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FOREWORD 
 

 In the present treatise, a classical theme shall be taken up, namely, the “geometry of 
motion” or “kinematics,” and indeed with the use of the quaternions that L. EULER 
introduced to that end in 1748.  Thus, spherical kinematics will be considered first, in 
which only the rotations of a rigid body around a fixed point are allowed.  They are most 
intrinsically linked with the geometry of the elliptic three-dimensional space E3 .  The 
formulas of spherical kinematics may then be extended to spatial kinematics by means of 
the “dual numbers,” according to the pattern of W. K. CLIFFORD, J. HJELMSLEV, A. 
P. KOTJELNIKOW, and E. STUDY. 
 
 I have communicated parts of the following have in 1957 in Helsinki 1) and in 1958 in 
Barcelona 2).  J. NINOT encouraged me to prepare it, and further developments by him 
shall appear in the Collectanea Mathematica in Barcelona. 3)  I especially have H. 
KUNLE (Freiburg i. B.), H. R. MÜLLER (Berlin), and J. NINOT (Barcelona) to thank 
for improvements. 
 
 
 Hamburg, 13-9-1960      W. BLASCHKE 

                                                
 1) W. BLASCHKE, “Anwendung dualer Quaternionen auf Kinematik,” Ann. Acad. Scient. Fennicae, 
Helsinki, A I 250/3 (1958). 
 
 2) W. BLASCHKE, Cursillo de conferencias sobre Cinemática, Sem. Mat. Univ. Barcelona, 1958 
(lithographed). 
 
 3)  J. NINOT, “Las congruencias de las rectas y la cinemática biparamétrica.”  A book on spherical 
kinematics by H. R. MÜLLER shall appear next. 
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CHAPTER ONE 
 

SPHERICAL KINEMATICS 
 

§ 1.  Quaternions 
 

 A quaternion is a higher complex number: 
 
(1.1)    D = q0 e0 + q1 e1 + q2 e2 + q3 e3 , 

 
for which the sum and product are defined thus: 
 
(1.2) D + D′  = ( )j j jq q e′+∑ , 

 DD′ = j k j kq q e e′∑ , 

 
with the following product rules for the units e: 
 
 e0 ej = ej e0 = ej , 
(1.3) ek ek = − e0  (k = 1, 2, 3), 

ej ek = − ek ej = el (j, k, l = 1, 2, 3;   2, 3, 1;   3, 1, 2). 
 

From (1.3), we can set: 
(1.4) e0  = 1, 
 
and summarize the remaining product rules in the following table: 
 
 
(1.5)    
 
 
 
The qj shall first mean real numbers.  From (1.3), the commutative law is not true for the 
product, but the associative law is indeed true: 
 
(1.6)    Q(Q′Q″) = (QQ′)Q″, 
 
as one easily verifies with the ej . 
 The conjugate quaternion to (1.1) will be defined by: 
 

(1.7)    ɶQ  = q0 e0 − q1 e1 − q2 e2 − q3 e3 , 
 
and one confirms by calculation that: 
 

(1.8)    Q ɶQ= <Q Q> = 2 2 2 2
0 1 2 3q q q q+ + +  

e0 e1 e2 e3 
e1 
e2 
e3 

− e0 
+ e3 
+ e2 

+ e3 
− e0 
+ e1 

+ e2 
+ e1 
− e0 
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and 

(1.9)     �′QQ  = ′ɶ ɶQQ . 
One also calls (1.8) the norm of Q: 

(1.10)     Q ɶQ  = N(Q). 

 
From (1.6), (1.8), (1.9) it then follows that: 
 
(1.11)    N(QQ′) = N(Q) N(Q′). 
A quaternion with: 

(1.12)     Q + ɶQ  = 2q0 = 0 

is called a vector: 
(1.13)    q = q1 e1 + q2 e2 + q3 e3. 

 
If one defines the scalar product of vectors by: 
 
(1.14)    <q q′> = 1 1 2 2 3 3q q q q q q′ ′ ′+ +  

and their vector product by: 
 
(1.15)  q × q′ = 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )q q q q e q q q q e q q q q e′ ′ ′ ′ ′ ′− + − + −  

 
then one has for Q = q0 + q, Q′ = 0q′  + q′: 
 
(1.16)   QQ′ = 0 0q q′  + q0 q′ + 0q′ q − <q q′> + (q × q′). 
 
We recall the well-known rules of calculation for the vector product: 
 
(1.17)    <(q × q′) q″> = [q q′q″], 
 
in which the expression on the right means the determinant of the three vectors, and 
furthermore: 
(1.18) <q1 × q2, q3 × q4>  = <q1 q3><q2 q4> − <q1 q4><q2 q3>, 

(1.19) (q1 × q2) × q3 = <q1 q3> q2 − <q2 q3> q1 , 

(1.20) (q1 × q2) × (q3 × q4) = [q1 q3 q4] q2 − [q2 q3 q4] q1 , 

 
and the multiplication law for determinants: 
 

(1.21) [q1 q3 q4] 1 2 3[ ]′ ′ ′q q q  = 
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

′ ′ ′< > < > < >
′ ′ ′< > < > < >
′ ′ ′< > < > < >

q q q q q q

q q q q q q

q q q q q q

. 
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As one easily confirms, the following connection exists between quaternions and 
determinants: 
(1.22)    1

2 (zyx – xyz) = [x y z], 

and, more generally: 
 

(1.23)  1
2 1 0 3 3 0 1 2 0 1 2 3 3 2 1 04 ( )+ − −ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶQ QQ Q Q Q Q Q Q QQ Q Q Q Q Q = [Q0 Q1 Q2 Q3]. 

 
  Remark: The quaternion product is linked quite simply with the matrix product.  
Namely, if one sets: 

(1.24)    Q = 0 1 2 3

2 3 0 1

( ) ( )

( ) ( )

q iq q iq

q iq q iq

+ + + 
 − + − 

,  i2 = − 1 

 
then the one goes over to the other one. 1) 
 
 

§ 2.  EULER’s representation of rotations 
 

 The quaternions serve to represent the rotations around a fixed point O.  Namely, if 
one introduces the vectors: 

(2.1)    1 1 2 2 3 3

1 1 2 2 3 3

,

,

x e x e x e

x e x e x e

= + +
′ ′ ′ ′= + +
x

x
 

 
and the normalized quaternion: 

(2.2)     ɶQQ  = N(Q) = 1 

then the transformation x′→ x: 

(2.3)     x = ′ɶQxQ  

or 
(2.4)     Qx = x′Q 

 
represents a real-orthogonal substitution of the jx′  with the xj .  In order to see this, we 

might first verify the following: From the assumption that x′ is a vector: 

 
(2.5)     x′ + ′ɶx  = 0, 

 
it follows that the same is true for x, since: 

 

(2.6)    x + ɶx  = ( )′ ′+ɶ ɶQ x x Q  = 0. 

                                                
 1) On quaternions, cf., H. ROTHE, “Systeme geometrischer Analyse,” Enc. Math. Wiss.,  Art III, sec. 
11, Leipzig 1921; in particular, pp. 1300-1423. 
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Furthermore: The substitution (2.3) of the jx′  with the xj is linear and orthogonal, so from 

(1.11), (2.2), (2.3), one has: 

(2.7)    N(x) = ( )N ɶQ N(x′) N(Q) = N(x′), 
or 
(2.8)    2 2 2

1 2 3x x x+ +  = 2 2 2
1 2 3x x x′ ′ ′+ + . 

 
Finally: The determinant of (2.3) is + 1, since Q can always be taken to Q = 1 while 

preserving the condition (2.2).  One verifies this perhaps by calculation from formula 
(1.23). 
 The substitutions (2.3) will define a group G3 if: 
 

(2.7)   x = ′ɶQxQ , y = ɶRxR , N(Q) = N(R) = 1 

implies that: 

(2.10)   y = ′ɶT x T , T = QR, N(T) = 1. 

 
We then show: Any rotation around the origin O in the space R3 of rectilinear coordinates 
xj can be represented using (2.3) by a suitable choice of Q.  Namely, if: 

 

(2.11)    Q + ɶQ  = 0, Q = q,  q q = −1 

 
then the vector x′ = q goes to itself (x = q) under the rotation (2.2). Moreover, since q q = 

−1, the rotation: 
(2.12)     x = − q x q 

 
is involutory; i.e., it is different from the identity and gives the identity by two-fold 
application (it has “period” 2).  Thus, (2.12) represents an inversion around the axis q, 

and thus the rotation around q through the angle π.  However, this clarifies the fact that 

any rotation can be arrived at by the composition of such inversions [cf., (2.18) – (2.20) 
below]. 
 Due to the normalization (2.2), one can set uniquely: 
 
(2.13)    Q = cos ϕ – q sin ϕ, q q = −1, 

 
up to a common change of sign.  Then, from (2.3), one will have: 
 
(2.14)   x = x′ cos2ϕ – q x′q sin2ϕ  + (q x′ − x′q) cos ϕ sin ϕ. 

 
For x′ = q one also has x = q.  The formula (2.14) thus represents a rotation around the 

axis q.  In particular, if we take x′ to be perpendicular to q: 
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(2.15)     <x′ q> = 0 

then, from (2.14), one gets: 
(2.16)    x = x′ cos 2ϕ – (x′ × q) sin 2ϕ. 

 
Thus, (2.3), (2.13) represent the rotation around the axis q through the angle 2ϕ.  

Therefore, the signs of q and ϕ are liked with each other, since we have: 

 

(2.17)     ɶQ  − Q = 2q sin ϕ. 

 

The normalized quaternions + Q and – Q represent the same rotation.  Q and ɶQ  belong 

to inverse rotations.  The representation (2.3) of rotations by quaternions goes back to L. 
EULER 1). 
 Any rotation (2.3), (2.13) can be represented by the composition of two inversions in 
sequence: 
(2.18)   Q = a1 a2 ; a1 a1 = −1, a2 a2 = −1. 

 
I. e.: a1, a2 are assumed to be perpendicular to the rotation axis q, and include the angle ϕ 

+ π. 
 If q, ϕ and q′, ϕ′ are two rotations then we can choose a2 to be the common normal of 

q, q′.  One then has: 

(2.21)    Q = a1 a2 , Q′ = a2 a3 ,  

and therefore: 
(2.22)     Q Q′ = − a1 a3 . 

 
This construction of the composition of rotations goes back to GAUSS 2). 
 
 

§ 3.  The elliptic space E3 
 

 We take the coordinates qj of a normalized quaternion to be homogeneous 
coordinates in a three-dimensional projective space P3 .  We again refer to the point that 
the qj determine in P3 as Q.  There exists a one-to-one relationship between the rotations 

(2.3) of R3 around the fixed point O and the (real) points of P3 : The projective space P3 is 
the group space of the group G3 of rotations of R3 around O. 

                                                
 1) L. EULER.  “Formulae generales pro translatione quacunque corporum rigidorum,” Novi 
Commentarii Acad. Petropolitanae 20 (1776), 189-207. 
 Due to (2.6), (2.13), the significance of (2.3) or (2.4) also follows by separating the scalar and vector 
part of (2.4): 

<q x> = <q x′>, x cos ϕ – (q × x) sin ϕ = x′ cos ϕ + (q × x′) sin ϕ. 
 

 2) C. F. GAUSS, Werke, Bd. 8, Göttingen 1900, pp. 256.  
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 This association may be expressed in a somewhat different way.  Under the rotation 
Q, the axis-cross A0 with the origin O and the axes e1, e2, e3 (the initial cross) will go to 

the axis cross A with the axes: 

(3.1)    aj = jeɶQ Q   (j = 1, 2, 3) 

 
the same origin O, and the determinant: 
 
(3.2)     [a1 a2 a3] = + 1. 

 
Conversely, there is precisely one rotation that takes the initial cross A0 to a given axis 

cross A of that kind.  It might suffice to set: 

 

(3.3)    
1 1 2 2 3 3

2

( ) ( ) ( ),

4sin 2 , 2 sin 2 ,

cos sin .

e e e

ϕ ϕ
ϕ ϕ

= × + × + ×
< > = =
 = −

v a a a

vv v q

Q q

 

 
 Therefore, one can regard the point Q of P3 as the carrier of the axes A.  One then has 

that: 

(3.4)     Q = 1 2
ɶQ Q  

 
is the rotation that takes the axis cross Q1 to the cross Q2 .  This rotation Q is 

independent of the choice of initial cross.  Namely, if one sets: 
 

(3.5)    je∗  = jeɶR R , ɶRR  = 1 (j = 1, 2, 3) 

then one gets: 

(3.6)    Q* = 1 2
∗ ∗ɶQ Q  = 1 2

ɶ ɶQRRQ  = 1 2
ɶQ Q  = Q. 

 
For the rotation angle Q, we have: 

 

(3.7)   cos ϕ = 1
2 ( )+ ɶQ Q  = 1

1 2 2 12 ( )+ɶ ɶQ Q Q Q = 
3

0
j jq q′∑  = <Q1 Q2>. 

 
We have thus introduced a metric into our P3, in which the “distance” ϕ between two 
points Q, Q′ is defined by: 

(3.8)   cos ϕ = 
3

0
j jq q′∑  = <Q Q′>, <Q Q> = <Q′ Q′> = 1. 

 
The space P3 − thus “metrized” − is the elliptic space E3 .  One calls the “null” quadric: 
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(3.9)     <Q Q> = 0 

the absolute quadric of E3 . 
 If the distance between two points Q, Q′ is equal to π : 2, so: 

 
(3.10)     <Q Q′> = 0, 

 
then the points are said to be (absolutely) conjugate or orthogonal. 
 If one introduces new coordinates in the space of x, as well as in the space of x′, by 

the orthogonal substitutions: 
 

(3.11)  x′* = ′ ′ ′ɶR x R ,  x* = ɶRxR ,  ′ ′ɶR R  = ɶRR  = 1 

 
then, in place of the substitution (2.3), one finds the new one: 
 

(3.12)     x* = ∗ ∗ ∗′ɶQ x Q  

with 

(3.13)     x* = ′ɶR QR . 

 
This transition from the qj to the jq′  is a quaternary “real orthogonal” substitution.  One 

can verify the fact that its determinant equals +1 perhaps by means of the formula (1.23). 
 In order to recognize that one can represent any such substitution by a suitable choice 
of R, R′ in (3.13), we first remark that the transformations (3.13) define a continuous 

group G3 .  We then remark that for R = R′ one obtains all real, orthogonal, quaternary 

substitutions from § 2. 
 Since the orthogonal transformations (3.13) preserve the distances (3.8) in E3, we can 
regard them as elliptic motions, and thus, as “motions” in E3 . 
 
 

§ 4.  Sphere map of the lines in E3 
 

 Let Q, Q′ be two normalized absolute polar points of E3 : 

 
(4.1)  <Q Q> = 1,  <Q Q′> = 0,  <Q′ Q′> = 1. 

 
We form the products: 

(4.2)    r = ′ɶQQ , r′ = ′ ɶQQ  

 
and establish that r, r′ are unit vectors: 
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(4.3)    

2 0,

2 0;

1.

′ ′ ′+ = + = < > =

′ ′ ′ ′ ′+ = + = < > =
′ ′= =

ɶ ɶɶ

ɶ ɶɶ

ɶ ɶ

r r QQ QQ QQ

r r QQ QQ QQ

r r r r

 

 
Furthermore: Under the motion (3.13) of E3, r, r′ behave as follows: 

 

(4.4)    r* = ɶR r R,  r′* = ′ɶR r′ R′. 
 
Our orthogonal and normalized points Q, Q′ determine their “directed” (oriented) 

connecting line (axis) q in E3 .  “The same” axis arises from the point pair: 

 
(4.5)   Q* = Q cos ω – Q sin ω, Q′* = Q sin ω + Q cos ω. 

 
However, the same unit vectors x and x′ belong to this pair, since: 

 

(4.6)    r* = ∗ɶQ Q′* = r, r′* = Q′* ∗ɶQ  = r′. 
 
We can express this formula as follows: 
 
 Any axis g in E3 has an image point r on the left image sphere (direction sphere) K: 

 
(4.7)    <r r> = 2 2 2

1 2 3r r r+ +  = 1, 

 
and an image point r′ on the right image sphere (direction sphere) K′: 
 
(4.8)    <r′ r′> = 2 2 2

1 2 3r r r′ ′ ′+ +  = 1. 

The elliptic motion: 

Q* = ′ɶR Q R,  R ɶR  = R′ ′ɶR  = 1, 

 
when applied to the axis g, corresponds to the mutually independent unit rotations (4.4) 

on the two image spheres K, K′. 
 
 The basic idea of this map goes back to W. K. Clifford in 1873.  It was developed 
further by J. HJELMSLEV (= PETERSEN) and E. STUDY around 1900 1). 
 The inversion of the axis: 
 
(4.9)   g = {Q, Q′} = (r, r′) → g* = {Q, Q′} = (r*, r′*) 
 

                                                
 1) One finds extensive references for § 4 in the encyclopedia article of H. ROTHE that was cited in § 1. 
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corresponds to the reflections of the image spheres K, K′ through their centers: 
 
(4.10)    r* = − r, r′* = − r′. 
 
Our result essentially contains the fact: The group of motions G6 of E3 is the “free 
product” of the rotation groups G3, 3G′  of the image spheres K, K′. 
 
 

§ 5.  Polar tetrahedra in E3 
 

 Four points Pj in E3 define a polar tetrahedron relative to the absolute quadric when 

the following equations are true: 
 
(5.1)    <Pj Pk> = δjk , {P0 P1 P2 P3} = +1, 

 
where the right-hand formula gives the determinant of the Pj .  We consider the six edges 

of the tetrahedon: 
(5.2)     gjk = {Pj , Pk} = (rjk, jk

′r ) 

 
and assert: The following relations then exist between their spherical images: 
 

(5.3)    01 23 02 31 03 12

01 23 02 31 03 12

0, 0, 0,

0, 0, 0.

+ = + = + =
′ ′ ′ ′ ′ ′− = − = − =
r r r r r r

r r r r r r
 

 
In order to prove this, it suffices to recognize: One can take the points Pj to the points ej, 

respectively, by an elliptic motion (3.13).  In this special case, one confirms the relations 
(5.3) immediately in this way.  However, due to (4.4), the relations (5.3) are invariant 
under the motions (3.13). 
 We would like to call the axes: 
 
(5.4)   g = {P0 , P1} = (r01 , 01′r ), g* = {P2 , P3} = (r23 , 23′r ) 

 
(absolute) polars.  It then follows from (5.3) that: The absolute polarity g → g* will be 

represented by: 
(5.5)     r* = − r, r′* = + r′. 
 
 From (4.4), the incidence of a point Q with the axis (r, r′) yields the condition: 

 
(5.6)     Qr – r′Q = 0. 

From (5.6), it follows that: 

(5.7)     r = ɶQ  r′ Q, 
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and that means: The axes of the pencil in E3 with the vertex Q corresponds to a 

congruence map (5.7) of the two image spheres K, K′ onto each other that preserves the 
direction. 
 If one composes this map (5.7) with the polarity (5.5) then one sees: The axes of a 
plane in E3 correspond to a congruence map that inverts the direction (transfer): 
 

(5.8)     r = − ɶQr′ Q 

of the image spheres. 
 One calls axes g1, g2 with r1 = − r2 left-parallel and axes with 1′r  = 2′r  right-parallel.  

One can define the angle ϕ between two intersecting axes g1, g2 by way of: 

 
(5.9)    cos ϕ = <r1 r2> = 1 2′ ′< >r r . 

 
In particular, for axes that intersect perpendicularly, one has: 
 
(5.10)     <r1 r2> = 1 2′ ′< >r r  = 0. 

 
 

§ 6.  Motions in E3 
 

 Let (a, a′) be axes in E3 .  From (4.4), (3.43), the rotations of the image spheres K, K′ 
around the rotational axes a, a′ through the angles 2ϕ, 2ϕ′ , namely: 

 

(6.1)    
(cos sin ) (cos sin ),

(cos sin ) (cos sin ),

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

∗

∗

= − +
′ ′ ′ ′ ′ ′ ′= − +
r a r a

r a r a
 

 
correspond in E3 to the elliptic motions: 

(6.2)    
,

cos sin , cos sin .ϕ ϕ ϕ ϕ

∗ ′=
′ ′ ′ ′= + = +

ɶQ R QR

R a R a
 

Therefore, since: 
(6.3)      Qa – a′Q = 0 

 
any point Q of (a, a′) again goes to a point Q* of (a, a′): 
 
(6.4) Q* = (cos ϕ′ – a′ sin ϕ′) Q (cos ϕ + a sin ϕ) = Q(ϕ′  − ϕ) – Q a sin(ϕ′ − ϕ). 

 
Thus, under the motion (6.2), the points of (a, a′) will be rotated through ϕ′ − ϕ.  It 

likewise follows that: The points of the polars (− a, a′) will be rotated through ϕ′ + ϕ: 

 
(6.5)    Q* = Q cos (ϕ′ + ϕ) + Q a sin (ϕ′ + ϕ). 
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In particular, for ϕ′ − ϕ = 0 we get a rotation of E3 around (a, a′), and for: 

 

(6.6)     ϕ  = ϕ′ = 
2

π
, 

 
we obtain the transfer around the axis (a, a′) in E3 : 

 

(6.7)    
,

, .

∗

∗ ∗

′= −
′ ′ ′ ′= − = −

Q a Qa

r aQa r a r a
 

 
 Let g1, g2 be two lines; under the assumption: 

 
r1 × r2 ≠ 0, 1 2′ ′×r r  ≠ 0, 

 
there are then two common normals (± a, a′) to them: 

 

(6.8)  a = 1 2

sinϕ
×r r

, a′ = 1 2

sinϕ
′ ′×

′
r r

, <r1 r2> = cos ϕ, 1 2′ ′< >r r  = cos ϕ′. 

 
These common perpendiculars are polar to each other. 
 The sections that our lines g1, g2 cut out on the common perpendiculars (± a, a′) yield 

the minimal distances ϑ, ϑ′.  Their values can be found by composing the transfers on g1, 

g2 for a suitable choice of the values: 

 
(6.9)    ϑ = ϕ′ + ϕ, ϑ′ = ϕ′ − ϕ: 
 
By performing a transfer on the lines: 
 
(6.10)     Q* = − a′ Q a, 

 
one gets the following formula for the distance ϑ from a point Q to a line (a, a′) in E3 : 

 
(6.11)   2 cos 2ϑ = 2<D D*> = − ′ ′−ɶ ɶQaQa aQa Q . 

 
 

§ 7.  Effect of the line map 
 

 We describe this (on pp. 12) in a comparison figure that shows, on the one hand, the 
effect on the two image spheres K, K′, and on the other, in the elliptic space E3 . 
 One also observes what the two families of generators of a quadric in E3 correspond 
to on the two direction spheres K, K′. 
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 From our formulas, it emerges that, for example: 
 Reflection through a point and inversion on a line in E3 are commutable precisely 
when the point is incident on the lines or their polars. 
 Gauss’s composition of rotations (2.21) carries over, without difficulty, to the 
composition of motions in E3 when one regards them as pairs of reflections in lines. 
 

