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Summary. — An exterior differential calculus for spinor forms thistquite analogous to the well-
known tensorial Cartan calculus is developed that rendesbb® the direct spinorial calculation of the
Weyl and Ricci tensors. As an application, the metnid curvature spinors of the most general space-time
admitting a normal, sheer-free, null congruence arevetbr The rather modest amount of calculation
illustrates the advantages of the new method as comuatteel techniques used thus f3r (

|. Spinor algebra

Let T be the metric tensor algebra over the vector spaadmiplex pairs that is
endowed with the symplectic metric:

EA=C&, &=¢Cen, Gp=—&a=£&" &1=1.

lts elements are component matricES ‘cp.. Let T’ be a second exemplar of that
algebra whose elements will be written with prime®ider to distinguish them. The
spinor algebr& is the tensorial product of the two algebr&ss, in a natural way, also a

some structural properties 8that we will need in what follows §(*%).

() Remark by the editor: R. DEBEVER, M. CAHEN, and L. DEFRISE have, accordingah oral
commutation from one of them, developed a calculus focatmilation of curvature spinors that likewise
works with complex forms. A paper on that by those autkioa#i appear in J. Math. Phys.

(") Which means the part that is skew in the indais; correspondingly, one will find 1. and 3. in,
e.g., 9. One will get 2. when one goes to the dualsSfof formula (1.6) in ).

() R. PENROSE, Ann. Phy&0 (1960), 171.

() P.JORDAN, J. EHLERS, and R. SACHS, Wiss. Mainzh@nd|. Math.-naturw. KI. (1961), no. 1.



Bichteler — Exterior differential calculus for spirforms. 2

L Tiarsg = 3[TcrCo) a8+ Targ)™ &0l (1.1)
2. The following are equivalent:
Sareger = 0 and SCR[CP’AR] =0. (1.2)

3. One associates every spinor with its complexugaip by means of (e.g5" s

cAP AP
—>S B=S B

A spinor is calledeal when it is equal to its complex conjugate. (It will tHeve the
same number of primed and unprimed indices in the saméopgsihe real spinors*”
define a real metric vector space that is isometric ittkdvski space with the signature
- 2.

According to PENROSE'Y, one appeals to that isometry in general relativitthin
following way: At any pointx of the normal-hyperboli/  with signature — 2 that one
considers there, one chooses an isomgtyf the tangent spack to that space. It can
be described in a coordinate systénby a numerical matrig;™" (x). With its help, one
associates every tensor field with a real spinoidfi¢ - k** = k& g/. That
prescription is not unique; nonetheless, the following ccimme exists: If one chooses
another isometnyz then there will be a unimodular complex2matrixA”s (x) with an
inverseAs® (X) such that {:

o= M A, 0. (1.3)

The spinor field that corresponds to the tensor field.)T%, is connected with it by:
Ty =ACA L T ASAS (1.4)

Now, one generally defines a spinor field to be a foncfrom V* to S that transforms
analogously to (1.4) under an isometry (1.3).

We would like to extend that concept somewhat $piaorial form. We understand
that to mean a differential form & with values inS that transforms according to (1.3),
(1.4). 1t will be a “spin whose components are d#faial forms.” Some examples are
spinorial O-forms, which are spinor fields, and thecatled structure forn®*F = dx

a:*". With its help, the metric will take on the form)(

Q= gap € d¥ = 0" 0P gpp oo = 20% O - ™ B, (1.5)

") Strictly speaking, the statement of existence isecbronly when the Lorentz transformation' o
y sp g y

is actually orthochronous. In the event tits given an orientation and a time-orientation, omereéine
one’s choice of the's in such a way that this is the case. In whab¥ad, we will then assume thet has
that additional structure.

(") ©* is areal form®”, ©* real,0°* = 0“ .
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One gets another important example of a spinoriahféom the structure form: From
(1.1), the spinorial forn®* » @39 can be decomposed into:

O re =0 YU+ 07U with =107 "0 gy.  (1.6)

©"® is a spinorial 2-form that is symmetric AB. One easily calculates from if) that
with 9= 0% 2@ ' » @'*, one will have:

