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Applications of dual quaternions to kinematics 
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Translated by: D. H. Delphenich 
 

 In the following, we shall speak of a classical situation that goes back to L. EULER in 
1748 for its basic ideas, namely, the application of quaternions to the kinematics of rigid 
bodies, a situation that is only loosely connected with the theory of functions, and which 
was further developed by W. K. CLIFFORD, J. HJELMSLEV, and E. STUDY. 
 
 

§ 1.  Representation of rotations by quaternions. 
 

 Quaternions are expressions of the form: 
 
(1)     Q = q0 e0 + q1 e1 + q2 e2 + q3 e3 , 
 
whose sums and products will be described by: 
 
(2)    Q + Q′ = ( )j j jq q e′+∑ , QQ′ = j k j kq q e e′∑ , 

 
with the product rules for the units e: 
 

e0 ej = ej e0 = ej , 
(3)     ek ek = − e0 ;  k = 1, 2, 3, 
    ej ek = − ek ej = el ;  j, k, l = 1, 2, 3; 2, 3, 1; 3, 1, 2, 
 
such that we can also set: 
(4)      e0 = 1. 
 
First, let the qj be real numbers. One then has the associativity law: 
 
(5)     Q(Q′ Q) = (Q Q′) Q″. 
 
The conjugate quaternion to (1) will be defined by: 
 

(6)     Qɶ  = q0 e0 − q1 e1 − q2 e2 − q3 e3 , 
and one has: 

(7)     QQɶ = 2 2 2 2
0 1 2 3q q q q+ + +  = <Q Q> 
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and 

(8)      �′QQ  = ′ ⋅Q Qɶ ɶ . 
 
A quaternion with q0 = 0 − so q = q1 e1 + q2 e2 + q3 e3 − is called a vector, and the product 
rule is given in vector notation as: 
 
(9)    (q0 + q) ( 0q′  + q′) = 0 0 0 0q q q q q q′ ′ ′+ + − <q q′> + (q × q′), 
in which: 
(10)     <q q′> = 1 1 2 2 3 3q q q q q q′ ′ ′+ +  

is the scalar product and: 
 
(11)   q × q′ = 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )q q q q e q q q q e q q q q e′ ′ ′ ′ ′ ′− + − + −  

 
means the vector product, with: 
(12)     2(q × q′) = q q′ – q′ q. 
 
 Now, if: 
(13)  x = x1 e1 + x2 e2 + x3 e3 ,  x′ = 1 1 2 2 3 3x e x e x e′ ′ ′+ + , 

 
and if Q means a normed quaternion then, from EULER: 
 

(15)     x = ′Qx Qɶ  
 
represents a ternary orthogonal substitution x′ → x, and therefore, a rotation of the space 
of xk around its origin.  We set: 
 
(16)    Q = cos ω + a sin ω,  <a a> = 1, 
 
then a means the rotational axis and 2ω is the rotation angle, whose sign is linked with 
the latter object. 
 If we interpret the qj as homogeneous pointers in a projective space P3 and we 
normalize the qj by the requirement: 
 

(17)    QQɶ = q0 q0 + q1 q1 + q2 q2 + q3 q3 = 1, 
 
then we can introduce the separation of two points Q, Q′ in P3 by way of: 
 
(18)    cos ϕ  = 0 0 1 1 2 2 3 3q q q q q q q q′ ′ ′ ′+ + + , 

or: 

(19)    cos ϕ  = 1
2 ( )′ ′+QQ Q Qɶ ɶ  = <Q Q′>. 

 
This metric makes our P3 into an elliptic space E3 .  The particular points for which: 
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(20)    ϕ  = 
2

π
,  <Q Q′> = 0 

 
are called conjugate in E3 .  E3 is the group space for the rotation ± Q. 
 
 

§ 2.  Line map of E3 . 
 