 

Spherical images K, K′ 
 

 

Elliptic space E3 

    Point pair r, r′     Axis (r, r′) 
    Reflections r* = − r, r′* = − r′     Inversions of axes 

    Map r* = − r, r′* = + r′     Absolute polarity 
     
    Congruent point-pair: 
    cos ϕ = <r1 r2> = 1 2′ ′< >r r  
 

 
    Lines intersecting at an angle ϕ 
     

 
    Rotation pair: 

     r* = ɶR r R,    r′* = ′ɶR r′ R′, 
    R  = cos ϕ + a sin ϕ, 

    R′ = cos ϕ′ + a′ sin ϕ′ 
 

 
    Screw: 

    Q* = ′ɶR r R, 

    Rotational angle around (a, a′): ϕ′ +ϕ 

    Rotational angle along (a, a′):    ϕ′ −ϕ 

     
    Two point-pairs rj, j

′r  

    <r1 r2> = cos ϕ,    1 2′ ′< >r r  = cos ϕ′ 
 

 

    Line pair (rj, j
′r ) with shortest distances 

    ϕ′ ± ϕ 

    Rotation r = ɶQr′Q     Pencil of lines, vertex Q 

    Transfer r = − ɶQr′Q     Polar plane of Q 
     
    Pair of turns: 
    r* = − a r a,  r′* = − a′ r′ a′ 
 

    Turn along the line pair 
    (± a, a′) 

 

    Pair of transfers 

    r* = − ɶP r P,  r′* = − P′ r ɶP  
 

 

    Reflection through a point P and its 

    polar plane 

     

    Reflection in the planes orthogonal to 
    a, a′ 
    r* = a r a,  r′* = a′ r′ a′ 
 

 

    Q* = a′r a, 

    times an axis inversion 

    <r a> = c <r′ a′> 

     
    Thread (= linear complex) with the axes 
    (± a, a′); cf., § 8. 
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 Bibliography.  The fundamental paper of CAYLEY on the elliptic metric is: A. 
CAYLEY, “A sixth memoir upon quantics,” Phil. Trans. 149 (1859), 61-90; see also A. 
CAYLEY, Collected Mathematical Papers, v. 2, Cambridge, 1889, pp. 561 to 592. 
 Klein’s interpretation of CAYLEY’s metric: F. KLEIN, “Über die sogennante Nicht-
Euklidische Geometrie,” Gött. Nachr. 17 (1871); cf., also F. Klein, Gesammelte 
mathematische Abhandlungen, Bd. 1, 1921, pp. 244-253. 
 On the sphere map of lines in E3, cf., W. K. CLIFFORD, Preliminary sketch on 
biquternions,” Proc. London Math. Soc. 4 (1873), 381-395, or also W. K. CLIFFORD, 
Mathematical Papers, London, 1882, pp. 181; J. HJELMSLEV, “Géométrie des droites 
dans l’espace non euclidien,” Kopenhagen Verhandl. Akad., 1900, pp. 308-330; the 
disseration of G. FUBINI, “Il parallelismo di Clifford negli spazi ellittici,”  Annali della 
Scuola Normale, Pisa 9 (1904), 74 pages; E. STUDY, “Beiträge zur Nicht-Euklidischen 
Geometrie, II: Die Begriffe Links und Rechts in der elliptischen Geometrie,” Amer. J. 
Math. 29 (1907), 116-159. 
 
 

§ 8.  PLÜCKER’s line coordinates 
 

 In this section, we shall give the relations between our vectors r, r′ with the 

“PLÜCKER” line coordinates gjk that were introduced by G. MONGE in 1771, H. 
GRASSMANN in 1844, J. PLÜCKER in 1846, and A. CAYLEY in 1857. 
 If Q, Q′ are two orthogonal normalized points on a line then (§ 4) the unit vectors 

(direction vectors) r, r′ will be defined by: 

 

(8.1)     r = ɶQQ′, r′ = Q′ ɶQ . 

One thus has: 

(8.2)   0 0 0 0

0 0 0 0

( )( ) ( ),

( )( ) ( ).

q q q q

q q q q

′ ′ ′ ′ ′= − + = − − ×
′ ′ ′ ′ ′ ′ ′= + − = − + ×
r q q q q q q

r q q q q q q
 

In more detail, this is: 

(8.3)    
1 01 23 1 01 23

2 02 31 2 02 31

3 03 12 3 03 12

, ,

, ,

, ,

r g g r g g

r g g r g g

r g g r g g

′= − = +
′= − = +
′= − = +

 

or 

(8.4)    
01 1 1 23 1 1

02 2 2 31 2 2

03 3 3 12 3 3

2 , 2 ,

2 , 2 ,

2 , 2 .

g r r g r r

g r r g r r

g r r g r r

′ ′= + = −
′ ′= + = −
′ ′= + = −

 

From this, it follows that: 
 
(8.5)  4(g01 g23 + g02 g31 + g03 g12) = 2 2 2 2 2 2

1 2 3 1 2 3( ) ( )r r r r r r′ ′ ′+ + − + + , 

 
and by constructing the polars for two lines: 
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(8.6)   01 23 23 012( )g g g g′ ′+ +⋯  = 1 1 1 1( ) ( )r s r s′ ′ + − +⋯ ⋯ , 

 
where the dots mean cyclic permutations of 1, 2, 3. 
 From the fact that r, r′ are unit vectors, it follows that: 

 
(8.7)    g01 g23 + g02 g31 + g03 g12 = 0 
and 
(8.8)     2 2

01 23g g+ + …= 1. 

 
 From (5.6), one has the dependent equations for a point incident on a line: 
 

(8.9)     
0 23 2 03 3 02

0 31 3 01 1 03

0 12 1 02 2 01

,

,

.

q g q g q g

q g q g q g

q g q g q g

= −
= −
= −

 

 
For the shortest distances ϑ, ϑ′ between two lines g, g′ in E3, we find: 

 

(8.10)    
01 01 23 23

01 23 23 01

cos cos ,
2 2

sin sin .
2 2

g g g g

g g g g

θ θ

θ θ

′′ ′+ + =

′′ ′+ + =

⋯

⋯

 

 
 A thread − or linear complex − of lines g in E3 will be defined by a linear equation: 

 

(8.11)    ∑ hjk gjk = 0, hjk + hkj = 0. 
 
Thus, due to (8.4), it follows for the spherical images that: 
 
(8.12)     <v r> + <v′ r′> = 0. 

One then has: 

(8.13)     
01 23

1
01 23

1

( )

( )

e h h

e h h

= − +
′ = + +

⋯

⋯

v

v
 

The polar axes (± a, a′) with: 

(8.14)     a = cv,  a′ = c′ v′ 
give the “axes” of the thread. 
 For the algebra of rotations, one should confer § 19. 



 

CHAPTER TWO 
 

COMPULSIVE SPHERICAL ROTATION PROCESSES  
 
 

§ 9.  Map to curves in E3 
1) 

 
 We consider a continuous, one-parameter (= compulsive) rotation process around the 
fixed point O, for which we set: 
 

(9.1)    r(t) = ( )tɶQ r′ Q(t),  ɶQQ  = 1, 

 
in which Q, and therefore also r, depends upon the “time” t.  We think of the unit vector 

r′ as being at rest and referred to an axis-cross at rest (rest cross); in (9.1), it corresponds 

to the moving axis-cross (moving cross).  The points that are fixed in the moving cross 
define the moving system and the ones that are fixed in the rest cross define the rest 
system.  In elliptic space, the point Q(t) = Q0(t) describes a curve L, which we link with a 

moving tetrahedron (“associated tetrahedron”), whose corners Qj(t) (j = 0, 1, 2, 3) define 

an absolute polar tetrahedron: 
(9.2)    <Qj Qk> = δjk , [Q0 Q1 Q2 Q3] = + 1. 

 
Thus, Q1 shall lie on the tangent to L at Q0, and Q2 shall lie on the osculating plane to L 

in Q0.  The differential equations for L then take the form: 

 

(9.3)    

0 1

1 0 2

2 1 3

3 2

* * *,

* *,

* * ,

* * *.

d

d

d

d

ρ
ρ σ

ρ τ
τ

= +
= − +
= − +
= −

Q Q

Q Q Q

Q Q Q

Q Q

 

 
In them, ρ means the distance between “neighboring” points of L (= arc length) and σ, 
the angle between neighboring tangents, while τ means the angle between neighboring 
osculating planes of L.  The following quantities are the curvature and torsion of L: 
 

(9.4)     
σ
ρ

 = k,  
τ
ρ

 = w. 

 
 The spherical image of the edges {Qj Qk} will be given, according to (5.3), by the 

products of the Q in the following tables: 

 

                                                
 1) Cf., H. R. MÜLLER, “Die Bewegungsgeometrie auf der Kugel,” Monatshefte Wien 55 (1950), 28-
42. 
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(9.5)   

0 1 2 3

0 1 2 3

1 1 3 2

2 2 3 1

3 3 1 1

1

1

1

1

+ + +

− − +

− + −

− − +

ɶ

ɶ

ɶ

ɶ

Q Q Q Q

Q p p p

Q p p p

Q p p p

Q p p p

  

0 1 2 3

0 1 2 3

1 1 3 2

2 2 3 1

3 3 2 1

1

1

1

1

′ ′ ′− − −
′ ′ ′+ − +
′ ′ ′+ + −
′ ′ ′+ − +

ɶ ɶ ɶ ɶQ Q Q Q

Q p p p

Q p p p

Q p p p

Q p p p

 

 
In them, the first factor of the product is on the left, while the second factor is above; 
thus, e.g.: 

1 2
ɶQ Q  = − 3′p . 

 
The canonical axis-crosses of the pj on K and the j

′p  on K′ satisfy the conditions: 

 
(9.6)   <pj pk> = < j

′p k
′p > = δjk , [p1 p2 p3] = [ 1 2 3′ ′ ′p p p ] = + 1.  

 
Differential equations of the type: 
 
(9.7)  dpj = k jkα∑p , jd ′p  = k jkα′ ′∑p , αjk + αkj = jk kjα α′ ′+  = 0 

 
are true for them.  By derivation of, say: 
 

(9.8)     p1 = 0 1
ɶQ Q  

it then follows from (9.3), (9.7) that: 
 

(9.9)   p2α12 + p3α13 = 1 1 0 0 2( )ρ ρ σ+ − +ɶ ɶQ Q Q Q Q ,  

 
and therefore, from (9.5): 
 
(9.10)   p2α12 + p3α13 = p1 σ,  α12 = σ, α13 = 0. 

 
Correspondingly, we find: 
 

(9.11)   
1 2

2 1 3

3 2

* * ,

* ,

* * ;

d

d

d

λ
λ µ

µ

= +
= − +
= −

p p

p p p

p p

 
1 2

2 1 3

3 2

* * ,

* ,

* * ,

d

d

d

λ
λ µ

µ

′ ′ ′= +
′ ′ ′ ′ ′= − +
′ ′ ′= −

p p

p p p

p p

 

with the relations: 
    λ = σ, µ = τ – ρ,  2ρ = µ′ − µ, 
(9.12) σ = λ = λ′, 
    λ′ = σ, µ′ = τ + ρ,  2τ = µ′ + µ. 
 
In them, λ, λ′ mean the arc lengths of the lines (p1), 1( )′p on the spheres K, K′, and: 
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(9.13)    g = 
µ
λ

,  g′ = 
µ
λ

′
 

 
mean their geodetic curvatures.  Therefore, the spherical curves (p1), 1( )′p  are isometric 

when they are compared to each other for each value of t.  Their geodetic curvatures are: 
 

(9.14)    g = 
τ ρ

σ
−

, g′ = 
τ ρ

σ
+

 

or 

(9.15)     g = 
1w

k

−
, g′ = 

1w

k

+
, 

 
resp.  Conversely, one thus has: 
 

(9.16)    k = 
2

g g′ −
, w = 

g g

g g

′ +
′ −

. 

 
Now if, for example, L is planar, so: 
 
(9.17)   dQ3 = 0, τ = 0, µ = −ρ,  µ′ = +ρ, 

 
then the lines (p1), 1( )′p  correspond to each other under a transfer.  If (p1) is a great circle g 

= 0 then, from (9.16), L has the fixed torsion w = + 1.  Correspondingly, w = − 1 for g′ = 
0. 
 We now summarize some formulas for a line (p(t)) on the unit sphere.  If dots mean 
differentiation with respect to t then we find that: 
 

(9.18)    λ = 1/2 dt< >ɺ ɺpp , g = 
3/2

[ ]

< >
ɺ ɺɺ

ɺ ɺ

ppp

pp
, 

 
and furthermore, for the line L in E3, one has: 
 

(9.19)   ρ = 1/ 2 dt< >ɺ ɺQQ ,   1 + k2 = 
2

3

< >< > − < >
< >

ɺ ɺ ɺɺ ɺɺ ɺ ɺɺ

ɺ ɺ

QQ QQ QQ

QQ
,  k2w = 

3

[ ]

< >

ɺ ɺɺ

ɺ ɺ

QQQ

Q Q
. 

 
 

§ 10.  Velocity 
 

 Let x be a point in the moving system: 

 

(10.1)     x(t) = ( )tɶQ x′ Q(t). 
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By derivation, it then follows from (10.1), due to the fact that dx′ = 0, that: 

 

(10.2)    dx = d ɶQ ⋅⋅⋅⋅ x′ Q + ɶQx′ dQ, 

or, when we introduce: 

(10.3)     x′ = Q x ɶQ   

into (10.1), and employ (9.3), (9.5): 
 
(10.4)    dx = (x p1 – p1 x) ρ = 2(x × p1) ρ. 

In this: 

(10.5)    
d

dt

x
 = (x p1 – p1 x) 

dt

ρ
= 2(x × p1)

dt

ρ
 

 
means the absolute velocity of point x that is fixed in the moving system under our 

continuous rotation process. 
 If we introduce the canonical coordinates xj for x by the Ansatz: 

 
(10.6)     x = x1p1 + x2p2 + x3p3 

then it follows from (10.4) that: 
(10.7)     dx = 2(x3p2 – x2p3) ρ. 

 
On the other hand, it arises from (10.6), due to (9.11), that: 
 
(10.8)   dx = (dx1 – x2λ) p1 + (dx2 + x1λ – x3µ) p2 + (dx3 + x2µ) p3 . 

 
A comparison of (10.7), (10.8) yields, due to (9.12), the guiding conditions: 
 

(10.9)     
1 2

2 1 3

3 2

* * ,

* ,

* * ,

dx x

dx x x

dx x

λ
λ µ

µ

′= +
′ ′= − +

′= −
 

 
which say that x is fixed in the moving system. 

 Correspondingly, it follows from (10.1) for dx = 0 that the point: 

 
(10.10)     x′ = 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+ +p p p  

satisfies the rest conditions: 

(10.11)     
1 2

2 1 3

3 2

* * ,

* ,

* * .

dx x

dx x x

dx x

λ
λ µ

µ

′ ′= +
′ ′ ′= − +
′ ′= −
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They say that x′ is at rest.  One also gets the transition from (10.9) to (10.11) when one 

exchanges the rotation process Q(t) with the opposite or inverse process ( )tɶQ , which 

gives the “rest” system for an observer that is fixed in the “moving” one.  One will then 
switch λ, µ with λ′, µ′. 
 If we introduce the integral: 

(10.12)     
0

t

t

ρ∫  = s, ds = ρ 

 
in place of t as the canonical time, along with the abbreviations 1): 
 

(10.13)   
σ
ρ

 = S,  
τ
ρ

= T,  
λ
ρ

= M, 
µ
ρ

′
= M′, 

 
in which, from (9.12), the relations exist: 
 
(10.14)    M′ − M = 2, M′ + M = 2T, 
 
then we have for the derivatives of (9.11) with respect to s: 
 

(10.15)   
1 2

2 1 3

3 2

* * ,

* ,

* * ;

L

L M

M

= +
= − +
= −

ɺ

ɺ

ɺ

p p

p p p

p p

 
1 2

2 1 3

3 2

* * ,

* ,

* * ,

L

L M

M

′ ′= +
′ ′ ′ ′= − +
′ ′ ′= −

ɺ

ɺ

ɺ

p p

p p p

p p

 

 
and from (10.9) and (10.11), we get the guiding and rest conditions: 
 

(10.16)   
1 2

2 1 3

3 2

* * ,

* ,

* * ,

x Lx

x Lx M x

x M x

= +
′= − +

′= −

ɺ

ɺ

ɺ

 
1 2

2 1 3

3 2

* * ,

* ,

* * .

x Lx

x Lx Mx

x Mx

′ ′= +
′ ′ ′= − +
′ ′= −

ɺ

ɺ

ɺ

 

From the fact that: 

(10.17)     p1 = 1′ɶQp Q  

it follows that: 

(10.18)    dp1 = 1 1 1{ }d d d′ ′ ′⋅ + ⋅ + ⋅ɶ ɶ ɶQ p Q Qp Q Q p Q . 

 
From (10.2), (10.4), the expression in the brackets vanishes in this, and we find: 
 

(10.19)     dp1 = 1d ′ ⋅ɶQ p Q . 

 
 We call the line (p1) that is described by the endpoint of the unit vector p1 on K the 

moving pole path and the one described by 1( )′p  on K′, the rest pole path.  Then λ = λ′ 
                                                
 1) In this, one has S = k, T = w.  The meaning of L then changes.  



20 Kinematics and quaternions 

means that the two pole paths are related to each other isometrically.  From (10.19), this 
says: The rotation process will be generated in such a way that the moving pole path rolls 
without slipping on the rest pole path. 
 In addition, our geometric formulas illuminate the geometric meaning of the 
canonical axes: p1 is the instantaneous rotation axis, whose points possess vanishing 

guiding velocities, and p3 is the common perpendicular of two neighboring p1(t), p1(t + 

dt), both of which are in the moving system; corresponding statements are true for the j′p  

in the rest system. 
 
 

§ 11.  Acceleration 
 

 If we derive the absolute velocity with respect to canonical time, namely, from (10.7): 
 
(11.1)     ɺx  = 2(x3 p2 – x2 p3) 

 
with respect to the canonical time s, while observing (10.14) to (10.16), then we find the 
acceleration vector: 
(11.2)    ɺɺx  = 2{− Lx3 p1 – 2x2 p2 + (Lx1 – 2x3) p3}. 

 
For the determinant of the vectors x, ɺx , ɺɺx , it then follows that: 

 
(11.3)    [x ɺx ɺɺx ] = 4{Lx3 – 2x2

2 2
2 3( )x x+ } = 4D. 

 
 The inflection points of the paths on K will then be cut out of the third-order surface: 
 
(11.4)     Lx3 = 2x2

2 2
2 3( )x x+ . 

 
For the arc length β of the paths, we find: 
 
(11.5)    β 2 = <ɺx ɺx > ds2 = 4 2 2

2 3( )x x+  ds2, 

 
and for their geodetic curvature: 

(11.6)    g = 
3/2

[ ]

< >
ɺ ɺɺ

ɺ ɺ

x x x

x x
 = 

2 2
3 1 2 3

2 2 3/2
2 3

2 ( )

2( )

Lx x x x

x x

− +
+

. 

 
Derivation of (11.2) further yields: 
 
(11.7)   1

2
ɺɺɺx  = {L(M + 4) x2 − 3Lxɺ }p1 + {L(2 – M) x1 – (L2 + 4)}p2 

+ { 1Lxɺ  + (L2 + 4) x2} p3 , 

 
and from this, one gets the determinant: 
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(11.8)   1
16 ]ɺɺɺɺɺɺ[x x x  = 3L2 x1 x2 x3 – {L(M + 4) x2 − 3Lxɺ } 2 2

2 3( )x x+ . 

 
Should this vanish for all points on K, then one would have L = 0.  From (10.15), this 
would then establish p1, 1′p .  The only rotation processes for which all paths become 

circles are then the rotation processes involving an axis at rest. 
 The vector product ×ɺ ɺɺx x  establishes the location of the osculating plane (the center of 

curvature) to the path.  One finds this vector y to be, up to a scalar factor: 

 

(11.9)    

2 2
1 1 3 2 3

2 2 3

3 3 3

2( ),

,

.

y Lx x x x

y Lx x

y Lx x

= − +
=
=

 

Deriving (11.3) yields: 
(11.10)    Dɺ  = 3Lxɺ − Lx2 (2 + M′ − 2

16x ). 

 
Points at which the path lines possess contact of order higher than two with their 
curvature circle (i.e., a vertex) thus satisfy the conditions: 
 
(11.11)    D =Dɺ  = 0. 
 
 

§ 12.  Kinematic image of the polarity 
 

 The lines Q0(t), Q3(t) correspond to each other in E3 under the absolute polarity.  This 

correspondence yields the relations: 
 
(12.1)   0

∗Q  = Q3, 1
∗Q  = Q2, 2

∗Q  = Q1, 3
∗Q  = Q0 , 

and then, from (9.3): 
(12.2)    ρ* = − τ, σ* = − σ, τ* = − ρ, 
or, from (9.12): 
(12.3)   λ* = − λ, µ* = + µ, λ′ * = − λ′, µ′ * = − µ′, 
 
and further, due to (9.13), for the geodetic curvature of the pole paths: 
 
(12.4)     g* = − g, g′ * = − g′. 
This means: 
 The rest pole path is preserved for the polar rotation processes, while the moving 
pole path is reversed. 
 If the line L that is described by Q0(t) in E3 is a line (a, a′) then p1 is fixed in the 

moving system and 1′p  is fixed in the rest system, and our rotation process consists of 

rotations around a fixed axis. 
 If the geodetic curvatures g, g′ of the pole paths are functions of their common arc 
length: 
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(12.5)      ∫ σ 
 
and a linear dependency exists between these functions: 
(12.6)     Ag + Bg′ + C = 0, 
 
with fixed A, B, C, then it follows for the associated line L in E3 that: 
 
(12.7)    Ck + (B + A) w + (B – A) = 0 
 
is the dependency between the curvature k and the torsion w.  Such lines are called 
BERTRAND curves. 
 
 

§ 13.  Screw lines in E3 
 

 The simplest BERTRAND curves in E3 are the screw lines, for which the curvature k 
and torsion w remain fixed.  They arise as the path of one-parameter groups of motions in 
E3 .  For example, we take such a group around the axis (e3, e3): 
 
(13.1)    Q(t) = (cos bt – e3 sin bt) Q′ (cos at + e3 sin at). 

The point (13.1) with: 
(13.2)     Q′(t) = cos α + e1 sin α 

 
then describes a screw line S in E3 .  If we set: 
 
(13.3)     a − b = p, a + b = q 
then we get for S: 
(13.4)   Q(t) = cos α (cos pt + e3 sin pt) + sin α (e1 cos qt − e2 sin qt), 

or, in more detail: 
 
(13.5)    q0 = cos α cos pt,    q1 = sin α cos pt,    q2 = − sin α sin pt,    q3 = cos α sin pt. 
 
Thus, S lies on the quadric: 

(13.6)     
2 2
0 3

2cos

q q

α
+

 = 
2 2
1 2

2sin

q q

α
+

. 

In addition, one has: 

(13.7)    + 3

0

q

q
 = tan pt,  − 2

1

q

q
 = tan qt. 

For t = 0, we get: 

(13.8)   1

2 2
1

cos sin ,

cos sin ,

e

p e q

α α
α α

= +

= − −ɺɺ

Q

Q
 3 1

3 3
3 2

cos sin ,

cos sin .

e p e q

e p e q

α α
α α

= −

= − +

ɺ

ɺɺɺ

Q

Q
 

 
From this, it follows, from (9.19), for t = 0, and thus, for all t, that: 
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(13.9)    r = c dt, c2 = p2 cos2 α + q2 sin2 α, 
(13.10)    c2 = a2 – 2 ab cos 2α + b2, 
 

(13.11) 1 + k2  = 
4 2 4 2

2

cos sinp q

c

α α+
, 

(13.12) k2 w = 
2 2 2 2 2

6

( ) cos sinpq q p

c

α α−
, 

and furthermore, for t = 0: 
 

(13.13)  

2 2
2 3

1 1

2 2
2 3

1 1

( )sin cos ( cos sin )
,

( )sin cos ( cos sin )
.

e p q e p q

c c

e p q e p q

c c

α α α α

α α α α

+ − + += = =

− + + −′ = = =

ɶ ɺ
ɶ

ɺ ɶ
ɶ

QQ
p QQ

QQ
p Q Q

 

 
The spherical images of S are circles on K, K′ that arise from rotation of the vectors 
(13.13) around e3 .  In particular, one has: 
 
(13.14)     [e1 p1 1′p ] = sin 2α, 

 

(13.15)    [e1 p1 e3] = − 
b

a
sin 2α, [e1 1′p  e3] = − 

a

c
sin 2α. 

 
One obtains the radii of the circles (p1), ( 1′p ) from these relations.  In particular, from 

(13.5), for q = 0, one also gets q2 = 0, and therefore S becomes a plane section of the 
quadric (13.6).  More generally: If p/q is rational then S is closed and algebraic. 
 
 

§ 14.  Link quadrangle 
 

 We assume that the point x of the moving system describes a circle on the unit sphere 

K.  We seek the condition that must be satisfied by the two-parameter rotation process Q 

that is thus determined.  To that end, we take, say: 
 

(14.1)     x = ɶQ  e3 Q, 

 
and for the path of x, the circle in the plane: 

 
(14.2)     e3 x + x e3 = 2C. 

This makes: 
(14.3)   e3 x = e3

ɶQ e3 Q = e3 (q0 – q) e3 (q0 + q) = − 2
0q  + q0 (e3 e3 q – e3 q e3) – e3 q e3 q. 
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Since: 
(14.4)    e3 q e3 = e1 q1 + e2 q2 + e3 q3 , 

 
it follows from (14.2), (14.3) that: 
(14.5)    − 2 2 2 2

0 1 2 0q q q q+ + −  = C 2 2 2 2
0 1 2 0( )q q q q+ + + , 

or 
(14.6)    (1 + C)( 2 2

0 3q q+ ) – (1 – C) 2 2
1 2( )q q+ = 0. 

