On the canonical transformations of the equations of motion of a non-holonomic system

Note by A. Bilimovitch, presented by Appell.
Translated by D. H. Delphenich

1. - We shall determine the position of a material system by means of $n+k$ coordinates: q_{i}, $q_{n+q}(i=1,2, \ldots, n ; v=1,2, \ldots, k)$. Suppose that the motion of a system is subject to non-integrable differential constraints:

$$
\begin{equation*}
q_{n+v}^{\prime}=\sum_{i=1}^{n} a_{v i} q_{i}^{\prime}+\alpha_{v} \quad(v=1,2, \ldots, k), \tag{1}
\end{equation*}
$$

in which $a_{v i}, \alpha_{v}$ are functions of the coordinates q_{i}, q_{n+v}, and time t. Let T denote the vis viva of the system (in the general case, it is a function of the velocities $q_{i}^{\prime}, q_{n+v}^{\prime}$, the coordinates q_{i}, q_{n+v}, and time t), and let U denote the force function, which depends upon the same coordinates and time. One can write the equations of motion of such a system (C. R. Acad. Sci. Paris, t. 156, pp. 381) in the following form:

$$
\begin{gather*}
\frac{d}{d t} \frac{\partial \Theta}{\partial q_{i}^{\prime}}-\frac{\partial \Theta}{\partial q_{i}}-\sum_{v=1}^{k} \frac{\partial \Theta}{\partial q_{n+v}} a_{v i}=\frac{\partial U}{\partial q_{i}}+\sum_{v=1}^{k} \frac{\partial U}{\partial q_{n+v}} a_{v i}+\sum_{\mu=1}^{k} \theta_{\mu}\left[\frac{d a_{\mu i}}{d t}-\frac{\partial q_{n+\mu}^{\prime}}{\partial q_{i}}-\sum_{v=1}^{k} \frac{\partial q_{n+\mu}^{\prime}}{\partial q_{n+v}} a_{v i}\right] \tag{2}\\
(i=1,2, \ldots, n) .
\end{gather*}
$$

Here, Θ and θ_{μ} are the results of eliminating the dependent velocities $q_{n+\nu}^{\prime}$ from T and $\frac{\partial T}{\partial q_{n+v}^{\prime}}$ with the aid of (1). One can take the derivatives of the $q_{n+\mu}^{\prime}$ upon replacing them with the right-hand side of the equality (1).

Upon introducing the new variables $p_{i}=\partial \Theta / \partial q_{i}^{\prime}$ and the function:

$$
H=\sum_{i=1}^{n} p_{i} q_{i}^{\prime}-\Theta-U
$$

in which one expresses them as things that depend upon p_{i}, q_{i}, q_{n+v}, t, we can replace equations (1), (2) with the first-order system of equations:

$$
\begin{gather*}
d p_{i}: d q_{i}: d q_{n+v}=-\frac{\partial H}{\partial q_{i}}-\sum_{v=1}^{k} \frac{\partial H}{\partial q_{n+v}} a_{v i}+S_{i}: \frac{\partial H}{\partial q_{i}}: \sum_{i=1}^{n} b_{v i} p_{i}+b_{v} \tag{3}\\
(i=1,2, \ldots, n ; v=1,2, \ldots, k),
\end{gather*}
$$

in which

$$
S_{i}\left(p_{i}, q_{i}, q_{n+v}, t\right)=\sum_{\mu=1}^{k} \theta_{\mu}\left[\frac{d a_{\mu i}}{d t}-\frac{\partial q_{n+\mu}^{\prime}}{\partial q_{i}}-\sum_{v=1}^{k} \frac{\partial q_{n+\mu}^{\prime}}{\partial q_{n+v}} a_{v i}\right] .
$$

