y z+ +
. 

 
 Now, since: 

ρ = x2 + y2 + z2 
 
is a solution of (24) in the present case, the transformation: 
 

θ′ = 
2R θ
ρ

 

 
will change (24) into an equation of the same type that obviously is satisfied by: 
 

x′, y′, z′, 
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and also x′2 + y′ 2 + z′2 = R4 / ρ, since θ = R2 is a solution of (24) (1).  From the preceding 
observation, the lines (u, v) will also be lines of curvature on the surface S′ that is the 
locus of the point (x′, y′, z′). 
 
 

§ 67. 
 

Particular cases. 
 

 We shall give some applications of the results of the preceding number. 
 
 1. Consider the equation (2): 

2

u v

θ∂
∂ ∂

= 0, 

 
whose general integral is the sum of two arbitrary functions, one of which is u, and the 
other of which is v.  Consequently, take: 
 
(26)  x = f1 (u) + ϕ1 (v), y = f2 (u) + ϕ2 (v), z = f3 (u) + ϕ3 (v)  
 
on a surface for which the lines (u, v) define a conjugate system.  That surface is called a 
surface of translation because it is generated by the translatory motion of a curve whose 
points describe just as many congruence curves by translation.  In fact, it is enough to 
give a translatory motion to the curve: 
 

x = f1 (u), y = f2 (u), z = f3 (u), 
 
in which each of its points describes a curve that is congruent to the curve: 
 

x = ϕ1 (v), y = ϕ2 (v), z = ϕ3 (v). 
 
 It is clear that there are two ways of generating that surface; viz., it will arise from 
translating a curve u or a curve v. 
 One can, with Lie, consider the surface of translation that is generated in the 
following way.  Take the two curves: 
 
 x = 2f1 (u), y = 2f2 (u),  z = 2f3 (u), 
 x = 2ϕ 1 (v), y = 2ϕ 2 (v), z = 2ϕ 3 (v) . 
 
 The surface is the locus of points between all of the segments that connect a point of 
the first curve with a point of the second one. 
 One observes that the differential equation of the asymptotes for the surface of 
translation is given by: 

                                                
 (1) DARBOUX, v. I, page 208.  
 (2) DARBOUX, v. I, page 98, et seq.  
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1 2 3

1 2 3

1 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f u f u f u

f u f u f u

v v vϕ ϕ ϕ

′′ ′′ ′′
′ ′ ′
′ ′ ′

 du2 + 
1 2 3

1 2 3

1 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

v v v

f u f u f u

v v v

ϕ ϕ ϕ

ϕ ϕ ϕ

′′ ′′ ′′
′ ′ ′
′ ′ ′

 dv2 = 0, 

 
and if one supposes in particular that: 
 

f2 = 0,  ϕ1 = 0 
 

then the variables will separate; i.e.: The asymptotes of a surface of translation whose 
generating curves are in perpendicular planes are obtained by quadratures. 
 
 2. In the second place, consider the equation (1): 
 

(27)    (u – v)
2

u v

θ∂
∂ ∂

= m 
v

θ∂
∂

 – n
u

θ∂
∂

. 

 
 One sees immediately that: 

θ = A (u – a)m (v – a)n 
 
will be a solution, no matter what the constants A, a are.  Then take: 
 

x = A (u – a)m (v – a)n,  y = B (u – b)m (v – b)n,  z = C (u – c)m (v – c)n, 
 

and get a surface on which the lines u, v trace out a conjugate system.  One finds that the 
differential equation of the asymptotes of that surface is: 
 

2( 1)

( )( )( )

m m du

u a u b u c

−
− − −

= 
2( 1)

( )( )( )

n n dv

v a v b v c

−
− − −

, 

 
which is integrated by quadrature with elliptic functions. 
 If m = n then the equation of the surface will be: 
 

1/m
x

A
 
 
 

(b – c) + 
1/m

y

B
 
 
 

(c – a) + 
1/m

z

C
 
 
 

(a – b) = (a – b) (b – c) (a – c), 

 
and the integral of the asymptotes will be algebraic in u, v. 
 In particular, consider the case of: 

m = n = 1
2 , 

 
and observe that u + v is then an integral of (27).  One sees that if one takes: 
 

                                                
 (1) DARBOUX, v. I, pp. 242.  
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A2 + B2 + C2 = 0 
 
then the lines u, v will be precisely the lines of curvature of the second-degree surface, 
since x2 + y2 + z2 is a solution of (27).  Therefore, for the ellipsoid: 
 

2 2 2

2 2 2

x y z

α β γ
+ +  = 1, α2 > β 2 > γ 2, 

it is enough to take: 
 

x2 = 
2 2 2

2 2 2 2

( )( )

( )( )

u vα α α
α β α γ

+ +
− −

, y2 = 
2 2 2

2 2 2 2

( )( )

( )( )

u vβ β β
β γ β α

+ +
− −

, z2 = 
2 2 2

2 2 2 2

( )( )

( )( )

u vγ γ γ
γ α γ β

+ +
− −

, 

 
in which u varies between – γ 2 and – β 2, and v varies between – β 2 and – α2, and all of 
the points of the ellipsoid will be real (in elliptic coordinates). 
 

 
§ 68. 

 
Lines and principal radii of curvature in Cartesian coordinates. 