 We can establish a (directed) line in E3 by two of its conjugate points Q, Q′, such that 
one has: 
(1)    <Q Q> = 1,  <Q Q′> = 0,  <Q′ Q′> = 1. 
 
For this, we compute the unit vectors: 
 

(2)     r = ′QQɶ ,  r′ = ′Q Qɶ  
with: 
(3)    r + rɶ = r′ + ′rɶ  = 0,  r r = r′ r′ = −1. 
 
If we replace Q, Q′ with another pair of the same kind of lines: 
 
(4)    Q* = Q cos ω – Q′ sin ω, Q′* = Q sin ω + Q′ cos ω 
 
then r and r′ remain the same: 
 
(5)     r = r*,   r′ = r′*. 
 
Under a motion of E3 – i.e., under a quaternary orthogonal substitution Q → Q* − 
namely: 
(6)     Q* = ′Rɶ Q R;  R Rɶ  = R′ ′Rɶ = 1, 
 
the image vectors r, r′ of our lines behave like: 
 
(7)     r* = ′Rɶ r R,  r′* = ′Rɶ r′ R′, 
 
so the two image spheres (3) will be rotated.  From (2): 
 
(8)      Q r – r′ Q = 0 
 
is the condition for the point Q to be united with our line. 
 If the points Qj ; j = 0, 1, 2, 3 satisfy the conditions: 
 
(9)      <Qj Qk> = δjk 
with positive determinant: 
(10)     | Q0 Q1 Q2 Q3 | = + 1 
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then we find that the image vectors r jk , jk
′r  of the six edges of the polar tetrahedron of 

Qj, namely: 

(11)    r jk = jQɶ Qk = − Qk jQɶ , jk
′r  = Qk jQɶ  = − jQɶ Qk , 

satisfy the relations: 

(12)   01 23 02 31 03 12

01 23 02 31 03 12

0, 0, 0,

0, 0, 0,

+ = + = + =
′ ′ ′ ′ ′ ′− = − = − =

r r r r r r

r r r r r r
 

with: 
(13)  <rj rk> = j k

′ ′< >r r  = δjk , [r01 r02 r03] = 01 02 03[ ]′ ′ ′r r r  = + 1. 

 
 Once again, the square brackets in these equations mean the determinant.  One can 
confirm (12) and (13) in the special case Qj = ej , which is attainable by means of a 
motion (6) without altering these relations.  The map (2) of the lines of E3 onto the point-
pairs of two spheres goes back to CLIFFORD, and was examined more closely around 
1900 by HJELMSLEV and STUDY. 
 
 

§ 3.  Continual rotational processes. 
 

 In our formula (1.15), the normalized quaternion Q may now depend upon a real 
parameter – viz., time t − so what arises is a one-parameter or continual rotational 
process: 

(1)     x(t) = ( )tQɶ  x′ Q(t);  Q Qɶ = 1. 
 
The point Q(t) = Q0(t) of the elliptic space E3 correspondingly describes a line C.  In 
order to see this, we introduce a comoving polar tetrahedron such that the derived 
equations are valid: 

(2)     

0 0

1 0 2

2 1 3

3 2

* * *

* *

* *

* * *

d

d

d

d

ρ
ρ σ

σ τ
τ

= +
= − +
= − +
= −

Q Q

Q Q Q

Q Q Q

Q Q

 

with: 
(3)     <Qj Qk> = δjk ,  | Q0 Q1 Q2 Q3 | = + 1. 
 
Furthermore, as in (2.11), we define the two right-angled canonical axis crosses: 
 

(4)     rj = r0j = 0Qɶ Q j , j
′r  = 0 j

′r = Q j 0Qɶ . 

