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I. – Introduction. 

 

 1. – Apparent action at a distance can take place between pulsating spheres that are found in a 

homogeneous, incompressible, and frictionless fluids. All of that suggests that those actions are 

based in only the pulsating motions, but not on the spherical form that assumed in order to simplify 

the calculation, and the rigidity of the bodies under deformation that would follow from it. 

Everything would then make it likely that the same actions at a distance would also appear between 

pulsating bodies of arbitrary form in the fluid itself. 

 That remark is important because it allows one to glimpse the possibility of developing the 

theory of hydrodynamical action at a distance by using a simpler and more-general method. Instead 

of a system that is composed of a fluid and foreign bodies, it must probably be possible to consider 

a simple fluid system and to deduce the entire theory directly from the equations of motion of the 

fluid. 

 

 

 2. – A plan for carrying out an investigation in that direction is given by the following 

argument: When a pulsating fluid mass takes on a motion as a consequence of its attraction to the 

surrounding fluid, a sliding along the surface that separates the pulsating fluid mass from the 

surrounding non-pulsating fluid will necessarily take place. However, that sliding can be regarded 

as the limiting case of a vortex. A formation of vorticity will then take place, and it must be possible 

to draw conclusions of a general nature about the apparent action at a distance that is based in the 

fluid pressure from the laws of formation of vortices in frictionless fluids. 
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 I have found that the suggested path is completely accessible once I first overcame my 

cherished prejudice that vorticity could not arise or die off at all in a fluid (1). In fact, it proves to 

be very easy to derive a series of simple theorems on the formation of vorticity. I have already 

published those theorems before, and after that I especially developed the application of one of 

them to a discussion of motions in the air and ocean (2). Here, I shall return to the application that 

led me to investigate the formation of vortices, namely, the application to hydrodynamical action 

at a distance that was suggested above. Therefore, I shall first give a new and independent 

derivation of the theorem of vortex formation that will be applied. 

 

 

II. – The hydrodynamical equations of motion. 

 

 3. – In what follows, I shall let u denote the velocity, p, the pressure, and q, the density of the 

fluid. Along with the density, I shall also introduce the specific volume: 

 

(a)  k = 
1

q
, 

 

or mobility, of the fluid. Moreover, along with the velocity, I shall also introduce the product of 

velocity and density: 

 

(b)  u  = q u  

 
 (1) The usual categorical emphasis on the conservation of vorticity in frictionless fluids, the parallelism between 

that result and the principle of the conservation of energy and the comparison between perpetual vortex rings and 

perpetual atoms, all without expressly underlining the specializing assumptions that were used in the derivation, has 

certainly broadened the scope of that prejudice considerably, and in that way had an unfavorable effect on research in 

hydrodynamics, in general. Extended realms in which results must nonetheless be gleaned that are distinguished just 

as much by their theoretical appeal as by their practical utility are not considered to be approachable in that way as 

they are in theoretical hydrodynamics. It is especially regrettable that if not for that fact, hydrodynamics would 

participate more actively in meteorological research. It is probably despite one’s instinctual sense of the otherwise 

striking contradiction with the continual formation of atmospheric vortices that takes place that one often formulates 

the theorem that fluid vortices cannot be generated “by conservative processes.” However, that is entirely incorrect 

because the formation of vortices by fluid pressure is, in itself, a process of a completely conservative nature, and 

when the formation of vortices drops off then that is based, in and of itself, upon certain intrinsic properties of the 

fluid, namely, that it is either homogeneous and incompressible or that its density is a function of only pressure. Since 

those assumptions are never precisely accurate for natural fluids, the theorems on the conservation of vorticity are 

pure abstractions, although they are very useful abstractions since the cited conditions can be fulfilled to a very high 

degree of approximation under some circumstances. By contrast, it is naturally essentially meaningful for the 

continued formation of vortices to know whether energy can be continuously exhausted by an energy source. For a 

conservative system, the formation of vortices cannot advance continually in the same direction, but that would be 

possible with the aid of an energy source, as we see in atmospheric motions. 

 (2) V. Bjerknes, “Über die Bildung von Cirkulationsbewegungen und Wirbeln in reibunglason Flüssigkeiten,” 

Videnskansselkabers Skrifter, Christiania (1898). “Über einen hydrodynamischen Fundamentalsatz und seine 

Anwendung auf die Mechanik der Atmosphäre und des Weltmeeres,” K. Svenske Vetensksakademiens Handligar, 

Stockholm (1898). “Das dynamische Prinzip der Circkulationsbewegungen in der Atmosphäre,” Meteorologische 

Zeitschrift (1900). “Cirkulation relative zu der Erde,” Öfversigt af K. Vetenskaps-Akad. Föorhandl. (1901), Met. Zeit. 

(1902). 
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which is the specific momentum, or hydrodynamical field intensity, as the vector quantity for the 

description of the fluid motion. Finally, I will let f denote the force per unit mass and let f  denote 

the force per unit volume that acts upon the individual fluid particles. A relationship exists between 

f  and f that is similar to the one that exists between field intensity and velocity, namely: 

 

(c)  f  = g f . 