 
 One must often apply the general formulas of the present chapter to the case in which 
the equation of the surface is given only in the form z = z(x, y) in Cartesian orthogonal 
coordinates.  With the Monge notation, set: 
 

p = 
z

x

∂
∂

, q = 
z

y

∂
∂

, r = 
2

2

z

x

∂
∂

, s = 
2z

x y

∂
∂ ∂

, t = 
2

2

z

x

∂
∂

; 

 
if we intend that u = x, v = y then the coefficients E, F, G of the line element will be: 
 
(α)    E = 1 + p2, F = p q, G = 1 + q2. 
 
 It then results that the direction cosines of the normal will be: 
 

(β)   X = 
2 21

p

p q

−
+ +

, Y = 
2 21

q

p q

−
+ +

, Z = 
2 2

1

1 p q+ +
 

 
The coefficients D, D′, D″ of the second fundamental form will then be: 
 

(γ)   D = 
2 21

r

p q+ +
, D′ = 

2 21

s

p q+ +
, D″ = 

2 21

t

p q+ +
. 

 
 The mean curvature H and the total curvature K are consequently given by the 
formulas: 
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(δ)    H = 
2 2

2 2 3/2

2 (1 ) (1 )

(1 )

pqs p t q r

p q

− + − +
+ +

, 

 

(δ*)   K = 
2

2 2 2(1 )

rt s

p q

−
+ +

. 

 
 Finally, note that the differential equation of the asymptotic lines will be: 
 
(ε)     r dx2 + 2s dx dy + t dy2 = 0, 
 
and that of the lines of curvature will be: 
 
(ε*)  {(1 + p2) s – pqr} dx2 + {(1 + p2) t – (1 + q2) r} dx dy + {pqt − (1 + q2) s} dy2 = 0.  
 
 

§ 69. 
 

Calculating the differential parameters. 
 

 We conclude this chapter by giving the very important expressions for the differential 
parameters of x, y, z, X, Y, Z, and two functions of them: 
 

ρ = (x2 + y2 + z2), W = Xx + Yy + Zz, 
 
the first of which represents one-half the square of the distance from the origin to the 
point (x, y, z) of the surface, and the second of which represents the distance from the 
origin to the tangent plane. 
 For these calculations, we give some invariant properties of the differential 
parameters that refer (when it is appropriate) to the lines of curvature as coordinate lines, 
and recall that the determinant: 
 

1 1 1

1 1 1

x y z

u u uE E E

x y z

v v vG G G

X Y Z

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 = + 1 

 
is the determinant of an orthogonal substitution, and appeal to the formulas: 
 

x

u

∂
∂

 = r2
X

u

∂
∂

,  
x

v

∂
∂

 = r1
X

v

∂
∂

 

in that case. 
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 If one lets: 
 

∆1ϕ = 
2 2

1 1

E u G v

ϕ ϕ∂ ∂   +   ∂ ∂   
,  ∆ (ϕ, ψ) = 

1 1

E u u G v v

ϕ ψ ϕ ψ∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

 

 
then one will find: 
 
(28)  ∆1 x = 1 − X 2,  ∆1 y = 1 − Y 2,  ∆1 z = 1 − Z 2, 
 
(29)  ∇ (x, y) = − XY, ∇ (x, z) = − XZ, ∇ (y, z) = − YZ. 
 
One will then have: 

     ∆1X = 
2 2

2 2
2 1

1 1 1 1x x

r E u r G v

∂ ∂   +   ∂ ∂   
, 

 
and analogous expressions for ∆1Y, ∆1Z, so: 
 

(30)    ∆1X + ∆1Y + ∆1Z = 
2 2

1 2

1 1

r r
+ . 

 
In order to calculate ∆1x, one can refer to the general formula (§ 32, page 67): 
 

∆2 x = 11 22 12
2

2G x E x F x

EG F

+ −
−

, 

 
in which the xrs are the second covariant derivatives of x with respect to the first 
fundamental form; however, according to the formulas (I), § 55 (page 5), one has: 
 

x11 = DX,  x12 = D′ X, x22 = D″ X, 
so: 

∆2 x = 
2

2G D E D F D

EG F

′′ ′+ −
−

X, 

or (§ 55): 

(A)     ∆2 x = − H X = − 
1 2

1 1

r r

 
+ 

 
 X . 

 
 This important formula (of Beltrami) proves that for a surface with zero mean 
curvature (viz., a minimal surface), the sections that one makes with a system of parallel 
planes will belong to an isothermal system. 
 Another formula, which has great importance for the theory of applicability, is 
obtained by the constructing the differential parameter (§ 32, page 68): 
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∆22 x = 
2

11 22 12
2

x x x

EG F

−
−

, 

which gives: 
(B)  ∆22 x = (1 − ∆1 x) K, 
 
from the formulas that were just recalled and from (28). 
 This is a second-order partial differential equation for x (which is also satisfied for y 
and z), whose coefficients are defined by only those of the first fundamental form. 
 An equation of this nature will also be satisfied by: 
 

ρ = (x2 + y2 + z2), 
 
and indeed, one will find, in the first place (when referred to the lines of curvature): 
 

∆1ρ = 2ρ – W 2. 
 
 Thus, if one observes that the second covariant derivatives of ρ are: 
 

ρ11 = E + D W, ρ12 = F + D′ W, ρ22 = G + D″ W 
 
then one have directly: 

∆2ρ = 2 – W 
1 2

1 1

r r

 
+ 

 
, 

∆22 ρ = 1 – W 
1 2

1 1

r r

 
+ 

 
 + W 2 K, 

 
and if one eliminates W, W 2 from the expression for ∆1ρ, ∆2ρ, ∆22ρ then one will obtain 
the desired formula: 
(C)  ∆2ρ  − ∆22ρ  = 1 + K (∆1ρ − 2ρ). 
 
 

__________ 
 

 


