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FOREWORD

In the present treatise, a classical theme shath®n up, namely, the “geometry of
motion” or “kinematics,” and indeed with the use oé thuaternions that L. EULER
introduced to that end in 1748. Thus, spherical kinematite considered first, in
which only the rotations of a rigid body around a fixed pan& allowed. They are most
intrinsically linked with the geometry of the ellipticrée-dimensional spade; . The
formulas of spherical kinematics may then be extendespatial kinematics by means of
the “dual numbers,” according to the pattern of W. K. kHORD, J. HIELMSLEV, A.
P. KOTJELNIKOW, and E. STUDY.

| have communicated parts of the following have in 1957 isikid *) and in 1958 in
Barcelona®). J. NINOT encouraged me to prepare it, and further demedats by him
shall appear in the Collectanea Mathematica in Barcelynal especially have H.
KUNLE (Freiburg i. B.), H. R. MULLER (Berlin), and J.INOT (Barcelona) to thank
for improvements.

Hamburg, 13-9-1960 W. BLASCHKE

1) W. BLASCHKE, “Anwendung dualer Quaternionen auf KingkyatAnn. Acad. Scient. Fennicae,
Helsinki, A 1 250/3 (1958).

3 W. BLASCHKE, Cursillo de conferencias sobre CindostSem. Mat. Univ. Barcelona, 1958
(lithographed).

% J. NINOT, “Las congruencias de las rectas y l@miftica biparamétrica.” A book on spherical
kinematics by H. R. MULLER shall appear next.
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CHAPTER ONE
SPHERICAL KINEMATICS
§ 1. Quaternions
A quaternionis a higher complex number:
(1.1) D=(oen+q&r+Re+ges,
for which the sum and product are defined thus:
(1.2) D+D =) (q,+q)e,
99D'=)q,0.€¢,
with the followingproduct rulesfor the unitse:

©§=§&=8,
(1.3) &a=-& k=1,2,3),
g&=-&g=¢ 4. k1=1,2,3; 2,3,1;, 3,1,2).

From (1.3), we can set:
(1.4) € =1,

and summarize the remaining product rules in the followahgget

& e & e
& - +te& +e
(S7) +es —g +g
& +e +e -—-&

(1.5)

Theq; shall first mean real numbers. From (1.3), the corativgt law is not true for the
product, but the associative law is indeed true:

(1.6) 2(Q'Q") = QQ)Q",

as one easily verifies with tieg.
Theconjugate quaternioto (1.1) will be defined by:

(1.7) Q=eo-qe-ge-Gges,

and one confirms by calculation that:

(1.8) 00=<0Q>=g+F+¢+ ¢
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and

(1.9) Q9 =9'9.
One also calls (1.8) theorm of Q:

(1.10) Q9 =N(EQ).

From (1.6), (1.8), (1.9) it then follows that:

(1.12) N(QQ") = N(Q) N(Q").
A quaternion with:

(1.12) Q+9 =2=0
is called avector:

(1.13) q=the+ k& +ges

If one defines thecalar productof vectors by:

(1.14) Ga>=qg+gd+ qq
and theirvector producby:

(1.15) axq=(,%-%%) e+(aq- 99 e+( g'¢ 9'H
thenonehasfal =qo+q, Q"' =¢q, +q"

(1.16) Q' = Gy + o’ +0d —<q q>+ (g% ).
We recall the well-knownules of calculatiorfor the vector product:
(1.17) <Ggxq)a">=[aq4q"],

in which the expression on the right means the determwiatite three vectors, and
furthermore:

(1.18) U1 X q2, 43 X 44> = <1 43><q2 44> — <q1 q4><q2 43>,
(1.19) @1%q2) X g3 =<q1 93> 92 — <q2 93> q1,
(1.20) @1 % q2) X (43 % q4) =[919394] 92 — [929394] qa,

and the multiplication law for determinants:

<q 9> <q,9,> <q.q;3>
(1.21) brazqa] [ay 9503 = |<d,0,> <q,9,> <q,q5>].
<g3q,> <q59,> <q5q5>
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As one easily confirms, the following connection existstween quaternions and
determinants:

(1.22) 2 (Gor—m3) =[x v 3l,
and, more generally:

(1.23) 19,909,+9908,-0290 0 700 09 )=[9 92204

Remark: The quaternion product is linked quite simply wité rhatrix product.
Namely, if one sets:

(1.24) o= ((+q0 +igy) (g, + iqs)j, H

. . “=-1
(_qz + |q3) (qo - Iql)

then the one goes over to the other dpe.

8§ 2. EULER’s representation of rotations

The quaternions serve to represent the rotations arourddapointO. Namely, if
one introduces the vectors:

I=X6+ X6+ X¢§

(2.1) o
rExe+%et+ Xg

and thenormalized quaternion:

(2.2) 09 =NQ) =1
then the transformatiorh - p:

(2.3) r= '

or

represents a real-orthogonal substitution of xhewith thex; . In order to see this, we
might first verify the following: From the assumptitivaty’ is a vector:

(2.5) ¥ +i =0,
it follows that the same is true fersince:

(2.6) r+F = Q@ +7)Q =0.

Yy On quaternions, cf., H. ROTHE, “Systeme geometrisémalyse,” Enc. Math. Wiss., Art Ill, sec.
11, Leipzig 1921; in particular, pp. 1300-1423.
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Furthermore: The substitution (2.3) of the with thex; is linear and orthogonal, so from
(1.11), (2.2), (2.3), one has:

(2.7) NG) = N(9Q) N@') N(Q) =N,
or
(2.8) X+ + 3G = X+ X+ A

Finally: The determinant of (2.3) is + 1, sinfecan always be taken tQ = 1 while
preserving the condition (2.2). One verifies this perhapsdigulation from formula
(1.23).

The substitutions (2.3) will define a groGa if:

(2.7) r=9rQ, p=RrR, NQ)=N®R)=1
implies that:
(2.10) p=%TrT, T =ONR N(%) = 1.

