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 1. – In some previous works (1), I have referred to the advantage that one gains when one bases 

one’s discussion of the motions of air and the oceans upon Lord Kelvin’s concept of the circulation 

of closed curves. Therefore, for the sake of simplicity, I concerned myself with only absolute 

motion, and likewise neglected friction. In that way, one gains the advantage of being able to study 

the primary causes of motion in their purest forms. However, when one no longer discusses purely-

theoretical questions, but concrete practical applications, considering the rotation of the Earth and 

friction will become unavoidable. The first oversight is very easy to correct, and that is what will 

be done in what follows. Things are different with friction. In general, there is no mathematical 

difficulty in writing down the line integral the represents the influence of friction on the circulation 

of a curve. However, if one starts from the rational theory of friction then that integral will depend 

upon the infinitely-small differences in velocity, and those are quantities that are not accessible to 

observation. That is why a direct application of that integral is not possible in practice, such that 

one must necessarily go down an indirect path in order to learn about the influence of friction more 

precisely. However, in order to enter that indirect path, one must represent the influence of friction 

in the equations by a symbol. Therefore, it will also be introduced in what follows, and indeed all 

the more so because the explicit appearance of that symbol is useful for the purely-qualitative 

discussion. That is because in such a discussion, one mostly comes to recognize the direction in 

which the influence of friction acts, and that is usually easy to do. 

 

 

 2. The kinematical relation between the absolute and relative circulation. – Lord Kelvin’s 

concept of circulation is a measure of the motion of a curve that closes back into itself. When Ua 

is the velocity of an arbitrary particle on the curve, referred to a coordinate system, and t

aU  is the 

projection of that velocity onto the tangent of the curve, the circulation Ca of the curve will be 

defined by the integral: 

 

(1) Ca = 
t

aU ds , 

 
 (1) V. Bjerknes. “Ueber einen hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die 

Mechanik der Athmosphäre und des Weltmeeres,” Kongl. Svenska Vetenskapsakademiens Handlingar 31 (1898). “Das 

dynamische Princip der Cirkulationsbewegungen in der Atmosphäre,” Meteorol. Zeit. (1900). 
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in which ds is a line element along the curve, and the summation extends over the entire closed 

curve. 

 Furthermore, U means the velocity of a point on the curve, relative to the rotating Earth, and  
tU  is the projection of that velocity onto the tangent to the curve. From the principles of relative 

motion, one then has: 
t

aU  = 
0

t tU U+ , 

 

in which 
0

tU  is the tangential component of the velocity U0 of a point that instantaneously 

coincides with the material point in question along the curve, but is rigidly coupled with the Earth, 

and therefore moves with the motion of the Earth. Upon substituting that in (1), the absolute 

circulation Ca of the curve will split into two partial circulations: 

 

(2)  Ca = C + C0 , 

 

in which C is the circulation of the curve relative to the rotating Earth: 

 

(3)  C = 
tU ds , 

 

and in which C0 represents the circulation of a curve that instantaneously coincides with the curve 

in question, but whose points are all rigidly coupled with the Earth: 

 

(4)  C0 = 0

tU ds . 

 

The latter circulation along a curve that is rigidly coupled with the Earth is easy to calculate. 

 We can first consider the special case in which the curve has the form of a parallel circle, which 

is especially important in the applications to the large atmospheric circulation. When such a curve 

is rigid and rigidly coupled with the Earth, all of its points will have one and the same velocity 

,r in which  is the angular velocity of the Earth, and r is the radius of the parallel circle. Upon 

substituting that in (4),  r will move outside of the integral sign. Only ds will remain inside of it, 

and the integral of the line element will give the length 2 r of the parallel circle. The value of C 

will then be 
22 r  , or: 

 

(5)  C0 = 2  S , 

 

in which S represents the area of the parallel circle. 

 More generally, we can consider an arbitrary curve that is contained in the plane of a parallel 

circle. The velocity of a point on the curve that has a distance r from the Earth’s axis will again be 

 r. If  represents the angle between that velocity and the tangent to the curve then we will find 

that the tangential component of the velocity is 
0

tU  =  r cos . If we substitute that in (4) and take 

the constant factor 2 outside of the integral sign then we will have: 
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(6)  Ce = 1
2

2 cosr ds  .  