 
Thus, our two-parameter rotation process corresponds to the quadric (14.6) in E3, which 
meets the absolute quadric A in four generators at the planes: 
 
(14.7)    q0 ± i q3 = 0, q1 ± i q2 = 0; i2 = − 1. 
 
 If we now examine a one-parameter rotation process, under which the two points of 
the moving system describe circles then we must bring two quadrics of the type (14.6) 
together so they intersect; this gives a curve of fourth-order and “first type” that generally 
possesses the “genus” one, and can be represented by means of elliptic functions.  The 
eight intersection points of C4 with the absolute quadric A lie in pairs on four generators 
of the one family, and likewise in pairs on the generators of the other family.  For C = 0, 
the circle (14.2) becomes a great circle of the unit sphere, and the quadric (14.5) becomes 
“apolar” to A. 
 The rotation process of the spherical link quadrangle thus described is based on the 
study of the common projective invariants of C4 and the absolute quadric A.  In 
particular, the analogous process in planar kinematics has been examined in detail many 
times, due to its engineering interpretation.  G. DARBOUX (1879) 1) has remarked on 
the connection between the plane link rectangle and elliptic functions. 
 
 

§ 15.  Determination of the canonical axes 
 

 Let aj (j = 1, 2, 3) be a rectangular axis-cross with a fixed origin O that is independent 

of time t.  We seek the canonical axes pj − which, for the moment, we would like to 

denote by r, s, t − for the rotation process that is thus determined: 

 

(15.1)    
1 1 1 2 2 3 3

2 1 1 2 2 3 3

3 1 1 2 2 3 3

,

,

.

r r r

s s s

t t t

= = + +
= = + +
= = + +

p r a a a

p s a a a

p t a a a

 

 
 One has the differential equations for the aj: 

 
                                                
 1) One can find many references in A. SCHOENFLIES and M. GRÜBLER, “Kinematik,” Enc. math. 
Wiss., art. IV.3, Leipzig, 1902, as well as W. BLASCHKE and H. R. MÜLLER, Ebene Kinematik, Munich, 
1956. 
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(15.2)    
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* .

C C

C C

C C

= − +
= + −
= − +

ɺ

ɺ

ɺ

a a a

a a a

a a a

 

In (10.5), we had: 

(15.3)     j
ɺa  = 2(aj × p1) R, R = 

dt

ρ
. 

From this, it would follow that: 
 

(15.4)    

1
1 2 3 3 22

1
2 1 3 3 12

1
3 1 2 2 12

* ,

* ,

* .

r C r R

r R r R

r R r R

= − +
= + −
= − +

ɺ

ɺ

ɺ

a a a

a a a

a a a

 

 
If we introduce the “rotation vector”: 
 
(15.5)    c = a1C1 + a2C2 + a3C3  

 
then a comparison of (15.2) and (15.4) gives: 
 

(15.6)     r = 
2

c

R
. 

 
Because r is a unit vector, if follows from (15.6) that: 

 
(15.7)     4R2 = <c c>. 

If we set: 

(15.8)     
dt

λ
 = L, 

dt

µ
= M 

then equations (10.15) yield: 

(15.9)    

* *,

* ,

* *.

L

L M

M

= +
= − +
= −

ɺ

ɺ

ɺ

r s

s r t

t s

 

From this, it follows that: 

(15.10)    s = 
L

ɺr
 = 

2

1

2

R R

LR

− ɺɺc c
, 

 

(15.11)   L2 = < >ɺ ɺr r  = 
2 2

4

1 2

4

R RR R

R

< > − < > + < >ɺ ɺɺ ɺ ɺcc cc cc
. 

Furthermore, one has: 

(15.12)    t = r × s = 
2

1

4 LR

× ɺc c
 

and 
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(15.13)    M = [r s ɺs ] = 
2 3

1
[ ]

8L R
ɺɺɺccc . 

 
Finally, we have, from (9.12): 
 

(15.14)    

,

, ,

, 2 .

Ldt

Rdt Mdt

σ λ λ
ρ µ
τ µ ρ µ µ ρ

′= = =
= =

′= + = +
 

 
 

§ 16.  Kinematics in E3 
 

 If we take a polar tetrahedron in E3: 
 
(16.1)    <Qj Qk> = δjk , [Q0 Q1 Q2 Q3] = + 1 

 
that is independent of time t then a compulsive process of motion arises in E3 with the 
differential equations: 

(16.2)    dQj = 
3

0
k jkω∑Q ,   ωjk + ωkj = 0. 

 
We map the tetrahedron of Qk onto two rectangular axis crosses (j = 1, 2, 3): 

 

(16.3)    0 0

1 2 3 1 2 3

, , ,

[ ] [ ] 1,
j j j j j k jkδ′ ′ ′= = < > =

′ ′ ′= = +

ɶ ɶp Q Q p Q Q p p

p p p p p p
 

 
such that the formulas of tables (9.5) are again valid.  If we then set: 
 
(16.4)  dpj = ∑ pk αjk ,  jd ′p  = k jkα′ ′∑p , αjk + αkj = jk kjα α′ ′+  = 0 

 
then it follows from (16.3) by derivation that: 
 

(16.5)    
23 23 01 23 23 01

31 31 02 30 31 02

12 12 03 12 12 03

, ,

, ,

, .

α ω ω α ω ω
α ω ω α ω ω
α ω ω α ω ω

′= − = +
= − = +

′= − = +
 

 
In this way, the motion process in E3 is mapped onto two rotation processes, one of which 
is on the unit sphere K, and the other of which is on K′.  If, for example, a and a′ are the 

instantaneous rotational axes of the two rotation processes, and therefore scalar 
multiplicities of the vectors (α23, α31, α12), 23 31 12( , , )α α α′ ′ ′ − then in E3 the two polars (± a, 
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a′) become the instantaneous screw axes of the motion process.  We would not like to go 

into this situation further, here. 
 
 

§ 17.  Integral theorems 
 

 Let Q(t) be a closed rotation process, so perhaps, more precisely: 

 
(17.1)    Q(t + 1) = Q(t),  pj(t + 1) = pj(t). 

 
It would then follow from equations (9.11) that: 
 

(17.2)   3λ∫� p  = 0, 1λ∫� p  = 3µ∫� p , 3µ∫� p = 0. 

 
We further calculate the integral along a (closed) path curve on the unit sphere: 
 

(17.3)     ρ∫� x  = ρ′∫ ɶ�QxQ . 

If we assume that for t = 0: 
(17.4)    (0)j

′p = ej  (j = 1, 2, 3) 

then: 

(17.5)  ρ∫� x  = p1 x1 + p2 x2 + p3 x3,  x′(0) = e1 x1 + e2 x2 + e3 x3, 

 
with the vectors: 

(17.6)     vj = je ρ∫ ɶ�Q Q . 

 
 If we further consider the “surface vector: for our paths: 
 

(17.7)   f = 1
2 d×∫� x x= 1( )ρ× ×∫� x x p = 1 1ρ ρ< > −∫ ∫� �xp x p  

 
then the last vector integral: 

(17.8)     v = 1ρ∫� p  

 
does not depend upon the choice of point x on the unit sphere.  It then remains for us to 

examine: 

(17.9)     w = 1 ρ< >∫� xp x . 

 

We have, due to x = ɶQx′Q, p1 = ɶQQ1 = − 1
ɶQ Q: 

 



28 Kinematics and quaternions 

(17.10)    
1

1 12

1 1
12 2

( )

( ) .

ρ

ρ

′ ′ ′= − +

′ ′= − +

∫

∫

ɶ ɶ ɶ

ɶ ɶ

�

�

w QxQ Q x Q Qx Q

QxQ Qx Q v
 

Thus, one gets: 

(17.11)    

3
1
2

1

1
12

,

.

jk j k

jk j j

x x

e e ρ

= −

= −

∑

∫ ɶ ɶ
�

f w v

w Q QQ Q

 

 
For the geodetic curvature C of the moving pole path and the curvature C′ of the rest pole 
path one has, from (9.13): 

(17.12)    C = µ∫� , C′ = µ′∫� . 

 
For the surfaces that are traversed by them on K, K′ one then has (from GAUSS-
BONNET): 
(17.13)    F = π – C, F′ = π − C′. 
 
 

§ 18.  Rectilinear surfaces in E3 
 

 The line {Q0(t), Q1(t)}describes a rectilinear surface (viz., a ruled surface) F in E3.  

We can choose the points Q0, Q1 to be the generators of F such that {Q0, Q3} and {Q1, 

Q2} become the common perpendiculars to neighboring generators of F; the Qj then 

define a polar tetrahedron.  We thus calculate the vectors pj, j
′p  from the table (9.5).  One 

then has the differential equations: 
 

(18.1)  

0 1 3

1 0 2

2 1 3

3 0 2

* * ,
2 2

* *,
2 2

* * ,
2 2

* *.
2 2

d

d

d

d

µ µ λ λ

µ µ λ λ

λ λ µ µ

λ λ µ µ

′ ′− −= + +

′ ′− += + +

′ ′+ += −

′ ′− += − −

Q Q Q

Q Q Q

Q Q Q

Q Q Q

 

 
In this, one generally has λ ≠ λ′.  Furthermore, we find: 
 

(18.2)  
1 2

2 1 3

3 2

* *,

* ,

* *,

d

d

d

λ
λ µ

µ

= +
= − +
= −

p p

p p p

p p

  
1 2

2 1 3

3 2

* *,

* ,

* *.

d

d

d

λ
λ µ

µ

′ ′ ′= +
′ ′ ′ ′ ′= − +
′ ′ ′= −

p p

p p p

p p
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For developable surfaces, in particular, one has λ = λ′, and the formulas (18.1), (18.2) 
agree with (9.3), (9.11). 
 
 
 

§ 19.  A theorem of K. STEPHANOS 
 

 If, as in § 3, we regard the point Q of the elliptic space E3 as the image of the axis 

cross with the origin O, where we restrict ourselves to the axis-crosses with the 
determinant + 1 (“right-hand crosses”), then the condition for the axis-cross Q to arise 

from another one Q′ by an inversion around an axis a reads: 

 

(19.1)    Q = Q′ a, a = ′ɶQQ . 

 
From the fact that a is a vector, it then follows that: 

 

(19.2)    ′ ′+ɶ ɶQQ QQ  = 2<Q Q′> = 0. 

 
From this, it follows: All axis-crosses Q that emerge from a fixed one Q′ by inversions 

have the plane: 
(19.3)    <Q Q′> = 0 0 1 1 2 2 3 3q q q q q q q q′ ′ ′ ′+ + +  = 0 

 
as their image in E3 .  If we then take three points Qj (j = 1, 2, 3) in E3 that do not lie on 

the same line (i.e., they are not collinear) then they determine a plane uniquely.  This 
gives the following theorem of K. STEPHANOS (1857-1917), which is most simply 
connected with the construction of GAUSS (§ 2): 1) 
 
 For any three right-hand crosses Qj with a common origin O that do not go to each 

other under rotations around the same axis, there is always a fourth one Q′ that goes to 

the Qj by inversions. 

 
 Namely, let: 

(19.4)   R1 = 2 3
ɶQ Q , R2 = 3 1

ɶQ Q , R3 = 1 2
ɶQ Q , 

so: 
(19.5)     R1 R2 R3 = 1. 

 
We can represent each such rotation by the composition of two inversions in sequence: 
 
(19.6)   R1 = b2b3 , R2 = b3b1 , R3 = b1b3 , 

                                                
 1) K. STEPHANOS, “Sur la théorie des quaternions,” Math. Ann. 22 (1883), 589-592. 
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in which – e.g., b1 – is the common perpendicular to the rotational axes of R2 and R3 .  

One then gets: 
(19.7)    Q1 = Q3 R2  = Q3 b3 b1, 

and from that: 
(19.8)    Q1 b1 = Q2 b2 = Q3 b3 = Q′ 
or 
(19.9)     Qj bj = Q′, 
as asserted. 
 If one replaces Q′ with the left-hand cross Q* that arise from Q′ by reflection through 

the origin O then Q goes to Q* by reflections in planes through O, and we obtain a one-

to-one correspondence between the left-hand crosses with origin O and the planes in E3 . 
 On the basis of (19.3), one can develop a “projective geometry of the axis-crosses 
around O,” although one must admit the “ideal” cross: 
 
(19.10)     q1 = q2 = q3 = 0. 
 



 

CHAPTER THREE 
 

SURFACE-CONSTRAINED SPHERICAL ROTATION PROCESSES 
 
 

 § 20.  Pfaffian forms 1) 
 

 An expression: 
(20.1)    ω = a(u, v) du + b(u, v) dv 
 
(which is linear in the differentials du, dv of the independent variables u, v) is called a 
Pfaffian form, after J. FR. PFAFF (1765-1825).  Following H. GRASSMANN (1809-
1877), one introduces the alternating product – or polar product − of two such forms: 
 
(20.2)     ωj = aj du + bj dv, 
namely: 
(20.3)   [ω1 ω2] = − [ω2 ω1] = (a1 b2 – a2 b1) [du, dv], 
 

[du, dv] = − [dv, du], 
 

which can already be obtained naturally from double integrals.  The vanishing of the 
polar product implies the linear dependence of the forms ω1, ω2. 
 One then comes to the exterior differential of G. FROBENIUS (1849-1917) and E. 
CARTAN (1869-1951): 
 
(20.4)   dω = [da, du] + [db, dv] = (bu − av) [du, dv]. 
 
If it vanishes identically then ω is a complete differential: 
 
(20.5)     ω = df = fu du + fv dv. 
 
 Both constructions (20.3) and (20.4) are invariant; i.e., they commute with the 
introduction of new variables: 
 
(20.6)    x = x(u, v), y = y(u, v), [dx, dy] ≠ 0. 
 
We add the following two rules of calculation: 
 
(20.7)     d(fω) = [df, ω] + f dω, 
 

                                                
 1) A throrough presentation of the calculations with alternating differential forms is included in the 
book by H. REICHARDT: Vorlesungen über Vektor- und Tensorrechnung,  Berlin, 1957.  Cf., also W. 
BLASCHKE and H. REICHARDT: Einführung in die Differentialgeometrie, Berlin-Göttingen-Heidelberg, 
1960. 
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and furthermore, for a domain B in the u, v-plane and its unique surrounding boundary 
dB: 

(20.8)     
B
dω∫  = 

dB
ω∫ . 

 
This formula (20.8), which converts the double integral on the left into the boundary 
integral on the right, includes the formulas of GAUSS and STOKES.  One also writes: 
 
(20.9)     [dω] 
for the exterior differential. 
 
 

§ 21.  Surface-constrained motion processes in E3 
 

 Let Qj (j = 0, 1, 2, 3) be a polar tetrahedron in the absolute quadric in E3, whose 

vertices Qj(u, v) depend upon two parameters.  A two-parameter (= surface-constrained) 

process of motion in E3 is thus defined in this that way.  We can bring the formulas of § 
16 into play if we interpret the ω in them as Pfaff forms.  We then obtain the differential 
equations: 
(21.1)    dQj = Qk ωjk ,  ωjk + ωkj = 0. 

 
On the left, one must sum over the index k that appears in it.  The following integrability 
conditions belong to (21.1): 
(21.2)     dωjk = [ωjs ωsk], 
 
in which the sum over s is again implied. 
 We further set: 

(21.3)    pj = 0 j
ɶQ Q , j

′p  = 0j
ɶQ Q  (j = 1, 2, 3), 

 
and find from this, by differentiation, and from (21.1) and (9.5), that: 
 
(21.4)  dpj = k jkσp , jd ′p  = k jkσ′ ′p ,  σjk + σkj = jk kjσ σ′ ′+  = 0, 

with: 

(21.5)  23 23 01 31 31 02 12 12 03

23 23 01 31 31 02 12 12 03

, , ,

, , ,

σ ω ω σ ω ω σ ω ω
σ ω ω σ ω ω σ ω ω

= − = − = −
′ ′ ′ ′ ′ ′ ′ ′ ′= − = − = −

 

 
and the integrability conditions: 
 
(21.6)    dσjk = [σjs σsk],  jkdσ ′  = [ ]js sjσ σ′ ′ . 

 
For the surface elements: 
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(21.7)   1 12 13 2 23 21 3 31 32

1 12 13 2 23 21 3 31 32

[ ], [ ], [ ],

[ ], [ ], [ ],

σ σ σ σ σ σ
σ σ σ σ σ σ

Ω = Ω = Ω =
′ ′ ′ ′ ′ ′ ′ ′ ′Ω = Ω = Ω =

 

 
it follows from (21.2) that: 
 

(21.8)  1 01 23 2 02 31 3 03 12

1 01 23 2 02 31 3 03 12

, , ,

, , .

d d d d d d

d d d d d d

ω ω ω ω ω ω
ω ω ω ω ω ω

Ω = + − Ω = + − Ω = + −
′ ′ ′Ω = − − Ω = − − Ω = − −

 

 
 We add some relations between our surface elements for the general case that come 
from (21.5) and (21.7): 

(21.9)    
02 03 31 12 1 1

03 01 12 23 2 2

01 02 23 31 3 3

2[ ] 2[ ] ,

2[ ] 2[ ] ,

2[ ] 2[ ] .

ω ω ω ω
ω ω ω ω
ω ω ω ω

′+ = Ω + Ω
′+ = Ω + Ω
′+ = Ω + Ω

 

 
 We would like to apply these formulas.  Namely, we would like to find out how the 
lines [Q0 Q3] through a point: 

 
(21.10)   P = Q0 cos ϕ + Q3 sin ϕ, ϕ  = ϕ (u, v) 

 
can be arranged in order that the surface F that is described by P intersects the lines [Q0 

Q3] at right angles.  Due to (21.1), one has: 

 
(21.11)  dP = (− Q0 sin ϕ + Q3 cos ϕ)(ω03 + dϕ) + Q1 (ω01 cos ϕ  + ω31 sin ϕ) 

  + Q2 (ω02 cos ϕ  − ω23 sin ϕ). 

Our demand thus implies that: 
 
(21.12)   ω03 = dϕ, dω03 = 0, ϕ = − ∫ ω03 , 
 
and ϕ is determined from this up to an additive constant.  There is therefore a family of 
“parallel surfaces” F with the common normals [Q0 Q3]. 

 From (21.8) and (21.12), normal congruences are characterized by: 
 
(21.13)     Ω3 = 3′Ω , 

 
i.e., from (21.4) and (21.7), the map of the two image spheres (p3), 3( )′p  is surface-

preserving.  The fact that any such map: 
 

(21.14)   p3(u, v) → 3( , )u v′p ,  3 3
3 u v

∂ ∂ 
 ∂ ∂ 

p p
p  = 3 3

3 u v

′ ′∂ ∂ ′ ∂ ∂ 

p p
p , 
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belongs to a one-parameter family of “parallel” two-parameter rotation processes can also 
be seen directly with no detour to E3, as we would like to briefly discuss. 

 We thus cover the left-hand sphere (p3) with a family S of curves C that all begin at a 

point u0, v0 and cover a neighborhood of this point simply.  Let the family that 
corresponds under the map (21.14) to the right-hand sphere 3( )′p  be S′, and let its curves 

be C′.  We choose the unit vectors p1(u0, v0) and 1 0 0( , )u v′p  at u0, v0 to be perpendicular to 

p3(u0, v0) and 3 0 0( , )u v′p , but otherwise arbitrary.  We then displace p1 and 1′p  parallel to 

u0, v0 along a pair of corresponding points u, v along corresponding lines C, C′.  The 
parallel displacement of Lord KELVIN and LEVI-CIVITA is defined in such a way that 
along C and C′ one must have: 
(21.15)     σ12 = <p2 , dp1> = 0. 

 
The association (21.14) is then established by this.  This can be proved in two ways. 
First: The association (21.14) remains unchanged when one varies the families of curves 
S and S′.  We thus see that under such a variation p1 and 1′p  will be rotated through the 

same angle ϕ(u, v).  (This follows from the lemma: The angle between two vectors along 
the same line remains the same under parallel displacement, and if one displaces a vector 
along a closed line then the angle between its initial and final positions is equal to the 
area traversed, up to an additive constant).  Secondly: If one rotates the vector p1(u0, v0) 

through the angle α then any axis-cross ( , )j u v′p  will be rotated around 3( , )u v′p  through 

the same angle α . 
 
 

§ 22.  From the theory of surfaces in R3 
 

 To the clarification in the conclusion of § 21, we add some facts from the theory of 
surfaces in Euclidian R3 .  The axis-cross {x: p1, p2, p3} depends upon two real parameters 

u, v.  Its origin x may therefore describe a surface F, and p3 shall mean the unit vector of 

the surface normal of F at x.  One then has differential equations of the form: 

 

(22.1)  1 1 1 1

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

,

, , ,

d

d d d

σ σ
σ σ σ σ σ σ

= +
= − = − = −

x p p

p p p p p p p p p
 

 
with the integrability conditions: 
 

(22.2)   1 3 1 2 1 3 1 2 1 2

1 2 3 2 3 1 3 1 2

[ ], [ ], 0 [ ] [ ],

[ ], [ ], [ ].

d d

d d d

σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ

= + = + = +
= − = − = −

 

 
The ratio of the surface element of the spherical image (p3) of F to the surface element of 

F gives the Gaussian curvature K at a point of F: 
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(22.3)     K = 1 2

1 1

[ ]

[ ]

σ σ
σ σ

 = − 3

1 2[ ]

dσ
σ σ

. 

Thus, from (22.2), one has: 

(22.4)     σ3 = 1 2
1 2

1 2 1 2[ ] [ ]

d dσ σσ σ
σ σ σ σ

+ . 

 
Thus, K depends upon the metric on F that is determined by 1σ , 2σ  (GAUSS’s theorema 

egregium). 
 If one continually has σ3 = 0 along a line C on F then, according to Lord KELVIN 
and LEVI-CIVITA, the vectors p1 are parallel along C on F, and one speaks of the 

displacement of p1 along C on F. 

 Under the rotation: 
 
(22.5)  1

∗p  = + p1 cos ϕ + p2 sin ϕ, 2
∗p  = − p1 sin ϕ + p2 cos ϕ, 3

∗p  = p3, 

 
our axis cross becomes: 
(22.6)     3σ ∗  = 1 2,d ∗ ∗< >p p  = σ3 + dϕ. 

 
Thus, if the vectors p1 are parallel along C on F then the vectors 1

∗p  will also be that way 

for a fixed ϕ.  Furthermore, for a simply-connected domain B on F and its unique 
surrounding boundary dB, one has the following integral formal [cf., (20.8)]: 
 

(22.7)    1 2[ ]
B

σ σ∫  = 1 2[ ]
B

K σ σ∫  = − 3

B

dσ∫  = − 3

dB

σ∫� . 

 
If one takes 1

∗p  to be tangent to dB then one will have: 

 

(22.8)    1 2[ ]
B

K σ σ∫  = − 3( )
dB

dσ ϕ∗ −∫   = + 2π  − 3

dB

σ∫� . 

The integral: 

(22.9)    3

dB

σ ∗
∫  = gσ∫ ,  g = 3σ

σ

∗

, 2σ  = 2 2
1 2σ σ+  

 
of the geodetic curvature yields the total geodetic curvature of the boundary dB (g is the 
geodetic curvature and σ  is the element of arc length of dB). 
 We thus obtain the formula of GAUSS and BONNET (1848): 
 

(22.10)     1 2[ ]
B

K σ σ∫  + 
dB

gσ∫  = 2π. 
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§ 23.  Surface theory in E3 
 

 We now take the special case of § 21 in which the surface F0 that is described by Q0 

intersects the lines [Q0, Q0] at right angles, such that the tangent plane of F0 at Q0 goes 

through Q1, Q2 .  One then has: 

(23.1)     ω03 = 0. 
We abbreviate: 

(23.2)    01 1 02 2 03 3

23 1 31 2 12 3

, , 0;

, , ,

ω α ω α ω α
ω β ω β ω β

= = = =
= = =

 

 
and thus find the differential equations: 
 

(23.3)    

0 1 1 2 2

1 0 1 2 3 3 2

2 0 2 1 3 3 1

3 1 2 2 1

* * ,

* ,

* ,

* * .

d

d

d

d

α α
α β β
α β β

β β

= + +
= − + −
= − − +
= + −

Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q

 

 
For the two image spheres, we correspondingly set: 
 

(23.4)  
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* ,

d

d

d

σ σ
σ σ
σ σ

= + −
= − +
= + −

p p p

p p p

p p p

  
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* .

d

d

d

σ σ
σ σ
σ σ

′ ′ ′ ′ ′= + −
′ ′ ′ ′ ′= − +
′ ′ ′ ′ ′= + −

p p p

p p p

p p p

 

 
The integrability conditions follow from (23.3): 
 

(23.5)   1 3 2 2 1 3 3 2 1 2 1

1 3 2 31 2 2 1 2 1

[ ], [ ], [ ] [ ],

[ ], , 0 [ ] [ ].

d d d

d

β β β β β β β β β α α
α β α ω β β β α α

= = = +
= = = +

 

 
The following relations exist between our Pfaffian forms: 
 

(23.6)    
, 2 ,

, 2 .
j j j j j j

j j j j j j

β α σ σ σ β
β α σ σ σ α

′− = + =
′ ′+ = − =

 

In particular, one has: 
(23.7)     σ3 = 3σ ′  = β3 . 