We then show: Any rotation around the ori@rn the spac®; of rectilinear coordinates
X can be represented using (2.3) by a suitable choite damely, if:

(2.11) Q+9 =0 Q=g qq=-1

then the vector’ = q goes to itselfy(= q) under the rotation (2.2). Moreover, sincg =

-1, the rotation:
(2.12) r=-qrq

is involutory; i.e., it is different from the identitgnd gives the identity by two-fold
application (it has “period” 2). Thus, (2.12) representsnaarsionaround the axig,

and thus the rotation aroumdthrough the anglez However, this clarifies the fact that
any rotation can be arrived at by the composition of saeérsions [cf., (2.18) — (2.20)

below].

Due to the normalization (2.2), one can set uniquely:
(2.13) Q=cosp—qsing, qq=-1,
up to a common change of sign. Then, from (2.3), atédnave:

(2.14) r=r cosg—qrqsirfd + (qr —1'q) cosgsing.

Fory' = q one also hag = q. The formula (2.14) thus represents a rotation around the
axisg. In particular, if we takeg to be perpendicular tg
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(2.15) ¢ g>=0
then, from (2.14), one gets:
(2.16) r=¢' cos P — (' xq)sin 29.

Thus, (2.3), (2.13) represent the rotation around the @xbkrough the angle @
Therefore, the signs gfand¢ are liked with each other, since we have:

(2.17) 9 -0 =2gsing.

The normalized quaternions and —Q represent the same rotatiof2 and £ belong

to inverse rotations. The representation (2.3) of rotatiny quaternions goes back to L.
EULERY).

Any rotation (2.3), (2.13) can be represented by the congosif two inversions in
sequence:
(2.18) ND=a1ax; wma=-1, apay=-1

l. e.: a1, az are assumed to be perpendicular to the rotationjarisd include the anglg

+ 7T
If q, ¢ andq’, ¢’ are two rotations then we can choaséo be the common normal of

q, q". One then has:

(2.212) Q=agap, Q' =azagz,
and therefore:
(2.22) 9 Q' =—a az.

This construction of the composition of rotations goask to GAUSS).

8 3. The elliptic spacdes

We take the coordinateg; of a normalized quaternion to be homogeneous
coordinates in a three-dimensional projective sgace We again refer to the point that
the qg; determine inP; asQ. There exists a one-to-one relationship betweenatiagions
(2.3) of R; around the fixed poir® and the (real) points &% : The projective spade; is
thegroup spacef the groupss of rotations oRs aroundO.

) L. EULER. “Formulae generales pro translatione quacuncugorum rigidorum,” Novi
Commentarii Acad. Petropolitan28 (1776), 189-207.
Due to (2.6), (2.13), the significance of (2.3) or (2.4p &tdlows by separating the scalar and vector
part of (2.4):

<qr>=<qr'>, rcosg—(qxr)sing=y cosg+(qxy)sing.

3 C.F. GAUSS, Werke, Bd. 8, Géttingen 1900, pp. 256.
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This association may be expressed in a somewhat differ@y. Under the rotation
1, the axis-cros8ly with the originO and the axese, &, es (theinitial crosg will go to

the axis cros8! with the axes:
(3.1) g = Qe (=12 3)

the same origi®, and the determinant:

(32) bl ao a3] =+1.

Conversely, there is precisely one rotation that tékednitial crosA, to a given axis
cross of that kind. It might suffice to set:

b=(gxay)+(gxa,)+(gxay),
(3.3) <pp>=4si’ 2,0= 2 sin®

Q=cosp—q sing .

Therefore, one can regard the painof Ps as the carrier of the ax@s One then has
that:
(3.4) Q=99,

is the rotation that takes the axis crols to the crossQ, . This rotation is
independent of the choice of initial cross. Namelgnié sets:

(3.5) g =ReR, KR =1 (=1,273)
then one gets:
(3.6) Q" = Q) = QRRQ, = 2,9, =9.

For the rotation angl€, we have:
- - - 3
(3-7) COS¢ = %(Q+Q) = %(ngz +Q2Q1) = ij q; = <1 Q>
0

We have thus introducedmaetric into our Ps, in which the “distance’® between two
pointsQ, ' is defined by:

3
(3.8) cosp= Y g, =<Q Q> <QO>=<Q' Q>=1.
0

The spacé; — thus “metrized™ is theelliptic space k. One calls the “null” quadric:
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(3.9) ©WOH>=0
theabsolute quadriof E; .
If the distance between two poins ' is equal torz: 2, so:

(3.10) €VWA>=0,
then the points are said to (@bsolutely) conjugater orthogonal

If one introduces new coordinates in the spacg at well as in the space ©f by
the orthogonal substitutions:

(3.11) = RN, r = RrR, R'R =RR =1

then, in place of the substitution (2.3), one finds & ane:

(3.12) = Q%Pa°
with
(3.13) r =R ONR.

This transition from thej to the g is a quaternary “real orthogonal” substitution. One

can verify the fact that its determinant equals +1 perbhgpseans of the formula (1.23).
In order to recognize that one can repres@gtsuch substitution by a suitable choice
of R, R’ in (3.13), we first remark that the transformations (3d&jne a continuous

groupGsz . We then remark that f&& = R’ one obtains all real, orthogonal, quaternary

substitutions from § 2.
Since the orthogonal transformations (3.13) preséwealistances (3.8) i&s;, we can
regard them aslliptic motions and thus, as “motions” iB; .

8 4. Sphere map of the lines i3
LetQ, Q' be two normalized absolute polar pointEet
(4.2) VN>=1, NV NA'>=0, V' Q'>=1.

We form the products:
(4.2) t=0Q9, =090

and establish that +' are unit vectors:
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t+T =00 +0'0=2<09'>=0,
(4.3) U =Q'0+09 =2<00 >=0;

rt=v't =1.
Furthermore: Under the motion (3.13)E&f ¢, t' behave as follows:
(4.4) ¢ = Re R, ¢ = R R

Our orthogonal and normalized poin3, Q' determine their “directed” (oriented)
connecting linegxis) q in Es . “The same” axis arises from the point pair:

(4.5) Q' =0cosw-Qsinw Q=9 sinw+Q cosw
However, the same unit vectarandy’ belong to this pair, since:

(4.6) ¢ = Q'Y =x, ¢ =" Q% =v.