 
One again has for the derived equations: 
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(5)   
1 2

2 1 3

3 2

* *

*

* *

d

d

d

λ
λ µ

µ

= +
= − +
= −

r r

r r r

r r

  
1 2

2 1 3

3 2

* *

*

* *

d

d

d

λ
λ µ

µ

′ ′= +
′ ′ ′ ′ ′= − +
′ ′ ′= −

r r

r r r

r r

 

 
as one finds by differentiating (1), (4), and the relations: 
 
(6)    λ = λ′ = σ, µ = τ − ρ, µ′ = τ + ρ 
 
exist between the differentials ρ, σ, τ; λ, µ; λ′, µ′. 
 The geometric interpretation for the canonical axes is the following: r1(t) is the 
momentary rotational axis, r3(t) is the common normal to the neighboring rotational axes 
r1 and r1 + dr1 in the moving body (e.g., a top).  1′r  and 3′r  have the corresponding 

meaning in the rest system.  The relation λ = λ′ then means that the “moving cone” r1(t) 
rolls without slipping on the “rest cone” 1( )t′r . 

 If we denote a point x on the canonical axis by the Ansatz: 
 
(7)     x = x1 r1 + x2 r2 + x3 r3  
 
this yields the guiding condition, as one says, that x is established in the moving system 
(i.e., the top) by: 

(8)     
1 2

2 1 3

3 2

* *

*

* *

dx x

dx x x

dx x

λ
λ µ

µ

= +
′= − +

′= −
 

 
Correspondingly, one finds the rest conditions for the point: 
 
(9)     x′ = 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+ +r r r  

 
which indicate that x′ is at rest: 
 

(10)    
1 2

2 1 3

3 2

* *

*

* *

dx x

dx x x

dx x

λ
λ µ

µ

′ ′= +
′ ′ ′ ′= − +
′ ′ ′= −

 

 
The kinematics of tops is included in these equations (8), (10).  For the simplest 
rotational process, namely, rotation around an axis at rest, the associated line C is a line 
in E3 , and that is the kinematic interpretation of the contents of § 2. 
 In order to now transplant the formulas of the kinematics of tops up to now in the 
general kinematics of rigid bodies in space, we employ a “conversion principle.” 
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§ 4.  Conversion principle. 
 

 Now, let a line r  of Euclidian R3 be given by a unit vector r that lies on it and a point 
x that lies on it.  If x then means the vector that points from the origin o to the point x 
then we define the vector product: 
 
(1)      r  = x × r, 
 
and remark that r  does not depend upon the choice of x on r , since: 
 
(2)      (x + hr) × r = x × r. 
 
(1) is then the condition for the point x to be united with the liner  that is given by the 
vector pair r, r .  This pair fulfills the conditions: 
 
(3)      <r r> = 1, <r r > = 0. 
 
One can formally combine them into a single entity by introducing the dual vectors: 
 
(4)      r  = r + ε r , 
 
in which the ε obeys the rule of computation: 
 
(5)      ε2 = 0. 
 
Thus, the calculations with such “dual numbers:” 
 
(6)      a  = a + ε a  
 
are afflicted with exceptions, since the division by null components of the form ε a  is 
inadmissible.  In the sequel, dual numbers and vectors are always emphasized by 
underlines.  From (4), eq. (5) gives an expression that is equivalent to (3): 
 
(7)      ′< >r r  = 0, 
or, more precisely: 
(9)    <r r′> = 0,  ′ ′< > + < >r r r r = 0, 
 
which imply the perpendicular intersection of the lines r  and ′r . 

 If the function f has the derivative f′ then we set: 
 
(10)    f(ϕ + ε ϕ ) = f(ϕ) + εϕ f′(ϕ). 
 
One then has for two lines r , ′r : 
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(11)     ′< >r r  = cos(ϕ + εϕ ), 
 
if ϕ means the angle and ϕ  is the shortest distance from r  to ′r .  In more detail, it 
follows from (11) that, in fact: 
 
(12)   <r r′> = cos ϕ,  ′ ′< > + < >r r r r  = − ε ϕ  sin ϕ. 
 
Thus, the signs of ϕ and ϕ  are coupled to each other. 