 

 

 4. – When I denote the components of the aforementioned vector quantities along the three 

rectangular axes x, y, z by adding the subscripts x, y, z, resp., the hydrodynamical equations of 

motion can then be written in the form: 

 

(a)  

1
,

1
,

1
.

x
x

y

y

z
z

du p
f

dt q x

du p
f

dt q y

du p
f

dt q z


= − 


 

= −


 
= −



 

 

The continuity equation should be added to them: 

 

(b)  
1yx z

uu u dq

x y z q dt

 
+ + +

  
 = 0 . 

 

The d / dt in those equations has the well-known meaning: 

 

(c)  
d

dt
 = x y zu u u

t x y z

   
+ + +

   
. 

 

Therefore, d / dt refers to the changes that one observes in one and the same moving fluid particle, 

while  / t refers to the changes that one observes at one and the same location in space. 

 

 

 5. – In his classic treatise on the conservation of vorticity, Helmholtz assumed that the density 

q of the fluid was constant and defined a new set of equations from (4.a) by differentiating the last 

equation with respect to y, and the second-to-last equation with respect to z and taking the 

difference of the two. In that way, an equation arose that no longer included the pressure, and 

which expressed the principle of the conservation of vorticity when it was combined with two 

similarly-formed equations. 
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 By contrast, when one drops any specializing assumption on the density, the pressure will not 

drop out from the new equations that are defined in that way. Instead of Helmholtz’s theorem on 

the conservation of vorticity, one will then come to a more-general one that gives the dependency 

between the law of vortex formation and the distributions of density and pressure. The law is 

especially meaningful for the discussion of atmospheric vorticity, and the preservation of the 

pressure in the formula is advantageous because the pressure can be regarded as known from 

barometric observations. 

 However, for the applications that I have in mind here, no a priori knowledge of the pressure 

distribution will be assumed. The elimination of the pressure is essential, and it will be achieved 

when one multiplies equations (4.a) by the density q before the differentiation. However, the 

theorems to which one will arrive in that way will first take on their simplest form when one 

describes the fluid motion in terms of the hydrodynamical field intensity, instead of the velocity. 

 We next introduce the hydrodynamical field intensity into the general equations of motion. As 

a result of (3.b), we have: 

xdu
q

dt
= x

x

du dq
u

dt dt
− = 

1x
x

du dq
u

dt q dt
− . 

 

The factor of xu  in the last term on the right occurs in the equation of continuity. From (3.a) and 

(4.b), it is: 

− 
1 dq

q dt
 = 

1 dk

k dt
 = 

yx z
uu u

x y z

 
+ +

  
. 

 

Each of those three equivalent expressions has the meaning of the rate of cubic expansion per unit 

volume of the moving fluid particle. To abbreviate, we will denote that quantity by e and then write 

the continuity equation in the form: 

(a)  
yx z

uu u

x y z

 
+ +

  
 = e 

 

from now on, or with a known notation in modern vector analysis, in the form: 

 

(a)  div u = e . 

 

One will then have: 

xdu
q

dt
= x

x

du
eu

dt
+ , 

 

and the first equation in (4.a) can be written as: 

 

(b)  x
x

du
eu

dt
+  = x

p
f

x


−


. 
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 6. – The equations that relate to the vorticity   of the vector u  shall now be derived from that 

equations the two corresponding ones that relate to 
yu  and zu . That vorticity has the components: 

 

(a)  

,

,

,

yz
x

x z
y

y x
z

uu

y z

u u

z x

u u

x y







 
= −

 

  

= −
 
 

= −
 

 

 

and will be denoted in modern vector analysis by: 

 

(a)    = curl u . 

 

 This vorticity   of the field intensity is to be distinguished from the vorticity  = curl u, If the 

density q of the fluid is spatially constant then   and  will point in the same direction everywhere 

and be proportional to the numerical value: 

 

(a)   = q  , 

 

and there will no longer exist any essential difference between the velocity and field intensity 

fields. However, we have the general case in mind, where the density can vary arbitrarily in space 

and time, and the vorticity of the field intensity can deviate arbitrarily much from the vorticity of 

the velocity in direction, as well as quantity. 

 Differentiating the first equation in (a) with respect to x, the second, with respect to y, and the 

third, with respect to z, and adding them will given the known relation: 

 

(b)  
yx z

x y z

  
+ +

  
 = 0 , 

 

which is generally true for any vector that can be represented as the vorticity of a different vector. 

 

 

 7. – In order to ease the ultimate derivation of the equations that are valid for the formation of 

vortices, we can convert the general dynamical equation (5.b) somewhat. 

 If we employ the Euler development (4.c) for the time derivative then the first term on the left 

in equation (5.b) will assume the form: 
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x x x x
x y z

u u u u
u u u

t x y z

   
+ + +

   
. 

 

As one easily sees, that can also be written in the form: 

 

yx x z
x y z z y y z

uu u u
u u u u u

t x y z
 

   
+ + + + − 

    
. 