We can express this formula as follows:

Any axisg in Ez has an image pointon the left image sphere (direction sphere) K
4.7) s> =ri+rl4r} =1,
and an image point on the right image sphere (direction spherée) K

(4.8) US> =+ 4 =1
The elliptic motion:
Q =R AR RR =RR =1,
when applied to the axig corresponds to the mutually independent unit rotati@n4)
on the two image spheres K.

The basic idea of this map goes back to W. K.f@#f in 1873. It was developed

further by J. HIELMSLEV (= PETERSEN) and E. STUD®%und 1906).
Theinversionof the axis:

(4.9) 0={Q2,9}=(r,¥) -~ g ={Q,Q}=(r,¢")

) One finds extensive references for § 4 in the dopgdia article of H. ROTHE that was cited in § 1.
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corresponds to the reflections of the image spher&sthrough their centers:
(4.10) t =-r, v =—v.

Our result essentially contains the fathe group of motions sof E; is the “free
product” of the rotation groups & G, of the image spheres K"

8 5. Polar tetrahedra inEs

Four pointsp; in Es define apolar tetrahedrorrelative to the absolute quadric when
the following equations are true:

(5.1) LB Pie> = &, {PBo P1 P2 Pa} = +1,

where the right-hand formula gives the determinanhef};. We consider the six edges
of the tetrahedon:

(5.2) gk = {Bj » Bt = (vj v )
and assert: The following relations then exist betwhkei spherical images:

(5.3) Tt =0,  ttry=0, vytr,,=0,

1 1o [ ro_ =
T~ T =0,  tmty=0, vt~ 0.

In order to prove this, it suffices to recognize: Onete&e the point§g; to the pointsg,

respectively, by an elliptic motion (3.13). In this spec&de, one confirms the relations
(5.3) immediately in this way. However, due to (4.4), thlations (5.3) are invariant
under the motions (3.13).

We would like to call the axes:

(5.4) g={PBo, P} = (ro1, %), g ={P2, Pa} = (r23, 15,)

(absolute)polars. It then follows from (5.3) that: Thabsolute polarityg — g will be
represented by:
(5.5) t =-r, vo=+r.

From (4.4), thencidenceof a pointQ with the axis €, t') yields the condition:
(5.6) Qr—v'Q =0.

From (5.6), it follows that:
(5.7) t=0Q v,
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and that means: The axes of the pencilEpwith the vertexQ) corresponds to a

congruence map (5.7) of the two image sph&rds’ onto each other that preserves the
direction.

If one composes this map (5.7) with the polarity (5.5htbee sees: The axes of a
plane inEz correspond to a congruence map that inverts the dirg¢tarsfen):

(5.8) t=- Qv Q
of the image spheres.
One calls axesgi, g» with t1 = — v left-parallel and axes withy = v, right-parallel.

One can define the anggebetween two intersecting axgs g» by way of:
(5.9) COSp = <ty 1> = <t't, >.
In particular, for axes that intersect perpendicujashe has:

(5.10) € > =<yrt,> =0.

8§ 6. Motions inE;

Let (n, a') be axes ifE; . From (4.4), (3.43), the rotations of the image sher&”’
around the rotational axesa’ through the angles@ 2¢’, namely:

6.1) t”=(cosg—a sing x (co®+a sip ),
' v'“=(cosg' —a’ sing' }' (cog' +a sip'
correspond irk3 to the elliptic motions:

0_ !
(6.2) Q =R AR,

R=cosp+asing, R'=cogp +a sig
Therefore, since:
(6.3) Na—-a=0
any pointQ of (a, a') again goes to a poift” of (a, a'):

(6.4) 9 = (cosg’—a' sing) Q (cosg +asing) =Q(¢’ — g) —Q a sin(@’ - @).

Thus, under the motion (6.2), the points of ¢') will be rotated throughp’'— ¢. It
likewise follows that: The points of the polarsd, a') will be rotated througlp’+ ¢:

(6.5) Q" =90 cos @'+ @) +Qasin @'+ @).
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In particular, forg’— ¢ = 0 we get a rotation d&s around §, a'), and for:

(6.6) g =¢'=

N Y

we obtain the@ransferaround the axisa( a') in Es :

Q"=-d'Qaq,

t"=-aQa, "=-dt'd.

(6.7)
Let g1, g» be two lines; under the assumption:
1 Xtz0, yxr, 0,

there are then two common normatsi( a') to them:

X ’Xt’ 1
(6.8) a= Q a = tl 2, <r11t> = COSY, <t't,> = Cosg’.
sing sing

Thesecommon perpendiculame polar to each other.
The sections that our lings, g cut out on the common perpendiculatsi(a’) yield

the minimal distances, 4. Their values can be found by composing the feas®ng;,
g» for a suitable choice of the values:

(6.9) d=¢'+¢, I'=¢'-¢:
By performing a transfer on the lines:
(6.10) Q' =-aQaq,

one gets the following formula for the distanZ&om a pointQ to a line @, a’) IN E3 :

(6.11) 2c0s3=2<DD>=-Qa'Qa-aQa.

8§ 7. Effect of the line map

We describe this (on pp. 12) in a comparison éginat shows, on the one hand, the
effect on the two image sphei¢sk’, and on the other, in the elliptic spdee.

One also observes what the two families of geoesaif a quadric ifEs correspond
to on the two direction spher&s K.
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From our formulas, it emerges that, for example:

Reflection through a point and inversion on a linegEinare commutable precisely
when the point is incident on the lines or their polars

Gauss’s composition of rotations (2.21) carries ovethowi difficulty, to the
composition of motions i3 when one regards them as pairs of reflections in lines.