 

However, as one easily sees the quantity 1
2

cosr ds is the area of the elementary triangle whose 

sides are the line element ds and the two vector radii to the endpoints of that line element. 

Therefore, the integral represents the area S that the closed curve bounds, and C0 again reduces to 

the simple form (5). 

 Finally, one easily sees that an arbitrary rigid curve that is rigidly coupled with the Earth has 

the same circulation as its projection onto the equatorial plane or onto the plane of an arbitrary 

parallel circle. That is because a point on the given curve has the same velocity as its projection 

onto the equatorial plane, namely,  r, when r is the radius vector to the projected point. If ds 

represents the line element of projected curve, and  is the angle between the velocity  r and that 

element then  r cos  ds will be the quantity that is to be integrated along the projected curve. 

Now, the element ds corresponds to an element of length ds / cos  on the given curve, where  

is the angle that the given line element makes with the projected one. On the other hand, the 

velocity  r has a projection onto the tangent to the given curve of  r cos  cos , and the quantity 

to be integrated will then be once more  r cos  ds, such that the two integrals will be identical 

to each other. We also return to formula (6), and from there, to formula (5) in the most-general 

case then, such that in all cases, the quantity S can be defined to be the area of the surface that is 

bounded by the projection of the curve onto the equatorial plane. That will then give the following 

result, which is the basis for the transition from the consideration of absolute circulation to the 

consideration of relative circulation: 

 

 I. – The circulation of a rigid curve that is rigidly coupled with the Earth is equal to the area 

of its projection onto the equatorial plane, multiplied by twice the angular velocity of the Earth. 

 

 It should be emphasized that this area is given in the form of a quantity with a sign by the 

integration (6), which agrees with the known principle for the sign of surface area, which says that 

one must link it with a chosen sense of traversal on the bounding curve. 

 From that result, formula (2) will go to: 

 

(7)  C0 = C + 2 S , 

 

which is the desired relation between the absolute and relative circulation of a curve. 

 

 

 3. The dynamics of relative circulation. – When the individual point on a material curve is 

acted upon by a driving force, its absolute circulation will change in time according to an equation 

of the form: 

(8)  adC

dt
 = F. 
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F is the line integral of the tangential component of the acceleration forces that act upon the 

individual point on the curve then and can be briefly referred to as the circulation-creating force. 

In the calculation of that force, one can always ignore accelerating forces whose integrals along 

the closed curve are equal to zero. Ultimately, the great utility of the concept of circulation lies in 

the simple form of equation (8). One comes to that simple form since, as Lord Kelvin has shown, 

the line integral of the acceleration of the individual point on a closed curve is equal to the 

derivative of the circulation of the curve with respect to time. 

 In order to go over to the corresponding equation for the case of the relative motion, we 

substitute the value of C0 in (7), which will give: 

 

( 2 )d C S

dt

+
 = F 

or 

(9)  
dC

dt
 = F − 2

dS

dt
 . 

 

The term − 2
dS

dt
  appears in the last equation in the same way that a circulation-creating force 

would, just like F. That apparent circulation-creating force depends, on the one hand, on the 

angular velocity  of the Earth, and on the other hand, on the rate dS / dt with which the area of 

the projection of the curve onto the equatorial plane changes. We will call that rate, when endowed 

with the negative sign, the rate of contraction of the area. A comparison of equations (8) and (9) 

will then give the following result: 

 

 II. – The relative circulation of a material curve can be treated as if it were an absolute one, 

assuming that one extends the circulation-creating force that actually occurs by a fictitious force 

whose magnitude one will find by multiplying twice the angular velocity of the Earth times the rate 

of contraction of the area that is bounded by the projection of the curve onto the equatorial plane. 

 

 That theorem corresponds completely to Coriolis’ theorem on the relative motion of a single 

material point and can also obviously be derived from that theorem. However, the autonomous 

derivative above is decidedly the simplest. 