 

If we introduce ux = xk u , etc., in the trinomial terms in parentheses using (3.a and b) then the 

expression will assume the form: 

 

( )2 2 21

2

x
x y z z y y z

u
k u u u u u

t x
 

 
+ + + + −

 
, 

or more simply: 
21

2

x
z y y z

u u
k u u

t x
 

 
+ + −

 
. 

Equation (5.b) will then become: 

 
21

2

x
x y y x x

u u
k u u eu

t x
 

 
+ + − +

 
 = x

p
f

x


−


. 

 

The other two equations are obtained by cyclic permutation of the x, y, z. If we simultaneously 

move the terms somewhat then that will give the following form for the general hydrodynamical 

equations of motion: 

(a)    

2

2

2

1
,

2

1
,

2

1
,

2

x
z y y z x x

y

x z z x y y

z
y x x y z z

u p u
u u f eu k

t x x

u p u
u u f eu k

t y y

u p u
u u f eu k

t z z

 

 

 

   
+ − = − − −

  


  
+ − = − − −

  
   

+ − = − − −
  

 

 

in which one must recall the relations (3.a and b) and (6.a). 

 Those three equations can be represented by a single vector equation, namely: 

 

(a)  (curl )
u

u u
t


+ 


 = f − p − 21

2
eu k u−  . 
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 is then the symbol for the Hamiltonian differential operation with the three differentiation 

components 
x




, 

y




, 

z




, and following Gibbs, the symbol  stands between the two factors in a 

vector product (1). 

 

 

III. – The general law of vortex formation. 

 

 8. – We shall now define a new process that follows Helmholtz’s by differentiating the third 

of equations (7.a) with respect to y and the second one with respect to z and subtracting them. 

Initially, the left-hand side of new equation will assume the form: 

 

y yx x x x xz z
y z x x y z

u u uu
u u u

t y z y z y z y z

   
  

        
+ + − + + + − −              

 

 

when one recalls (6.a). The desired equation will then be the following one when we keep only the 

term /xd dt  on the left-hand side: 

 

(a)   
2 2( )( ) 1

.
2

y x xz
x x y

y yx z

u u uud

dt y z y z

f euf eu k u k u

y z y z y z z y


  

    
= − + + +  

    


         
+ − − − − −             

 

 

The other two equations are obtained by cyclic permutation of x, y, z. Those equations include the 

most-general law of vortex motion in frictionless fluids, assuming that by “vorticity” one means 

the vorticity of the hydrodynamical field intensity  , not the vorticity  of the velocity. 

 In order to ease the discussion, we now write: 

 

(b)  xd

dt


 = 

I II III IV

x x x xd d d d

dt dt dt dt

          
+ + +       

       
 

 

and examine the following four equations individually: 

 

(bI)  
I

xd

dt

 
 
 

= − 
y x xz

x y y

u u uu

y z y z
  

   
+ + + 

    
, 

 
 (1) Grassmann’s parenthesis notation has the disadvantage that parentheses already have so many other 

applications. a notation that is useful for other purposes, namely, V, is abandoned by the use of the Hamiltonian 

notations. That is why, of all the notations that have been proposed up to now, it seems to be the most convenient to 

me. (Cf., Gibbs-Wilson: Vector Analysis, New York, 1902) 
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(bII) 
II

xd

dt

 
 
 

= 
yx

ff

y z


−

 
, 

 

(bIII) 
III

xd

dt

 
 
 

= − 
( )( ) yz
eueu

y z

 
− 

  
 , 

 

(bIV) 
IV

xd

dt

 
 
 

= − 
2 21

2

k u k u

y z z y

    
− 

    
 , 

 

which give the various factors that influence the motion of vortices. 

 

 

IV. – Conservation of vorticity. 

 

 9. – If we next write out equation (8.b1) and the two that follow from it by cyclic permutation 

of x, y, z then that will give the system of equations: 

 

(a)  

I

I

I

,

,

.

yx x xz
x y y

y y yxz
x y z

yxz z z
x y z

ud u uu

dt y z y z

d u uuu

dt x z x z

uud u u

dt x y x y


  


  


  

     
= − + + +   

      


     
= − + +           


     = − − +         

 

 

 When no vorticity exists at the time considered, so 
x  =

y  =
z = 0, the right-hand sides, and 

therefore the left-hand sides, of those equations will vanish. Thus, when vorticity does not exist, 

those equations will imply that no new formation of vortices will take place either. As a result, 

they will imply only modifications that preexisting vortex motion will experience under some 

circumstances. 

 One will easily recognize modifications of that type when one recalls the known kinematical 

meanings of the differential expressions that appear on the right-hand side. As is known: 

 

y z
u u

y z

 
+

 
, xz

uu

z x


+

 
, 

yx
uu

x y


+

 
 

 

mean the rates of expansion per unit area of surfaces that are perpendicular to the x, y, or z-axis, 

respectively. The terms in the diagonal, when endowed with the negative sign, will then say how 

the vortices will die off along each of the axes in question when an expansion of the mass of the 
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vortical fluid takes place in the plane that is perpendicular to the axis, as one would expect as a 

result of the decrease in the moment of inertia of the rotating masses. 