Spherical imageKk, K’

Elliptic spaceEs

Point pair, t'
Reflectiong” = - ¢, ¢ =— ¢’
Mapt* =—p, ¢ =+

Congruent point-pair:
COSP = <ty 1> = <t 1, >

Rotation pair:

¢t =ReR ¢ =R R,
MR =cosg +asing,

R' =cosg’+a sing’

Two point-pairs;, t/

<ty > = COSP, <t t,> = COSP’

Rotationt = Qv'Q
Transfer = -Qv'Q

Pair of turns:
vt =—atva, ¢t =—atd

Pair of transfers

v=- PP, ¢ =-P P

Reflection in the planes orthogonal to
a, a

*

*_ | A AW |
vt =ata, v =ava

I

< a>=c<t' a>

AXis (, t')
Inversions of axes
Absolute polarity

Lines intersecting at an angte

Screw:

Q' =Rt R,

Rotational angle around,(@'): ¢’ +¢
Rotational angle along,(a'): ¢'—¢

Line pair ¢, v/ ) with shortest distances
Pt ¢
Pencil of lines, vertex

Polar plane of)

Turn along the line pair
*ad)

Reflection through a poifig and its
polar plane

*
Q =dva,

times an axis inversion

Thread (= linear complex) with the axes
(*a,a);cf, 88.
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Bibliography. The fundamental paper of CAYLEY on tHépBc metric is: A.
CAYLEY, “A sixth memoir upon quantics,” Phil. Tran$49 (1859), 61-90; see also A.
CAYLEY, Collected Mathematical Papers. 2, Cambridge, 1889, pp. 561 to 592.

Klein’s interpretation of CAYLEY’s metric: F. KLEIN:Uber die sogennante Nicht-
Euklidische Geometrie,” Gott. Nachd7 (1871); cf., also F. Klein,Gesammelte
mathematische Abhandlungesd. 1, 1921, pp. 244-253.

On the sphere map of lines i, cf., W. K. CLIFFORD,Preliminary sketch on
biquternions’ Proc. London Math. So@ (1873), 381-395, or also W. K. CLIFFORD,
Mathematical PapersLondon, 1882, pp. 181; J. HIELMSLEV, “Géométrie des droites
dans l'espace non euclidien,” Kopenhagen Verhandl. Akad., 190030&330; the
disseration of G. FUBINI, “Il parallelismo di Cliffd negli spazi ellittici,” Annali della
Scuola Normale, Pis@a (1904), 74 pages; E. STUDY, “Beitrage zur Nicht-Euklidischen
Geometrie, II: Die Begriffe Links und Rechts in der eliphen Geometrie,” Amer. J.
Math. 29 (1907), 116-159.

§ 8. PLUCKER’s line coordinates

In this section, we shall give the relations betweem vectorst, ' with the

“PLUCKER” line coordinatesgy that were introduced by G. MONGE in 1771, H.
GRASSMANN in 1844, J. PLUCKER in 1846, and A. CAYLEY in 1857.

If Q, Q" are two orthogonal normalized points on a line then (&hd)unit vectors
(direction vectorsy, ¢ will be defined by:

(8.1) t=Q0, v=99.
One thus has:

(8.2) v = (0 ~a)(ch +4') = o’ ~ da ~ (axq),

v =(0,+9)(0%—q) = qq — da+(axq).

In more detail, this is:

n=90"92 rizgof*'gzs
(8-3) =002~ 931 r'22902'*' (Y

I3 =003~ 912 r;>2903+glz
or

2901: I‘l+l’i, 2923:I"1—I’1,
(8-4) 2902 =t I’;, 2 31— rlz_r 21

2903:I‘3+I’;, 2912:I"3—I’3.
From this, it follows that:

(8.5) 4601 923 + Qo2 O31 + Qoa G12) = (/2 1,7 +r,%) = 241 4 ),

and by constructing the polars for two lines:
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(8.6) 2(9019’23+ 923g01+"') = (r1’51+"')_(r151+"'),

where the dots mean cyclic permutations of 1, 2, 3.
From the fact that, t' are unit vectors, it follows that:

(8.7) Oo1 Q23 + Q02031 + Q03 012=0
and
(8.8) Oor + Ot .. = 1.

From (5.6), one has the dependent equations for a poidént on a line:

G923 = %3~ K2
(8-9) G931 = &Y%~ 490
B2~ 4%~ &9

For the shortest distancésJ’ between two lineg, g' in Es, we find:

. _ 6 @
00190 923g23+"' = COSE COSE
(8.10)

p .8 .6
0092t 923g01+"' :S|n5 Slnz .

A thread- or linear complex- of linesg in E3 will be defined by a linear equation:

(8.11) 2 hWg=0, W +n9=0.

Thus, due to (8.4), it follows for the sphericabiges that:

(8.12) Pr>+<p' ¢'>=0.
One then has:

U:el(hm— ) +--.
8.13
( ) U':el(h01+ 3 +...

The polar axest{a, a') with:
(8.14) a =Cv, a=cv

give the “axes” of the thread.
For the algebra of rotations, one should confé®.8



CHAPTER TWO

COMPULSIVE SPHERICAL ROTATION PROCESSES

§ 9. Map to curves inEz %)

We consider a continuous, one-parametezgmpulsive rotation processaround the
fixed pointO, for which we set:

(9.1) t(t) = Q) v Qt), Q0 =1,

in which £, and therefore alsg depends upon the “timé” We think of the unit vector
t' as being at rest and referred to an axis-cross atresstc(osy, in (9.1), it corresponds

to the moving axis-crossnpving cross The points that are fixed in the moving cross
define themoving systenand the ones that are fixed in the rest cross defimeett
system In elliptic space, the pois(t) = Qo(t) describes a curve, which we link with a

moving tetrahedron (“associated tetrahedron”), whose o) (j = 0, 1, 2, 3) define

an absolute polar tetrahedron:
(9.2) Q; Q> = &, [Qo Q1 Q2 Q3] =+ 1.