 

  

 4. The most-general hydrodynamical theorem on absolute circulation. – Now, the material 

curve initially belongs to a frictionless fluid or gaseous body, and no external forces besides gravity 

shall act upon it. Gravity does not act in such a way as to create circulation, since its acceleration 

will have a line integral along any closed curve that is equal to zero. The circulation-creating force 

F then reduces to the line integral of the accelerating force that originates in the gradient. The 

absolute circulation of each of the material curves that belong to the fluid will then obey the 

equation: 
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(10) adC

dt
 = A, 

in which A is given by the integral: 

 

(11) A = − v dp . 

 

Here, v means the specific volume, and p means the pressure in the fluid. The fact that A represents 

the line integral of the acceleration force that originates in the gradient is explained immediately 

when we write dp in the form (dp / ds) ds and recall that – dp / ds represents the tangential 

component of the gradient. 

 For the practical calculation of the value of A along the curve where one makes one’s 

observations, it is best for one to use the integral expression (11). However, when one deals with 

qualitative discussions, another interpretation of A is very convenient. Namely, by a conversion of 

the integral (11), one will see that one can define A to be a number that one arrives at as follows: 

One thinks of the isobaric surfaces as having a pressure difference of unity, and the isosteric 

surfaces (i.e., surfaces of equal specific volume) are drawn to have unit differences in the specific 

volume. Those two families of surfaces decompose all of space into a system of tubes, namely, the 

unit isobaric-isosteric tubes, and A will be number of such tubes that lie inside of the closed curve 

(1). 

 Before we go on to the case of relative motion, we will first generalize equation (10) by adding 

a term – R that should represent the influence of the frictional resistance on the circulation of the 

curves. (10) will then become: 

(12) 
dC

dt
 = A – R . 

 

There would be no difficulty in writing out an integral from which one can calculate R, formally 

speaking, that corresponds completely to the integral (11) for the calculation of A (2). However, 

 
 (1) Obviously, that will first become exactly true when one chooses infinitely-small units for the pressure and the 

specific volume. I have called the corresponding infinitely-thin unit tubes solenoids. The name might seem a bit 

strange, and for many readers, it might suggest Ampère’s electrodynamical representations. However, the terminology 

is in complete agreement with the terminology of modern vector analysis, although the connection to the form of the 

theorem that was given here does not emerge clearly. Lord Kelvin, in direct connection with Ampère’s terminology, 

has introduced the expression “solenoidally-distributed magnetism,” and from it, he developed the general expressions 

“solenoidally-distributed vector quantities” or “solenoidal vector quantities.” One then intends that to mean vector 

quantities whose spatial distribution can be given with the help of a system of tubes. The solenoids that come into 

question here, whose walls consists of isobaric and isosteric surfaces are now, in fact, the vector tubes of a solenoidal 

vector quantity, namely, the “vorticity gradient,” to which can reduce the study of the formation of circulatory motions 

and vortices. One will be led to the consideration of those vector quantities when one formulates the theorems in 

question as theorems about vorticity, following Helmholtz, instead of as theorems on circulations, as Lord Kelvin 

did. (Confer my treatise “Ueber die Bildung von Cirkulationsbewegungen und Wirbeln,” Videnskabsselskabets 

Skrifter, Christiania, 1898.) 

 (2) When one lets  denote the coefficient of friction and further lets U denote the velocity, as above, while v 

denotes the specific volume, one will find that when one starts from the equations of motion of viscous fluids and 

neglects some things that are allowable in atmospheric motions, one will have: 
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whereas the integral (11) is suited to direct practical applications since ordinary meteorological 

observations give satisfactory data for one to perform the calculations, so one can never make a 

corresponding use of the integral of R since the infinitely-small velocity differences that appear in 

it are not accessible to observation. Rather, that is why one must go down the opposite path and 

seek to determine R from equation (12) or the corresponding equation (13) below for the relative 

motion in those cases where all of the remaining terms in the equation are known from 

observations. If one recalls that fact then one can understand the meaning of the explicit appearance 

of the term R in the equation. Similarly, it is useful to recall the quantitative discussions in which 

it is not so much the magnitude of the frictional resistance that matters, as its direction. The 

direction or sign that R should have in equation (12) must be found by discussion in each case. 