—PBAEP = ACPIB Yy AP, (1.7)
The @8 together with their conjugate8™, define a basis for the space of 2-forms.
Another example of a spinorial form will follow iheé next section.
[I. Spinor analysis
Since spinors should just as often serve as abbeevi@dscriptions of tensors, it is
clear (at least, for real spinor fields) how one tmdefine their covariant derivatives,
namely, by translating the tensorial covariant denweati
The goal of this section is to generalize that dedinitio arbitrary spinor fields and
spinorial forms and to derive a handy expressiontftrat will spare one the obviously-
tedious translation in (I1.1) Hence, we next define ¢beariant differentialof a real
spinor field with the help of (11.1) by:
DT = -I—AF’...; 80 @BQ,

and for real spinorial forms (e.g®/"" = F*"zg ©°¢ by D®*F = DF*"gy 2 ©%?. One
easily translates the following properties of the cawvdrdifferential:

1. One has the sum and Leibniz product rule (

D(@5AX") =D A X" + (- 1)*9® pSAD X" .
2. The covariant differential commutes with contiatt
3. For a scalar functioip one ha® f = df.

4. Taking the covariant differential commutes with gpito complex-conjugate
spinors ().

() One represen™” »@°¢ 2@ 7@ =i ¥ f'"P°RPS and applies it to formula (1.6) as if).(
(') S T are multi-indices. For O-forms (i.e., spinor fieldshe understands “*" to mean ordinary
multiplication.
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5. D is torsion-free: i.e., one h&s®@*" = 0 andD® = d® for a scalar forne.
6. D commutes with a shift of indices.

Now, one has the theorem)(that the covariant differential of a real spimbdform is
defined uniquely by those six properties, and that thgyeetssely one continuation to all
splnorlal forms under which all of them also remaatid: One next translates, as usual

*kk

(")(®), the fact that the properties 1 to 4 are equivaletitagepresentatioff);

DOy P =dof T+t 00N P+ @ 00 S %+~ 300 5 P~ (11.2)
and DP=dod for ascalar formD , '

in which the w”s are certain Pfaffian (i.e., 1-) forms. Those forwi#i be defined by

properties 5 and 6:

Theorem:

Each of the two systems of equations:
w"A=0, do** +ws ~ 0°F + @% N0 =0, (11.3)
w"A=0, do™+w c " OB + wB @ =0 (11.4)

possesses precisely one solution of 1-fawfis. Those two solutions will coincide. The
differential D that is defined bffl.2) using whas the properties to 6 and is therefore
the covariant differential.

Remark: Due to (I1.2), one can subsequently rewrite (11.3).40ll resp.] a®&s = DO = 0 [Dé&xg =
DO"® =0, resp.].

Proof. If wis a solution of (11.3) thei will obviously have properties 5 and 6, as
well. One reads off from (1.6) that (11.4) will aldm true then. Now, lewbe a solution
of (11.4). With that, theD that is defined by (11.2) will also commute with shiftinfices
then, and due to (1.6), one will also habeg@*” » @9) = 0. By an application of the
product rule 1, one will then see t®"" » @*F = 0, and therefordDO** = ® » @*F
for somed. If one substitutes that b (@*F » ©®?) = 0 then it will follow that® = 0.
Any solution of (I1.4) will be also a solution of (8) then. In order to show that (11.4)
[and therefore (11.3)] has precisely one solution,set

*

)  That statement is vacuous for real forms; cf., h@nevelow.

") Cf. (), Appendix, where the theorem for the derivative isnialated. | would like to thank Dr. J.
ERS for the idea that the covariant differential ba constructed from those six properties.

") Cf.,eq.,?, Chap.l,§09.

(?' P. JORDAN,Schwerkraft und WeltalBraunschweig, 1955.

() See footnote**(), pp. 3.

()  On the basis of covarianae,does not depend up&P.

C
(
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w"s =Tgcp O°F, (11.5)
d@AB = TABCPDQ'ER @CP A @DQ’ A@ER, (||.6)

in which T is completely skew in the lower index pairs. The sdcequation in (11.4)
then assumes the form:

(TABCF’DQ'ER +30¢ Moce &R +%5£rBDCP &R ) O A @ "R = 0.
One can now apply this to the spinor in brackets ) énd get:

-ABDR -1 Br-A) D (AD)
2T DQ'ER—EJéF DQ,+F EQ-

If one now uses the first equatidfiace = O then upon contracting this equation &y

one will get:
A _ 1 AEDR
Mego = 2T DQER &BC,

. (AB) _ (AB) .
and then, sincé ", =" :
A _ DR A EDR
Meogo =2Tec b R +5(/é Te) ~ DQER-

The theorem is then proved with that.