 
We have the integrability conditions for the σ: 
 

 (23.8)   1 3 2 2 1 3 3 2 1

1 3 2 2 1 3 3 2 1

[ ], [ ], [ ],

[ ], [ ], [ ].

d d d

d d d

σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ

= = =
′ ′ ′ ′ ′ ′ ′ ′ ′= = =
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It follows from (23.7), (23.8) that: 
(23.9)     Ω = [σ1 σ2] = 1 2[ ]σ σ′ ′ , 

 
in agreement with (21.8).  Conversely, for a congruence (p3, 3′p )  with surface-preserving 

spherical images: 
(23.10)     Ω3 = 3′Ω  = Ω 

 
there is a family of parallel surfaces that are orthogonal to it. 
 Between the surface elements Φ0, Φ3 of the mutually polar surfaces F0, F3 that are 
described by the points Q0, Q3, namely: 

 
(23.11)    Φ0 = [α1 α2],  Φ3 = [β1 β2], 
 
and the common surface element Ω in the spherical image, there exists the relation: 
 
(23.12)     Φ0 + Φ3 = Ω. 
 
For the Gaussian curvature K0 of the arc length elements of F0: 
 
(23.13)     2

0ds  = 2 2
1 2α α+ , 

we find, from (22.3), that: 
 

(23.14)   K0 = − 1 2
1 2

0 0 0

1 d d
d

α αα α
 

+ Φ Φ Φ 
 = − 3

0

dβ
Φ

 = 0 3

0

Φ + Φ
Φ

= 
0

Ω
Φ

. 

 
Likewise, for the arc length element of F3: 
 
(23.15)     2

3ds  = 2 2
1 2β β+  

one gets the curvature: 

(23.16)   K3 = − 1 2
1 2

3 3 3

1 d d
d

β ββ β
 

+ Φ Φ Φ 
 = − 3

3

dβ
Φ

 = 0 3

3

Φ + Φ
Φ

= 
3

Ω
Φ

. 

 
 

§ 24.  Curvature lines.  Osculating lines. 
 

 Let P be a point of the surface normals {Q0, Q3} of our surface F0 that is described 

by Q0 : 

(24.1)     P = Q0 cos ϕ + Q3 sin ϕ. 

From (23.3), it then follows that: 
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(24.2)  0 3 1 1 2

2 2 1

( sin cos ) ( cos sin )

( cos sin ).

d dϕ ϕ ϕ α ϕ β ϕ
α ϕ β ϕ

= − + + +
+ −

P Q Q Q

Q
 

 
Should dP again belong to the surface normals then one would have: 

 
(24.3)   α1 cos ϕ  + β2 sin ϕ = 0, α2 cos ϕ  − β1 sin ϕ = 0. 
 
The defining equation of the curvature lines follows from this: 
 
(24.4)     α1β1 + α2β2 = 0, 
or, from (23.6): 
(24.5)     2 2

1 2σ σ+  = 2 2
1 2σ σ′ ′+ . 

 
Thus, the curvature lines of F0 have the characteristic property that the spherical images 
are related to each other in a distance-preserving way.  The alternating product of the 
formulas (24.3) gives: 
 
(24.6)  [α1α2] cos2 ϕ – ([α1β1] + [α2β2]) cos ϕ sin ϕ + [β1β2] sin2 ϕ = 0. 
 
For the roots of these equations, one immediately finds: 
 

(24.7)     

1 2
1 2

1 2

1 1 2 2
1 2

1 2

[ ]
tan tan ,

[ ]

[ ] [ ]
tan tan ,

[ ]

α αϕ ϕ
β β
α β α βϕ ϕ

β β

⋅ =

++ =
 

 
or, when we introduce the surface elements: 
 
(24.8)  Φ0 = [α1α2],  2Ψ = [α1β1] + [α2β2],  Φ3 = [β1β2], 
we find: 

(24.9)   tan ϕ1 · tan ϕ2 = 0

3

Φ
Φ

,  tan ϕ1 + tan ϕ2 = 2 
3

Ψ
Φ

. 

 
 We now go on to the determination of the osculating lines (asymptotic lines) on our 
surface F0 .  By a differentiation δ, it then follows from (23.3) that: 
 
(24.10)   δdQ0 = α1 δQ1 + α2 δQ2 + … = − Q3 (α1β2 − α2β1) + …, 

 
in which the dots mean only terms in Q0, Q1, Q2 .  Should δdQ0 then lie in the tangent 

plane then one would have: 
 
(24.11)     α1β2 − α2β1 = 0. 
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The osculating lines on F0 are characterized by either this or by: 
 
(24.12)      1 3 2 1σ σ σ σ′ ′−  = 0. 

 
The curvature lines and osculating lines are preserved under the transition from F0 to the 
polar surface F3 . 
 If we choose the tangents {Q0 Q1} and {Q0 Q2} of F0 to be tangents to the curvature 

lines then we get: 
(24.13)     [α1 β2] = [α2 β1] = 0. 
 
 

§ 25.  Surfaces of zero curvature 
 

 If the curvature K0 vanishes identically on F0 then, from (23.14), one would also 
have: 
(25.1)     Ω = Φ0 + Φ3 = 0, 
 
and furthermore, from (23.14), (23.7): 
 
(25.2)     dβ3 = dσ3 = 3dσ ′  = 0. 

If we fix Q0, Q3 and rotate Q1, Q2: 

 
(25.3)   1

∗Q  = Q1 cos ψ + Q2 sin ψ, 2
∗Q  = − Q1 sin + Q2 cos ψ  

then we get: 
(25.4)     3β ∗  = β3 + dψ. 

 
Due to (25.2), (25.4), we can choose ψ in such a way that: 
 
(25.5)     β3 = σ3 = 3σ ′  = 0. 

 
The differential equations (23.3), (23.4) then simplify to: 
 

(25.6)    

0 1 1 2 2

1 0 1 3 2

2 0 2 3 1

3 1 2 2 1

* * ,

* * ,

* * ,

* * ,

d

d

d

d

α α
α β
α β

β β

= + +
= − −
= − +
= + −

Q Q Q

Q Q Q

Q Q Q

Q Q Q

 

and 

(25.7)  
1 2 2

2 3 1

3 1 2 2 1

* * ,

* * ,

* ,

d

d

d

σ
σ

σ σ

= −
= +
= −

p p

p p

p p p

  
1 2 2

2 3 1

3 1 2 2 1

* * ,

* * ,

* .

d

d

d

σ
σ

σ σ

′ ′ ′= −
′ ′ ′= +
′ ′ ′ ′= −

p p

p p

p p p
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These lead to the integrability conditions: 
 

(25.8)    1 2 2 1 1 1

1 2 2 1 2 1

0, [ ] [ ] 0,

0, [ ] [ ] 0,

d d

d d

β β β β α α
α α β α α β

= = + =
= = + =

 

with the relations: 

(25.9)     1 1 1 1 1 1

2 2 2 1 1 1

, ,

, .

β α σ β α σ
β α σ β α σ

′− = + =
′− = + =

 

 
In this case, not only are the lines {Q0 Q3} surface normals to the mutually polar surfaces 

F0, F3, but also, from (25.6), the surfaces F1, F2 that are described by Q1, Q2 are mutually 

polar with the normals {Q1 Q2}. 

 From (25.8), (25.9), it follows that: 
 
(25.10)     dσ1 = dσ2 = 0,  [σ1 σ2] = 0, 
 
and thus the pj depend upon just one parameter u, and likewise, the j

′p  depend upon only 

one parameter v. 
 One can see from (25.8) that the curves (p1), (p2) are carrier lines (= tractrices) of the 

curve (p3); i.e., the great circles that contact (p1), (p2), and always run through the 

corresponding point p3 ; corresponding statements are true for the sphere K′. 
 If we set: 

(25.11)   pj(u) = ( )uɶR pj(0) R(u), ( )j v′p  = ( ) (0) ( )jv v′ ′ ′ɶR p R  

then we get: 
(25.12)    Qj(u, v) = ( )uɶR Qj(0, 0) R′(v). 

 
One then sees that for j = 0 the u-curves, and likewise the v-curves are congruent to each 
other on the surface F0.  The surface F0 is the is the elliptic analogue in E3 of a translation 
surface in Euclidian R3 . 
 Such surfaces F0 in E3 with K0 = 0 in were first considered by L. BIANCHI (1856-
1928) (cf., L. BIANCHI, Opera VIII, Roma, 1958, pp. 256-301). 
 
 

§ 26.  Surface elements in the path surface 
 

 We consider a surface-constrained rotation process: 
 

(26.1)     x(u, v) = ( , )u vɶQ x Q(u, v). 
 
From (26.1), it follows by differentiating (23.3), as in (10.4), that: 
 
(26.2)    dx = (x p1 – p1 x) α1 + (x p2 – p2 x) α2 , 
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or: 
(26.3)     dx = 2x × (p1α1 + p2α2). 

 
One arrives at the vectorial surface element of the curve surface from this by constructing 
the “alternating product” of 2(x × p1)α1 with 2(x × p2)α2 : 

 
(26.4)   f = 4 [α1 α2] (x × p1) × (x × p2) = 4 [α1 α2] [x p1 p2] x, 

or: 
(26.5)    f = 4[α1 α2] <x p3> x = 4 Φ0 <x p3> x . 

 
The geometric meaning of the vectors p3, 3′p , and also that of Φ0 is included in this. 

 To each given surface-preserving map p3 → 3′p  of our image spheres K → K′ there 

exists a one-parameter family of “parallel” associated surface-constrained rotation 
processes that correspond to the associated parallel surfaces in E3 .  If such a process is 
known then one obtains the other one from the fact that one rotates each axis-cross of the 
first one around the associated p3 by a fixed angle. 

 One constructs the rotation process that corresponds to the surfaces F0 in E3 with K0 = 
0 that were studied in § 25 as follows: A cone of the moving system is constrained to 
contact a cone of the rest system (both of their vertices are at O) continually along a 
generator.  More generally, one examines the rotation processes: 
 

(26.6)     x(u, v) = ( )uɶR x′ R(v). 

 
With this, one confronts the difficult problem of the rotation processes that can be 
represented in two essentially different ways in the form (26.6), and thus, the translation 
surfaces in E3 with multiple generators.  In the context of quaternions, this question 
comes down to the general solution of the equation: 
 

A1(u1) A2(u2) A3(u3) A4(u4) = 1; j j
ɶA A  = 1. 

 
The corresponding question in Euclidian R3 (or better, in affine R3) was solved by S. LIE 
(1842-1809), 1882, H. POINCARÉ (1854-1912), 1901, W. WIRTINGER (1865-1845), 
1938 by resorting to ABEL’s theorem 1). 
 We would like derive the guiding conditions for a point x with the canonical 

coordinates xj : 
(26.7)     x = x1 p1 + x2 p2 + x3 p3  

 
that guarantee that x is fixed in the moving system.  Differentiation of (26.8) by means of 

(23.4) gives: 

                                                
 1) Cf., also W. BLASCHKE and  G. BOL, Geometrie der Gewebe, Berlin, 1938, pp. 240. 
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(26.8)   1 1 2 2 3 3

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1( ) ( ) ( ),

d dx dx dx

x x xσ σ σ σ σ σ
= + +

+ − + − + −
x p p p

p p p p p p
 

 
and from (26.3), (26.7), one gets: 
 
(26.9)   dx = − 2p1 x3 α2 + 2p3 x3 α1 +2p3 (x1α2 – x2α1). 

 
The comparison of (26.8), (26.9) yields the desired guiding condition: 
 

(26.10)    
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* .

dx x x

dx x x

dx x x

σ σ
σ σ
σ σ

′ ′= + −
′ ′= − +
′ ′= + −

 

Likewise, for the point: 
(26.11)    x′ = 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+ +p p p  

one gets the rest conditions: 

(26.12)    
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* .

dx x x

dx x x

dx x x

σ σ
σ σ
σ σ

′ ′ ′= + −
′ ′ ′= − +
′ ′ ′= + −

 

 
Perhaps from the guiding conditions (26.10) or from: 
 
(26.13)   dx = 2 3 3 2( )x xσ σ′ ′− p1 + 3 1 1 3( )x xσ σ′ ′− p2 + 1 2 2 1( )x xσ σ′ ′− p3 , 

 
it follows that the vectorial surface element of the path surface that is described by x is: 

 
(26.14)   1

2 [dx  × dx] = 1 2 3 2 3 1 3 1 2{ [ ] [ ] [ ]}x x xσ σ σ σ σ σ′ ′ ′ ′ ′ ′+ + x , 

 
and thus, its scalar surface element is: 
 
(26.15)    1 2 3 2 3 1 3 1 2[ ] [ ] [ ]x x xσ σ σ σ σ σ′ ′ ′ ′ ′ ′+ + . 

 
 

§ 27.  On line congruences in E3 
 

 We consider the congruence of lines {Q0, Q3} that intersect a surface-constrained 

motion process in E3 (§ 21).  In order to ascertain the “focal point” on {Q0, Q3}, we take 

the point: 
(27.1)    P = Q0 cos ϕ + Q3 sinϕ , 

and demand that, from (21.1): 
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(27.2)  1 01 21 2 02 23

0 3 03

( cos sin ) ( cos sin )

( sin cos )( )

d

d

ω ϕ ω ϕ ω ϕ ω ϕ
ϕ ϕ ϕ ω

= + + −
+ − + +

P Q Q

Q Q
 

 
lies on our line.  This yields the equations: 
 
(27.3)  ω01 cos ϕ + ω31 sin ϕ  = 0, ω02 cos ϕ  − ω23 sin ϕ  = 0. 
 
Increasing ϕ yields the defining equation of the developable surfaces (Torsen) in our 
congruence: 
(27.4)     ω01ω23 + ω02ω31 = 0. 
 
The alternating product of the equations (27.3) yields the focal point: 
 
(27.5)  [ω01ω02] cos2 ϕ − {[ ω01ω23] + [ω02ω31]} cos ϕ sin ϕ + [ω23ω31] sin2 ϕ  = 0. 
 
The corresponding calculation for the congruence of the lines {Q1, Q2} that are polar to 

{Q0, Q3} yields: 

(27.6)   ω01 cos ψ + ω03 sin ψ = 0, ω31 cos ψ  − ω23 sin ψ = 0, 
 
and from this, by preserving (27.4) for the focal point: 
 
(27.7)  [ω01ω31] cos2ψ − {[ ω01ω23] + [ω02ω31]} cos ψ sin ψ + [ω23ω31] sin2ψ  = 0. 
 
If one chooses the points Q0, Q3 in such a way that the focal points (27.5) are 

harmonically separated, and correspondingly for the points Q1, Q2, then from (27.5), 

(27.7), one gets: 
(27.8)    [ω01ω31] = 0,  [ω02ω31] = 0, 
and we have, in our case: 
(27.9)    [σ23 23σ ′ ] = 0,  [σ31 31σ ′ ] = 0. 

 
One calls congruences whose spherical images (p3), 3( )′p  are conformally (= angle-

preserving) related to each other isotropic congruences.  Due to (21.4): 
 
(27.10)   dp3 = σ31 p1 − σ23 p2 ,  3d ′p  = 31 1 23 2σ σ′ ′ ′ ′−p p , 

we have, in our case: 
(27.11)   23 31 31 23σ σ σ σ′ ′−  = 0, 23σ ′  = cσ23, 31σ ′  = cσ31, 

and from this: 
(27.12)   [σ23 23σ ′ ] = 0, [σ23 31σ ′ ] = [ 23σ ′ σ31], [σ31 31σ ′ ] = 0. 

 
For the common perpendicular (p3, 3′p ) of neighboring lines of the congruence, one has: 
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(27.13)    3 3 1 33 2 31

3 3 1 33 2 31

( ),

( ).

f d f

f d f

σ σ
σ σ

= ⋅ × = ⋅ +
′ ′ ′ ′ ′ ′ ′ ′ ′= ⋅ × = ⋅ +
p p p p p

p p p p p
 

In our case, one then has: 
(27.14)     p′ = ± f · 1 23 2 31( )σ σ′ ′+p p . 

 
The pencils of rays of the p and p′ are thus congruences.  From this, it follows: For 

isotropic congruences, the common perpendicular of a line of the congruence and its 
neighbor define two mutually polar pencils of rays.  As in the Euclidian case, these 
isotropic congruences are closely clinked with the isotropic curves (imaginary curves 
with null length). 
 Another noteworthy case of congruences in elliptic space is the one in which the 
spherical images are curves: 
 
(27.15)   [σ23 σ31] = 23 31[ ]σ σ′ ′  = 0, p3 = p3(u), 3′p  = 3( )v′p . 

 
They are the normal congruences of translation surfaces. 
 Finally, one must observe the TSCHEBYSCHEFF congruences, for which the arc 
length elements of their spherical images may be brought into the following form: 
 

(27.16)    
2 2 2 2
23 31
2 2 2 2

23 31

2 cos ,

2 cos .

du du dv dv

du du dv dv

σ σ λ
σ σ λ

+ = + ⋅ +
′ ′ ′+ = + ⋅ +

 

 
The curve nets u, v = fixed on K, K′ are then TSCHEBYSCHEFF nets. 
 On the situation that was treated in § 21-27, cf., W. BLASCHKE, “Sulle congruenze 
rettilinee nello spazio ellittico,” Annali di Mat. (4) 48 (1959), 209-221. 
 
 Similar to what we did in § 17, one can also derive integral theorems for surface-
constrained motion processes.  Thus, the GAUSS-BONNET formula for the surface F0 in 
E3 can also be regarded kinematically. 
 
 



 

CHAPTER FOUR 
 
 

ALGEBRA OF SPATIAL KINEMATICS  
 
 

§ 28.  Dual line coordinates 
 

 Let a  be an “axis” in Euclidian R3, a, a unit vector on a  (its direction vector), and let 

a  be its moment vector about the origin O, namely: 
 
(28.1)     a  = x × a, 

 
if r means any point on a  (more precisely, this means the vector from O to x).  a  is then 

independent of the choice of point x on a  since: 

 
(28.2)    (x + fa) × a = x × a. 

 
Conversely: If an axis a  is given by the two vectors a, a  then (28.1) characterizes the 

point x on a . 

 The dependencies: 
(28.3)    <a a> = 1, <a a > = 0 

 
exist between the two vectors a, a .  One can combine them into a single one by the 

introduction of ε with: 
(28.4)     ε2 = 0, 
when one sets: 
(28.5)     a  = a + ε a . 

One then has, in fact: 
(28.6)    <a a > = <a a> + 2ε <a a > = 1. 

 
One calls numbers of the form (a, a ; b, b  real): 
 
(28.7)    a  = a + ε a , b  = b + ε b  
with 
(28.8)    a b= ab + ε(ab  + ba ) 
 
dual numbers.  For calculations with them, one must observe that the division by “null 
parts” ε a  is not allowed. 
 From (28.6), it emerges that: The axes a  in R3 may be mapped to the “dual points” 
on the unit sphere (28.6) in a one-to-one way. 
 For two axes a , ′a , we have: 
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(28.9)    <a ′a > = <a a′> + ε{< a  a′> + <a ′a >}. 

 
Let r, r′ be the base points of the common perpendicular to a , ′a  on these axes, and let ϕ 

be the angle between them, while ϕ  is their shortest distance.  One then has: 
 

(28.10)    
cos ,

[ , , ] sin .

ϕ
ϕ ϕ

′< > =
′ ′ ′ ′< > + < > = − − = −

aa

a a a a x x a a
 

If we set: 
(28.11)     f(ϕ + ε ϕ ) = f(ϕ) + εϕ f′ (ϕ) 
 
then we can combine equations (28.10) into one: 
 
(28.12)    <a ′a > = cos ϕ , ϕ  = ϕ + ε ϕ . 

In particular: 
(28.13)     <a ′a > = 0 
 
means the perpendicular intersection of a , ′a . 
 
 

§ 29.  Motions in line space 
 

 Let: 

(29.1)    Q  = 
3

0

( )j j je q qε+∑  = Q + εQ  

 
be a “dual quaternion.”  In it, one shall have ej ε = ε ej .  We take Q  to be normalized; 
i.e., we let: 

(29.2)    <Q Q> = <Q Q> + 2ε <Q Q> = 1, 

so: 

(29.3)     <Q Q> = 1, <Q Q> = 0. 

Then: 

(29.4)     a  = ′ɶQa Q , ɶQQ  = 1, 
 
in which the tilde means the sign change in e1, e2, e3, represents a dual-orthogonal 
substitution of the dual unit vectors a , and thus a dual rotation of the unit sphere.  If the 
axes a  are interpreted as being in line space R3 then, due to the invariance of (28.9) this 
gives a motion of R3 that is applied to its axes. 
 One might see that one obtains all of the motions of the continuous, six-parameter 
group G6 of R3 from (29.4) as follows: First, the transformations define a group, and then 
by composition of the motions 1Q , 2Q  one produces the motion 1Q 2Q .  Furthermore, 
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from § 2, G6 includes the group G3 of all rotations Q, ɶQQ  = 1 around the origin.  On the 

other hand, G6 includes the group 3G′  of all translations: 

 

(29.5)   Q  = 1 + εQ ,  + ɶQ Q  = 0, Q  = q. 

 
From (29.4), (29.5), it follows that, in fact: 
 

(29.6)    
(1 ) (1 ),

, 2( ).

ε ε′= − +
′ ′ ′ ′ ′ ′= = − + = + ×

a q a q

a a a a qa a q a a q
 

 
A translation is produced, in fact, for the points: 
 
(29.7)    x = x′ + v, x × a = (x′ × a) + (v × a), 

or for the axes: 
(29.8)    a = a′,  a  = ′a  + (v × a′). 
 
It then suffices to set v = − 2q in (29.6) in order to obtain the translation (29.7).  The fact 

that the determinant of (29.4) is equal to + 1 might follow from continuity or the fact that 
it is true for the two groups G3, 3G′ . 
 A further proof employs formula (1.23) for the determinant: 
 

(29.9)    − 4[Q0 Q1 Q2 Q3] = 0 1 2 3 3 2 1 0 2 1 0 3 3 0 1 2+ − −ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶQ Q Q Q Q Q Q Q Q Q Q Q Q Q QQ . 