 

 

 6. Circulation relative to the Earth. – With the help of theorem (11), we now go from 

equation (12) to the following one: 

 

(13) 
dC

dt
 = 2

dS
A R

dt
− −  

 

with no further analysis. That equation will then be true for any curve that returns to itself and 

consists of particles in the atmosphere or ocean, and it describes the circulation of that curve as we 

would see it on the rotating Earth. We start from the fact that the only forces that affect the motion 

of particles in the air or ocean in a noticeable way are: 

 

 1. The force of gravity, which includes the centrifugal force that is due to the rotation of the 

Earth. 

 

 2. The gradient of the pressure. 

 

 3. Friction. 

 

 4. The “deflecting force of the Earth rotation.” 

 

We can then assert that all circulations in the air or ocean must obey equation (13). 

 Any problem in theoretical mechanics is one of prognosis when it is posed in its direct form, 

just as most of the known problems in practical meteorology are. The goal is to predict the 

dynamical physical state of the atmosphere at a later time when that state is known with sufficient 

precision at a given time. On the other hand, the problem can also appear in the opposite 

formulation: When the changes in the atmospheric state are known during a certain time interval, 

 
R =   v (curl2 U)t ds, 

 

in which curl is the symbol of a known operation in vector analysis, and the subscript t means that only the component 

of the vector curl2 U comes into question, as usual. This integral shows its true significance by guiding the search for 

the indirect path that might guide the determination of R. However, we will not take up that problem here. 
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deduce the physical and dynamical states that are the causes of the changes that occurred. It will 

be one part of that prognostic problem or its opposite that solves equation (13). When applying it, 

one must observe the following, above all: 

 

 1) The equation is true for any closed curve that consists of air particles. One is then 

completely free to choose the form and configuration the curve might have at the initial time. 

Therein lies one of the most important advantages of the method. One can make that choice on the 

basis of exclusively the convenience with which one can utilize the observational data or simplify 

the calculations. Obviously, the position that the curve has relative to the solenoids at that initial 

time plays the most important role. Now, the solenoids always run very close to parallel with the 

Earth’s surface. For that reason, curves that run at a constant height above sea level will not enclose 

solenoids, practically speaking. On the other hand, curves that are included in vertical planes at 

the initial time, and which then consist of two horizontal curve segments that lie above each other 

and are linked with each other by two vertical curve segments, will enclose the largest number of 

solenoids that might enclose a curve under otherwise-equal circumstances. One’s considerations 

can mostly be restricted to curves from those two types. We shall refer to them briefly as the 

horizontal and vertical ones with no concern for the fact that they will mostly not remain horizontal 

(vertical, resp.) in the course of their later motion. In connection with that, it deserves to be 

emphasized that due to the predominately horizontal direction of the wind, the particles of a curve 

will always remain for a relatively-long time at the level that they once assumed. It will then follow 

that a horizontal curve will always remains horizontal for a relatively-long time, and that a vertical 

curve will enclose one and the same bundle of solenoids for a relatively-long time, even if it does 

not also remain vertical. 

 

 2) If the form of the curve has been chosen then the first thing that one is required to know is 

the motion of the curve at the initial time. That is inferred from observations of the wind, and from 

measurement of cloud motions when one is dealing with curves or curve segments in the higher 

air layers. If one knows the velocity at a sufficient number of points on the curve from those 

observations then one calculates the circulation C from the tangential components and the rate of 

contraction – dS / dt of the projection of the area onto the equatorial plane from the normals 

components. In that way, the last term on the right in equation (13) will be known, and likewise 

the initial value of C that is to be used in the integration. 

 

 3) When observations of pressure, temperature, and humidity have been made at a sufficient 

number of points that are distributed along the curve, one can calculate the specific volume v from 

that then ascertain the number A of solenoids inside the curve with the help of the integral (11). 

 

 4) The third term R that occurs on the right-hand side of the equation can never be found by 

direct observations, as we have stressed before. Rather, one must seek to calculate R from the 

equation itself in cases where all of the remaining terms are known with sufficient precision. 