Thus,; shall lie on the tangent toat Qo, andQ, shall lie on the osculating planelto
in Qo. Thedifferential equationgor L then take the form:

on - * +le * *’
dQ, = -Q,0 * +Q,0 7
dQ, *o-Qe * 49y
dQ,= * * -

(9.3)

In them, p means the distance between “neighboring” points ¢f arc length) and,
the angle between neighboring tangents, whiteeans the angle between neighboring
osculating planes df. The following quantities are tleairvatureandtorsion of L:

(9.4)

The spherical image of the edgeq; {Q«} will be given, according to (5.3), by the
products of the) in the following tables:

Y Cf., H. R. MULLER, “Die Bewegungsgeometrie auf der Kiigklonatshefte Wierb5 (1950), 28-
42.
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o 2 2 9, 9 4 9, 3,
Qo 1 +p, +p, +pg Q.| 1 -p; —p,, —p,
(9.5) {)1 -n 1 —py tp, Ql +]J'1 1 _p’3 +]J'2
{)2 —p, tpy 1 -py Q,[+p, +p3 1 -p)
Qy|=p; —py +p, 1 Qa|+p; 9 +py 1

In them, the first factor of the product is on tké, while the second factor is above;
thus, e.qg.:

Qlﬁz ==p;.
Thecanonical axis-crossesf thep; onK and thep; onK”satisfy the conditions:

U U U

(9.6) Di > = <p P> = &, [p1 p2 p3] = [Py P, p5] = + 1.
Differential equations of the type:

(9.7) dpy = > pay dpj =D pl@),  ak+ag=aj +ay =0
are true for them. By derivation of, say:

(9.8) p1= Qogl
it then follows from (9.3), (9.7) that:

(9.9 patiz + pais = ,0,0+ 0 (-Q0+ 9 0),
and therefore, from (9.5):
(9.10) P21z + P31z =p1 0, 2 =0, ms3=0.

Correspondingly, we find:

dpl = +p2A *, dp; — * +p'2/]' *,
(9.11) dp, = -pA ¥ Hpgh dpy=opA i,

dp, = % —pt % dpy = * i %,
with the relations:

A=o pu=1-p, 0=~ 1
(912) o= A - A',

A,:aﬂ,: Z'+p, 2T:ﬂ,+ﬂ

In them, A, A" mean the arc lengths of the lings)((p;) on the spherek, K', and:
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(9.13)

«
1
S

mean theirgeodetic curvatures Therefore, the spherical curves)((p;) areisometric
when they are compared to each other for each valueTdfeir geodetic curvatures are:

- T+
(9.14) g=1"P, g=I*P
o o
or
w-1 w+1
(9.15) g=——o, g':T,

resp. Conversely, one thus has:

(916) k:’—, W=

Now if, for exampleL is planar, so:
(9.17) dQs =0, =0, u=-p, M =+p,

then the linespy), (p;) correspond to each other under a transferp,)fi§ a great circle

= 0 then, from (9.16)L. has the fixed torsiow = + 1. Correspondinglyy =—-1 forg’'=
0.
We now summarize some formulas for a lip&)j on the unit sphere. If dots mean

differentiation with respect tothen we find that:

l A: Yy 1/2 t, = [ppp] ,
(9.18) <pp>"d 9= Cpp>"

and furthermore, for the linein Ez, one has:

.. s O
14e = SAQ>NQ>-<9Q9> L, (299]
<NN>E <N N>

(9.19) p=<QO>"2dt,

§ 10. Velocity

Letr be a point in the moving system:

(10.1) ) = Q) ¢ Q).
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By derivation, it then follows from (10.1), due to the fdwtdy’ = O, that:

(10.2) de=dQO Q+ 9y dQ,
or, when we introduce:
(10.3) =910
into (10.1), and employ (9.3), (9.5):
(10.4) dr = (x p1—p1x) o= 20 % p1) P.
In this:
dr P p
10.5 - = - Z =20k xp) =
(10.5) ot ( p1—p17) a @ % p1) pm

means theabsolute velocityof point ¢ that is fixed in the moving system under our

continuous rotation process.
If we introduce the&anonical coordinates; ¥or ¢ by the Ansatz:

(10.6) T =Xap1 +Xop2 + Xsp3
then it follows from (10.4) that:
(10.7) dr = 2(Xsp2 —X2p3) .

On the other hand, it arises from (10.6), due to (9.11f}, tha

(10.8) dr = (dx —XeA) p1 + (A% + XA —Xatd) p2 + (dXs + XoLd) 3 -

A comparison of (10.7), (10.8) yields, due to (9.12),ghieling conditions:
dx = * +xA" *,

(10.9) dx, = —-xA"  *  +x,

!

de= " =xu T,

which say that is fixed in the moving system.
Correspondingly, it follows from (10.1) fak = O that the point:

(10.10) F = Xy Xop, + X
satisfies theest conditions:

dx = * +XA4 =,
(10.11) d¥, = =XA *  +x%u



II. Compulsive spherical motion processes 19

They say that' is at rest. One also gets the transition from (1@90.11) when one

exchanges the rotation proce3¢t) with the opposite oimverse processQ(t), which

gives the “rest” system for an observer that is fixethe “moving” one. One will then
switch A, pwith A7, 1.
If we introduce the integral:

(10.12) jp =S5, ds=p

(1013) E:S’ L:T, i:M, ﬁle,
P P P P

in which, from (9.12), the relations exist:

(10.14) M'-M=2, M’+M=2T,

then we have for the derivatives of (9.11) with respest t

b ot pl= % +lp, %,
(10.15) po=-Lp, ¥ #Mp, =Lyt MY,
ps= * ~Mp, ¥ po= * My, *,

and from (10.9) and (10.11), we get the guiding and rest comstitio

X = * +lx, *, Xi: * +|_)(2 *

(10.16) X=-Lx * +MX X =-LX * +MX
X, = * —I\/I'X2 * )-(;: * _M)(Z *

From the fact that:

(10.17) p1=Qp,Q

it follows that:

(10.18) dp1 = {dQ P, Q+Qp, Y +Q dp,D.