 If we now take a dual rotation ′r  → r  of the unit sphere: 
 

(13)     r = ′Qr Qɶ , 

with: 

(14)   Q = Q + εQ ,  QQɶ  = ( )ε+ +QQ QQ QQɶɶ ɶ = 1, 

 
then the line r  obtains its interpretation in the space R3 as a motion of R3 .  If we set: 
 
(15)     Q  = cos ω  + sinωa , 

with: 
(16)      ω  = ω + εω  
and 
(17)     a  = a + ε a , < >a a  = 1 
 
then a  becomes the screw axis of the motion Q , 2ω is its rotation angle around a , and 

2ω  is its displacement in the direction a. 
 Therefore, it is possible to interpret the geometry of the sphere, when extended to 
dual space, in line space.  The employment of dual numbers in geometry goes back to W. 
K. CLIFFORD (1845-70) and the conversion principle goes back to A. P. 
KOTJELNIKOFF (1865-1944) and E. STUDY (1862-1930).  The contents of § 4 can 
also be obtained from those of § 2 by passing to the limit. 
 
 

§ 5.  Spatial motions in line space. 
 

 By means of the conversion principle of § 4, we can now apply the dual extensions of 
the formulas of § 3 to the kinematics of continual processes of motion when we let these 
motions act on lines.  In place of (3.1), what enters in is: 
 

(1)     ( )tr  = ( ) ( )t t′Q r Qɶ ,  QQɶ  = 1 

 
with real t, and in place of (3.2), one has: 
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(2)     

0 1

1 1 1

2 1 3

3 2

* * *

* *

* *

* * *

d

d

d

d

ρ
ρ σ

σ τ
τ

= +
= − +
= − +
= −

Q Q

Q Q Q

Q Q Q

Q Q

 

 
More precisely, along with (3.2), the following formulas appear: 
 

(3)    

0 1 1

1 1 2 0 2

2 1 3 1 3

3 2 2

* * * * * *

* * * *

* * * *

* * * * * *

d

d

d

d

ρ ρ
ρ σ ρ σ

σ τ σ τ
τ τ

= + +
= − + + +
= − + − +
= − −

Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q

 

with: 
(4)    ρ  = ρ + ε ρ ,  σ  = σ + ε σ ,  τ = τ + ε τ . 

 
Correspondingly, along with (3.5), one has the further formulas: 
 

(5)     
1 2 2

2 1 3 1 3

3 2 3

* * * *

* *

* * * *

d

d

d

λ λ
λ µ λ µ

µ µ

= + +
= − + − +
= − −

r r r

r r r r r

r r r

 

and 

(6)     
1 2 2

2 1 3 1 3

3 2 3

* * * *

* *

* * * *

d

d

d

λ λ
λ µ λ µ

µ µ

′ ′ ′ ′ ′= + +
′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +
′ ′ ′ ′ ′= − −

r r r

r r r r r

r r r

 

 
for the canonical axes.  Thus, along with (3.6), one gets the relations: 
 
(7)    λ = σ , λ′ =σ ′ , µ  = τ ρ− , µ′= τ ρ+ . 
 
If we refer a line r  to the canonical axes by the Ansatz: 
 
(8)     r  = 1 1 2 2 3 3x x x+ +r r r  

 
then this yields the guiding conditions: 
 

(9)     
1 2

2 1 3

3 2

* *

*

* *

dx x

dx x x

dx x

λ
λ µ

µ

= +
′= − +

′= −
 

 
from (3.8).  Likewise, for the line: 
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(10)    ′r  = 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+ +r r r  

 
one obtains the rest conditions: 
 

(11)    
1 2

2 1 3

3 2

* *

*

* *

dx x

dx x x

dx x

λ
λ µ

µ

′ ′= +
′ ′ ′= − +
′ ′= −

 

from (3.10). 
 

§ 6.  Motion of points and planes. 
 