 
 Bibliography.  The use of dual numbers in geometry goes back to W. K. CLIFFORD 
(1845-1879).  One can learn about this significant geometer in the book: W. K. 
CLIFFORD, The common sense of the exact sciences, New York, 1955.  Further, see A. 
P. KOTJELNIKOW (1865-1944), Die Schraubenrechnung und ihre Anwendungen auf 
Geometrie und Mechanik, Kazan, 1895; J. PETERSEN (= HJELMSLEV) (1873-1950), 
Géométrie des droites dans l’espace non euclidien, Kopenhagen Verhandl. Akad., 1900, 
pp. 308-330; G. FUBINI, “Il parallelismo di Clifford negli spazi ellittici,” Annali della 
Scuola Normale, Pisa 9 (1904), 74 pages (dissertation); E. STUDY, Geometrie der 
Dynamen, Leipzig, 1903; E. Study, “Ziele der analytischen Kinematik,” Sitzungsber. 
Berlin. Math. Ges. 12 (1913), 36-60. 
 One finds a thorough discussion of quaternions, their history, generalizations, and 
geometric applications, along with the associated references, in H. ROTHE, “Systeme 
geometrischer Analyse,” Enc. math. Wiss., art. III, sec. 11, Leipzig, 1921.  Cf., also W. 
BLASCHKE, Differentialgeometrie, Bd. I, Berlin 1921 and later editions; R. v. MISES 
(1883-1953), “Motorrechnung, ein neues Hilfsmittel der Mechanik,” Z. angew. Math. 
Mech. 4 (1924), 155-181; R. v. MISES, “Anwendungen der Motorrechnung,” Z. angew. 
Math. Mech. 4 (1924), 193-213; E. A. WEISS (1900-1942), Einführung in die 
Liniengeometrie und Kinematik, Leipzig und Berlin, 1935; W. BLASCHKE, Nicht-
Euclidische Geometrie und Mechanik, Leipzig und Berlin, 1942; W. BLASCHKE, 
Analytische Geometrie, 2nd ed., Basel/Stuttgart, 1954. 
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§ 30.  An invariant for three axes 
 

 If we take three pair-wise skew axes: 
 
(30.1)    ja  = aj + jε a ,  < ja ja > = 1, 

and define the determinant: 
 
(30.2)  1 2 3][a a a = [a1 a2 a3] + ε{[ 1a a2 a3] + [a1 2a a3] + [a1 a2 3a ]} 

 
then this yields the following invariant under the motions of R3: 
 

(30.3)    J = 1 2 3 1 2 3 1 2 3

1 2 3

[ ] [ ] [ ]

[ ]

+ +a a a a a a a a a

a a a
. 

 
 We would like to interpret this geometrically.  If one substitutes, perhaps, 1a  in J by 

way of: 
(30.4)    1

∗a  = c1 1a + c2 2a + c3 3a , 

 
with real cj , that satisfies the condition: 
 
(30.5)     < 1

∗a 1
∗a > = 1 

 
then J remains unchanged; however, 1

∗a  is any line of the ruled family of the quadric 

through 1a , 2a , 3a .  Thus, J depends upon only this ruled family.  If we take the quadric 

in the form: 

(30.6)    
3

0
jk j ka x x∑  = 0  (x0 = 1, ajk = akj) 

 
in rectangular coordinates x1, x2, x3 then we find that: 
 

(30.7)    J = 
0

A

A
(a11 + a22 + a33) 

with 

(30.8)   A = 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

a a a a

a a a a

a a a a

a a a a

,  A0 = 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

. 

 
 If xj means a point on ja  then the formula also yields: 
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(30.9)    J = 2 3 2 3 1 3 1 3 1 2 1 2 1 2 3

1 2 3

, , ,

[ ]

< >< − > + < >< − > + < >< − >a a x x a a a x x a a a x x a

a a a
. 

Thus, if: 
(30.10)      J = 0, 
in particular, then it must follow that: 
 
(30.11)     a11 + a22 + a33 = 0. 
 
 E. A. WEISS also concerned himself with the invariant J in the reference cited in § 29 
with the use of the “complex symbolism” of line geometry that was introduced by R. 
WEITZENBOECK (1885-1955). 
 
 

§ 31.  The spatial hexangle with only right angles 
 

 Let ja  (j = 1, 2, 3) be pair-wise skew lines and let jb  be the common perpendicular 

from 1j −a  to 1j +a  (j mod 3).  The six lines 2a , 1b , 3a , 2b , 1a , 3b  define a spatial 

hexangle with nothing but right angles.  Up to a dual scalar factor, one then has: 
 
(31.1)   1b  = 2a × 3a ,  2b  = 3a × 1a ,  3b = 1a × 2a . 

 
Let jc  be the common perpendicular of the opposite sidesja , jb .  One again has, up to a 

dual-scalar factor: 
(31.2)   1c  = 1a × 1b  = 1a × ( 2a × 3a ) = < 3a 1a > 2a − < 1a 2a > 3a , 

 
and cyclic permutations of 1, 2, 3.  It then follows that: 
 
(31.3)     1c + 2c + 3c  = 0, 

 
and that means: The three common perpendiculars jc  of the opposite sides ja , jb  again 

have a common perpendicular d . 
 This FIGURE of PETERSEN (= HJELMSLEV) and MORLEY (1898) is connected, 
on the one hand, with the fact that the altitudes in a spherical triangle intersect, and on the 
other hand, with the FIGURE of DESARGUES in projective geometry.  Our figure that is 
composed of the ten lines ja , jb , jc , d  has, in fact, the symmetry property that each of 

its lines will be met at right angles by three other ones. 
 If, for a line: 
(31.4)    a  = 1 1 2 2 3 3a e a e a e+ +  

 
one introduces the ratios of the duals ja  as its homogeneous coordinates, and one 

considers the group G16 of line transformations: 
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(31.5)     ja∗ = 
3

1
jk kc a∑  

 
with dual jkc  and determinant 1 then this defines a counterpart to plane projective 

geometry that E. STUDY called “dual-projective.”  One is thus compelled to introduce 
“ideal lines.” for which the coordinates: 
 
(31.6)     ja  = aj + jaε  

have all aj equal to zero. 
 If one carries over the figure of DESARGUES to dual-projective geometry then one 
obtains the aforementioned figure of the hexangle.  In a similar way, one may carry over 
the figure of PAPPOS to line space.  It consists of two nonets of lines on different 
“sheets” in such a way that every line of the one sheet meets precisely three other ones at 
right angles. 
 One obtains a hexangle with only right angles, for example, from the twelve edges of 
a cube when one omits the six edges that meet at two opposite corners. 
 
 

§ 32.  The cylindroid 
 

 In this and the following section, we give a brief overview of the simplest figures in 
dual-projective geometry, which one calls chains (Ketten).  K. G. CH. v. STAUDT 
(1798-1867), in his investigations into complex projective geometry, considered chains of 
such points in the points of a line; i.e., the totality of all of them that determine a real 
double ratio with three given ones. 
 Correspondingly, among the lines that cut a given one at right angles, one can 
determine chains of such lines when one measures the double ratio by means of the 
double ratio of the values of the tangent of the half “dual angle” with a fixed line of that 
type ′g .  Thus, this dual angle will be defined by: 

 
(32.1)     ϕ  = ϕ +εϕ , 

 
in which ϕ means the angle and ϕ  means the shortest distance from ′g  to g .  We thus 

have: 

(32.2)    tan
2

ϕ εϕ+
 = tan 21 tan

2 2 2

ϕ ϕ ϕε  + + 
 

. 

 
Obviously, such a chain of lines is determined uniquely by three of its elements, no two 
of which run parallel. 
 In projective geometry, four points of a line have the same double ratio as their 
connecting line with a point that does not lie on the initial line.  In our dual-projective 
geometry, this corresponds to the statement: Let gj be four lines that meet a given one a at 

right angles.  The common perpendiculars j
′g  of the gj with a further line ′a  then have 
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the same double ratio.  If the lines g  that meet a  at right angles define a chain then the 

common perpendicular ′g  of g  with ′a  also define a chain (W. R. Ball).  In particular, 

the lines of a pencil define a chain, since all of their double ratios turn out to be real.  
Thus, the common perpendiculars ′g  of the lines g  of a pencil define a chain.  One 

easily shows that one can generate all chains in this way.  Following A. CAYLEY (1821-
1895), one calls the ruled surface that is swept out by the lines of a chain a cylindroid.  
With a suitable choice of rectangular coordinates x, y, z, its equation reads: 
 
(32.3)     (x2 + y2) z = 2axy, 
 
with the single invariant of the motion a.  The z-axis is a double line of the surface.  Its 
generators lie in the space z2 ≤ a2.  The cylindroid was introduced by W. R. HAMILTON 
(1805-1865) in 1830 and was investigated in 1868 by J. PLÜCKER (1801-1868), and 
was treated thoroughly by W. R. BALL (1840-1913); cf., W. R. Ball, Theory of Screws, 
London, 1902 and E. STUDY (1862-1930), Geometrie der Dynamen, Leipzig, 1903. 
 If a circular cylinder Z rolls without slipping inside of another one Z′ of double radius 
then every plane section of Z describes a cylindroid, as long as its interior does not lie on 
Z′.  For a = 0, the cylindroid degenerates into a pencil of lines. 
 
 

§ 33.  Two-parameter chains 
 

 We now turn our attention to the two-dimensional case.  We take three dual vectors 
(lines): 
(33.1)    jg  = g j + jε g   jg  ≠ 0 (j = 1, 2, 3), 

 
and we consider the two-parameter chain of lines: 
 
(33.2)     g  = c1 1g  + c2 2g  + c3 3g   

with real cj .  We set: 

(33.3)    g j = 
3

1
jk kg e∑ ,  jg = 

3

1
jk kg e∑  

and demand that: 
(33.4)      Det gjk ≠ 0. 
 
We can then eliminate the cj from the equations: 
 
(33.5)    hk = j jkc g∑ ,  kh  = j jkc g∑  

and find that: 
(33.6)     jh  = jk ka h∑  

with real cj for our chain.  If: 
 
(33.7)    jh′  = jk kb h′∑ ,  Det bjk ≠ 0 
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is a second chain then one has: 
 
(33.8)   ( )( )j j j jh h h hε ε′ ′+ +∑ = ( )j j jk jk j kh h a b h hε′ ′+ +∑ . 

If we then take: 
(33.9)     ajk + bjk = c δjk  
 
then we see: Between our two chains, one has the reciprocal relationship that to any line 
of the one, a one-parameter chain of the second comes about that meets the first line at 
right angles. 
 PLÜCKER, BALL, and STUDY, in his “Geometrie der Dynamen,” have examined 
such chains (also three-parameter ones).  Their classification under the group G18 of dual-
projective geometry or under the group G6 of Euclidian motions raises no difficulties, 
although it especially misleads one into excessive terminology by the introduction of 
ideal and imaginary elements (BALL, STUDY). 
 
 

§ 34.  Relationship with projective line geometry 
 

 If we replace the inhomogeneous rectangular coordinates x1, x2, x3 with homogeneous 
ones, where we write xj : x0 in place of xj , then the “PLÜCKER line coordinates” (§ 8) 
for the line connecting two points xj , yj are written in the form: 
 
(34.1)     gjk = xj yk − xk yj . 
 
For the determinant of four points x, y; x′, y′, one finds: 
 
(34.2)    D(g, g′) = 01 23 23 01g g g g′ ′+ +⋯ , 

 
in which the dots mean cyclic permutations of 1, 2, 3. 
 
(34.3)     D(g, g′) = 0 
 
is then the condition for the intersection of the lines g, g′, and: 
 
(34.5)    D(g, g) = 2(g01 g23 + …) = 0 
 
gives the dependency of the line coordinates gjk for a line g.  By comparison, if one takes 
the jkg′  to be arbitrary in (34.2), but possibly skew-symmetric: 

 
(34.6)     jkg′  + kjg′  = 0. 

 
then (34.3) represents a three-parameter totality of lines g, which R. STURM (1840-
1949) called a thread and J. PLÜCKER (1801-1868) called a linear complex. 
 If one introduces the value of g from (34.1) into (34.2) then one obtains the bilinear 
equation: 
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(34.6)     rs j kg x y′∑ = 0, 

 
where one sums over all even permutations of j, k, r, s that arise from 0, 1, 2, 3.  If the 
determinant of rsg′ , namely: 

(34.7)     Det rsg′  = 1
2 Det(g′, g′), 

 
is not equal to zero then (34.6) represents an involutory correlation that associates any 
point x with a point y that represents a plane through x, and for which any line of the 
thread (34.3) corresponds to itself.  Following A. F. MÖBIUS (1790 to 1868), one calls 
this correlation a null system.  If the determinant (34.7) vanishes then the thread consists 
of all lines of intersection of g′ (viz., a degenerate thread). 
 We now return to the general case (34.7).  If y is a “point at infinity” – i.e., y0 = 0 – 
then we find for the null point x the plane at infinity: 
 
(34.8)     rsg′ xj = 0  (k = 1, 2, 3) 

or 
(34.9)     03 2 02 3g x g x′ ′−  = 0, 

 
and cyclic permutations of 1, 2, 3.  The direction of the pole x of the plane at infinity thus 
agrees with the direction 01g′ , 02g′ , 03g′ .  A line h that is perpendicular to it satisfies the 

equation: 
(34.10)     01 01 02 02 03 03h g h g h g′ ′ ′+ +  = 0, 

 
and therefore lies on the degenerate thread g″: 
 

(34.11)     01 02 03

23 01 31 02 12 03

0, 0, 0,

, , .

g g g

g g g g g g

′′ ′′ ′′= = =
′′ ′ ′′ ′ ′′ ′= = =

 

 
In the “pencil of threads” g′ + tg″ there is then a degenerate thread for which: 
 
(34.12)   D(g′ + tg″, g′ + tg″) = D(g′, g′) + 2t D(g′, g″) = 0, 
or, more precisely: 
(34.13)     g01 g23 + … + t( 2

01g  + …) = 0. 

For: 
(34.14)     2

01g  + … ≠ 0 

 
the line g′ + tg″ is therefore defined uniquely, and one calls it the axis of the thread g′, 
where the term “axis” is now given a different meaning than the one that it had in § 28. 
 After this digression into line geometry, we now return to kinematics. 
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§ Special motions 
 

. In § 29, we established that the orthogonal dual transformation ′r  → r : 
 

(35.1)   r  = ′ɶQr Q ,  ɶQQ  = 1, Q  = Q +εQ  

 
represents a motion in Euclidian R3, when applied to the linesr  in R3, and that any such 
motion of the group of motions G6 can be represented in that way, from which the dual, 
normalized quaternion Q  is defined uniquely, except for its sign.  If we set: 
 
(35.2)   Q  = cos ϕ  + a sin ϕ , <a a > = 1, ϕ  = ϕ + εϕ  

 
then a  means the screw axis of the motion Q , 2ϕ, is its rotation angle, and 2ϕ  is a 

“shift” along a .  The determination of a  breaks down for Q = 1 − i.e., for the 

displacements. 
 We now look for the involutory motions – i.e., the motions that have period 2: 
 
(35.3)    ɶQQ  = + 1, Q Q  ≠ ± 1. 
From: 

(35.4)    

0

2
0

2
0 0

,

1,

2 1,

q

q

q q

= +

= + < > = +

= − < > + = ±

ɶ

Q q

QQ qq

QQ qq q

 

it follows that either: 
(35.5)    2

0q  = 1,  q= 0 

or 
(35.6)    0q  = 0,  <q q> = 1. 

 
The first case leads to the identity.  In the second case, one has: 
 
(35.7)    r  = − ′qr q , <q q> = 1, 

 
and we obtain the reversal (i.e., the rotation through the angle π) of the line q . 

 
 

§ 36.  Incidence 
 

 For a quaternion: 
(36.1)    Q  = (q0 + 0qε ) + (q +εq ), 
 
we have defined the “conjugate: by way of: 
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(36.2)    ɶQ  = (q0 + 0qε ) − (q +εq ). 

 
In addition, we would like to consider the quaternion εQ  that arises from Q  by changing 

the sign of ε: 
(36.3)    εQ = (q0 − 0qε ) + (q −εq ). 

One then has, in more detail: 
 

    Q  = q0 + 0qε + q +εq , 4q0 = Q  + ɶQ+ εQ + ε
ɶQ , 

 

    ɶQ  = q0 + 0qε − q −εq , 04q  = Q+ ɶQ − εQ − ε
ɶQ , 

(36.4)    

    εQ = q0 + 0qε − q −εq ,   4q = Q  − ɶQ  + εQ − ε
ɶQ , 

 

    ε
ɶQ  = q0 − 0qε − q +εq , 4εq = Q  − ɶQ  − εQ + ε

ɶQ . 

 
We have associated a point with the rectangular coordinates xj with the vector: 
 
(36.5)     x = x1 e1 + x2 e2 + x3 e3 . 

 
We would now like to assign it to the quaternion: 
 
(36.6)    X  = 1 + ε x = 1 + e(x1 e1 + x2 e2 + x3 e3), 

 
moreover.  Analogously, a plane whose equation in HESSE normal form reads: 
 
(36.7)   u0 + u1 x1 + u2 x2 + u3 x3 = 0,  2 2 2

1 2 3u u u+ +  = 1 
 
shall correspond to the direction unit vector: 
 
(36.8)    u = u1 x1 + u2 x2 + u3 x3, <u u> = 1, 

and the quaternion: 
(36.9)     U  = u + ε u0 . 
We then have for points that: 
 
(36.10)    ε−ɶX X  = 0, + ɶX X  = 2, ɶXX  = 1, 

and for planes that: 
(36.11)     ε+ɶU U = 0, ɶUU= 1. 

 For a point X  and a lineg : 

(36.12)     g  = g +ε g , <g g> = 1, 

we calculate the expression: 
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(36.13)     ε−gX Xg = 2ε{ g  − (x × g)}. 

Thus: 
(36.15)     ε−gX Xg = 0 

 
means the incidence of the point and the plane. 
 For a line and a plane, we find: 
 
(36.16)    ε+gU Ug = 2{− <g u> + ε(u0 g + (g  × u)}. 

 
Should this expression vanish, we would then have: 
 
(37.17)     <g u> = 0. 

 
Furthermore, if x is a point of g  then one will have: 

 
(36.18)     g  = x × g, 

 
and from the vanishing of (36.16), it would then follow, due to (36.17), (36.18), that: 
 
(36.19)  u0 g + (g  × u)) = u0 g + (x × u) × u = {u0 + <x u>}g = 0, 

and thus: 
(36.20)     u0 + <x u> = 0. 

One thus shows that: 
(36.21)     ε+gU Ug = 0 

 
is the condition for the incidence of the plane and the line. 
 Finally, we have for a point and a plane: 
 
(36.22)    ε ε−UX XU = 2e{ u0 + <u x>}, 

and this means that: 
(36.23)    ε ε−UX XU = +UX XU = 0 

 
is the condition for incidence of the point and the plane. 
 
 

§ 37.  Motions of points and planes 
 

 We consider the motion in R3 that is applied to its lines: 
 

(37.1)    g  = ′ɶQg Q ,  < >QQ  = 1. 

 
We assert: The same motion, when applied to the points X  of R3, gives: 
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(37.2)     X  = ε′ɶQX Q . 

 
In order prove this, we first observe that under (37.2) points ′X  go to points X , since the 
equations (36.10) are preserved: 
 

(37.3)    
( ) 0,

1.

ε ε ε

ε ε

′ ′− = − =

′ ′= =

ɶɶ ɶ

ɶ ɶɶ ɶ

X X Q X X Q

XX QXQ Q XQ
 

 
We then need only to show that the condition (36.15) remains true for the incidence of a 
line and a point under (37.1), (37.2): 
 

(37.4)    gX  − εXg = ( )ε ε ε′ ′ ′ ′−ɶ ɶQ g X X g Q . 

 
 Correspondingly, we see: The motion (37.1), when applied to planes, gives: 
 

(37.5)     U  = ε′ɶQU Q , 
since 

(37.6)  ε+ɶU U = ( )ε ε′ ′+ɶQ U U Q  = 0, ɶU U  = ε ε′ ′ ′ɶ ɶQUQ Q U Q  = 1. 

 
 

§ 38.  Screws 
 

 We take a motion Q , as in § 29, to be: 
 
(38.1)  ɶQQ  = 1, Q  = Q + εQ , <Q Q> = 1, <Q Q> = 0 

and 
(38.2)   Q  = cos ω  + a  sin ω , a + ɶa  = 0, <a  a > = 1. 
 
For dual arguments of a − perhaps analytic − function f, one sets: 
 
(38.3)     f(x + εy) = f(x) + ε y f′ (x). 
One then has: 

(38.4)    0

0

cos , sin ,

sin , sin cos ,

q

q

ω ω
ω ω ω ω ω

= =
= − = +

q a

q a a
 

and thus: 

(38.5)     

0 0

2 3/22
00

0 0
2 3/22
00

,
(1 )1

.
(1 )1

q q

qq

q q

qq

ε

ε

= +
−−

= +
−−

q q
a

qq
a
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In the case of a translation, this formula says only that: 
 
(38.6)   q0 = 1,  q1 = q2 = q3 = 0, Q  = 1 + εq . 

For ω, ω , we have: 

(38.7)   cos ω = q0 , sin ω = 2
01 q− , ω  = − 0

2
01

q

q−
. 

If we set: 
(38.8)     Q  = RS= SR , 
with: 
(38.9)    R  = cos ω + a sin ω,  S  = 1 + ε aω , 

 
then R  represents the rotation around the axis a  through the angle 2ω.  From (37.2), 
when S  is applied to points, it gives the displacement: 
 
(38.10)    X  = (1 − ε aω ) ′X (1 − ε aω ), 

or 
(38.11)     x = x′ − 2 aω . 

 
Thus, − 2ω  is the shift in the direction a.  One sees that R  actually represents a rotation 

around a  from the fact that the point X  remains fixed on a : 
 
(38.12)     a X  − X εa = 0 

under: 
(38.13)    X  = (cos ω −a sin ω) ′X (cos ω + εa sin ω). 

 
One recognizes the fact that we are dealing with a rotation through the angle 2ω by 
considering the “spherical part:” 

(38.14)     g  = ′ɶRg R  

of our rotation, as in § 2. 
 In particular, the inversion along the axis a  will be represented by: 
 
(38.15)     g  = − ′a g a . 

 
Any motion Q  can be represented as the product of two inversions: 
 
(38.16)     Q  = 1 2a a . 

 
The axes 1a , 2a  cut the screw axis perpendicularly with an angle and shortest distance 

between them that equals one-half the rotation angle and shift of the screw. 
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§ 39.  Transfers 
 

 If one composes the reflection through the origin O, namely: 
 
(39.1)   g  = − ε′g , X = ε′X , U = − ε′U , 

 
with a motion (37.1), (37.2), (37.5): 
 

(39.2)   g  = ′ɶQg Q ,        X  = ε′ɶQX Q ,    U = ε′ɶQU Q  

 
then one obtains the formula for a transfer in R3 : 
 

(39.3)   g  = − ε′ɶQg Q ,    X  = ε ε′ɶQX Q ,    U = − ε ε′ɶQU Q . 

 
 In order for a transfer to be involutory – i.e., to be of period 2 – it is necessary that: 
 
(39.4)     εQ Q  = ± 1. 

If one observes that: 

(39.5)    ɶQQ  = 1, <Q Q> = 1, <Q Q> = 0 

 
then it follows from (39.4) that: 
 
(39.6)    (2 2

0q  − 1) + 2q0 q + ε ( )−qq qq = ± 1, 

or 
(39.7)    2 2

0q  − 1 = ± 1,  q0 q = 0, q × q  = 0. 

 
From the second equation, it follows that either: 
 
(39.8)      q = 0 

or 
(39.9)      q0 = 0. 
 
 In the former case, (39.8) gives, from (39.5): 
 
(39.10)      q0 = ± 1. 
From (39.5), one further has: 
(39.11)     q0 0q  + <q q> = 0, 

 
and therefore, due to (39.8), (39.10): 
(39.12)      0q  = 0, 
so: 
(39.13)     Q  = +1 + ε q . 
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Since the choice of sign for Q  is inessential, it suffices to take the positive sign in 
(39.13).  The second formula (39.3) then gives: 
 
(39.14)    1 + ε x = (1 – ε q )(1 – ε x)(1 – ε q ), 

or 
(39.15)     x = − x′ − 2q . 

 
This is the reflection (symmetry) through the point − q . 
 In the second case (39.9), one will have: 
 
(39.16)    Q  = q + ε 0( )q + q , q × q  = 0. 

 
The second formula (39.3) now gives: 
 
(39.17)    x = 2 0q q + qx′q, <q q> = 1, 

or 
(39.18)     x q + q x′ + 2 0q  = 0. 

The points of the plane: 
(39.19)     <q x> − 0q  = 0 

 
go to themselves under the map (39.18).  Therefore, (39.17) means the reflection through 
the plane (39.19).  For the reflection in a plane U , one has the following formulas: 
 For lines: 

(39.20)     g  = − ε′ ɶU g U  = + ε ε′U g U , 

 For points: 

(39.21)     X  = − ε′UX U  = − ′ɶUX U , 

 For planes: 

(39.22)     B  = + ε′UB U  = − ′ɶUB U . 