From (10.2), (10.4), the expression in the brackets vanishhbg, and we find:
(10.19) dp1 = Qdp, D

We call the line if;) that is described by the endpoint of the unit vepioon K the
moving pole patland the one described lfy;) onK/’, therest pole path. ThenA = A’

) In this, one haS=k, T=w. The meaning df then changes.
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means that the two pole paths are related to each istmeetrically. From (10.19), this
says:The rotation process will be generated in such a way that the movingatbleolls
without slipping on the rest pole path.

In addition, our geometric formulas illuminate the getnm meaning of the
canonical axesp; is the instantaneous rotation axisvhose points possess vanishing

guiding velocities, angs is the common perpendicular of two neighbonmgf), pa(t +
dt), both of which are in the moving system; correspondiatgsients are true for the
in the rest system.

8§ 11. Acceleration

If we derive the absolute velocity with respect tooracal time, namely, from (10.7):
(11.1) P = 2K p2—X2 p3)

with respect to the canonical tilsgwhile observing (10.14) to (10.16), then we find the
acceleration vector:

(11.2) E=2{-Lxap1— 2 p2+ (Lxa — 2G) p3}.
For the determinant of the vectarst, i, it then follows that:
(11.3) Fi £]=4{Lxs — 20 +2)} = 4D.
The inflection points of the paths &will then be cut out of the third-order surface:
(11.4) Lxs = 26 (X2 + X2).

For the arc lengtlf of the paths, we find:

(11.5) B?=<ii>dS =40 +X) d,
and for their geodetic curvature:
_ [eed] - Lx—2x(6+ %)
(116) g= < .>3/2 - 2 2 2\3/2 ’
3 ( +X5)

Derivation of (11.2) further yields:

(11.7) 15 ={L(M + 4) %2 —~Lx}p1 + {L(2 —M) X1 — (L2 + D)}p2
+{Lx, + L*+ 4%} ps,

and from this, one gets the determinant:
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(11.8) LEET] =X xe— {L(M + 4)x —Lx,} (€ +%C).

Should this vanish for all points df, then one would have = 0. From (10.15), this
would then establislp;, p;. The only rotation processes for which all paths bexo

circles are then the rotation processes involving an axesta
The vector product x§ establishes the location of the osculating planedémer of

curvature) to the path. One finds this vecsito be, up to a scalar factor:

Y, = L =206+ %),
(11.9) Y, = LX X%,

Ys = Lx X%
Deriving (11.3) yields:
(11.10) D = Lx,— Lx (2 +M’—6x%).

Points at which the path lines possess contact of dmdggrer than two with their
curvature circle (i.e., gertey thus satisfy the conditions:

(11.11) D=D =0.

8§ 12. Kinematic image of the polarity

The linesQo(t), Qs(t) correspond to each otherkg under the absolute polarity. This
correspondence yields the relations:

(12.2) QE =3, le =1y, QS =9y, QE = o,
and then, from (9.3):

(12.2) 0 =-T o=-o0 I =-p,

or, from (9.12):

(12.3) A==A g=+yp  AT==X, y=-u

and further, due to (9.13), for the geodetic curvature opdles paths:
(12.4) g=-9g g =-¢
This means:
The rest pole path is preserved for the polar rotatprocesses, while the moving
pole path is reversed.
If the lineL that is described bfo(t) in Es is a line @, a') thenyp; is fixed in the

moving system ang; is fixed in the rest system, and our rotation processists of

rotations around a fixed axis.
If the geodetic curvatureg g’ of the pole paths are functions of their common arc
length:
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(12.5) [o

and a linear dependency exists between these functions:
(12.6) Ag+Bg’+C=0,

with fixed A, B, C, then it follows for the associated lihan E; that:
(12.7) Ck+ B+A)w+B-A)=0
is the dependency between the curvatir@nd the torsiorw. Such lines are called
BERTRAND curves.
8§ 13. Screw lines irks
The simplest BERTRAND curves I are thescrew linesfor which the curvaturé&

and torsiorw remain fixed. They arise as the path of one-parametepgrof motions in
E; . For example, we take such a group around the exxiss):

(13.1) 2(t) = (cosbt —e; sinbt) Q' (cosat + e; sinat).
The point (13.1) with:
(13.2) 9Q'(t) = cosa + e; sina

then describes a screw ligen Es . If we set:

(13.3) a-b=p, atb=q
then we get fos
(13.4) £(t) = cosa (cospt + e3 sinpt) + sina (e, cosqgt — e, singt),

or, in more detail:
(13.5) go=cosacospt, qr=sinacospt, G =-sinasinpt, ¢z = cosa sinpt.

Thus,Slies on the quadric:

(13.6) bth _G*G
cosa sinfa

In addition, one has:
(13.7) +& = tanpt, % - tanqt.
Qo G

Fort =0, we get:

(13.8) Q) =cosa +g sina , Q =e, pcosa - g gsing
' Q=-p’cosa-gq sim O =-e pPcosa+ ¢ d siny

From this, it follows, from (9.19), far= 0, and thus, for at| that:
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(13.9) r=cdt ¢?=p?cos a+sif a,
(13.10) ¢?=a’—2abcos 2r + b7,
fcoga+q’sifa
(13.11) 142 =P = g ,
- P’)’cos’a sirfa
(13.12) w = PAd p2)C6 ,

and furthermore, for= 0:

= _ 00 _ +e(p-gsinacoxr+ g (pcoda + qsiha )
p, =09, = = ;
(13.13) ¢ ¢

p’—Q{)—Qé—‘%(p* dsina cosr + g (pcoda — qsifiar )
17~~~ c - c .

The spherical images @& are circles orK, K’ that arise from rotation of the vectors
(13.13) arounass . In particular, one has:

(13.14) €1 p1 py] = sin 20,
_ b _. . _a .
(13.15) Bipre]=- Esln 2a, [erp, &]=- Esln 2a.

One obtains the radii of the circles), (p;) from these relations. In particular, from

(13.5), forg = 0, one also getg, = 0, and therefor& becomes a plane section of the
guadric (13.6). More generally: pfq is rational thersis closed and algebraic.