 On the other hand, the differential quotient ux / y has the meaning of the angular velocity 

with which the line element of the fluid that is parallel to the y-axis rotated around the z-axis. The 

term x
y

u

y





 and the remaining terms that are similarly constructed will then give the variations of 

the individual components of the vorticity that result from the changes in direction of the vortex 

axis relative to the coordinate system. 

 Equations (a) then say precisely the same thing about the vorticity   of the hydrodynamical 

field intensity that the known Helmholtz equations say about the vorticity  in homogeneous and 

incompressible fluids. If the general equations of vorticity (8.a) reduce to equations (a) exclusively 

then the preexisting vorticity will be preserved with no formation of new vortices. 

 

 

 10. – One also easily verifies that equations (9.a) will reduce to the usual Helmholtz equations 

for the conservation of vorticity when the fluid is homogeneous and incompressible. 

 If the fluid is initially incompressible then the velocity will fulfill the condition: 

 

yx z
uu u

x y z

 
+ +

  
 = 0 . 

 

The first of equations (9.a) can be put into the form: 

 

(a)  
I

d

dt

 
 
 

 = x x x
x y z

u u u

x y z
  

  
+ +

  
 

 

with the help of that relation. That equation, along with the two corresponding ones that relate to 

the y and z, are valid for incompressible fluids that can still be heterogeneous, such as, for instance, 

a mixture of salt water and sugar water, or a mixture of oil and water. 

 If the fluid is, at the same time, homogeneous, so the density q is constant, then the vorticity 

of the field intensity   will be simply proportional to the vorticity of the velocity  (6.a), and 

after removing the constant factor q, one will get: 

 

(b)  xd

dt


 = x x x

x y z

u u u

x y z
  

  
+ +

  
. 

 

That equation can also be written in the form: 

 

(b) xd

dt


 = 

yx z
x y z

uu u

x x x
  

 
+ +

  
. 
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Equation (b), along with the corresponding ones for the y and z-axis, give one form for 

Helmholtz’s original equations for the conservation of vorticity (1), while equation (b), along with 

the corresponding ones for the y and z-axis, give the other. 

 Now, if the external force is conservative, and the fluid is homogeneous and incompressible, 

as assumed, then all of the terms to be discussed in the general equations of vortex motion will 

vanish (cf., in nos. 11, 13, 15). The general equation (8.a) reduces to the form (b) or (b), and we 

get back to Helmholtz’s result. 

 

 

V. – Formation of vorticity by external forces. 

 

 11. – The equation: 

(a)  
II

xd

dt

 
 
 

 = 
yz

ff

y z


−

 
, 

 

along the corresponding equations for the other two axes, describes the formation of vorticity by 

external forces, which is obviously always possible. 

 However, is should be emphasized especially that the external forces can also serve to create 

vorticity when they are conservative. A force is conservative when its magnitude f per unit mass 

can be represented by a potential function : 

 

(b)  fx = 
x




, fy = 

y




, fz = 

z




. 

 

The components of the force per unit volume will then be: 

 

(b)  
xf  = q

x




, 

yf  = q
y




, 

zf  = q
z




. 

 

When one introduces that into (a), one will have: 

 

(c)  
II

xd

dt

 
 
 

 = 
q q

y z z y

   
−

   
. 

 

 The expression on the right is the first component of a vector product, and equation (c), in 

conjunction with the two that correspond to the other two axes, can be represented by the single 

vector equation: 

 

 
 (1) Wissenschaftliche Abhandlungen, I, pp. 110-111.  
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(c)  
II

d

dt

 
 
 

 = q  . 

 

 The vector q is perpendicular to the surfaces of equal density, q = const., and points in the 

direction of increasing values of the density. In precise analogy with that, the vector  is 

perpendicular to the surfaces  = const., and points in the direction of increasing values of the 

potential function . As a vector product of those vectors, 
II

d

dt

 
 
 

 is perpendicular to both of 

them. As a result, the axes along which vortices form point along the lines of intersection of the 

families of surfaces q = const. and  = const., and the direction of rotation is the one that takes the 

first vector factor q to  the second one along the shortest path. 

 

 (I.A) One then finds the formation of vorticity around the lines of intersection of the equi-

dense surfaces q = const. and the equipotential surfaces  = const., and indeed in the direction 

that points from the density vector q to the potential vector . 

 

 According to that law, a vortex will form in the atmosphere, for example, around the lines of 

intersection of the equi-dense surfaces and the level surfaces of the force of gravity. When f is the 

acceleration of gravity, and  is the gravitational potential, according to the definition (b), the 

vector  will point vertically upwards. Now, if the density vector points sideways then the 

rotation of the density vector to the potential vector will be a motion in which the denser masses 

sink on the one side, while the heavier ones rise on the other, as one would expect. That theorem 

can be exploited for the derivation and quantitative study of the formation of atmospheric vortices 

in precisely the same way as the theorem that this formation of vorticity will lead back to the 

distribution of density, in conjunction with the distribution of pressure. However, we shall not go 

into the details of the applications of that kind on this occasion. 