The proof likewise yields the solution of (11.3) and.4)l In special cases in which
the metric, and therefo@"®, has a simple form, one can get the solution manelgiin
the following way: Exterior multiply the three compl&-form equations (I1.4) by the
coordinate differentialsh? and get the twelve complex equatid®”® ~ dx¢ = 0. It is
often simpler to solve them than to calculate fronrépresentation (11.6).

The formdd's is called theconnection forn()(*). It is hardly a spinorial form, since
it transforms under an isometry (1.3) analogously ®Rlicci symbols:

@'y = A'c w AP + A% dACH, (11.7)

as one can calculate from (11.2), (11.3), or (11.4).

Remark. At this point, we would like to draw a first comparigorthe tensorial Cartan formalism. In
the latter, in order to determine the connectighy , one must solve the equatiomg, = 0 =DO?, which
are analogous to (I1.3))( They are 24 equations for the 24 real components’of while we are dealing
with 12 equations for 12 complex quantities in (11.3) dr4jl In both cases, one has the freedom to
calculate the components afin terms of thed or the coordinate differentials, according to theaditun.
In any event, only the forme& will be important for all of what follows. There etdsno difference in

() For the relationship between the formalism thatpissented here and the theory of linear
connections — in particular, the tensorial Cartan féisme— cf., ().
() K. BICHTELER, “Cartanformalismus fiir Spinoren,” Priepy Hamburg 1962.
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effort between the two formalisms then, as long aswarites out the complex functions that appear in their
real and imaginary components. However, that is unn@gess many cases — e.g., in the case of the
general pure radiation field that is treated below; @reget along with one name for a complex quantity.
In our case, one can arrive at a further reductiofménamount of writing that one must do by a factor of
2/3 by the introduction of complex differentiation with reggeacomplex coordinate functions.

It is also untrue that one can employ the Cartan dosm only for the calculation of the Riemann
tensor (curvature spinors, resp.), as one reads hdréhare, and must calculate thesymbols for other
examinations of a field — say, its completeness and HKillectors — and will then do better to calculate the
Riemann tensor with their help. The fact that ome @lso solve such problem¥(Y) with the tensorial or
spinorial Cartan formalism is clear on the basishef introduction and characterization of the The
actual advantage of the spinorial formalism seems ttorfie in the fact that one can calculate the reduced
curvature spinors by multiplication along with no developtnas will be shown in the next section. That
will lighten the investigation of the radiation propestiof a field considerably.

[I1. Thecurvaturespinors

We would now like to applp twice in succession to a spinorial form; we will get

(e.g) ():

DD % =% " ®% +Q7, 00 - ., (111.2)
with
QAB = d&)AB + a)Ac N a)CB. (|||.2)

Q”g is a spinorial 2-form; one calls it tieervature form. We develop it into:

QAB = _XABCD@CD _% 2 ABP Qé Pe
with (11.3)
XAB[CD] = ZAE{ pg =0,
and assert:
Theorem:

XPscp is the dual-symmetric part of the Riemann ten§é\§,pq is the dual-skew-
symmetric part — i.e., the reduced Ricci spinor.

Proof:
From the definition of a covariant differentiahehas:

DD K =D (K" 8g ©°%) = k* gycr O 2 ©°2.

If one compares this with the result (111.1) foetB-form (), while considering (1.6) and
(11.3), then one will find that:

() Cf., €) for the treatment of holonomy groups by that calculus.
() W. BEIGLBOCK, “Holonomiegruppen,” Preprint Hamburg, 196@dearing in this Zeitschrift).

Hok

(") Cf., the footnote to (11.2).
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kAp;[M] = %(JSF?’XAEBCEQR'*'J/EXP SQ'F(S Bé*’J?szA EQI§ B’EJA% P' séc' ak ES-
Obviously, it is just the Riemann spino} that appears in the brackets on the right-hand
side, and indeed with jus;t the decomposition by which ph®ss that were mentioned in
the theorem were defined X

One reads off from (1.7) and (111.3) that one obtalms ¢urvature spinors fro@”"s by
exterior multiplication:

-2 QAB A GCD = XABCD 4 , ZQAB A éP’Q’ = ZABPQ' 3. (|||4)

Remark. There is only a very weak tensorial analogue of #rg gimple calculation prescription
(111.4) for the curvature spinor. Upon exterior-multiply the tensorial curvature for@"s by O, ~ @y ,
one will in fact get the dual of the Riemann tensat,dne will then have much to calculate again in order
to calculate the Riemann tensor itself from that daad] thus, the irreducible components. Furthermore,
one will see the radiation properties of a field masilg in terms of the Weyl spinor than in termslof t
Weyl tensor.