 In order to transfer the formulas of § 5 to the motion of points and planes, one 
proceeds as follows: For a dual quaternion: 
 
(1)     Q = (q0 + ε 0q ) + (q + ε q ), 

the conjugate is: 

(2)     Qɶ  = (q0 + ε 0q ) − (q + ε q ). 

 
We now also introduce the quaternion that arises from Q  by changing the sign of ε: 

 
(3)     εQ = (q0 − ε 0q ) + (q − ε q ). 

 
We would like to associate the point X with the Cartesian pointers xj with not only the 
vector: 
(4)     x = x1 e1 + x2 e2 + x3 e3 , 
but also the quaternion: 
(5)     X  = 1 + ε x, 
such that one has: 
(6)    ε −X Xɶ  = 0,  XXɶ  = 1. 

 
A plane U  with the equation: 
 
(7)     u0 + u1 x1 + u2 x2 + u3 x3 = 0 
or: 
(8)     u0 + <u x> = 0, <u u> = 1 
 
with the normal vector: 
(9)     u = u1 e1 + u2 e2 + u3 e3 , 
 
might correspond to the quaternion: 
 
(10)     U = u + ε u0 , 
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with: 
(11)    ε +U Uɶ = 0,  UUɶ = 1. 

 
This yields the condition for the line to be united with the point: 
 
(12)     −rX Xr  = 0, 
for a line to be united with a plane: 
(13)     +rU Ur = 0, 
 
and for a point to be united with a plane: 
 
(14)     ε ε−XU U X = 0. 

 
 Thus, one confirms that the action of the same motion Q  on lines, points, and planes 

can be written thus: 
 

(15)  r  = ′Qr Qɶ , X  = ε′QX Qɶ ,  U  = ε ′Q U Qɶ ,  QQɶ = 1. 

 
Let k be the origin of the canonical axis cross of the rj .  If we then refer a point x to the 
canonical cross by the Ansatz: 
 
(16)    x = k + r1 x1 + r2 x2 + r3 x3  
 
then this yields the guiding condition: 
 

(17)    
1 2

2 1 3

3 2

* *

* *

* *

dx x

dx x x

dx x

µ λ
λ µ

λ µ

′= − +
′= − +

′= − −
 

Correspondingly, for: 
(18)    x′ = k′ + 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+ +r r r  

one has the rest condition: 

(18)    
1 2

2 1 3

3 2

* *

* *

* *

dx x

dx x x

dx x

µ λ
λ µ

λ µ

′ ′= − +
′ ′ ′= − +
′ ′= − −

 

 
For the plane with the canonical equation: 
 
(20)    u0 + u1 u1 + u2 u2 + u3 u3 = 0, 
 
we have the guiding equations: 
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(21)    

0 1 3

1 2

2 1 3

3 2

*

* *

*

* *

du u u

du u

du u u

du u

µ λ
λ

λ µ
µ

′= + +
= +

′= − +
′= −

 

 
and for the plane with the canonical equation: 
 
(22)    0 1 1 2 2 3 3u u x u x u x′ ′ ′ ′ ′ ′ ′+ + +  = 0 

 
we have the rest conditions: 

(23)    

0 1 3

1 2

2 1 3

3 2

*

* *

*

* *

du u u

du u

du u u

du u

µ λ
λ

λ µ
µ

′ ′ ′= + +
′ ′= +
′ ′ ′= − +
′ ′= −

 

 
All of the formulas of spatial kinematics follow from this in a self-evident way. 
 I hope that, together with my colleague H. R. MÜLLER (Berlin), I can give a more 
thorough representation of this situation, in which multi-parameter processes of motion 
and integral formulas will be treated, as a continuation of our book “Ebene Kinematik” 
(Munich, 1956).  A brief presentation of spatial kinematics shall appear in the 
publications of the University of Buenos Aires. 
 
 University of Hamburg 
 Germany 
 

_______ 
 

 