 
 We still need to determine the meaning of Q  in the general case of the transfer 

(39.3).  In order to do that, if we compose the reflection through the point p: 

 

(39.23)     g  = − ε′ɶPg P ,  P  = 1 – εp 

 
with the rotation around the axis a  through p: 

 

(39.24)    a  = a + ε(p × a) = a + ε 
2

−pa ap
 

through the angle 2ω: 
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(39.25)  ∗g  = {cos ω – (a + ε p × a) sin ω} g  {cos ω + (a + ε p × a) sin ω} 

 
then we get (39.3), with: 
(39.26)    Q  = (1 – ε p) {cos ω + (a + ε p × a) sin ω} 

and 

(39.27)     0 0cos , sin ,

sin , cos .

q qω ω
ω ω

= =< >
= = −

pa

q a q p
 

 
 

§ 40.  Simple manifolds of axis-crosses 
 

 In the projective space P7 with homogeneous coordinates qj, jq  (j = 0, 1, 2, 3), we 

have the two “absolute quadrics”: 
 
(40.1)    <Q Q> = 2 2 2 2

0 1 2 3q q q q+ + +  = 0 

and 

(40.2)    <Q Q> = 0 0 1 1 2 2 3 3q q q q q q q q+ + +  = 0. 

 
The manifold M6 of all axis-crosses (right-angled crosses) Q  in P7 satisfies the 
homogeneous equation (40.2). 
 We next consider the manifold M3 of all Q  that arise from Q  = 1 by rotations 
around the origin O.  We find the linear M3 for them on the quadric (40.2): 
 
(40.3)     0q  = 1q  = 2q  = 3q  = 0. 

 
For the axis-crosses that arise from Q  = 1 by all translations, that yields the linear 

manifold 3M ′  on (40.2): 

(40.4)     0q  = q1 = q2 = q3 = 0. 

 
Finally, for the axis-crosses that are found by means of all reflections of Q  = 1 through 

all planes, we find the linear manifold 3M ′′  on (40.2): 

 
(40.5)     q0 =  1q  = 2q  = 3q  = 0. 

 
Thus, 3M ′  and 3M ′′  have the characteristic property that any two of their axis-crosses go 

to each other under a rotation.  The number 3 is the highest dimension number for a linear 
manifold on the quadric (40.2). 1) 

                                                
 1) Cf., perhaps, E. BERTINI, Einführung in die projektive Geometrie mehrdimensionale Raüme, 
Vienna, 1924, chap. VI, E. STUDY, “Grundlagen und Ziele der analytischen Kinematik,” Sitzungsber. 
Berlin. Math. Ges. 12 (1913), 36-60, and the next book to appear in this series by W. BURAU. 
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 We now give two examples of quadratic manifolds of axis-crosses, namely, first, the 
manifold M5 of axis-crosses that are coupled with a line g  and cut a fixed lineh .  From § 

29, we have: 

(40.6)     g  = ′ɶQg Q , 

and in more detail: 

(40.7)   g = ɶQg′ Q,  g  = ′ ′ ′+ +ɶ ɶ ɶQgQ QgQ QgQ . 

 
From (28.10), the condition for the intersection of g  andh  reads: 

 
(40.8)   − 2{<h g> + <h g>} = h g  + g h + h g + gh= 0. 

 
 (40.8), (40.7) yield the vanishing of the real part (i.e., scalar part) of: 
 

(40.9)    { }′ ′ ′ ′+ + +ɶ ɶ ɶ ɶhQg hQg hQg Q hQgQ . 
If we take, in particular: 
(40.10)    q = h = e3 , ′g = h  = 0 
 
then the vanishing of the real part of: 

(40.11)     ( )′ ′+ɶ ɶh Qg Q QgQ  
 
would follow from that.  From that, it follows, due to (40.5), that the equation of our M5 
is: 
(40.12)    0 0 1 1 2 2 3 3q q q q q q q q− − +  = 0. 
 
 We further take the 5M ′  of all axis-crosses Q  whose origin O lies in the plane x3 = 0.  

If we apply the motion (37.2) to the origin ′X  = 1 then we find: 
 

(40.13)   X  = 1 + ε x = ɶQQ  = 1 + 2ε{ 0q q – q0q+ (q × q )}. 

 
This then gives the equation for our 5M ′  as: 
 
(40.14)    0 3 0 3 1 2 2 1q q q q q q q q− + −  = 0. 
 
 Finally, we consider the manifold M4 of all axis-crosses Q  that result from a fixed 

′Q  by the inversions in all linesg : 

(40.15)     Q  = ′Q g . 

 One then has: 

(40.16)     g  = ′ɶQ Q , 

and therefore: 
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(40.17)    g  + ɶg  = ′ɶQ Q+ ɶQ ′Q  = 2 <Q ′Q > = 0. 

 
 Our 3M ′  thus satisfies the condition: 

 
(40.18)     <Q ′Q > = 0. 
 
 From this, according to STEPHANOS (cf. § 19), it follows that: 
 
 To any three positions 1Q , 2Q , 3Q  of a rigid body, there is, in general, precisely 

one fourth one ′Q  that goes to the jQ  by inversions through lines.  The single exception 

arises when the jQ  are permuted by rotations around parallel axes. 

 
 One can also investigate the geometry of axis-crosses that are based in the group G28 
of projective transformation that take the quadric (40.2) to itself. 1) 

                                                
 1) On the projective geometry of the quadric (40.2) and the associated “triality principle” (viz., the 
relationship between its points and its two families of “generators” M3), cf., also E. A. WEISS, 
Punktreihengeometrie, Leipzig and Berlin, 1939, pp. 154. 



 

CHAPTER FIVE 
 

COMPULSIVE SPATIAL MOTION PROCESSES  
 
 

§ 41.  The canonical axis-cross 
 

 We now consider a one-parameter (= compulsive) motion process in R3 whose effect 
on lines g  is represented by means of an equation: 

 

(41.1)   ( )tg  = ( ) ( )t t′ɶQ gQ ,  ɶQQ  = 1, 

 
and its effect on points X  by means of (37.2): 
 
(41.2)     ( )tX = ( ) ( )t tε′ɶQ XQ . 

 
In these equations, the real variable t means “time.” 
 By extending equations (9.3) to “dual” ones, we obtain the following differential 
equations (Q  = 0Q ): 

(41.3)    

0 1

1 0 2

2 1 3

3 2

* * *,

* *,

* * ,

* * *,

d

d

d

d

ρ
ρ σ

σ τ
τ

= +
= − +
= − +
= −

Q Q

Q Q Q

Q Q Q

Q Q

 

with 
(41.4)   ρ  = ρ + εσ , σ  = σ + εσ , τ  = τ + ετ . 

 
Separating the real and dual parts in (41.3) then gives the spherical part of our spatial 
motion process in the form of formulas (9.3), along with: 
 

(41.5)  

0 1 1

1 0 2 0 2

2 1 3 1 3

3 2 2

* * * * * *,

* * * *,

* * * * ,

* * * * * *.

d

d

d

d

ρ ρ
ρ σ ρ σ

σ τ σ τ
τ τ

= + +
= − + − +
= − + − +
= − −

Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q

 

 
One then comes to the “dualization” of the product table (9.5).  It gives, for example: 
 

(41.6)   1 1+ ɶɶQQ QQ  = 1p , 1 1+ ɶɶQ Q Q Q  = 1′p . 
Since: 
(41.7)    < j kp p > = δjk , [ 1p 2p 3p ] = + 1 
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the lines jp  define a right-angled axis-cross that we call canonical relative to the moving 

system; likewise, the j
′p  define the canonical axis-cross in the rest system.  Along with 

the differential equations (9.11), one then has: 
 

(41.8)    
1 2 2

2 1 3 1 3

3 3 2

* * * *,

* * ,

* * * *,

d

d

d

λ λ
λ µ λ µ

µ µ

= + +
= − + − +
= − −

p p p

p p p p p

p p p

 

and 

(41.9)    

1 2 2

2 1 3 1 3

3 3 2

* * * *,

* * ,

* * * *.

d

d

d

λ λ

λ µ λ µ

µ µ

′ ′′ ′ ′= + +

′ ′ ′′ ′ ′ ′ ′ ′= − + − +

′ ′′ ′ ′= − −

p p p

p p p p p

p p p

 

 
The following connection exists in them: 
 

(41.10)    

,

2 ,

2 ,

σ λ λ
ρ µ µ
τ µ µ

′= =
′= −
′= +

  

,

2 ,

2 .

σ λ λ
ρ µ µ
τ µ µ

′= =
′= −
′= +

 

 
Corresponding to (10.4), we have: 
(41.11)     dg  = 12( )ρ×g p , 

and therefore: 
(41.12)    dg  = 0 for  g  = 1p . 

 
This means: 1p  is the axis of the instantaneous screw in the moving system.  From the 

fact that: 
(41.13)    < 3p 1p > = 0,  < 3p 1dp > = 0, 

 
it follows: 3p  is the common perpendicular to two neighboring screw axes 1p , 1p  + 

1dp .  This explains the meaning of the canonical axis-cross. 

 Now, let z be the origin of the canonical axis-cross: 

 
(41.14)     z × pj = jp . 

 
If we differentiate (41.14) for j = 1, 2, 3 then it follows, with the use of the differential 
equations: 

(41.15)    1 2 3 2

3 2 2 2

( ) ( ) ,

( ) ( ) ,

d

d

λ λ λ
µ µ µ

× + × = + +
× − × = − −
z p z p p p

z p z p p p
  

and thus, from (41.14), that: 
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(41.16)    dz × p1 = + 2λp , dz × p3 = − 2µp . 

From this, it follows that: 
(41.17)     dz = + 1 3µ λ+p p , 

 
and correspondingly in the rest system: 
 
(41.18)     dz′ = + 1 3µ λ′ ′ ′ ′+p p . 

 
 The point z is the intersection point of the screw axis 1p  with the common 

perpendicular 3p  to 1p , 1p  + 1dp , and for that reason it is called the center of the axis 

surface ( 1p ) on 1p .  The meanings of ρ ,σ , τ  are obtained with no further assumptions 

by dualizing the meanings of ρ, σ, τ in § 9. 
 We now consider some simple special cases. 
 If we have: 
(41.19)     λ = λ′ = 0 
for all t then we have: 
(41.20)     dp1 = 1d ′p  = 0, 

 
and therefore the axis surfaces 1( )p , 1( )′p  are cylinders.  One then also calls the process 

of motion cylindrical.  For: 
(41.21)    ρ  = 0,  µ  = µ′  
 
the two axis surfaces 1( )p , 1( )′p  will be developable onto each other, and the motion 

process will be generated by the rolling without slipping of 1( )p on 1( )′p . 

 If (41.19) and (41.21) are true simultaneously then we are dealing with a planar 
motion process that arises from the rolling without slipping of the cylinder 1( )p  on the 

cylinder 1( )′p ,  The relations: 

(41.22)     ρ = σ = τ = 0 
 
characterize the translation processes whose spherical component is the identity. 
 
 

§ 42.  The axis surface 
 

 From the formula: 
(42.1)    1dp  = 2 λp ,  λ  = λ +ελ , 

 
it follows that λ is the angle and λ  is the shortest distance between neighboring screw 
axes 1p , 1 1d+p p .  Corresponding statements are true for the axis surface 1( )′p  in the rest 

system. 
 From: 



V.  Compulsive spatial motion processes                                               67 

(42.2)     λ = λ′,  λ  = λ′  
 
we see that the axis surface in the have the same twist (= division parameter) in 
corresponding axes: 

(42.3)      
λ
λ

 = 
λ
λ

′
′
. 

 
The axis surfaces contact each other at each time point t along the common screw axis 

1p , and have their common center there.  One speaks of the “grinding” of the moving 

surface on the rest surface.  From (41.17), (41.18): 
 
(42.3)     µ µ′−  = − 2ρ  
 
measures the shift along 1p .  Since: 

 
(42.5)    < 1p 3p > = 0, < 1p , 3 3d+p p > = 0, 

 

1p  is the common perpendicular of 1p , 3 3d+p p .  The relationship between the ruled 

surfaces 1( )p , 3( )p  is therefore reciprocal. 

 We then seek the curvature axis q  of 1( )p  that has same angle and distance from 

three “neighboring” generators.  This follows by means of the basic equations: 
 

(42.6)    
1 2

1 3

, 0,

0.

c

λ µ
< > = < > =

< > − < > =

q p q p

q p q p
 

From this, one has: 

(42.7)     q  = 1 3

2 2

µ λ

λ µ

+

+

p p
, 

or, in more detail: 
 

(42.8)  q = 1 3

2 2

µ λ

λ µ

+

+

p p
, q  = 1 3 1 3

2 22 2

µ λ µ λ λλ µµ
λ µλ µ

+ + + +−
++

p p p p
q . 

 
Furthermore, one has: 
 

(42.9)  c  = 
2 2

µ

λ µ+
, c = 

2 2

µ
λ µ+

, c  = 
2 22 2

c
µ λλ µµ

λ µλ µ
+−
++

. 

 
Therefore, q  is the common perpendicular to 2p , 2 2d+p p .  If we set: 
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(42.10)    c  = cos ϕ  = cos ϕ  – ε ϕ sin ϕ 

then we have: 

(42.11)    cos ϕ = 
2 2

µ
λ µ+

 , ϕ  = 2 2

λλ µµ µ µ
λ µ λ λ

+ −
+

. 

 
Corresponding formulas are true for the rest axis surface 1( )′p . 

 
 

§ 43.  Velocity 
 

 Differentiation of formula (41.2), while observing the basic equations, gives: 
 

(43.1)   dX  = 1 1ε ε ερ ρ′ ′+ɶ ɶ ɶ ɶQ X Q QX Q  = 1 1ε ε ερ ρ+ɶ ɶ ɶQ QX XQ Q , 

 
and from that, according to (9.5): 
(43.2)     dX  = − 1 1ε ερ ρ+p X X p . 

In more detail: 
 
(43.3)  d(1 + εx) = − (p1 + 1ε p )(1 + εx)(ρ +ερ ) + (1 + εx)(p1 − 1ε p )(ρ −ερ ), 

 
and therefore: 
(43.4)     dx = 2{(x × p1) − 1p } ρ – 2p1 ρ . 

 
If one introduces the origin z of the axis cross, which fulfills the equation: 

 
(43.4)     z × p1 = 1p , 

then one gets: 
(43.6)     dx = 2{(x − z) × p1} ρ – 2p1 ρ . 

 
 If we set: 

(43.7)     
dt

ρ
= R, 

dt

ρ
= R  

then we get: 
(43.8)    v = ɺx  = 2{(x − z) × p1}R – 2p1 R  

 
for the vector v of the absolute velocity, or when we introduce canonical coordinates: 

 
(43.9)    x = z + x1p1 + x2p2 + x3p3, 

this becomes: 
(43.10)    1

2 v = 1
2
ɺx  = (x3p2 – x2p3) R – p1 R . 

From (41.17), one has: 
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(43.11)    ɺz  = 1 3M L+p p ; M  = 
dt

µ
, L  = 

dt

λ
. 

 
If one differentiates the canonical point coordinates: 
 
(43.12)     xj = <x – z, pj> 

then one gets the guiding conditions: 

(43.13)     
1 2

2 1 3

3 2

,

,

,

x M x L

x x L x M

x L x M

′= − +
′= − +

′= − −

ɺ

ɺ

ɺ

 

 
which confirm that a point (43.9) is fixed in the moving system.  Correspondingly, for: 
 
(43.14)    x′ = z′ + 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+ +p p p  

one gets the rest conditions: 

(43.15)     
1 2

2 1 3

3 2

,

,

.

x M x L

x x L x M

x L x M

′ ′= − +
′ ′ ′ ′= − +
′ ′ ′= − −

ɺ

ɺ

ɺ

 

They are true for a point x′ at rest. 

 For a plane with the canonical equation: 
 
(43.16)    u0 + u1 x1 + u2 x2 + u3 x3 = 0, 
 
one finds by differentiating (43.16), and by means of (43.13), the guiding conditions: 
 

(43.17)     

0 1 3

1 2

2 1 3

3 2

,

,

,

,

u u M u L

u u L

u u L u M

u u M

′= + +
= +

′= − +
′= −

ɺ

ɺ

ɺ

ɺ

 

and the rest conditions: 

(43.18)     

0 1 3

1 2

2 1 3

3 2

,

,

,

.

u u M u L

u u L

u u L u M

u u M

′ ′ ′= + +
′ ′= +
′ ′ ′= − +
′ ′= −

ɺ

ɺ

ɺ

ɺ

 

 
 For a line with the coordinates gj, jg  relative to the canonical axis-cross, the guiding 

conditions read: 
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(43.19)   

1 2 2 1 3 3 2

1 2 2

2 1 3 1 3

3 2 2

, , ,

,

,

,

g g L g g L g M g g M

g g L g L

g g L g M g L g M

g g M g M

′ ′= = − + = −
= + +

′ ′= − + − +
′ ′= − −

ɺ ɺ ɺ

ɺ

ɺ

ɺ

 

 
and the rest conditions: 
 

(43.20)   

1 2 2 1 3 3 2

1 2 2

2 1 3 1 3

3 2 2

, , ,

,

,

.

g g L g g L g M g g M

g g L g L

g g L g M g L g M

g g M g M

′ ′ ′ ′ ′ ′ ′= = − + = −
′ ′ ′= + +
′ ′ ′ ′ ′ ′= − + − +
′ ′ ′= − −

ɺ ɺ ɺ

ɺ

ɺ

ɺ

 

 
 

§ 44.  Normal thread 
 

 Should the line: 
(44.1)     n  = n + εn  

 
be perpendicular to the path tangent at x then, from (43.10), one would have: 

 
(44.2)    n1 ρ  – n2 x3 ρ + n3 x2 ρ = 0. 
 
On the other hand, since n  runs through x, one has: 

 
(44.3)    x × n =n , x3 n2 − x2 n3 = 1n . 

 
It then follows that all of the path normals at an instant t satisfy the linear equation: 
 
(44.4)     1 1n nρ ρ+  = 0 

or, more generally: 
(44.5)    <n p1> ρ  + {<n 1p > + <n p1>}ρ = 0. 

 
One calls the structure that is represented by a linear equation in the line coordinates nj, 

jn  a “linear complex” or a “thread” (§ 34); (44.4) or (44.5) then represents the desired 

normal thread.  For ρ  = 0, the thread degenerates into the set of lines of intersection of 

the screw axis p1 . 

 One finds the following canonical line coordinates for the path tangents: 
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(44.6)    
1

2 3

3 2

,

,

,

g

g x

g x

ρ
ρ
ρ

= −
= +
= −

  

2 2
1 2 3

2 3 1 2

3 2 1 3

( ) ,

,

.

g x x

g x x x

g x x x

ρ
ρ ρ
ρ ρ

= − +
= + +
= + +

 

 
They define the quadratic complex: 
 
(44.7)    2 2

2 2 3 3 2 3( ) ( )g g g g g gρ ρ+ + +  = 0. 

 
 

§ 45.  Twist and center of the path ruled surface 
 

 Let ( )tg  be a ruled surface.  The common perpendicular h  of two neighboring 

generators is then: 

(45.1)    

2, , ,

( ) ( )
.

d
d d

d d

α
α

α
α α

×= = < >

× + ×= −

g g
h g g

g g g g
h h

 

 
The center y on g  is defined by the point of intersection of g  and h : 

 
(45.2)    y × g = g , y × h = h . 

 
From the latter relation, it follows that: 
 
(45.3)    [y, h, dg] = <h , dg>, 

or, due to (45.1): 

(45.4)    <y g> = 
[ , , ]

,

d d

d d< >
g g g

g g
. 

 
 If we apply these formulas to the ruled surfaces that are described by the lines in 
moving system then, since 1p  = 0, one has: 
 

(45.5)    1

1 1

2( ) ,

2( ) 2( ) .

d

d

ρ
ρ ρ

= ×
= × + ×

g g p

g g p g p
 

 
The angle α between two neighboring generators will then come from: 
 
(45.6)    α2 = <dg, dg> = 2 2 2

2 34( )g g ρ+ , 
 
and for its shortest distance α , one has: 
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(45.7)  αα  = <dg, dg > = 2 2 2
2 2 3 3 2 34( ) 4( )g g g g g gρ ρρ+ + + . 

 
It then follows that the twist α :α  of our ruled surface is: 
 

(45.8)    
α
α

 = 2 2 3 3
2 2
2 3

g g g g

g g

ρ
ρ

+ +
+

. 

 
Thus, for intersecting lines (α  = 0), in particular, one has: 
 
(45.9)   2 2

2 2 3 3 2 3( ) ( )g g g g g gρ ρ+ + +  = 0. 

 
Due to (45.5), it then follows from (45.4) that: 
 

(45.10)    <y g> = 2 3 3 2
12 2

2 3

g g g g
g

g g

−
+

,  

and thus, due to (45.2): 

(45.11)    2 3 3 2
12 2

2 3

( ),

.

A

g g g g
A g

g g

= + ×
−=
+

y g g g

 

 
 For the common perpendicular of neighboring generators of a path ruled surface, it 
follows from (45.1), (45.5) that: 
 

(45.12)   h = 1 1

2
( )g

ρ
α

−g p , h  = y × h. 

 
 

§ 46.  Intersection of neighboring planes and lines 
 

 Let: 
(46.1)    u0 + u1 x1 + u2 x2 + u3 x3 = 0 
 
be a plane in the moving system at the time t.  In order to ascertain its intersection with its 
neighboring position at time t + dt, we differentiate (46.1), when we apply the rest 
conditions (43.15) to the xj and the guiding conditions (43.17) to the uj : 
 
(46.2)    1 3 2 2 3( )u u x u xρ ρ+ −  = 0. 

 
The coordinates of the intersection line r  of (46.1), (36.2) are, up to a common factor: 
 

(46.3)   
2 2

1 2 3 2 1 2 3 1 3
2

1 1 2 0 3 1 2 3 0 2 1 3

( ) , , ,

, , .

r u u r u u r u u

r u r u u u u r u u u u

ρ ρ ρ
ρ ρ ρ ρ ρ

= − + = + = +
= − = − = − −
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 We further seek the intersection point of neighboring lines.  We have: 
 
(46.4)    g  = x × g, dg  = x × dg, 

and from (45.5): 

(46.5)    1

1 1

2( ) ,

2( ) 2( ) .

d

d

ρ
ρ ρ

= ×
= × + ×

g g p

g g p g p
 

 
It follows from (46.4), (46.5) that: 
 
(46.6)  g2 x2 + g3 x3 = 0,    3 3 2 1g g g xρ ρ ρ+ −  = 0,    2 2 3 1g g g xρ ρ ρ+ +  = 0, 

 
and from this, it follows that: 
(46.7)    1 1g g ρ  = 2 2

2 3( )g g ρ+ , 

in agreement with (45.9). 
 
 

§ 47.  Acceleration 
 

 For the sake brevity, if we once more employ the “canonical time”: 
 

(47.1)    s = 
0

t

t

ρ∫ , ds = ρ 

then one has that: 
(47.2)     R = 1 
 
in (43.7) and thus, in (43.8), the absolute velocity becomes: 
 
(47.3)    ɺx  = 2{(x − z) × p1} R – 2p1 R , 

or, in more detail: 
(47.4)    1

2
ɺx  = – p1 R+ x3 p2 − x2 p3 .  

 
By differentiating with respect to s, it then follows, when one applies the guiding 
conditions (43.13) to x and equations (10.15) to p, that the acceleration is: 

 

(47.5)  1
2
ɺɺx  = –( )3 1 2 2( 2 )R x L L RL x+ − + +ɺ p p  + (x1 L − 2x3) p3 . 

 
In this, from (41.10), (47.1), one sets: 
 
(47.6)     M′ − M = 2. 
For the vector product: 
(47.7)     w = 1

4 ×ɺ ɺɺx x , 

we find that: 
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(47.8)    

2 2
1 2 2 3 1 3

2 1 2 3 2 3

2
3 2 3 3

( ) 2( ) ,

2 ,

( ) 2 .

w x LR L x x x x L

w x LR x R x R x x L

w R LR L x R x R x L

= − + − + +

= + − +

= + + + +

ɺ ɺ

ɺ

 

 
For the inflection points of a path, one has w = 0, or: 

 
(47.9)     f+ɺɺ ɺx x  = 0. 
From (47.4), (47.5), one then has: 
 

(47.10)    
3

2 3

1 2 3

* * ,

* 2 ,

2 0.

x L R fR

x x f LR L

x L x f x

− = +
− + = +
− − =

ɺ

 

 
For L ≠ 0, this gives the location of the inflection points as: 
 

(47.11)   

{ }
{ }

{ }

2 3
1 2

2
2

3

1
4 [ ( ) 4 ] ,

2
1

( ) ,
2
1

.

x R f L LR L R f R f R
L

x LR L L f R f R
L

x R f R
L

− = + + + + +

− = + + +

− = +

ɺ ɺ

ɺ

ɺ

 

 
For R  ≠ 0, this is a cubic line C3 that goes through the point at infinity of p1 (f = ∞), 

where it has the line at infinity of the plane x3 = 0 for its tangent and the plane at infinity 
for its osculating plane.  It lies on the parabolic cylinder w3 = 0.  For: 
 

(47.12)    L ≠ 0,    R  = 0,    Rɺ ≠ 0, 
 
C3 degenerates into a parabola, and for: 
 
(47.13)    L = 0, R≠ 0, 
into a line.  Finally, for: 

(47.14)    L = 0, R  = 0,    Rɺ = 0,    L ≠ 0, 
 
we obtain the locus of the inflection points of the circular cylinder: 
 
(47.15)    2 2

2 3 22( )x x x L+ +  = 0. 

