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Applications of dual quater nionsto kinematics

By: W. Blaschke
Translated by: D. H. Delphenich

In the following, we shall speak of a classical sitwathat goes back to L. EULER in
1748 for its basic ideas, namely, the application of gqonates to the kinematics of rigid
bodies, a situation that is only loosely connected wnghtheory of functions, and which
was further developed by W. K. CLIFFORD, J. HIELMSLENJ{ &. STUDY.

8 1. Representation of rotations by quaternions.

Quaternions are expressions of the form:
1) Q=Coe+qher+&+es,
whose sums and products will be described by:

2) Q+Q =) (q,+d)e, QQ =>.qoes,

with theproduct rules for the unitse:

&@g=6&=¢g,
(3) &e=—6; k=1,2, 3,
g&=-&g=@,; b k1=1,2,3,2,3,1,3,1, 2,
such that we can also set:
(4) e=1.

First, let theg; be real numbers. One then has the associativity law:

®) QR Q=QQ)Q"

The conjugate quaternion to (1) will be defined by:

(6) Q=& -—thei—-qe—ges,
and one has:

7) QQ=q+g2+qi+q? =<Q Q>
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and

(8) QQ =Qm@.

A quaternion withgo = 0—soq =q; e1 + G & + gz &3 — is called avector, and the product
rule is given in vector notation as:

(9) @ +a) (dh +9) = 0o+ +dd—<gq>+ (@ % q),
in which:
(10) G q'>= 0, +9,0,+d4;
is thescalar product and:
(11) axq = (g0 -90)e+(aa,-qg)e,+(qg ~qg)e
means theector product, with:
(12) 20xd)=9q9 —qd q.
Now, if:
(13) X=X 81+ X & +X3 63, X' = X +Xe,+ Xe,,

and ifQ means aormed quaternion then, from EULER:

(15) x = Qx'Q

represents a ternary orthogonal substitukon. x, and therefore, eotation of the space
of xc around its origin. We set:

(16) Q =coswt+asinw <aa>=1,
thena means the rotational axis andb¥ the rotation angle, whose sign is linked with
the latter object.

If we interpret theg; as homogeneous pointers in a projective sgacand we
normalize they; by the requirement:

(17) QQ= G+ +@p+0g=1,

then we can introduce tlseparation of two pointsQ, Q' in P; by way of:

(18) Cosp = Gulfy + 0,0, + L+ A g
or.
(19) cosp =1(QQ +Q'Q) =<Q Q'>.

This metric makes ou?s into anelliptic space E; . The particular points for which:
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(20) ¢=’—2T, «QQ>=0

are callecconjugatein Es. Ezis thegroup space for the rotationt Q.

82. Linemap of E;.

We can establish a (directed) lineBgnby two of its conjugate point3, Q’, such that
one has:

1) QQ>=1, QQ>=0, Q' Q>=1.

For this, we compute the unit vectors:

(2) r=QQ, r=Q'Q
with:
(3) r+f=r'+f =0, rr=r'r =-1.

If we replaceQ, Q' with another pair of the same kind of lines:

(4) Q =Qcosw-Q'sinw Q" =Q sinw+Q' cosw
thenr andr’' remain the same:

(5) r=r, r=r".

Under amotion of E; — i.e., under a quaternary orthogonal substitufion- Q" —
namely: o ) )

(6) Q' =R'QR; RR =R'R'=1,

the image vectors r' of our lines behave like:

7) rr=R'rR, r=R'r'R,

so the twamage spheres (3) will be rotated. From (2):

(8) Qr-rrQ=0

is the condition for the poir® to beunited with our line.
If the pointsQ;; j =0, 1, 2, 3 satisfy the conditions:

(9) Qj Q> = gk

with positive determinant:

(10) |QoQ1Q2Qz|=+1
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then we find that the image vectarg, r; of the six edges of theolar tetrahedron of
Qj, namely:

(11) rik:Qij:_Qij’ rj'k :Qij :_Qija
satisfy the relations:

r01+r23:O, r.02+r312 0’ r 03+r 12: O’

(12) 1] o I o I ro
Y P 0, Moo= M3= 0, r o3 I~ 0,
with:
(13) IS =<r;r, > =, [Forfozfos] = [Fo; Tl od =+ 1.

Once again, the square brackets in these equationsthedeterminant. One can
confirm (12) and (13) in the special ca®¢ = g, which is attainable by means of a
motion (6) without altering these relations. The mapof2he lines oE; onto the point-
pairs of two spheres goes back to CLIFFORD, and was erammore closely around
1900 by HJELMSLEV and STUDY.