Naturally, that is suited, above all, to the case of stationary circulation, where C is independent of 

time, such that the equation will reduce to: 
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(14) A – R − 2
dS

dt
  = 0 . 

 

If one has learned the value of R in certain cases in that way then one can employ that value in the 

general equation (13) in analogous cases. 

 We shall not go into the applications of the theorem in detail here. I shall communicate only 

the most-relevant consequences that I likewise communicated before in my lectures at the 

Stockholm Institute in the Spring semester of 1901, along with the theorem itself, and I shall also 

add a few general remarks. My audience at the time was Sandström, who undertook the task of 

working out the further consequences, and I shall permit myself to refer to his publications on that 

subject. 

 

 

 7. Onset of motion from a state of relative rest. – If rest prevails relative to the Earth then 

the area S of the projection of a curve onto the equatorial plane will not change, and the last term 

in equation (13) will vanish. The term R, which depends upon the differences in velocity, will be 

likewise zero, and the equation will reduce to: 

 

(15) 
dC

dt
 = A . 

 

According to that equation, the relative circulation will then begin from a state of relative rest. The 

equation has precisely the same form as the one that is valid for the absolute circulation in a 

frictionless fluid, which is equation (10). When one deals with the start of the motion, one can 

ignore friction as well as the deflecting force of the Earth’s rotation, and we will have nothing to 

add to what was communicated in the previous articles as long as we are dealing with the primary 

causes of atmospheric motions. 

 The first cause of circulation then contained to be the appearance of solenoids, i.e., from 

temperature differences, and the first effect of those solenoids will be a circulation of the curves 

that are contained in the vertical plane, while the horizontal curves, which do not enclose any 

solenoids, will not contribute to circulation. 

 Now, if the Earth were at rest and the air were frictionless then the motion would progress as 

a circulation only in the vertical planes. However, as soon as the individual points of the vertical 

curves are set into motion, the terms – R and − 2
dS

dt
  will also begin to contribute. In that way, 

it should be remarked that the infinitely-small velocity differences upon which the friction depends 

will first achieve large values relatively later in such a way that one would need to calculate a time 

with only the term − 2
dS

dt
 . That term will have no influence on the circulation of the vertical 

curves for the time being. That is because the motion of those curves back to themselves will have 

no changes in its projections onto the equatorial plane as a consequence. By comparison, things 

are different with horizontal curves. One of them that surrounds a heated or cooled location in an 
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annular way will exhibit a motion of expansion or contraction as a consequence of the initial 

circulation in the vertical planes. The area of its projection onto the equatorial plane will then 

increase or decrease, and the curve will go into circulation, even though it does not enclose any 

solenoids. As long as we can ignore friction, that will proceed according to the equation: 

 

dC

dt
 = − 2

dS

dt
 . 

 

That can be integrated for the time interval from t0 to t during which the curve will neither enclose 

solenoids nor be retarded by friction: 

 

(16) C = − 2 (S – S0) . 

 

In that way, S0 means the area of the projection at time t0 . As long as the curve remains horizontal 

and the friction (Reibung) can be neglected in comparison to the viscosity (dem trägen 

Widerstand), the circulation of the curve will then increase in proportional to the decrease in the 

area of its projection onto the equatorial plane. When the friction comes into effect later, while the 

curve still remains horizontal, one will have to apply the more general equation: 

 

(17) 
dC

dt
 = − R − 2

dS

dt
 , 

 

and when the circulation of the curve becomes stationary, one will have: 

 

(18) R = − 2
dS

dt
 , 

 

which is an equation that is excellently suited to the determination of the value of R. 

 It is easy to see which direction those circulations will impart to the horizontal curves. Along 

such a curve, we can choose the direction of traversal to be the one that follows the rotation of the 

Earth or cyclonic (so S-E-N-W on the northern hemisphere) to be positive and the opposite or 

anticyclonic direction to be negative. That definition will become completely unambiguous when 

we avoid the unnecessary complication that a curve might intersect itself, and likewise overlook 

the case in which part of a curve lies on the northern hemisphere and part of it lies on the southern 

hemisphere. With that choice of positive direction of traversal, one finds by the integration (4) that 

the areas S will be a positive quantity, and that implies the simple rule: 

 

 III. – A horizontal curve that contracts will take on a cyclonic circulation, while an expanding 

one will take on an anticyclonic circulation. 