V. The properties of the curvature spinors

We would now like to derive briefly the known propestiof the curvature spinors
with calculus that we have developed up to now.

a) Ricci identity— With (1.6), it follows, as in the proof above, that:
DD &%= &% cppg OV MO = A Rpyr 0P - &2k p By OFF,
DD &*=Q% &8 =-1X"scp £2 O - 15%pq &P O°9,
and from a comparison of coefficients:
& croy = 31X E5, Ehep oy =12%pg &5
b) Symmetry properties of and Z. — If one applieD to D ©*° = 0 then it will
follow with (111.1) that:
QAB /\@BF’ + ﬁP(’g’ /\@AQ — 0’
(0 X"acobqr* 08 2  pef ot X 50 #0'F " s& 9O "0V e =0.

We apply (1.2) to the spinor in brackets and get:

() The factors are chosen in order to arrive at sonketdi the conventions of ¢).
() cf., (), §2.
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c Y R < _
XAB p€agp +£ADX ps Q_z ADPQ"'z PQAI 0.

A consideration of the symmetric (antisymmetric, reppr} of the equation will teach us
that:

ZADP'Q( = i
N :XABAB = )_(P,Q,P'Q( = /_\

P'QAD?

2 is then real and irreducible, whi¥epermits the reduction:

Xasco = ascp— 2\ &ac )8 -
I" is the completely-symmetric Weyl spinor, whileis one-fourth of the curvature scalar
R. From (I.7), one has:

NI==20p" "

c¢) Bianchi identity— We apply the operatd to the Ricci identitypD £ = Q"% £°
and get, on the one hand:

DDD é*=Q"; A D&B + DQs &5,
from the product rule, and on the other:
DDD &#=Q% " Dé&",
from (I11.1). It then follows thaDQ"s = 0, and with (111.3), (1.6):
Xocoer EpotZ e g e O A OF 207 = 0.
Now, (1.2) yields the Bianchi identity directly:
X o = Tapric -

d) Conformal invariance of the Weyl spinor We perform a conformal
transformatiorQ - €’ Q « 0*° - ¢ ©*® and denote the new connection &%, =

w"s + s . From the theorem in the second section, it isrdéted by &, = 0 and
D (e ©"®)= 0. One will get the equation far's fromD @€ =0 :

2dUr@" + OB+ 7B A = 0.

The proof of that theorem immediately implies that:



Bichteler — Exterior differential calculus for spirforms. 9

s = 1(35 dU + 55U, ., ©°? +3U.4 6,0 ™).
From (111.2), the new curvature form is:
éAB:QAB+D7TAB+lTACAITCB.

One sees that any coefficient in the developmem af's in terms of@°® will contain
£'s that will consequently vanish in the part theicompletely-symmetric iABCD. A
brief calculation will show that the same thingdrise for 77°c » 7%.

V. Theoptical scalar. Transformation law

The calculus that we have presented up to nowsallas to calculate the irreducible
components of the curvature spinors for a givenmrimét in a purely spinorial way (and,
we believe, with relatively minor effort): (1.5) pplies one with suitable &7, then
(11.3) or (I1.4) then gives thew”s , and from that, (I11.2) and (I11.4) will yield #
curvature spinors. However, the problem is fretjyem different one: The,, are not
given, but certain physical or geometric propertés field, and one must derive all
other properties, and above all, those of the ¢ureaspinors. The first step is therefore
always to put the basic metric form of the fieltbira simple form. In this and the next
section, it will be shown how the calculus can decsystematically employed to do that.
We will assume that the field contains a prefemeli congruence and show how one can
systematically derive suitable coordinates fronoiinfation about special properties of
the congruence.