There will be a change of variables in the right-hand side, as well. We obviously obtain the functions $b_{v i}, b_{v}$, from the transformations of the constraints (1) to the new variables p_{i}.
2. - We say that the system (3) is transformed into canonical form if we obtain a system like the following one:

$$
d P_{s}: d Q_{s}: d T=-\frac{\partial K}{\partial Q_{s}}: \frac{\partial K}{\partial P_{s}}: 1 \quad(s=1,2, \ldots, n+k)
$$

after introducing the new variables $Q_{i}, Q_{n+v}, P_{i}, P_{n+v}, T$, in which $K=$ funct. $\left(Q_{s}, P_{s}, T\right)$, and the new variables are coupled by k relations:

$$
\begin{equation*}
\varphi_{v}\left(Q_{s}, P_{s}, T\right)=0 \quad(v=1,2, \ldots, k) \tag{4}
\end{equation*}
$$

as well.
It is obvious that one can reduce the solution of the problem of the motion of a non-holonomic system to the integration of the Jacobi-Hamilton equation with that transformation.
3. - The system of equations:

$$
d x_{1}: d x_{2}: \ldots: d x_{2 m+1}=X_{1}: X_{2}: \ldots: X_{2 m+1}
$$

in which $X_{1}, X_{2}, \ldots, X_{2 m+1}$ are functions of the $x_{1}, x_{2}, \ldots, x_{2 m+1}$, can be considered to be the first system:

$$
\sum_{i=1}^{2 m+1}\left(\frac{\partial \Xi_{i}}{\partial x_{j}}-\frac{\partial \Xi_{j}}{\partial x_{i}}\right) d x_{i}=0 \quad(j=1,2, \ldots, 2 m+1)
$$

for the Pfaff expression:

$$
\begin{equation*}
\sum_{i=1}^{2 m+1} \Xi_{i} d x_{i} \tag{5}
\end{equation*}
$$

The functions $\Xi_{i}(i=1,2, \ldots, 2 m+1)$ of the variables $x_{1}, x_{2}, \ldots, x_{2 m+1}$ always exist and satisfy some conditions that we can write in the symmetric form:

$$
\sum_{i=1}^{2 m+1}\left(\frac{\partial \Xi_{i}}{\partial x_{j}}-\frac{\partial \Xi_{j}}{\partial x_{i}}\right) X_{i}=0 \quad(j=1,2, \ldots, 2 m+1)
$$

If the expression (5) is represented in the normal form:

$$
\sum_{i=1}^{2 m+1} \Xi_{i} d x_{i}=-\Phi\left(y_{1}, y_{2}, \ldots, y_{m} ; z_{1}, z_{2}, \ldots, z_{m}, y_{0}\right) d y_{0}+\sum_{i=1}^{m} z_{i} d y_{i}
$$

in which $y_{0}, y_{1}, y_{2}, \ldots, y_{m}, z_{1}, z_{2}, \ldots, z_{m}$ are functions of the variables $x_{i}(i=1,2, \ldots, 2 m+1)$, then the first system will correspond to the canonical form:

$$
d z_{i}: d y_{i}: d y_{0}=-\frac{\partial \Phi}{\partial y_{i}}: \frac{\partial \Phi}{\partial z_{i}}: 1 \quad(i=1,2, \ldots, m)
$$

In the case where relations exist between the variables $x_{1}, x_{2}, \ldots, x_{2 m+1}$, one will have the same number of relations between the new variables y_{0}, y_{i}, z_{i}.

Hence, in order to transform a given system into canonical form, it is necessary and sufficient that one must know a system of particular solutions to the following equations:

$$
\begin{gather*}
-\sum_{i=1}^{2 m+1}\left(\frac{\partial \Phi^{*}}{\partial x_{j}} \frac{\partial y_{0}}{\partial x_{i}}-\frac{\partial \Phi^{*}}{\partial x_{i}} \frac{\partial y_{0}}{\partial x_{j}}\right) X_{i}+\sum_{i=1}^{2 m+1} \sum_{l=1}^{m}\left(\frac{\partial z_{l}}{\partial x_{j}} \frac{\partial y_{l}}{\partial x_{i}}-\frac{\partial z_{l}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}}\right) X_{i}=0 \tag{6}\\
(j=1,2, \ldots, 2 m+1)
\end{gather*}
$$