 If the fluid is homogeneous and incompressible then the vector q will be zero, and therefore 

the vector product (c), as well. Hence, the formation of vortices by conservative external forces 

cannot take place in homogeneous and incompressible (cf. no. 10). 

 

 

 12. – The consideration of the following special case will be especially informative for the 

discussion that follows. 

 In a homogeneous fluid of density q = q0, one finds a bounded fluid mass that has the greater 

density q = Q, and which we will briefly refer to as the body, in contrast to the surrounding fluid. 

Fig. 1 shall represent a vertical section through the body and the fluid. In the transition layer, one 

sees a number of densely-neighboring surfaces of equal density that are cut from the horizontal 

level surfaces of the force of gravity. It is only in that transition layer that the density vector q 

will have a non-zero value, and that is the only place where vorticity can form. However, the 

vorticity that emerges in the direction from the potential vector to the density vector will be 

possible, as one sees from a consideration of the figure, only when the body takes on a motion that 
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is downwards with respect to the surrounding fluid. On the other hand, if the fluid body has a 

density that is less than that of the surrounding fluid then the vector q will have the opposite 

direction in the transition layer, so the vortices will form in the opposite direction, and the body 

must take on a motion that is upwards relative to the surrounding fluids. 

 
 Nothing prevents us now from introducing forces that keep the individual points of the 

homogeneous interior of the fluid body in positions that are fixed with respect to each other. That 

is because those forces would be conservative and would not cause vortices to form in the 

homogeneous interior of the fluid body and would therefore not cause any modification of our 

result. In other words, we can also replace the interior nucleus of the fluid body with a solid body. 

Nothing prevents us from making the transition layer ever thinner until we reach the limiting case 

in which the density suddenly changes from the value Q to the value q0 and the vorticity begins to 

slide on that discontinuity surface. As a consequence of the theory of vorticity, we then find the 

result that: 

 

 (I.B) Relative to the surrounding massive fluid, a denser body will take on a downward 

motion while a less-dense body will take on an upward motion. 

 

 That is nothing but the known phenomenon that one would otherwise explain with the help of 

Archimedes’ principle. Here, by way of comparison, we will place it with the theorems that will 

be derived below. However, it is important to emphasize that the result (I.B) is obtained by 

dynamical considerations, and that is why it does, in fact, have a much broader significance than 

the usual one that one derived from Archimedes’ principle by static considerations. The result (I.b) 

is valid regardless of the motions that the body and fluid possess with respect to each other from 

the outset. 
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Figure 1. 



Bjerknes – The analogy between hydrodynamical and electrostatic phenomena.  13 

 

VI. – Formation of vorticity by changes of volume in a flow field. 

 

 13. – The equation: 

(a)  
III

xd

dt

 
 
 

= − 
( )( ) yz
eueu

y z

 
− 

  
 , 

 

in conjunction with the two corresponding ones that relate to the y and z axes, can be represented 

by the single vector equation: 

(a)  
III

d

dt

 
 
 

= − curl eu  

 

When the vector eu  has a curl, in the terminology of vector analysis, the dynamical formation of 

vorticity will occur. 

 The vector eu  vanishes identically when the rate of expansion e is equal to zero. Thus, that 

cause of vortex formation will be absent in a homogeneous and incompressible fluid (cf., no. 10). 

 We now go on to the consideration of the especially-important special case of the formation 

primary vortices. When   = 0 at the initial time, the hydrodynamical field intensity u  can be 

represented by a potential: 

(b)  xu  = 
x




, 

yu  = 
y




, zu  = 

z




. 

Substituting that in (a) will give: 

(c)  
III

xd

dt

 
 
 

= − 
e e

y z z y

     
− 

    
 . 

 

Two other equations are given by cyclic permutation of x, y, z. The three equations are the 

equations for the components of the vector equation: 

 

(c)  
III

d

dt

 
 
 

= − e     

 

 That law of formation of vorticity will then be exactly similar to the foregoing one (11.c). One 

only needs to replace density q in (11.c) with the rate of cubic expansion e, the potential  of the 

force of gravity with the potential  of the hydrodynamical field intensity and remember to invert 

the signs in order to derive the following theorem from (I.A): 

 

 (II.A). Formation of vorticity will take place along the lines of intersection of the equi-

expansion surfaces e = const. and the equipotential surfaces   = const., and indeed in the 

direction from the potential vector   to the expansion vector e. 
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 14. – One further concludes from this directly that an expanding or contracting fluid body will 

behave similarly in a potential flow field to the way that heavier or lighter body will behave in a 

heavy fluid according to Archimedes’ principle. The expanding body has a constant rate of 

expansion in its interior. However, in a transition layer, the rate of expansion will rapidly drop 

down to the value zero. A number of equi-expansion surfaces will be packed close to each other in 

that transition layer, and it is only in that layer that the vector e will have a non-zero value. Thus, 

the formation of vorticity is bounded by that transition layer. Since the vector e points inward, 

the vortices will have a relative motion of the expanding body in the direction from the potential 

vector to the expansion vector and opposite to the direction of the potential vector as a consequence 

(Fig. 2). When the body contracts, the expansion vector will have the opposite direction in the 

transition layer, so the formation of vorticity will occur in the opposite direction, and the 

contracting body will seek to take on a motion relative to the surrounding fluid that is in the 

direction of the potential vector. 