 

 From that theorem on the circulation of horizontal curves, we will once more find the known 

result that one otherwise derives from considering the horizontal components of the deflecting 

force of the Earth’s rotation. Therefore, to mention the most important cases: A curve that 



Bjerknes – Circulation relative to Earth. 10 

 

surrounds the entire Earth like a parallel circle and belongs to an upper air mass that flows towards 

the pole will contract, and that is why it will take on a circulation with the rotation of the Earth, so 

from W to E. By contrast, a similar curve that belongs to a lower air mass that flows to the equator 

will expand, and in that way take on a circulation that is against the rotation of the Earth, so from 

E to W. Moreover, a curve that surrounds the center of a cyclone down on the Earth in an annular 

way will assume cyclonic circulation, while one that surrounds the center of an anticyclone in the 

same way will assume an anticyclonic circulation. 

 

 

 7. [sic]. The reaction of horizontal circulations on the vertical ones. – Up to this point, the 

theory of circulation has led to no new qualitative results since it has only given us a tool for 

studying motions that have been known and understood for a long time with more quantitative 

precision. Things will change when we take the next step. 

 Once the circulation in the horizontal plane has begun, the originally-vertical curves, which 

were primarily brought into circulation by solenoids, will no longer remain vertical. That is 

because, on the one hand, the circulations of the horizontal curves in the initial phase down on the 

Earth’s surface were mostly in the opposite direction to the ones in the upper air layers. On the 

other hand, even when the horizontal curves that lie on top of each other have circulations in the 

same directions, the motion of the upper curves would be retarded much more by friction. For that 

reason, in general, the upper and lower parts of the vertical curves will either proceed in different 

directions or also in the same directions, but with differing velocities. It follows from this that the 

original vertical curves can no longer remain vertical, as was said before, and that the areas S of 

their projections onto the equatorial plane will begin to vary. The vertical circulations will no 

longer depend upon the solenoids then, but also upon the horizontal motions. Therefore, as soon 

as sufficiently-intense horizontal motions arise, one must also apply the complete equation (13) 

for the discussion of the vertical circulations. Nothing would then prevent the last term, which 

depends upon the rotation of the Earth, from even taking the upper hand, such that circulations 

counter to the solenoids would be created. 

 In order to determine the direction of that vertical circulation that is independent of the 

solenoids, one can apply this general rule, which is useful even in the most complicated cases: 

Choose a certain direction of traversal on the given curve to the positive. That will give a well-

defined direction of traversal for the projected curve in the equatorial plane to be positive, and the 

sign of the bounded surface will again be determined from that. If the area decreases algebraically 

then the given curve will take on circulation in the positive direction. However, that sequence of 

inferences can be shortened when one introduces the restrictions that the curve must lie on only 

one hemisphere and its projection onto the Earth or the equatorial plane must never intersect itself. 

In the initial position, where the curve is vertical, it will be projected onto the Earth’s surface like 

a double line. However, a moment later, when it has assumed its inclined position, that double line 

will be converted into a closed curve. If one now follows through the sequence of inferences that 

was given with an arbitrary curve of that type and then compares the projections of everything 

onto the equatorial plane with the projections onto the surface of the Earth then one will arrive at 

the following rule: 
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 IV. – A curve that is originally vertical and then goes into an inclined position will be acted 

upon by a circulation-creating force whose direction can be found from the fact that it will be 

anticyclonic on the closed contour that defines the projection of the inclined curve into the surface 

of the Earth. 

 

 The study of those vertical circulations that can take place independently of, or even against, 

the solenoids should be one of the most important applications of the theory of circulation. That is 

because that domain has not been explored to any great extent. However, the fact that one finds 

the solution to a known riddle there will be shown in the article by Sandström that follows next. 