 
 For the inverse motion process, we have: 
 
(47.16)   ρ* = − ρ, ρ ∗  = − ρ , λ* = +λ, λ ∗ = +λ . 
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For the locus through which three neighboring lines go, we must, for that reason, apply 
the map: 
(47.17)    1x

∗  = − x1, 2x∗  = − x2, 3x∗  = + x3 

to C3 . 
 
 

§ 48.  Three neighboring positions of lines 
 

 If we consider three “neighboring” positions of a line g  that is defined in the moving 

system then they generally uniquely determine a quadric that has those lines for its 
generators.  In order to show this, one can employ the following equation for the quadric 
through three lines 1g , 2g , 3g  : 

 

(48.1)   
1 2 3 3 2 3 2 2 3 1

1 3 1 3 3 1 2

2 2 2 1 1 2 3

[ ] { [ ]}

{ [ ]}

{ [ ]} 0.

+ < > − < > + < >
+ < > − < > + < >
+ < > − < > + < > =

g g g g g g g g g x g x

g g g g g g x g x

g g g g g g x g x

 

 
For the center of this quadric, one gets the equation: 
 
(48.2)  3 2 3 2 2 3 1 1{ [ ]}< > − < > + + < >g g g g g g x g g x (g2 × g3) + … = 0, 

 
in which the dots mean cyclic permutations of 1, 2, 3. 



 

CHAPTER SIX 
 

SURFACE-CONSTRAINED SPATIAL MOTION PROCESSES  
 
 

§ 49.  Line congruences 
 

 Whereas the compulsive motion processes have treated thoroughly, in particular, by 
engineers, ones with several parameters have still been considered only slightly, despite 
the fact that they are especially attractive for the geometer.  Here, we would like to 
restrict ourselves to two-parameter ones (= surface-constrained) and first introduce some 
prefatory facts from the differential geometry of line congruences. 
 Let {x: r1, r2, r3} be an axis-cross in R3 that depends upon two real variables u, v with 

the origin x and the perpendicular unit vectors rj on the axes. We set: 

 

(49.1)   1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1 1 2 2 3 3

, , ,

.

d d d

d

σ σ σ σ σ σ
σ σ σ

= − = − = −
= + +

r r r r r r r r r

x r r r
 

 
In this, the σ mean Pfaffian forms in the u, v.  We will assume that the σ1, σ2 are linearly 
independent: 
(49.2)     [σ1 σ2] = Ω ≠ 0. 
 
The integrability conditions follow from (49.1) by exterior differentiation: 
 

(49.3)    
1 2 3 1 2 3 2 3

2 3 1 2 3 1 3 1

3 1 2 3 1 2 1 2

[ ], [ ] [ ],

[ ], [ ] [ ],

[ ], [ ] [ ].

d d

d d

d d

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ

= − = − −
= − = − −
= − = − −

 

 
 We consider the congruence K of the axes x3 with: 

 
(49.4)    3r = r3 + 3ε r ,   3r  = x × r3 . 

One will then have: 
(49.5)    3dr  = 1 2 2 1 1 2 2 1σ σ σ σ− + −r r r r  . 

For a point y on 3r , one has: 

(49.6)     y = x + h r3 , 

and from this: 
(49.7)   dy = 1 1 2 2 2 1 3 3( ) ( ) ( )h h dhσ σ σ σ σ+ + − + +r r r . 

 
A focal point y of K on 3r  will then be defined by the following requirement: 

 
(49.8)    1σ  + hσ2 = 0,  2σ  − hσ1 = 0. 
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By eliminating h, we find the differential equation for the developable surfaces in K from 
this: 
(49.9)     1 1 2 2σ σ σ σ+  = 0, 

 
while alternating multiplication of (49.8) yields the following equation for the focal 
points: 
(49.10)   2

1 2 1 1 2 2 1 2[ ] {[ ] [ ]} [ ]h hσ σ σ σ σ σ σ σ+ + +  = 0. 

 
 

§ 50.  Differential invariants of line congruences 
 

 For the center z of the focal points on 3r , it follows from (49.10) that: 

 

(50.1)   z = x + h0 r3 ,  h0 = 1 1 2 2

1 1

[ ] [ ]1

2 [ ]

σ σ σ σ
σ σ

+
. 

 
We introduce canonical axes by two requirements: 
First, we take z to be the origin; from (50.1), that gives: 

 
(50.2)     1 1 2 2[ ] [ ]σ σ σ σ+  = 0. 

 
Second, the axes r1, r2 shall separate the null directions of (49.9) harmonically.  For the 

moment, if we set: 
(50.3)    1σ  = Aσ1 + Bσ2 , 2σ  = Cσ1 + Dσ2  

then (49.9) gives: 
(50.4)    2 2

1 1 2 2( )A B C Dσ σ σ σ+ + +  = 0. 

 
Our second requirement thus leads to the condition: 
 
(50.5)     B + C = 0, 
or: 
(50.6)     1 1 2 2[ ] [ ]σ σ σ σ−  = 0. 

 
From (50.2), (50.6), one then has: 
 
(50.7)    1 1[ ]σ σ  = 0, 2 2[ ]σ σ  = 0, 

or: 
(50.8)    1σ  = k1σ1 , 2σ  = k2σ2 . 

 
For the half-distance H of the focal point, it now follows from (49.10) that: 
 
(50.9)     H2 = − k1 k2 . 
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If we introduce canonical coordinates xj for a point p by the requirement: 

 
(50.10)     p = z + x1 p1 + x2 p2 + x3 p3  

 
then it follows from (49.7) that the equation of the focal plane, which generally contacts 
the focal surface that is described by the focal points at the focal points, is: 
 
(50.11)     2 2

2 1 1 2k x k x+  = 0. 

 
For the surface element of the spherical image (r3) of K, we have, from (49.1): 

 
(50.12)     Ω = [σ1 σ2], 
 
and by “dualization” one gets another invariant surface element from this: 
 
(50.13)     Ω  = 1 2 1 2[ ] [ ]σ σ σ σ+ , 

and in the canonical case: 
(50.14)     Ω  = (k1 + k2) Ω. 
 
 For our irrational invariants of motion k1, k2 of K, we thus have, in general: 
 

(50.15)     k1 + k2 = 
Ω
Ω

 = 1 2 1 2

1 2

[ ] [ ]

[ ]

σ σ σ σ
σ σ

+
 

and 

(50.16)   k1 k2 = − H2 = 21 2
0

1 2

[ ]

[ ]
h

σ σ
σ σ

−  = 
2

1 2 1 1 2 2

1 2 1 2

[ ] [ ] [ ]1

[ ] 4 [ ]

σ σ σ σ σ σ
σ σ σ σ

 +−  
 

. 

 
The k1, k2 then satisfy the quadratic equation: 
 

(50.17)     k2 − Ω
Ω

k − H2 = 0. 

It finally follows that: 

(50.18)     (k1 – k2)
2 = 4H2 + 

2
 Ω
 Ω 

. 

 
From (49.3), (50.12), (50.13), we emphasize the following relations: 
 
(50.19)     dσ3 = − Ω, 3dσ  = − Ω . 
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§ 51.  Displacement in congruences 
 

 The concept of “displacement” (§ 22) may now be transplanted from surfaces to 
congruences with no further assumptions.  We consider a congruence K = 3( )r  with the 

associated axis-cross jr  (j = 1, 2, 3), and set, from (49.1): 

 
(51.1)  1dr  = 2 3 3 2σ σ−r r ,  jr  = rj + jε r ,  jσ  = σj + jεσ . 

 
We choose a ruled surface R from K and call the lines 1r  along R parallel when one has: 

 
(51.2)    3σ  = 0, σ3 = 0,  3σ  = 0 

 
along R, and then speak of the displacement of 1r  along R.  In this, 3σ  = 0 means that 

the path of the intersection points of 1r  and 3r  cuts the generators 3r  of R at right 

angles.  On the other hand, σ3 = 0 means that the vectors r1 on the spherical image of R 

run parallel to the unit sphere (r3).  Displacement in K is defined by these two 

requirements.  By dualization, one gets from § 22 that if the lines 1r  on R are parallel 

then so are the lines: 
(51.3)    1

∗r  = 1r cosϕ  − 3r sinϕ , ϕ  = fixed. 

 
Moreover, from (50.19), we have: 
 

(51.4)    
G

Ω∫  = − 3

dB

σ∫� , 
G

Ω∫  = − 3

dB

σ∫� . 

 
From the last formulas, one infers that: 
(51.5)      Ω  = 0 
 
characterizes the normal congruences.  In general, the last integral in (51.4) measures the 
“opening” of a transverse perpendicular line to the generators of R during a circuit. 
 
 

§ 52.  The cylindroid of the common perpendiculars 
 

 The common perpendicular q  of a line 3r  of the congruence and a neighboring line 

3 3d+r r  will be given by: 

 

(52.1)   q  = 3 3d

ρ
×r r

, ρ  = ρ + ερ , 2ρ  = 3 3,d d< >r r . 

 
It explicitly follows from this that: 
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(52.2)   q = 3 3d

ρ
×r r

,  q  = 3 3 3 3( ) ( )d d ρ
ρ ρ

× + ×
−

r r r r
q . 

 
For a point x on q , one immediately has: 

 
(52.3)     q  = x × q, 

or 

(52.4)  

3 3 3 3 3 3 3 3

2

3 3 3

{( ) ( )} ( )

1
{ , }.

d d d d

d d

ρ ρ
ρ ρ

ρ

× + × − × ×
= ×

= < > − < >

r r r r r r r r
x

r r r r r

 

The scalar product with dr3 gives: 

 
(52.5)    [r3 , 3dr , dr3] = − <x r3> <dr3, dr3>, 

 
or, in canonical coordinates, since jr  = 0: 

 
(52.6)   [r3, 1 2 2 1σ σ−r r , r1σ2 – r2σ1] = − 2 2

3 1 2( )x σ σ+ . 

 
From this, it follows that: 

(52.7)    x3 = 1 2 2 1
2 2
1 2

σ σ σ σ
σ σ

−
+

 = (k2 – k1) 1 2
2 2
1 2

σ σ
σ σ+

. 

If we set: 
(52.8)    σ1 = ρ cos ϕ,  σ2 = ρ sin ϕ 
then we will get: 

(52.9)     x3 = 2 1

2

k k−
sin 2ϕ. 

 
From (52.2), (52.9), it follows that the common perpendicular for variable ϕ in the 
overbarred surface is, in canonical coordinates: 
 
(52.10)     2 2

1 2 3( )x x x+  = (k2 – k1) x1 x2 . 

 
This cylindroid lies between the planes: 
 
(52.11)     2 | x3 | = | k2 – k1|, 
 
and one calls their intersection points with 3r  (x1 = x3 = 0) its boundary points. 
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§ 53.  Isotropic congruences 
 

 We have already considered the normal congruences a short while ago.  As a second 
family of special congruences, we look at the “isotropic” ones, which can be 
characterized by the fact that their focal planes (50.11) are isotropic, so they satisfy the 
equation: 
(53.1)     2 2

1 2x x+  = 0, 

 
from which, due to (50.11), it follows that: 
 
(53.2)     k2 = k1 . 
 
These congruences will thus also be characterized by the fact that their boundary points 
(§ 52) coincide, so the cylindroid of the common perpendiculars degenerates into a pencil 
of lines.  From (52.7), one then has: 
(53.3)     1 2 2 1σ σ σ σ−  = 0, 

and thus, from (49.1): 
(53.4)     <dr3, dz> = 0, 

 
if z means the center of the focal points.  Therefore, the isotropic congruences will also be 

characterized by the fact that the surface (z) and the spherical image (r3) “correspond to 

the element (53.4) by orthogonality.” From (53.4), two surfaces (y), (y′) with: 

 
(53.5)    y = z + hr3 , y′ = z − hr3 , h = fixed 

have the arc length elements: 
 
(53.6)   <dy, dy> = <dy′, dy′> = <dz, dz> + <dr3, dr3> h2, 

 
and are thus related to each other in a distance-preserving way in our case.  From (53.1), 
the focal surfaces are isotropic – i.e., enveloping isotropic planes.  If we write the 
equation of two such planes in the form: 
 

(53.7)    
2 2

1 2 3
2 2

1 2 3

(1 ) (1 ) 2 2 ( ),

(1 ) (1 ) 2 2 ( ),

s i s s i w s

t i t t i k t

ξ ξ ξ
ξ ξ ξ

− + + − = +
− − + − = −

 

 
in which s = u + iv, t = u – iv are complex conjugates and w(s), k(t) are complex 
conjugate analytic functions, then it follows that the associated isotropic congruence of 
the real cut lines 3( )r  has the parametric representation: 

 



82 Kinematics and quaternions 

(53.8)    

2 2

1 1 2

2 2

2 2 2

3 3 2

(1 ) (1 )
, ,

1 (1 )

(1 ) (1 )
, ,

(1 ) (1 )

1 2( )
, .

1 (1 )

s t w t k s
r r

st st

s t w t k s
r r

i st i st

st wt ks
r r

st st

+ − + −= =
+ +

− + − += =
+ +

− += = −
+ +

 

 
 

§ 54.  Further formulas for line congruences 
 

 Now, let the general line congruence K be given by the formulas: 
 
(54.1)   r = r(u, v), r  = r (u, v), <r r> = 1, <r r > = 0. 

 
We would like to calculate its invariants of motion from this.  For the base point p of the 

perpendicular from the origin O to the line r , we have: 
 
(54.2)     p = r × r , 

so it follows from (54.2) that: 
 
(54.3)    <p r> = 0, p × r = r . 

 
For the point y of r  one thus has: 

(54.4)     y = p + hr, 

and from this: 
(54.5)    dy = dp + h dr + r dh. 

 
For a focal point, one then has: 
(54.6)     dp + h dr = λr, 
or 
(54.7)    (dr × r ) + (r × dr ) + h dr = λr. 
 
Taking the scalar product with dr gives: 

(54.8)     [r, dr, dr ] = h <dr, dr>. 

 
We introduce the following abbreviations: 
 



VI.  Surface-constrained spatial motion processes                                83 

(54.9)   
2 2

, ,

, , ] , ,

, ,

, .

u u u u

u v u v u v

v u v u

v v v v

E P

F Q W EG F W

F R

G S

< > = < > =
< > = < > = = − =
< > = < > =
< > = < > =

r r r r

r r r r [r r r

r r r r

r r r r

 

 
It then follows from (54.7) by scalar multiplication with ru, rv that: 

 

(54.10)   
[ ] [ ] ( ) 0,

[ ] [ ] ( ) 0,
u u v u

u v v v

du du E du F dv h

du du F du G dv h

+ + + =
+ + + =

r r r r r r

r r r r r r
 

 
or after multiplying by W: 
 

(54.10)*  
( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

FP ER du FQ ES dv W E du F dv

GP FR du GQ FS dv W F du G dv

− + − + + =
− + − + + =

 

 
and taking the alternating product of both formulas gives: 
 
(54.11)    (PS – QR) + W(Q – R) h + W2 h2 = 0 
 
for the focal points.  The arc length element ρ2 in the spherical image is: 
 
(54.12)    ρ2 = E du2 + 2F du dv + G dv2, 
 
and from this it follows that, dually: 
 
(54.13)    ρρ  = P du2 + (Q + R) du dv + S dv2. 
 
The second form will be made to vanish for the developable surfaces in K, and it follows 
from (54.11) that the center of the focal points is: 
 

(54.14)     h0 = 
1

2

R Q

W

−
. 

 
For canonical axes, one has, from (54.11), (54.13): 
 
(54.15)    Q0 = 0,  R0 = 0. 
 
The common perpendicular q  of r , r + dr  is: 

 

(54.16)     q  = 
d

ρ
×r r

, 

or, in more detail: 
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(54.17)   q = 
d

ρ
×r r

, q  = 
( ) ( )d d ρ

ρ ρ
× + × −r r r r

q . 

For the intersection point: 
(54.18)     x = p + hr 

of r  with q , we have: 

(54.19)     q  = x × q. 
 
By substituting (54.17), (54.18) in (54.19), it follows that: 
 

(54.20)     h = 
[ , , ]

,

d d

d d< >
r r r

r r
. 

Multiplication by: 
(54.21)     W = [r ru rv] 

gives, from (54.9): 

(54.22)    Wh = 
2 22

E du F dv P du Q dv

F du G dv R du S dv

E du F du dv G dv

+ +
+ +
+ +

, 

or 

(54.23)  Wh = 
2 2

2 2

( ) {( ) ( )} ( )

2

Er FP du ES GP F R Q du dv FS GQ dv

E du F du dv G dv

− + − + − + −
+ +

. 

 
We have the invariants: 
 

(54.24)  4H2 = 
2

2

( ) 4Q R PS

EG F

+ −
−

, 
Ω
Ω

 = 
2

( ) ( )GP ES F Q R

EG F

+ − +
−

, 

 
and k1, k2 are roots of equation (50.17): 
 

(54.25)     k2 − 
Ω
Ω

k − H2 = 0. 

From this, one has: 

(54.26)     (k1 – k2)
2 = 4H2 + 

2
 Ω
 Ω 

. 

 
For the surface element Ω of the spherical image, one has: 
 
(54.27)     Ω = [r ru rv] [du, dv], 

 
and from this, by dualization, and due to the fact that [r  ru rv] = 0, one gets: 
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(54.28)    Ω  = {[ r ur rv] + [r ru vr ] } [ du, dv]. 

 
Taking the product of both formulas and dividing by Ω2 yields: 
 

(54.29)    
Ω
Ω

 = GP – F(Q + R) + ES. 

 
The condition (51.5) for normal congruences then gives the vanishing of the bilinear 
invariants of the quadratic forms (54.12), (54.13): 
 
(54.30)    GP − F(Q + R) + ES = 0. 
 
Since this means that the null lines of these forms (54.12), (54.13) are harmonically 
separated, we see: The normal congruences are thus characterized by saying that their 
focal planes intersect at right angles. 
 The isotropic congruences in § 53 were characterized by isotropic focal planes, so the 
following equations must be compatible with them: 
 

(54.31)    
2 2

2 2

2 0,

( ) 0.

E du F du dv G dv

P du Q R du dv S dv

+ + =
+ + + =

 

 
 A thorough presentation of the differential geometry of line congruences in the 
German language will appear soon: S. P. FINIKOW, Theorie der Konguenzen, Berlin, 
1959 (translated from the Russian). 1) 
 
 

§ 55.  Differential equations for surface-constrained motion processes 
 

 Let: 

(55.1)    ( , )u vr  = ( , ) ( , ) ( , )u v u v u v′Q r Q  , ɶQQ  = 1 
 
be a surface-constrained motion process that acts on the lines r .  We extend ( , )u vQ  to a 

polar tetrahedron, for which we set Q  = 0Q  and assume that 0dQ , 1dQ , 2dQ  are 

linearly dependent.  One then has differential equations of the form: 
 

(55.2)    

0 1 1 2 2

1 0 1 2 3 3 2

2 0 2 1 3 3 1

3 1 2 2 1

* * ,

* ,

* ,

* * ,

d

d

d

d

α α
α β β
α β β

β β

= + +
= − + −
= − − +
= + −

Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q

 

and 

                                                
 1) Cf., also: R. SAUER, Projektive Liniengeometrie,  Berlin and Leipzig, 1937; V. HLAVATÝ, 
Differentielle Liniengeometrie, Gronigen, 1945. 
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(55.3)  

0 1 1 2 2 1 1 2 2

1 0 1 2 3 3 2 0 1 2 3 3 2

2 0 2 1 3 3 1 0 2 1 3 3 1

3 1 2 2 1 1 2 2 1

* * * * ,

* * ,

* * ,

* * * * ,

d

d

d

d

α α α α
α β β α β β
α β β α β β

β β β β

= + + + +
= − + − − + −
= − − + − − +
= + − + −

Q Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q

 

with 
(55.4)    j k< >Q Q = δjk ,  0 1 2 3][Q Q Q Q = + 1. 

 
In this, α, β, α , β  are real Pfaffian forms in u, v.  As in § 9, we construct the unit 
vectors: 

(55.5)  

0 1 2 3

0 1 2 3

1 1 3 2

2 2 3 1

3 3 2 1

1

1

1

1

− −

− −

− −

ɶ

ɶ

ɶ

ɶ

Q Q Q Q

Q p p p

Q p p p

Q p p p

Q p p p

  

0 1 2 3

0 1 2 3

1 1 3 2

2 2 3 1

3 3 2 1

1

1

1

1

′ ′ ′− − −
′ ′ ′−
′ ′ ′−
′ ′ ′−

ɶ ɶ ɶ ɶQ Q Q Q

Q p p p

Q p p p

Q p p p

Q p p p

 

 
and their dual components; for example: 
 

(55.6)     1p  = 0 1 0 1+ɶ ɶQ Q Q Q . 

 
We then have the following differential equations for the p, p′: 
 

(55.7)  
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* ,

d

d

d

σ σ
σ σ
σ σ

= + −
= − +
= + −

p p p

p p p

p p p

  
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* ,

d

d

d

σ σ
σ σ
σ σ

′ ′ ′ ′ ′= + −
′ ′ ′ ′ ′= − +
′ ′ ′ ′ ′= + −

p p p

p p p

p p p

 

 
and the dual components to them; e.g.: 
 
(55.8)    1dp  = 2 3 3 2 2 3 2 3σ σ σ σ− + −p p p p . 

Thus, one has: 

(55.9)    3

3

, , 0,

, , 0,
j j j j j j

j j j j j j

σ β α σ β α α
σ β α σ β α α

′= − = + =
′= − = + =

 

and 

(55.10)    
1 2 3 1 2 3

, ,

[ ] 1, [ ] 1.

j k jk j k jkδ δ′ ′< > = < > =
′ ′ ′= + = +

p p p p

p p p p p p
 

 
Let z be the intersection point of the three pair-wise perpendicular axes jp , so: 

 
(55.11)     jp  = z × pj , 



VI.  Surface-constrained spatial motion processes                                87 

and thus: 

(55.12)   
1 3 2 2 3

2 1 3 3 1 1 1 2 2 3 3

3 2 1 1 2

,

, .

,

z

z z z z

z

= < > = − < >
= < > = − < > = + +
= < > = − < >

p p p p

p p p p z p p p

p p p p

 

 
One then obtains the following relations by differentiating (55.12): 
 
(55.13)    dz = 1 1 2 2 3 3σ σ σ+ +p p p . 

 
 

§ 56.  Integrability conditions 
 

 It follows by exterior differentiation of (55.2) that: 
 

(56.1)   1 3 2 2 1 3 1 2 1 2

1 3 2 2 1 3 3 1 2 1 2

[ ], [ ], 0 [ ] [ ],

[ ], [ ], [ ] [ ],

d d

d d d

α β α α α β β α α β
β β β β β β β α α β β

= = = + +
= = = − −

 

 
corresponding to (55.3): 

(56.2)    

1 3 2 3 2

2 1 3 1 3

1 2 1 2 1 2 1 2

1 3 2 3 2

2 1 3 1 3

3 1 2 1 2 1 2 1 2

[ ] [ ],

[ ] [ ],

0 [ ] [ ] [ ] [ ],

[ ] [ ],

[ ] [ ],

[ ] [ ] [ ] [ ].

d

d

d

d

d

α β α β α
α α β α β

β α β α α β α β
β β β β β
β β β β β
β α α α α β β β β

= +
= +
= + + +
= +
= +
= − − − −

 

 
From (55.7), we obtain the equivalent conditions: 
 

(56.3)   
1 2 3 1 2 3 2 3

2 3 1 2 3 1 3 1

3 1 2 3 1 2 1 2

[ ], [ ] [ ],

[ ], [ ] [ ],

[ ], [ ] [ ].

d d

d d

d d

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ

= − = − −
= − = − −
= − = − −

 

 
Corresponding formulas are true for the σ′.  In particular, it follows from (55.9), (56.3) 
that: 

(56.4)    
3 3 3 3

1 2 1 2

1 2 1 2 1 2 1 2

, ,

[ ] [ ],

[ ] [ ] [ ] [ ].