 
 Since the direction of the potential vector is the same as the direction of the current, the result 

can also be expressed in the following way: 

 

 (II.B). When considered relative to the surrounding moving fluid, a contracting body will take 

on a motion that follows the current, while an expanding body will take on a motion that is opposite 

to it. 

 

 We have derived that result from formula (13.c), which assumed a vortex-free distribution in 

the hydrodynamical field intensity. That would say that the body whose volume is changing had a 

well-defined motion relative to the fluid beforehand. Theorem (II.B) then implies that a 

supplementary motion will get added to that motion. However, one easily sees from the discussion 

of the general formula (13.a) that the result is true in full generality in the form (II.B). It is only 

the relationship between the formation of vorticity and the lines of intersection between the two 

families of surfaces (II.A) that will go away at the same moment that the equipotential surfaces 

cease to exist. 
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Figure 2. 
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 The result (II.B) includes the dynamical principle that is at the basis for the attraction or 

repulsion of pulsating balls (1), except that its derivation is now completely general with no 

restriction in regard to the form of the pulsating bodies. 

 

 

VI. [sic] – Formation of vorticity by mobility differences in a flow field. 

 

 15. – Equation (8.bIV): 

(a)  
IV

xd

dt

 
 
 

= − 
2 21

2

k u k u

y z z y

    
− 

    
 , 

 

in conjunction with the corresponding equations for the other two axes, are the component 

equations for the vector equation: 

(a)  
IV

d

dt

 
 
 

= − 21
2

k u  . 

 

That equation again has the same form as (11.c) and (13.c), and we will then get a second 

dynamical analogue for the simple formation of vorticity by conservative external forces. 

 When we make the comparison of that to formula (11.c), we will find differences at the 

following three points: First of all, a negative sign appears on the right. Secondly, the specific 

volume k, or reciprocal density, enters in place of the density q. Thirdly, the square of the 

hydrodynamical field intensity u  will enter in place of the potential  of the force of gravity. The 

theorem will then change into the following one: 

 

 (III.A). Formation of vorticity will take place along the lines of intersection of the surfaces k 

= const. of equal specific volume and the surfaces 
2u  = const. of equal values of the square of the 

hydrodynamical field intensity, and indeed in the direction from the vector 
2u  to the vector k. 

 

 When k = 0, and therefore the fluid is homogeneous, the formation of vorticity will cease. 

 

 

 16. – When we apply that result to a moving fluid in which a fluid body of different specific 

volume is found, we will get a second dynamical analogue for the motion of a heavy body in a 

heavy fluid according to Archimedes’ principle. 

 Let the fluid initially have a greater specific volume than the surrounding fluid (Fig. 3). The 

specific volume shall drop continuously, but rapidly, in a transition layer from the value k = K to 

the value k = k0 that is has in the surrounding fluid. A vector k will exist only in the transition 

layer then. Since that vector points inward, the formation of vorticity that occurs in the direction 

from the vector 
2u  to the vector k will have a motion of the body relative to the surrounding 

 
 (1) V. Bjerknes, Vorlesungen über hydrodynamische Fernkräfte nach C. A. BJERKNES’ Theorie, Leipzig, 1900-

1902. Bd. I, pp. 198, Bd. II, pp. 8. – In what follows, that work will be referred to by the symbol H. F.  
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fluid as a consequence that has the opposite direction to the vector 2u . If the body has a lower 

specific volume than the surrounding fluid then the vector k will point in the opposite direction 

in the transition layer, and the oppositely-directed vortices will have a relation motion of the body 

in the direction of the vector 2u  as a consequence. Now, the square of the hydrodynamical field 

intensity will be proportional to the kinetic energy of the current in the surrounding homogeneous 

fluid, and we can say that the vector 2u  will point in the direction of increasing energy of the 

flow field. The result will then be the following one: 

 
 (III.B). Relative to the surrounding current, a body of greater specific volume will be driven 

in the direction of decreasing energy of the flow, while a body of lower specific volume will be 

driven in the direction of increasing energy. 

 

 A rigorous derivative of that result was previously carried out only for spherical bodies (1). The 

derivation that was given now is free of any restriction in regard to the form of the body. 

 

 

VII. – Analogy between vortex-forming forces in fluids 

 and ponderomotive forces in electrostatic fields. 