§ 3. Continual rotational processes.

In our formula (1.15), the normalized quaterni@nmay now depend upon a real
parameter — viz., timé — so what arises is ane-parameter or continual rotational
process:

(1) x(1) = Q) X Q(b); QQ=1

The pointQ(t) = Qo(t) of the elliptic spacd=; correspondingly describes a li In
order to see this, we introducecamoving polar tetrahedron such that the derived
equations are valid:

Q= * +Qp *
dQ1: _Qop * +Q20 *

(2) d — * —_ *
Qz - Qla +Q3T
dQ3 - * * _QZT *
with:
(3) Q; Q> = dk, |QoQ1Q2Qs3| =+ 1.

Furthermore, as in (2.11), we define the two right-angdeonical axis crosses:
(4) rj:roj:QOQj, r; :r(;j:Qjéo-

One again has for the derived equations:
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d,= * +r, A * dj= * +4r,4 *
(5) d,=-rA * +ru dr,=-rA" * +ryu
d,= * -r,u * dry= * -ryu *

as one finds by differentiating (1), (4), and the reteio
(6) A=A=0 pu=r-p  U=T+p

exist between the differentiats o, 1; A, 1, X', i.

The geometric interpretation for the canonical axeshe following:ri(t) is the
momentary rotational axisg(t) is the common normal to the neighboring rotatieneds
ry andry + dry in the moving body (e.g., a top)r, and r; have the corresponding

meaning in the rest system. The relation A' then means that the “moving comna(t)
rolls without slipping on the “rest cone(t) .

If we denote a point on the canonical axis by the Ansatz:
(7) X=X +Xo M2+ X303

this yields theguiding condition, as one says, thatis established in the moving system
(i.e., the top) by:
dax, = * +xA4 *

(8) dx, = =xA  * X
d= * —xu *

Correspondingly, one finds timest conditions for the point:

(9) X' =X+ XM+ XS

which indicate thax' is at rest:

d oA
(10) dx = -xA  * +xu

b= ol

B X
no

The kinematics of tops is included in these equations (8), (19r the simplest
rotational process, namely, rotation around an axissit the associated lifi@is a line
in Es, and that is the kinematic interpretation of theteats of § 2.

In order to now transplant the formulas of the kiagics of tops up to now in the
general kinematics of rigid bodies in space, we emaltonversion principle.”
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§4. Conversion principle.
Now, let a liner of EuclidianRs; be given by a unit vectarthat lies on it and a point
x that lies on it. Ifx then means the vector that points from the orggto the pointx
then we define the vector product:
1) r =xXXxr,
and remark that does not depend upon the choic& oh r , since:

(2) K+hr)xr=xxr.

(1) is then the condition for the poirtto be united with the line that is given by the
vector pairr, 7. This pair fulfills the conditions:

(3) Ir>=1, T T7>=0.

One can formally combine them into a single entityrityoducing thedual vectors:

(4) r=r+er,

in which theg obeys the rule of computation:

(5) £=0.

Thus, the calculations with such “dual numbers:”

(6) a=a+t+eca

are afflicted with exceptions, since the division byl maoimponents of the forra a is

inadmissible. In the sequel, dual numbers and vectors lawe/sa emphasized by
underlines. From (4), eq. (5) gives an expression tlegusralent to (3):

(7) <rr'>=0,
or, more precisely:
(9) I r'>=0, <rr>+<r'r>=0,

which imply the perpendicular intersection of the limeandr’.
If the functionf has the derivativé then we set:

(10) f(g+ep)=1(g) +cp1(9).

One then has for two lines, r':
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(11) <rr'>=cos+ep),

if ¢ means the angle and is the shortest distance fromto r'. In more detail, it
follows from (11) that, in fact:

(12) < r'> = cosg, <SrT>+<r'r>=-£9¢ sing.

Thus, the signs op and @ are coupled to each other.
If we now take alual rotation r' — r of the unit sphere:

(13) r=Qr'Q,
with: i
(14) Q=Q+¢&Q, QQ =QQ+£(QQ+QQ)=1,

then the liner obtains its interpretation in the spd&geas a motion oR; . If we set:

(15) Q =cosw + asinw,
with:

(16) W=wteEw

and

a7 a=-a+t+ca, <aa>=1

then a becomes the screw axis of the moti@n 2wis its rotation angle around, and

2w is its displacement in the directian

Therefore, it is possible to interpret the geognett the sphere, when extended to
dual space, in line space. The employment of duaibers in geometry goes back to W.
K. CLIFFORD (1845-70) and the conversion principtpes back to A. P.
KOTJELNIKOFF (1865-1944) and E. STUDY (1862-1930)he contents of § 4 can
also be obtained from those of § 2 by passingedinfit.