For a given congruence of null lines, we choospiaor«” = « * such that the null
(o]

vectork? that belongs to by means ofp ? is tangential to it, and another spinof* =
A

u® with ka £ = 1. A null tetrad is defined by that in a knoway (). With an

(o]

isometry (1.3) « (1.4), we now arrive at the fact that the two spm have the
componentsg B=9y. With that choice, one finds from (11.5) and 2J) that:

D E-Q —
KoK KK-=T . V.1
Koeg K KK ABCP (V.1)

The functions (V.1) are callespin coefficienty )(°) (also: optical scalars cf. infra).
We would like to designate them individually acdagdto the following schema [cf.,

(I.5)]:

() cf,egq.D, A23

(") The terminology goes back t8).( The formalism that is developed there is very sintib the one
here. It is also shown there how one derives spiwhike bypassing (Il.1) and calculates the curvature
spinors from the connection that one gets. The skewretrization of the covariant derivative enters in
place of taking the exterior differential.

() E.NEWMAN and R. PENROSE, J. Math. Ph§1962), 3.
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a) 0)00 - ﬂGOO +a®01 +§,®10+’L~l@ﬂ’
b) o =-Q0%+720"+50°+ko™ (V.2)
0 &,=-kO@%-00%"-2z0"+Q0O™"

One then has, e.gQ = -T% = - s cp 1P K K7, etc. Many of the quantities (V.1)
describe properties of the ray congruence in the sengeamhetric optics. We would
like to discuss the meanings of some of them with@ingyinto a derivation of them,

which can be found in e.¢f- ).
k = 0 means that the congruence is geodetic, vid#dm (z) = 0 means that it is also

hypersurface-orthogonal. R® E O is the relative increase in area in the shadows that
the congruence makeg;is its strain (i.e., shear), afdlis the angular velocity by which
the ray observer seems to rotate in kheplane. Q = m = 0 means that the tetrad is
parallel-displaced along the congruence. The quantitigsaniilde each have the same
meaning for the congruence that is generateniby 1 7° .

So far, the prescription at the beginning of the sedtinot unique. Along withx*
andu”®, two primed spinorg'* andy ' that arise fronk andu by a transformation:

A A
[«', 1'] =[x 4 {o /]_l} (A, A\ complex) (V.3)

will also have the required properties. The transfoiondaw for the connection form is
(1.7). When one develops it in terms &fF, with the notations (V.2) and under the
special transformation (V.3), it will read as folloyisr Ay, A, cf., (VI1.1),et seq:

uoa -Q 4
a g & K
-k -0 -y -a
-7 Q -ad -f

1 0 -AA 0 U 0 -Q zZ A AN AN AA
A a2 A | s a2 5 k| o ot o x| (VD)
10 0 ¥ 0 |-k -0 -u -—a|| O 0 AT AA
0 0 JA 1 -z Q -a -g)L o0 0O 0 AT
1 0 -AA 0 A AN, A, A A 0 O
. AN A7 =N AN A AL A A, 0A2* 0 o
0 0 A2 0 0 0 -A2%A -A2A ||l0 0 1 A
0 0 JA 1 0 0 -A2A4 -222, 0o 0 0 A%
One has:

o o AT A K o)At o
i m = T m e Y * (V5)
e o 0 AJle" " /|-A 2
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V1. Explicit formulas. Coordinatesthat are adapted tothe
properties of a null congruence

We first denote the index-pakP according to the prescription:

00 01 10 11
! ! Loy (VI.1)
k t T m

with lowercase Latin symbols t, ..., such that, e.g@* = @' anddf =f xp @*F =f, ©*
+f, @ + ... With the notations (V.2), (11.3) will thenad as follows:

a) do¢ +(@+@+0)0'00* +@+a+9Q)o' 16
+(f1+ 1) O™ 0Ok +(z-2)0'06¢
+k o™ 0o +ko' ek =0,

b) dO©' +(u-mg+32O* 06" +(+pa+ 000"
+(Q+Q)o' 06 +(@-a)0' 00" (V1.2)
+g0* 06" +g0' 0™ =0,

c) dO"™ +(ag+a+Q)O"OO' +(@+a+Q)O"IO"
(u+m)O™ 06k +(z-2)0' 06"
+kO' 0O +ko'0e* =o.

For the evaluation of (VI.2), one appeals to tledl-known theorem of FROBENIUS
("8, which says that for forms @', ..., @, if d@°~ @' ~...A @ = 0 then there will be
preciselyr functionsx', ..., X, such that those forms depend upon the differisndi
linearly @° = a % dX; s k=1, ...,r). The more that the combinations of spin
coefficients that appear in (VI.2) vanish, or therenthat the spin dyads can be annulled
by a suitable choice (V.3), (V.4), the simpler thia¢ basic metric form can be made
according to (1.5).