 

 17. – We return to the general equation of vortex formation (8.a). We can imagine that the 

external forces are arranged such that they will cancel the formation of vortices that takes place in 

the fluid on dynamical grounds. Under those conditions, we will always have: 

 

(a)  
x  = 

y  =
z  = 0 

 

then. The left-hand side of equation (8.a) will then vanish identically. The terms on the right-hand 

side that refer to the conservation of vorticity will likewise drop out. Finally, as a result of (a), the 

 
 (1) H. F., I, pp. 208.  
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hydrodynamical field intensity will continually depend upon a potential  . That is why the third 

row on the right of equation (8.a) will then assume the form (13.c). It can then be written in the 

form: 

yz
ff

y z


−

 
 = 

2 21

2

e e k u k u

y z z y y z z y

          
− + − 

        
 . 

 

One will obtain two other equations by cyclic permutation of the symbols x, y, z, and all three of 

them can be represented by the single vector equation: 

 

(b)  curl f  = 21
2

e k u  +   . 

 

 The external forces that prevent the formation of vorticity fluid must also fulfill that equation. 

As a result, we can define the equal and opposite force: 

 

ef  = − f  

 

to be the force that acts to create vorticity in the fluid and must then be canceled by the external 

forces. The foregoing discussion has shown how that force will have, as a consequence, 

progressive motions that are partially pulsating fluid masses and partially light or heavy ones 

moving through the surrounding flow field. In other words, 
ef  is the force that C. A. Bjerknes 

called the “force of hydrodynamical energy” for the case of spherical bodies (1). The vector 

equation: 

 

(c) curl 
ef  = − 21

2
e k u  −    

 

will be true for the force of hydrodynamical energy then, or when we make no further use of the 

auxiliary quantity  , and therefore replace   with u : 

 

(c)  curl 
ef  = − 21

2
e u k u  −   . 

 

 

 18. – On the other hand, we do know the ponderomotive forces that act upon the individual 

material unit volumes in the electrostatic fields. For ease of comparison with the corresponding 

hydrodynamical formulas, I shall refer to the corresponding electric and hydrodynamical quantities 

by the same symbols. If u  means the electrostatic field intensity, k means the dielectric constant 

(i.e., the polarizability), and e means the true electric charge density then the ponderomotive force 

f  per unit volume will have the components: 

 

 
 (1) H. F., I, pp. 133, II, pp. 20.  
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xf  = 21
2x

k
eu u

x


−


, 

yf  = 21
2y

k
eu u

y


−


, 

zf  = 21
2z

k
eu u

z


−


, 

 

which would now seem to be generally assumed (1). 

 If we now define the vorticity of that force and recall the condition that the electrostatic field 

intensity u  is a vortex-free vector then we will arrive at equation (17.c), but with the opposite 

sign for the terms on the right-hand side. It will then be: 

 

curl f  = − curl 
ef . 

Thus: 

 

 The ponderomotive forces in the electrostatic field and the force of energy in the 

hydrodynamical flow field have equal and opposite vorticity. 

 

 One cannot conclude the relationship between those forces from this relationship between the 

vorticities of the two forces being compared with no other assumptions. The two forces can 

possibly differ from each other by a non-vortical part, and therefore a potential part. Therefore, 

how that can be the case cannot be concluded from the theory of formation of vortices in fluids 

that was just developed. However, the practical value of the result on the equal and opposite 

vorticity of the two forces will become clear from the detailed discussions that were presented 

above. The motion of a body through a surrounding medium is necessarily coupled with the 

formation of vorticity in a boundary layer between the body and the medium. Conversely, the 

appearance of vorticity in such a boundary layer is necessarily coupled with a motion of the body 

through the surrounding medium. The opposite equality of the two vorticities will then lead to the 

following result: 

 

 The forces of energy in the hydrodynamical flow field and the ponderomotive forces in the 

electrostatic field create equal and opposite motions of the bodies in question through the fields. 

 

 By contrast, it might still be possible that the two forces can behave differently in regard to 

deformations of a body that one can no longer refer to as motions of the body as a whole through 

the surrounding medium. 

 

 

 

 
 (1) Cf., on this, e.g., Helmdoltz, Wissenschaftliche Abhandlungen, I, pp. 811; Kirchhoff, Vorlesungen über 

Elektrizität und Magnetismus, pp. 180; Heaviside, Electromagnetic Theory, I, pp. 107; E. Cohn, Das 

elektromagnetische Feld, pp. 37.  
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VIII. – Analogy between electrostatic and hydrodynamical phenomena. 

 

 19. – We can now summarize the hydrodynamical formulas that refer to the case in which 

suitable external forces keep the hydrodynamical forces of energy in equilibrium. We can likewise 

summarize the formulas for the electrostatic field, and in that way, make the same assumption that 

suitable external forces will preserve equilibrium with the moving ponderomotive electric forces. 

 The conditions that we then impose upon the external forces in the two cases will correspond 

with each other precisely. That is because the hydrodynamical forces of energy will not be canceled 

by the external forces, so vorticity in the hydrodynamical field intensity u . On the other hand, if 

the ponderomotive forces of the electrical system are not canceled then the system will no longer 

be strictly static, and according to Maxwell’s theory, vorticity must appear in the electrical field 

intensity u . 

 The two formal systems will be identical to each other, except for the difference in signs in the 

formulas that refer to the ponderomotive forces. When we denote the corresponding quantities 

with the same symbols, it will then be unnecessary to write out the system of formulas twice, so 

we can write down a single system that can be interpreted in two different ways. 