§ 14. Link quadrangle

We assume that the pomnbf the moving system describes a circle on the sptiere
K. We seek the condition that must be satisfiethbytwo-parameter rotation proce3s
that is thus determined. To that end, we take, say

(14.1) 1= 9 e Q,
and for the path af, the circle in the plane:

(14.2) ertre=2C
This makes:
(143) er=a0e0=a(P-9) &+ =-¢ +G(seq—€eqe)—eqesq.
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Since:
(14.4) eaqes=-eqted+eds,

it follows from (14.2), (14.3) that:

(14.5) "Gttt =C(e gt g g,
or
(14.6) (1 +0)(qp + ) - (1 -O) (¢ + ;) = 0.

Thus, our two-parameter rotation process corresponds tquddric (14.6) ifes, which
meets the absolute quadAdn four generators at the planes:

(14.7) Q+igs=0, quziq=0; i’=-1.

If we now examine a one-parameter rotation procesterumhich the two points of
the moving system describe circles then we must bringgumamrics of the type (14.6)
together so they intersect; this gives a curve of feortler and “first type” that generally
possesses the “genus” one, and can be represented by afedliptic functions. The
eight intersection points @, with the absolute quadri& lie in pairs on four generators
of the one family, and likewise in pairs on the germsabf the other family. FdZ = 0,
the circle (14.2) becomes a great circle of the unit splaerd the quadric (14.5) becomes
“apolar” toA.

The rotation process of the spherical link quadrargle tdescribed is based on the
study of the common projective invariants 6f and the absolute quadri&. In
particular, the analogous process in planar kinematgdé&an examined in detail many
times, due to its engineering interpretation. G. DARBOWS79) !) has remarked on
the connection between the plane link rectangle artielfunctions.

8 15. Determination of the canonical axes

Leta; (j =1, 2, 3) be a rectangular axis-cross with a fixed m@ythat is independent
of timet. We seek the canonical axgs— which, for the moment, we would like to
denote by, s, t — for the rotation process that is thus determined:

p=r=antaf,tal,
(15.1) p,=s=a;5,ta,S,ta,s,

p;=t=at+at,+taf;

One has the differential equations for tie

) One can find many references in A. SCHOENFLIES sin@GRUBLER, “Kinematik,” Enc. math.
Wiss., art. 1V.3, Leipzig, 1902, as well as W. BLASCHEKERd H. R. MULLEREbene KinematikMunich,
1956.
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a= * -a,C;+aC,
(15.2) a,=+a,C, * -aC,
a,=-aC, +ta ,C, *.
In (10.5), we had:
(15.3) i, =2@xp)R R=£.

From this, it would follow that:

1: — _

s = a,rC +af R
(15.4) fa,= +arR * -a R,

12 — _

sa;= —af,R +ta rR %

If we introduce the “rotation vector”:
(15.5) ¢ = a1C + a,Cs + a3C3

then a comparison of (15.2) and (15.4) gives:

(15.6) = —.

Because is a unit vector, if follows from (15.6) that:

(15.7) R =<c >
If we set:

A U
15.8 Z =L, Z =M
( ) dt dt

then equations (10.15) yield:
t= * +sL *
(15.9) s§=—-—tL * +tM,
t= * —sM *
From this, it follows that:

(15.10) g= Lt = LERZCR
L 2 LR
.. <¢i>R?-2<c¢é>RRr<cc> R
(15.11) L2=<ii> :% ce cha“ ASaLAY
Furthermore, one has:
(15.12) f=rxs= X
4LR

and

25
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(15.13) M=[tss]= SLTle[ct'c].

Finally, we have, from (9.12):

o=A=1" =Ldt,
(15.14) p=Rdt = Mdt
T=p+p, I =u+2p.

8§ 16. Kinematics inE;

If we take a polar tetrahedronbs:
(16.2) Q) Q> = o, [Qo Q1 Q2 Q3] =+1

that is independent of timethen acompulsive process of moti@mises inEs with the
differential equations:

3
(16.2) dQ;= > Qw,, ax + ag = 0.
0

We map the tetrahedron Q¥ onto two rectangular axis crosses (1, 2, 3):

P =009, b =99, <pp >=9,,

(16.3)
[0, 0, 0] =[p1p,p] =4,

such that the formulas of tables (9.5) are agaid.vdf we then set:
(16.4) dp; = px O » dpj =D pl@),  ak+ag=aj +ay =0

then it follows from (16.3) by derivation that:

Qo3 = Wy~ Wy, Q5= Wt Wy,
(16-5) a3 = Wy — Wyy Q3= Wyt Wy,
a, = W, =~ Wy, A=Wt W,

In this way, the motion processhs3 is mapped onto two rotation processes, one oflwhic
is on the unit spher€, and the other of which is d€”. If, for examplea anda’ are the
instantaneous rotational axes of the two rotationc@sses, and therefore scalar
multiplicities of the vectorsdes, as1, 012), (@55, 05,,07,) — then inEs the two polars< a,
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a') become thénstantaneous screw axe$the motion process. We would not like to go
into this situation further, here.

§ 17. Integral theorems

Let (t) be aclosed rotation processo perhaps, more precisely:
(17.1) Q(t+ 1) =9(1), pi(t + 1) =pj(t).
It would then follow from equations (9.11) that:

(17.2) $psA =0, PpA = o, $pau=0.

We further calculate the integral along a (closed) patiie on the unit sphere:

(17.3) $ro = $arap.

If we assume that fdr= 0:

(17.4) p;(0)=¢ i=1273)

then:

(17.5) $ro =p1xa+p2xe + paxs, Y(0)=ex +eX + e,

with the vectors:
(17.6) 0= $Qe Qp.

If we further consider the “surface vector: for ourhsat
(17.7) f=4¢rxde= §rxxp)o= p<rp >ro-Ppp

then the last vector integral:
(17.8) p = (ﬁplp

does not depend upon the choice of pgioh the unit sphere. It then remains for us to
examine:

(17.9) w=$<ep>rp.