As anexample we would like to consider a gravitational fieltat admits a normal
and shear-free null congruence. FribmIm (2 = 0 and (VI.2c), it will then follow that
do™ 2 @™ = 0, and with FROBENIUS's theore®" = F du. A real stretching (V.3) with
A =0 and) = F'> makesO™ = du. It follows fromo= 0 and (VI.2b) thatle' » @™~ &'
=0, and®' =p &" (dz+ B du), in whichp andr are real and andz are complex. From
(V.5), the rotation (V.3), wit\ = 0 andA = €", will imply that @' = p (dz + B du.

() A. LICHNEROWICZ, Théorie globale des Connexions et des groupes d’Holondtaiés, Dunod,
1955.
() G. DE RHAM, Variétés differentiablesParis, Hermann, 1955.
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Conversely, one also sees from (VI.2b) that one oaveaat this form foi®' only for o=

0. Lets, along withu, x = Re @), andy = —i Im (2) be four coordinates. That result then
says that the congruence will map two wave surfacex, s=c', andu =s,s=c" to
each other conformally by throwing shadowsrch Schattenwuyfprecisely whero = 0

(c, ¢, c" are constants). A real null rotation (V.3) wit= 1 andA = real will then imply
that -z = 0, and (VI.2a) will yield®* = 8ds+ H du One will further arrive a®

©% = 0, @ = dr + H du by way of the null rotatiom\ :p‘ljecg ds(). With

consideration given to (1.5), we summarize [c}.19)]:
Theorem:

The metric form of a field that admits a normal atekar-free null congruence can
be put into the form:

Q=-2p?[dz+B dy?+ 2dr du+ 2H di/-

VII. Thecurvature spinors of the general pureradiation field

A pure gravitational radiation field will be defined [afeoall, on the basis of the
analogy with the electromagnetic case, cf., e}j. by the existence of a normal, shear-
free, null ray congruence, along with the vacuum equatidnghe last section, we put
the structure form of such a field into the form:

O™ =du, O'=p(dz+Bdy, ©'=dz+Hdu
Here, we would like to give the connection form and cume spinors in these
coordinates, since those formulas will be necessaryhe investigation of such fields;
e.g., the* determination of special solutions or the afi@n properties of the curvature

spinors ().
With (11.4), one gets the following expressions for te@nection form:

W% =G du+i(P,-1p’B)dz=i(P+3 B B T,
w’ =E du+F dz- pB, dz- 1p B dr,

wo=1p*h du+ p dz

() The complex derivative is defined 8§ = F; ds+ F, dz+ F,dz+F,du It behaves like a real one.

() P. JORDAN Problems of GravitatiopAir Force report 1961.
W. KUNDT, Zeit. Phys163 (1962).
(* 1. ROBINSON and A. TRAUTMAN, “Some Spherical Graiaves in Gen. Rel.,” Proc. Roy. Soc.
(Lquon)265 (1962).
(") cf., 0.
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in which:
=Inp, p=p°B, F=po, ®=P,—HP, —p?Re ),

G= %(H + p_2 Im (bz) - % pZ(BE)r )’
= pH, - BB+ HE)+BF

With (111.2), (1.6), and (lll.4), one gets the followingomponents for the curvature
spinors:

lMoo00o= 0,
Fo001=p, B +1 pB -p ' Py,
Foo11=4[p°B B + p*( ’B), +2Re(BR)- p* B-3 P( P B.-3 H+( HP - F

Fo11= p*(RB+$B - R+ HP),+4 pBB
+ip'[2BR,+B(FB),+ BPB,-(PpB,- F(pB,+ HDBI-( P Y,

M= 2p7[B(p’B),+ B FB),]-4 RB-2 B,+2 B(2 HR 2 B~ H)
+2(HB - p?°H,),,

A=2p°Re[P’BP.+(@h)]+2p*F,+H,-4p**[p"(R- HR).-3 FBB
So000 = 2P Prr

Soorr =2R B, +B,+1 P F,

So100 =p 'R, +2p B +3 pR,

Sourr =p (P +1B,-1B-BB- BP- H) +1 BB~ B +1 @ BB+ HB
+p™(2B,R-HP)+ pB(2BP+2HP+2BP+3 B+ B-2 P,

S1rr=2[B,B,+ p'(F-HF)+® H]-2Re(2Bp'E- BH,+® B)- 2p° H,
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