 Initially, under the assumptions that were made, the hydrodynamical field intensity will be a 

vortex-free vector quantity: 

 

(a)  curl u  = 0 . 

 

The same equation will be true for the electric field intensity u , which is always a vortex-free 

vector quantity, according to Maxwell’s theory. 

 Upon multiplying the hydrodynamical field intensity by the specific volume or mobility k, one 

will obtain a new vector, namely, the velocity u. Upon multiplying the electric field intensity by 

the dielectric constant or the polarizability k of the medium, one will get a new vector quantity, 

namely, the electric polarization (i.e., induction) u: 

 

(b)  u = k u . 

 

 The divergence of the velocity gives the rate of cubic expansion per unit volume e (5.a). The 

divergence of the polarization gives the true electric density e (1): 

 

(c)  div u = e . 

 

 The electrostatic field is known to be determined uniquely when the true density e and the 

value of the dielectric constant k are given everywhere. Since the system of equations is the same, 

as a result, the hydrodynamical flow field will also be necessarily determined uniquely when the 

rate of cubic expansion e and the value of the specific volume k are given everywhere. In that way, 

one will obtain the following general result: 

 

 
 (1) I shall employ the Heaviside “rational system of units” for electric quantities. Confer, H. F., II, pp. 288-294.  
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 Let the specific volume in a hydrodynamical system be distributed in precisely the same way 

as the dielectric constant in an electrostatic field and let the rate of cubic expansion per unit 

volume in a hydrodynamical system be distributed in precisely the same way that true electric 

density is distributed in the electrostatic field. The velocity in the hydrodynamical system will be 

distributed in precisely the same way as the polarization in the electric system, and the 

hydrodynamical field intensity will be distributed in space in precisely the same way as the electric 

field intensity. 

 

 In those two systems, which are not distinct from each other in a geometric context then, certain 

forces will appear that must be canceled by external forces in order for the condition that the field 

intensity should have a vortex-free nature to continue to be fulfilled. We still do not know the 

expression for those forces in both cases. However, we know their vorticity: 

 

(d)  curl 
ef  = 21

2
e u k u     , 

 

in which the upper sign refers to the electrostatic case, and the lower one, to the hydrodynamical 

case. 

 

 

 20. – Since the one system is actually a static one, in any event, as far as our conception of 

accessible motion is concerned, while the other one is a moving one, the analogy can ordinarily 

exist for only one moment, namely, for only the moment when the moving system passes through 

a well-defined configuration. However, when an oscillating motion about that configuration exists, 

the analogy can continue to exist. If the oscillations evolve with unnoticeably-small amplitudes 

then the analogy will also be complete on the surface of things insofar as the hydrodynamical 

system seems to be a strictly-static system insofar as external observations are concerned. 

 One can apply the same system of equations (18.a to d) in order to describe the intersection 

state of that oscillating system, which is true for the instantaneous state of motion, except that one 

interprets the field quantities as the time-independent quadratic mean values of those quantities 

that they originally represented. In that regard, naturally, everything behaves in precisely the same 

way as in the special case that was developed for spherical bodies (1). 

 

 

IX. – Concluding remarks. 

 

 20 [sic]. – The theory of vortex formation in frictionless fluids that was developed has thus 

permitted us to achieve an extended generalization of the previously-known results about the 

analogy of hydrodynamical phenomena with electric or magnetic ones. However, not all of the 

previously-known results will be subject to generalization. In addition to the hydrodynamical 

action at a distance, which is based upon either the pulsating motions of bodies or the differences 

in densities between bodies and fluid, there are other ones that are caused by translatory proper 

 
 (1) H. F., I, pp. 30, 64, and 190. 
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motions of the body. Obviously, oscillating spheres are known to behave like permanent magnets, 

except for the consistent difference in the sign of the ponderomotive force. However, the theory of 

vortices that we developed gives us no explanation for effects of that kind. 

 That does not say that the theory of vorticity cannot accomplish that goal. The case of 

autonomous proper motions of the body is excluded by the assumption that the external forces 

should prevent the appearance of vorticity in the field intensity (no. 17). Only well-defined proper 

motions can occur, but they would not have vorticity in the field intensity as a consequence. 

However, other methods besides the one that was developed here that are based upon vorticity 

considerations will become preferable when one wishes to consider those autonomous proper 

motions, whether those proper motions are generated by foreign, non-hydrodynamical forces or 

they are based in the effect of hydrodynamical forces of energy, since no external forces were 

introduced as a reaction to them, and indeed other methods are absolutely necessary in order to 

answer the question of the analogy between electricity and magnetism completely. That is because 

the theory of vortices gives only the vorticity of the desired ponderomotive force itself, but not the 

expression for the force itself. 

 Nonetheless, the new methods will always pertain to the discussion of fluid motions under 

circumstances in which the formation of vortices takes place, and the discussion of the formation 

of vorticity can be considered to be a useful introductory problem. 

 

__________ 
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