§ 5. Spatial motionsin line space.
By means of the conversion principle of § 4, we naw apply the dual extensions of

the formulas of 8§ 3 to the kinematics of continpadcesses of motion when we let these
motions act on lines. In place of (3.1), what ente is:

1

(1) r(t) = QMIr'a(), QQ

with realt, and in place of (3.2), one has:
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dQO - * +91 0 * *
(2) dQ,= Qo * +Qo *
sz = * Qo * Qg

dQS — * * _921- *
More precisely, along with (3.2), the following formulgspear:

d§0 - % +Qll[—) * * * +6110 * *
dQl = _le * +Q 25- * +Q N * +Q g *

() = _ _ _ _
sz = * _Qla * +Q3T * _Q s *_ +QJ
dQ3 = * * _sz * * * _QZT *

with:

(4) p=p+tep, g=0+¢€0, T=T+¢€T.

Correspondingly, along with (3.5), one has the furfbenulas:

drl: * _H-ZA_ * * +F2A *
(5) dar, = -r A * 4,0 -TA * +Tu

and
ar= * +r A" * * 4 A Y
(6) =t A i TR x Ty

! !

dri= * -rg SO ST
for the canonical axes. Thus, along with (3.6), one tpetselations:

(7) A=7, A=a, O=T-p, H=T+p.
If we refer a liner to the canonical axes by the Ansatz:

(8) r=xnL+Xrh+ Xy,

then this yields thguiding conditions:

dl(l e * +l(24 *
(9) dx, = =xA *  +xU
d = * -x4 *

!

from (3.8). Likewise, for the line:
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(10) r'= X+ X+ XS

one obtains theest conditions:

(11) g = -xA4 *  +xu

from (3.10).
§6. Motion of pointsand planes.

In order to transfer the formulas of 8 5 to the motadnpoints and planes, one
proceeds as follows: For a dual quaternion:

(1) Q=(p+eq) +@+£0),
the conjugate is:
2 Q=(w+eG) - (@+eT).

We now also introduce the quaternion that arises @ty changing the sign af

(3) Q,=(@-¢7,) +[@-£7q).

We would like to associate the poitwith the Cartesian pointess with not only the
vector:

(4) X=X € +X €& +Xes,
but also the quaternion:

(5) X =1+ex,

such that one has:

(6) X,~X =0, XX =1

A plane U with the equation:

(7) U+ U Xg FUXo+UsXs =0
or:
(8) Up + <ux> =0, uu>=1

with the normal vector:
9) U=Ui€er +U & +Uzes,

might correspond to the quaternion:

(10) Q:U‘FSUQ,
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with:
(11) U, +

£

=1

ICt
IC

=0, U

This yields the condition for the line to be united viftk point:

(12) rX-Xr =0,
for a line to be united with a plane:
(13) ru+Uur =0,

and for a point to be united with a plane:
(14) XU-U.X,=0.

Thus, one confirms that the action of the same md@oon lines, points, and planes
can be written thus:

=1

el
Fel

(15) r=Qr'Q, X =0QxQ,, U =Q,UQ, Q

Let k be the origin of the canonical axis cross ofithe If we then refer a point to the
canonical cross by the Ansatz:

(16) X=K+riX +roX +rzXs

then this yields thguiding condition:

!

dx1: . +X2/] *
(17) dx, = * -xA * Hx
R S VT
Correspondingly, for:
(18) X =K+ 141X+,
one has theest condition:
=~ * A
(18) = * -xA *  +xu
= -4 * X ¥

For the plane with the canonical equation:
(20) Up + Up Up + Uz Uz + Uz Uz = 0,

we have thguiding equations:
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du, = +uZ  *  +u]
du,= * +uAd *
du,= -uA * +uyu
dU3: * _uzﬂ’ *

(21)

!

and for the plane with the canonical equation:
(22) Up +Upq + UG +UX, =0

we have theest conditions:
du, = +u 7 *  +UA
duy = * +uAd *

du, = -uA *  +uy
du;= * -—-u,u *

(23)

All of the formulas of spatial kinematics follow frothis in a self-evident way.

| hope that, together with my colleague H. R. MULLBEER(in), | can give a more
thorough representation of this situation, in which rpdiiameter processes of motion
and integral formulas will be treated, as a continuabibaur book “Ebene Kinematik”
(Munich, 1956). A brief presentation of spatial kinematgsall appear in the
publications of the University of Buenos Aires.

University of Hamburg
Germany