In conclusion, I shall give only a first application, namely, to the case in which the relationships 

are simple enough that one has already found the elementary qualitative explanation some time 

ago. 

 

 

 8. James Thomson’s theory of the grand atmospheric circulation. – On an Earth at rest, the 

trade wind would be a purely north-south wind that would have to blow from the pole to the 

equator. However, in reality, it blows as a NE wind that is limited to a zone between the equator 

and the horse latitudes. By contrast, between the horse latitudes and the poles, one has 

predominately southwesterly winds. Maury (1855), Ferrel (1856), James Thomson (1857), and 

Ferrel, on a second occasion (1860 and 1889), have presented models for the connection between 

those SW winds and the large atmospheric circulation (1). The only one that does not include 

anything that it kinematically or dynamically impossible is that of James Thomson and the last 

one by Ferrel, which agrees with Thomson’s completely. According to that model, the grand 

circulation at high altitudes goes unperturbed between the pole and the equator. However, between 

the horse latitudes and the equator, the lowest air layers would have a circulation that is opposite 

to the one that would be produced by the temperature distribution. However, Thomson already 

gave a completely-applicable qualitative explanation for that behavior, which seems paradoxical 

on first glance, in his first article: Due to the fast circulation from W to E at the higher latitudes, 

the air masses have greater centrifugal forces than at the lower-lying parts of the rotating Earth. 

Thus, a barometric minimum will be created over the polar region. However, the lowest air masses, 

which will be retarded by friction against the Earth, do not have enough centrifugal force to resist 

the gradient of that minimum. That lowest air layer must then flow towards the pole. 

 Now, the theory of circulation will lead to exactly the same result, and indeed in such a form 

that one can subject the qualitative explanation to a quantitative test. We assume (as in Hann’s 

climatology) that a temperature difference of 34o exists between the mid-years for the parallels 35o 

and 80o, and since we know nothing more exact about the decrease in temperature with height, we 

assume, for simplicity, that it is equally large at both parallels. Those data will suffice to estimate 

the number A of solenoids between those two latitudes with the help of the integral (11). In the 

layers that lie above each other every 1000 m in altitude, one finds, say, 13  106 cm2 / s solenoids, 

on average, and when those are the only things that generate circulation, they would create a 

 
 (1) One finds all of the models together in J. Thomson’s treatise “On the grand Current of atmospheric 

Circulation,” Trans. Roy. Soc. London (1892).  
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motion that would proceed towards the equator down at the Earth’s surface and towards the pole 

in the higher air layers. However, the air masses generally move out of the W, and indeed they 

move faster in the upper layers than they do in the lower ones. A curve that consists of air particles 

and is contained in a meridian plane at the initial time will then assume an inclined position at a 

later moment in time since the upper part will be moved further towards the E than the lower one. 

It will now project onto the Earth like a closed curve, and the anticyclonic direction of traversal on 

that projected curve will determine a direction of circulation on the original vertical curve that 

points towards the pole down at the surface of the Earth and towards the equator higher up, as 

Thomson found by considering the centrifugal force. Now, one can easily calculate the value of 

dS / dt for which the two causes of circulation will be in equilibrium. For one curve that extends 

form 35o to 80o and whose upper branch lies 1000 m higher than its lower one, one must then have 

2
dS

dt
  = 13  106. One finds that this condition will be fulfilled when W-wind increases by 2.2 

m/s, on average, for every 1000 m in altitude. Now, the strength of the wind is known to first 

increase rapidly with altitude and them more slowly. As long as the W-wind increases more than 

2.2 m/s per 1000 m of altitude, the circulation must them go towards the pole lower down and 

towards the equator higher up. However, as soon as an altitude is reached at which the increase in 

the W-wind is smaller, the circulation will have the direction that would expect from the 

temperature distribution. 

 Those numbers are cited here only as an example of how one can utilize the theory of 

circulation for quantitative investigations. However, they can prove to be correct, up to order of 

magnitude, and the path that one has to follow when a sufficient amount of observational data has 

been assembled is entirely clear. For the implementation of such calculations in practice, I shall 

refer to the article by Sandström that follows (in the next issue). 

 

____________ 