in which Φ^{*}, z_{i}, y_{i} are unknown functions (Φ^{*} denotes the result of the expression of the function Φ as a function of the variables $\left.x_{1}, x_{2}, \ldots, x_{2 m+1}\right)$. The system of solutions must be such that one can express the variables $x_{1}, x_{2}, \ldots, x_{2 m+1}$ as functions of the variables y_{0}, y_{i}, z_{i}.
4. - The relations (6) give the necessary and sufficient for the canonical transformation of equations (3). We will get the relations (4) upon introducing supplementary variables $p_{n+v}=$ $f_{n+v}\left(q_{1}, q_{2}, \ldots, q_{n+k} ; p_{1}, p_{2}, \ldots, p_{n}, t\right)$, in which f_{n+v} are arbitrarily-chosen functions.

We shall confine ourselves to examining the case in which there are conditions:

$$
a_{v}=0, \quad \frac{\partial T}{\partial q_{n+v}}=\frac{\partial U}{\partial q_{n+v}}=\frac{\partial a_{\mu i}}{\partial q_{n+v}}=0 \quad(v, \mu=1,2, \ldots, k),
$$

and the vis viva T is a homogeneous quadratic function of the velocities. In that case, the system (3) will reduce to the system:

$$
\begin{equation*}
d p_{i}: d q_{i}: d t=-\frac{\partial H}{\partial q_{i}}+\sum_{j=1}^{n} \sigma_{i j} \frac{\partial H}{\partial p_{j}}: \frac{\partial H}{\partial p_{i}}: 1 \tag{7}
\end{equation*}
$$

in which $\sigma_{i j}=\sum_{j=1}^{n} \theta_{\mu}\left(\frac{\partial a_{\mu i}}{\partial q_{j}}-\frac{\partial a_{\mu j}}{\partial q_{i}}\right)$ and θ_{μ} is expressed as a function of the p_{i}, q_{i}, t, and the quadratures (1) after integrating the system (7).

For the canonical transformation of (7), it is necessary and sufficient to fulfill the following conditions that must be satisfied by the functions K^{*}, Q_{i}, P_{i}, T :

$$
\frac{\partial\left(K^{*}, T\right)}{\partial(\alpha, t)}-[\alpha, t]+\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}}\left\{\frac{\partial\left(K^{*}, T\right)}{\partial(\alpha, t)}-\left[\alpha, q_{i}\right]\right\}+\sum_{i=1}^{n}\left(-\frac{\partial H}{\partial p_{i}}+\sum_{j=1}^{n} \sigma_{i j} \frac{\partial H}{\partial p_{j}}\right)\left\{\frac{\partial\left(K^{*}, T\right)}{\partial(\alpha, t)}-\left[\alpha, p_{i}\right]\right\}=0 .
$$

Here, α is one of the variables t, q_{i}, p_{i}, and we can set:

$$
\frac{\partial\left(K^{*}, T\right)}{\partial(\alpha, t)}=\frac{\partial K^{*}}{\partial \alpha} \frac{\partial T}{\partial \beta}-\frac{\partial K^{*}}{\partial \beta} \frac{\partial T}{\partial \alpha}, \quad[\alpha, \beta]=\sum_{l=1}^{n}\left(\frac{\partial P_{l}}{\partial \alpha} \frac{\partial Q_{l}}{\partial \beta}-\frac{\partial P_{l}}{\partial \beta} \frac{\partial Q_{l}}{\partial \alpha}\right)
$$

The conditions become simpler when one seeks transformations for which the coordinates will remain unchanged. Such a search belongs to Chaplygin's theory of the reducing multiplier N (q_{1}, q_{2}) of (Moscow Mathematical Society, v. XXVIII, pp. 303), in which the author has examined a class of such transformations: $P_{1}=N p_{1}, P_{2}, N p_{2}, T=\int N d t$ for the systems with two degrees of freedom that are subject to such conditions.