σ σ σ σ
σ σ σ σ

σ σ σ σ σ σ σ σ

′ ′= =
′ ′=
′ ′ ′ ′+ = +

 

 
If we introduce the surface elements: 
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(56.5)    

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

[ ] , [ ] [ ] ,

[ ] , [ ] [ ] ,

[ ] , [ ] [ ] ,

[ ] , [ ] [ ] ,

α α α α α α
β β β β β β
σ σ σ σ σ σ
σ σ σ σ σ σ

= Φ + = Φ
= Ψ + = Ψ
= Ω + = Ω

′ ′ ′ ′ ′ ′ ′ ′= Ω + = Ω

 

 
then, from (56.3), (56.4), we get: 
 

(56.6)    3 3 3

3 3 3

,

.

d d d

d d d

σ σ β
σ σ β

′ ′− = − = − = Ω = Ω
′ ′− = − = − = Ω = Ω

 

 
Moreover, it follows from (56.1), (56.2), and (56.6) that: 
 

(56.7)     
,

,

Ω = Φ + Ψ
Ω = Φ + Ψ

 

and from (56.1), (56.5) that: 
 

(56.8)   β3 = 1 2
1 2

d dα αα α+
Φ Φ

 = 1 2
1 2

d dβ ββ β+
Φ Φ

, 

 
and finally, from (56.3) that: 

(56.9)     σ3 = 1 2
1 2

d dσ σσ σ+
Φ Φ

. 

 
 The Gaussian curvatures of the quadratic forms 2 2

1 2σ σ+ , 2 2
1 2σ σ′ ′+  are, from (22.8), 

equal to 1, the curvature K0 of 2 2
1 2α α+  is: 

 

(56.10)     Kα = 
Ω
Φ

 = 
Φ + Ψ

Φ
, 

and that of 2 2
1 2β β+  is: 

(56.11)     Kβ = 
Ω
Ψ

 = 
Φ + Ψ

Ψ
. 

 
 

§ 57.  Guiding and rest conditions 
 

 For the direction of advance vector dx of a guided point x, we obtain, by 

differentiating (41.2), by means of (55.2), and corresponding to (43.1): 
 
(57.1)  1

2 dx = − 1 1 2 2 1 2 2 2( )α α α α+ + +p p p p + {x × (p1α1 + p2α2)}, 

 
or, due to (55.11): 
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(57.2)  1
2 dx = − 1 1 2 2( )α α+p p + {(x – z)× (p1α1 + p2α2)}. 

 
If we introduce the canonical coordinates xj for x by way of: 

 
(57.3)    x = z + x1p1 + x2p2 + x3p3 

then we will get: 
 
(57.4)  1

2 dx = − 1 2 2 1 2 3 1 2 1 2 2 1 3( ) ( ) ( )x x x xα α α α α α− − + − + + −p p p . 

 
(57.3), (57.4) yield the guiding conditions: 
 

(57.5)    
1 1 2 3 3 2

2 2 1 3 3 1

3 3 1 2 2 1

* ,

* ,

* ,

dx x x

dx x x

dx x x

σ σ σ
σ σ σ
σ σ σ

′ ′ ′= − + −
′ ′ ′= − − +
′ ′ ′= − + −

 

 
and correspondingly for the point: 
 
(57.6)    x′ = z′ + 1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′+p p + p , 

one gets the rest conditions: 

(57.7)    
1 1 2 3 3 2

2 2 1 3 3 1

3 3 1 2 2 1

* ,

* ,

* .

dx x x

dx x x

dx x x

σ σ σ
σ σ σ
σ σ σ

′ ′ ′= − + −
′ ′ ′= − − +
′ ′ ′= − + −

 

 
 Guiding and rest conditions for lines with the canonical coordinates r j , jr ′  are 

produced by dualizing our formulas (26.10), (26.12): 
 

(57.8)   
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* ,

dr r r

dr r r

dr r r

σ σ
σ σ
σ σ

′ ′= + −
′ ′= − +
′ ′= + −

 

 

(57.9)   
1 2 3 3 2 2 3 3 2

2 1 1 3 1 1 3 3 1

3 1 2 2 1 1 2 2 1

* * ,

* * ,

* * ,

dr r r r r

dr r r r r

dr r r r r

σ σ σ σ
σ σ σ σ
σ σ σ σ

′ ′ ′ ′= + − + −
′ ′ ′ ′= − + − +
′ ′ ′ ′= + − + −

 

and 

(57.10)   
1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

* ,

* ,

* ,

dr r r

dr r r

dr r r

σ σ
σ σ
σ σ

′ ′ ′= + −
′ ′ ′= − +
′ ′ ′= + −

 

 



90 Kinematics and quaternions 

(57.11)   
1 2 3 3 2 2 3 3 2

2 1 1 3 1 1 3 3 1

3 1 2 2 1 1 2 2 1

* * ,

* * ,

* * .

dr r r r r

dr r r r r

dr r r r r

σ σ σ σ
σ σ σ σ
σ σ σ σ

′ ′ ′ ′ ′= + − + −
′ ′ ′ ′ ′= − + − +
′ ′ ′ ′ ′= + − + −

 

For the plane: 
(57.12)    u0 + u1 x1 + u2 x2 + u3 x3 = 0, 
 
one ultimately finds the guiding conditions: 
 

(57.13)    

0 1 3 2 2 3 3

1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

,

* ,

* ,

*

du u u u

du u u

du u u

du u u

σ σ σ
σ σ

σ σ
σ σ

′ ′ ′= + + +
′ ′= + −

′ ′= − +
′ ′= + −

 

and the rest conditions: 

(57.14)    

0 1 3 2 2 3 3

1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

,

* ,

* ,

* .

du u u u

du u u

du u u

du u u

σ σ σ
σ σ

σ σ
σ σ

′ ′ ′ ′= + + +
′ ′ ′ ′= + −
′ ′ ′= − +
′ ′ ′= + −

 

 
 

§ 58.  Canonical axes 
 

 If we rotate our associated tetrahedron: 
 

(58.1)   

0 0 3 3

1 1 2 2 1 2

1 1 2 2

2 1 2 1

, ,

cos sin , sin cos ,

cos sin ,

sin cos

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

∗ ∗

∗ ∗

∗ ∗

∗ ∗

= =
= − = +
= − −
= + +

Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q

Q Q Q Q

 

 
then the Pfaffian forms α, α  change as follows: 
 

(58.2)    

1 1 2

2 1 2

1 1 2 2

2 1 2 1

cos sin ,

sin cos ,

cos sin ,

sin cos .

α α ϕ α ϕ
α α ϕ α ϕ
α α ϕ α ϕ α ϕ
α α ϕ α ϕ α ϕ

∗

∗

∗ ∗

∗ ∗

= −
= +
= − −
= + +

 

 
Likewise, the β, β  transform as: 
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(58.3)    

1 1 2

2 1 2

1 1 2 2

2 1 2 1

cos sin ,

sin cos ,

cos sin ,

sin cos .

β β ϕ β ϕ
β β ϕ β ϕ
β β ϕ β ϕ β ϕ
β β ϕ β ϕ β ϕ

∗

∗

∗ ∗

∗ ∗

= −
= +
= − −
= + +

 

 
On the other hand, for β3, 3β : 

(58.4)    3β ∗  = β3 – dϕ,  3β ∗  = 3 dβ ϕ− . 

 
Under the assumption that: 
(58.5)     [α1 α2] ≠ 0, 
if we set down the relations: 
(58.6)    1α  = Aα1 + Bα2 , 2α  = Cα1 + Dα2  

then we get: 

(58.7)    

2 2

2

2 2

2

cos ( )cos sin sin ,

sin ( )cos sin cos ,

( )cos sin cos sin ,

( ) cos sin sin cos .

A A B C D

D A B C D

B A D B C

C A D B C

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

∗

∗

∗

∗

= − + +
= + + +
= − + − −
= − − + +

 

From this, it follows that: 

(58.8)    

,

2 ,

( )cos 2 ( )sin 2 ,

( )sin 2 ( )cos2 .

A D A D

B C B C

A D A D B C

B C A D B C

ϕ
ϕ ϕ
ϕ ϕ

∗ ∗

∗ ∗

∗ ∗

∗ ∗

+ = +
− = − −
− = − − +
+ = − + +

 

 
From (58.8), one can choose (and generally in essentially one way) ϕ, ϕ  such that: 
 
(58.9)     B* = C* = 0. 
 
We then call the axis canonical.  This uniqueness breaks down only in the case: 
 
(58.10)    A – D = 0, B + C = 0. 
 
We call the values of A*, D* that belong to the canonical axes: 
 
(58.11)    A* = L1, D* = L2 . 
 
They are the roots of the quadratic equation: 
 

(58.12)   L2 – (A + D) L + AD − { }21
2 ( )B C+ = 0, 

or 
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(58.13)   L2 – 
2

1 2 1 2 1 2 1 2 1 1 2 2
2

1 2 1 2

[ ] [ ] 4[ ][ ] {[ ] [ ]}

[ ] [ ]
L

α α α α α α α α α α α α
α α α α

+ − −+ . 

 
We have the two rational invariants: 
 

(58.14)  

{ }

1 2 1 2
1 2

1 2

2
2 1 2 1 2 1 1 2 21

1 2 2 2
1 2

[ ] [ ]
,

[ ]

4[ ][ ] {[ ] [ ]}
( ) .

4[ ]

L L A D

L L AD B C

α α α α
α α

α α α α α α α α
α α

++ = + =

− −= − + =
 

 
 From this, one has: 
(58.15)    (L1 – L2)

2 = (A – D)2 + (B + C)2. 
 
For the directions of the canonical axes, it follows from (58.8)4 that: 
 
(58.16)    2(A – D) α1 α2 – (B + C) 2 2

1 2( )α α− = 0, 

or 
(58.17)   2 2

1 2 1 2 1 2 1 1 2 2 1 22{[ ] [ ]} {[ ] [ ]}( )α α α α α α α α α α α α− − − − = 0. 

 
 For the center of the boundary points, we have: 
 

(58.18)   m = z + h p3 ,  h = 
2

C B−
 = 1 1 2 2

1 2

[ ] [ ]1

2 [ ]

α α α α
α α

+
, 

 
if z means the axis intersection point. 

 
 

§ 59.  Cylindroid of the screw axes 
 

 We consider two neighboring positions Q  and Q  + dQ  of our motion process 
(55.1).  For the axis p  of the infinitely small screw from Q  to  Q  + dQ , one then has: 

 

(59.1)   p  = 
1

d
ρ
ɶQ Q ,  2ρ  = <dQ , dQ> = 2 2

1 2α α+ , 

 
or, more completely, taking (55.2), (55.5) into account: 
 

(59.2)   p = 
1

d
ρ
ɶQ Q  = 1 1 2 2

1
( )α α

ρ
+ɶQ Q Q  = 1 1 2 2

1
( )α α

ρ
+p p , 

 

(59.3)   p  = 1 1 2 2 1 1 2 2

1
( )

ρα α α α
ρ ρ

+ + + −p p p p p , 
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(59.4)   ρ2 = 2 2
1 2α α+ ,  ρρ  = 1 1 2 2α α α α+ . 

 
If we locate the origin at the intersection point of the axes jp  then, since jp  = 0, (59.3) 

simplifies to: 

(59.5)   p  = 1 1 1 2 2 2

1 ρ ρα α α α
ρ ρ ρ
    − + −    

    
p p . 

 
 If we make the intersection point of p  with 3p  be: 

 
(59.6)     x = p3 x3  

then due to (59.2), (59.6), we get: 
 

(59.7)   p  = 
1

ρ
p3 × (p1 α1 + p2 α2) x3 = 1 2

2 1 3x
α α
ρ ρ

 − 
 
p p . 

 
A comparison of (59.5), (59.7) then gives: 
 
(59.8)   x3α1ρ = 2 2α ρ α ρ− ,  x3α2ρ = 1 1α ρ α ρ− , 
or, due to (59.4): 

(59.9)     x3 = 1 2 2 1
2 2
1 2

α α α α
α α

−
+

. 

 
If we employ the canonical coordinates of § 58 then we get: 
 

(59.10)     x3 = (L2 – L2) 1 2
2 2
1 2

α α
α α+

. 

If we now set: 
(59.11)     x1 : x2 = α1 : α2 
 
then we find that the locus of the screw axes is the cylindroid with the equation: 
 
(59.12)    2 2

1 2 3( )x x x+  = (L2 – L2) x1x2 . 
On the other hand, if one sets: 
(59.13)     α1 : α2 = cos ϕ : sin ϕ 
then one gets: 

(59.14)     x3 = 2 1

2

L L−
sin 2ϕ . 

 
For the “boundary point” on p3, we then have: 

(59.15)    x1 = x2 = 0, x3 = ± 2 1

2

L L−
. 
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The line 3p  is then the double line of the cylindroid (59.12) of the screw axes, and 

(59.15) yields a geometric interpretation for the invariants L1, L2, together with: 
 

(59.16)     
ρ
ρ

 = 
2 2

1 1 2 2
2 2
1 2

L Lα α
α α

+
+

. 

 
 

§ 60.  Path congruences of lines 
 

 For a two-parameter motion process that acts on lines p , we have: 

 

(60.1)    1 1 2 2

1 1 2 2 1 1 2 2

2 ( ),

2 ( ) 2 ( ).

d

d

α α
α α α α

= × +
= × + + × +

r r p p

r r p p r p p
 

If we take: 
(60.2)  α1 = du, α2 = dv, 1α  = L1 du, 2α  = L2 dv 

 
for the place in question then we get: 
 
(60.3)   ru = 2r × p1,  rv = 2r × p2, 

and 

(60.4)    1 1 1

2 2 2

2( ) 2( ) ,

2( ) 2( ) .
u

v

L

L

= × + ×
= × + ×

r r p r p

r r p r p
 

 
From (60.3), (60.4), (54.9), it follows that: 
 

(60.5)   

2 2 2 21 1 1
2 3 1 2 3 14 4 4

2 21 1
1 2 3 1 2 2 1 2 2 14 4

2 21 1
1 1 2 1 2 2 3 1 2 24 4

, , ,

( ) , ,

, ( ) .

E r r F r r G r r

P L r r r r Q L r r r r

R L r r r r S L r r r r

= + = − = +

= + − = − −
= − − = + −

 

 
If we seek – e.g., the normal lines – in moving bodies – i.e., the lines r  that fulfill the 

condition (54.27) for a normal congruence with their neighbors r  + dr  − then by 
substituting (60.5) in the condition (54.27), we find the following condition: 
 
(60.6)     (L1 + L2) r3 + 3r  = 0. 

 
In any event, the normal lines thus define a thread (a linear complex) with the axis3p .  It 

degenerates only when: 
(60.7)     L1 + L2 = 0, 
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and indeed for the line in question of the axis 3p . 

 Correspondingly, by substituting the value (60.5) in the equation: 
 

(60.8)    (k1 – k2)
2 = 4H2 + 

2
 Ω
 Ω 

 = 0 

 
one obtains the condition for a ray r  of a congruence with a neighbor r  + dr  to belong 
to an isotropic line congruence. 
 
 

§ 61.  Surface elements 
 

 Starting from the formula (57.4), by forming the alternating vector product, we 
calculate the vectorial surface element: 
 

(61.1)  

1
2 2 1 1 2 2 1 2 3 1 18

1 2 1 1 1 2 1 2 2 3 2

1 2 1 2 2 2 3 1 2 3 3 3

[ ] {[ ] [ ] [ ] }

{[ ] [ ] [ ] }

{[ ] ([ ] [ ]) [ ] } .

d d x x x x

x x x x

x x x

α α α α α α
α α α α α α
α α α α α α α α

× = − +
+ + +
+ + + +

x x p

p

p

 

 
If we set (under the assumption that [α1 α2] ≠ 0): 
 
(61.2)   1α  = Aα1 + Bα2 ,  2α = Cα1 + Dα2  

then we get: 

(61.3)  
1 2

1 [ ]

8 [ ]

d d

α α
×x x

 = − { − C x1 – D x2 + x3 x1}p1 + {A x1 + B x2 + x2 x3}p2 

+ {AD – BC) + (B – C) x3 + 2
3x }p2 . 

 
 The singular points of the path surface thus satisfy the condition: 
 
(61.4)     [dx  × dx] = 0, 

or, from (61.3), the equations: 

(61.5)    
1 2 3 1

1 2 2 3
2

3 3

0,

0,

( ) ( ) 0.

Cx Cx x x

Ax Bx x x

AD BC B C x x

− − + =
+ + + =

− + − + =
 

 
In them, the last one is a consequence of the first two when one does not have x1 = x2 = 0 
simultaneously.  The position of the singular points of the path surface thus consists at 
each moment of two real or conjugate-imaginary lines in the planes x3 = fixed that satisfy 
the third equation. 
 The complex of the normals of the surface element (61.3) yields: 
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(61.6)  

1 1 2 3 1

2 1 2 2 3
2

3 2 3

1 2 2 3 3 1

2 1 2 3 3 1
2 2

3 1 1 2 2

,

,

( ) ( ) ,

( ) ,

( ) ,

( ) .

r Cx Dx x x

r Ax Bx x x

r AD BC B C x x

r AD BC x Cx x Ax x

r AD BC x Dx x Bx x

r Ax B C x x Dx

= − − +
= + + +
= − + − +
= + − − −
= − − − −
= + + +

 

 
 For canonical axes (§ 58), formulas (61.5) simplify to: 
 
(61.7)   L1 x1 + x2 x3 = 0, L2 x2 − x3 x1 = 0, L1 L2 + 2

3x  = 0, 

 
and formulas (61.6) simplify to: 
 

(61.8)   
1 2 2 3 1 1 1 2 2 1 3 1

2 1 1 2 3 2 1 2 1 2 2 3
2 2 2

3 1 2 3 3 1 1 2 2

, ,

, ,

, .

r L x x x r L L x L x x

r L x x x r L L x L x x

r L x x r L x L x

= − + = + −
= + + = − −
= + + = + +

 

 
 

§ 62.  Special motion processes 
 

 Three types of surface-constrained motion processes are especially noteworthy.  First, 
the ones for which: 
(62.1)     Φ  = 1 2 1 2[ ] [ ]α α α α+  

 
vanishes, so in the canonical coordinates of § 58, one will have: 
 
(62.2)     L1 + L2 = 0. 
 
From (60.7), these motion processes are characterized by the degeneracy of the thread of 
normal lines. 
 Second, one considers the motion processes for which the cylindroid of screw axes (§ 
59) degenerates into a pencil of lines.  From (59.9), that gives the condition: 
 
(62.3)     1 2 2 1α α α α−  = 0, 

or, in canonical coordinates: 
(62.4)     L1 − L2 = 0. 
 
Finally, the intersection of (62.2), (62.4) gives: 
 
(62.5)     L1 = L2 = 0. 
 
In general, the motion processes with: 
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(62.6)     1α  = 2α  = 0 

 
will be generated in such a way that a rigidly moving surface F “rolls” on a surface F′ 
that is isometric to it in such a way that for every pair of values u, v the point x(u, v) of F 

coincides with the point x′(u, v) that corresponds to it under the isometry F ↔ F′, where 

F and F′ contact each other at this point, and the line elements dx(u, v), dx′(u, v) coincide.  

This rolling motion (62.5) has been treated many times by geometers; in particular, by L. 
BIANCHI: cf., L. BIANCHI, Opera VII, “Problemi di rotolamento,” Roma, 1957. 
 We now cast our gaze on motion processes that satisfy the condition: 
 
(62.7)     Ω  = 0. 
From (56.6), one then has: 
 
(62.8)   Ω  = ′Ω  = − 3dβ  =  − 3dσ  = − 3dσ ′  = 0, 

 
and due to (58.4) we can, by a suitable choice of ϕ , arrange that: 
 
(62.9)     3β  = 0. 

From (55.9), one therefore also has: 
 
(62.10)    3β  = 3σ  = 3σ ′  = 0. 

 
Because of (55.13) – in fact, because of: 
 
(62.11)   dz = 1 1 2 2σ σ+p p , dp3 = p1 σ2 − p2 σ1 , 

 
the intersection point z of the axes then describes a surface F with 3p  as its surface 

normals.  Correspondingly, z′ describes a surface F′ with 3′p  as its surface normals: 

 
(62.12)   dz′ = 1 1 2 2σ σ′ ′ ′ ′+p p , 3d ′p = 1 2 2 1σ σ′ ′ ′ ′p -p . 

Due to (56.6), one has: 
(62.13)    Ω = [σ1 σ2] = Ω′ = 1 2[ ]σ σ′ ′ , 

 
and that means: The spherical images (p3), 3( )′p  of the surfaces F, F′ are related to each 

other in an area-preserving way. 
 However, if the surfaces x(u, v), x′(u, v) are given with the curvatures: 

 
(62.14)    K ≠ 0,  K′ ≠ 0, 
 
and, according to the condition (62.13), their spherical images p3(u, v), 3( , )u v′p are also 

related to each other in an area-preserving way, then our motion process can be 
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constructed.  Starting from a point u0, v0, one covers the sphere (p3) completely in a 

neighborhood of this point with curves C that begin at u0, v0, and displaces a vector p1 

that contacts the sphere (p3) at u0, v0 along C.  One likewise constructs the vectors 1′p .  

Our motion process: 
(62.15)    {z′; 1′p , 2′p , 3′p } → { z; p1, p2, p3} 

 
then takes the axis-crosses thus obtained to each other. 
 In the special case [cf., (55.9)]: 
 
(62.16)    1 1σ σ′ −  = 0,  2 2σ σ′ −  = 0, 

and therefore [(55.6), (55.9)]: 
(62.17)     L1 = 0,  L2 = 0, 
 
the surfaces F, F′ are related to each other in a length-preserving way, and our motion 
process consists of the “rolling” of F on F′. 
 Corresponding to the case Ω  = 0, one can also generally derive the motion process 

( , )j u v′p → ( , )j u vp  that belongs to any pair of mutually related congruences 3( , )u vp , 

3( , )u v′p  with: 

(62.18)     Ω = Ω′ ≠ 0, Ω  = Ω′. 
 
 

§ 63.  Outlook 
 

 Several question are connected with the consideration of the surface-constrained 
motion process (= SMP) that have not be treated up to now.  For instance, there is the 
derivation of the SMP’s with: 
(63.1)     L1 + L2 = 0,  
and the SMP’s with: 
(63.2)     L1 − L2 = 0. 
 
All of the integral theorems about SMP’s up to now break down then.  Whereas we have 
only set down the first derivatives here in the small, there seem to be questions relating to 
the appearance of second derivatives (such as the determination of the curvature for the 
path surfaces) that are connected with a great expense of computation. 
 Furthermore, one can ask about non-trivial SMP’s for which a great number of points 
move in a planar domain or a great number of lines of the boundary system move on a 
fixed thread or run through the normals of a surface (or isotropic congruences). 
 Even the simplest algebraic SMP’s merit attention.  They correspond to algebraic 
surfaces in the six-dimensional space of qj, jq  (j = 0, 1, 2, 3) with: 

 
(63.3)     2

jq∑  = 1, j jq q∑  = 0. 
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One can also seek to convert the theorem that L. BIANCHI found on the two-
dimensional rolling of length-preserving surfaces to the general case of SMP’s with Ω  = 
0. 
 Finally, one can still look at the two-parameter motion processes that lead back to 
one-parameter ones: 
(63.4)    ( , )u vQ  = 1 2( ) ( )u v⋅Q Q . 
 
The line congruences for which either: 
 
(63.5)    ( , )u vr  = 1 2( ) ( )u vr r  

or 

(63.6)   ( , )u vr  = 2
1 2 1 2( ( ) ( )) : 1 ( ), ( )u v u v× − < >r r r r  

 
have already been examined.  Substantial investigations on the line congruences are 
contained in volume VI of the complete works of L. BIANCHI (Opera VI, “Congruenze 
di rette e di sfere e loro deformazioni,” Roma, 1957), along with the book of FINIKOW 
that was cited in § 54. 
 
 I am perfectly aware that this present pamphlet, which will indeed be my last one, 
exhibits many deficiencies and oversights.  Hopefully, this situation might induce 
younger geometers to take up this classical subject anew! 
 