We have, due to= Q1r'Q, p1= Q91 =- {219:
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w=1¢(-Qr9, + Qr'0)Qr'ap
(17.10) L
=3 (-Qr' Q,Qr' Qp) +3v.

Thus, one gets:
3
f=> m, XX —1v,
(17.11) 21: S
w, =~ Qe 0,Q60p.

For the geodetic curvatufeof the moving pole path and the curvatGreof the rest pole
path one has, from (9.13):

(17.12) C=¢u, C=¢u.

For the surfaces that are traversed by themKoiK’ one then has (from GAUSS-
BONNET):

(17.13) F=n-C, F’'=n-C’

8§ 18. Rectilinear surfaces irks

The line {Q0(t), Qa(t)}describes a rectilinear surface (viz.ruded surfacg F in Es.
We can choose the poinf, Qi to be the generators Bfsuch that o, Q3} and {Q;,
9.} become the common perpendiculars to neighboriegegators of; the 9; then
define a polar tetrahedron. We thus calculatevéogorsp;, p; from the table (9.5). One
then has the differential equations:

—q/ A _A’
dQO: * +Q1% * +Q3 > ,
dQl: +QOM * +Q2A +A *
18 i A+ i [+ U
dQZ: * _Ql 2 * Qa 2 )
A=A '+
dQ, = _QOT * -9, H 2,U x
In this, one generally haks# A”. Furthermore, we find:
dp,= % HpA %, dpp= * AT %,
(18.2) dp, = —pA ¥ +pgl dp, = —pA’ * +pyd,

dp,= * —pu % dp;= * —pi/ *
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For developable surfaces, in particular, one hasA’, and the formulas (18.1), (18.2)
agree with (9.3), (9.11).

8§ 19. A theorem of K. STEPHANOS

If, as in 8§ 3, we regard the poifX of the elliptic spacé&; as the image of the axis

cross with the originO, where we restrict ourselves to the axis-crossds wie
determinant + 1 (“right-hand crosses”), then the caonlifor the axis-cross) to arise

from another on®)’ by an inversion around an axiseads:
(19.1) Q=9 q, a=Q'9.
From the fact thad is a vector, it then follows that:

(19.2) QO+90 =29 9'>=0.

From this, it follows: All axis-crosseQ that emerge from a fixed ong by inversions
have the plane:

(19.3) VA>=q0+qd+ g4+ qgq=0

as their image ics . If we then take three poin3; (j = 1, 2, 3) inEs that do not lie on

the same line (i.e., they are not collinear) thery tthetermine a plane uniquely. This
gives the following theorem of K. STEPHANOS (1857-1917),cwhis most simply
connected with the construction of GAUSS (§'2):

For any three right-hand crosse3; with a common origin O that do not go to each
other under rotations around the same axis, there is always a fourtid'otiat goes to
the Q; by inversions.

Namely, let:
(19.4) M1 =9,9, R=90, R:=Q0,,
so:
(19.5) R1R2NR3 = 1.

We can represent each such rotation by the compostitisvoanversions in sequence:

(19.6) Ri1=Dbabs, Ry=bsbs, NR3=Dbibs,

1) K. STEPHANOS, “Sur la théorie des quaternions,” MA#m. 22 (1883), 589-592.



30 Kinematics and quaternions

in which — e.g.p1 — is the common perpendicular to the rotational axeB,cand®Rs .
One then gets:

(29.7) Q1 =Q3R2 = Q3bsby,
and from that:

(19.8) Q1061=Q20, =Q3b3 =2’
or

(19.9) Qjbj=4,

as asserted.
If one replaces)’ with the left-hand cros® that arise from’ by reflection through

the originO then) goes to" by reflections in planes through and we obtain a one-

to-one correspondence between the left-hand crostiesngin O and the planes iBs .
On the basis of (19.3), one can develop a “projectivangéy of the axis-crosses
aroundQ,” although one must admit the “ideal” cross:

(19.10) i =0=0=0.



CHAPTER THREE

SURFACE-CONSTRAINED SPHERICAL ROTATION PROCESSES

§ 20. Pfaffian forms?)

An expression:
(20.1) w=a(u, v) du + b(u, v) dv

(which is linear in the differentialdu, dv of the independent variablesv) is called a
Pfaffian form after J. FR. PFAFF (1765-1825). Following H. GRASSMANN (1809-
1877), one introduces tladternating product orpolar product- of two such forms:

(20.2) @ =a du+b dy,
namely:
(20.3) [ @] =-[w w] = (arb, —az by) [du, dv],

[du, dV] = — [dv, du],
which can already be obtained naturally from double iafegr The vanishing of the
polar product implies the linear dependence of the faumsy.
One then comes to thexterior differentialof G. FROBENIUS (1849-1917) and E.
CARTAN (1869-1951):
(20.4) dw= [da, du] + [db, dV] = (b, — &) [du, dV].
If it vanishes identically thewis a complete differential:

(20.5) w=df =f, du+f, dv.

Both constructions (20.3) and (20.4) are invariant; i.e.y tte@mmute with the
introduction of new variables:

(20.6) Xx=X(u,v), y=y(,v), [dx dy] #0.
We add the following two rules of calculation:

(20.7) d(fe) = [df, o] + f de

%) A throrough presentation of the calculations witterlating differential forms is included in the
book by H. REICHARDT:Vorlesungen tber Vektor- und Tensorrechnurigerlin, 1957. Cf., also W.
BLASCHKE and H. REICHARDTEinfiihrung in die Differentialgeometti®erlin-Gottingen-Heidelberg,
1960.



32 Kinematics and quaternions

and furthermore, for a domaB in theu, v-plane and its unigue surrounding boundary
dB:

(20.8) dew = dew.

This formula (20.8), which converts the double integral an ldft into the boundary
integral on the right, includes the formulas of GAUS8 STOKES. One also writes:

(20.9) fad

for the exterior differential.

8 21. Surface-constrained motion processes i3

LetQ; =0, 1, 2, 3) be a polar tetrahedron in the absolute quadis, whose
verticesQj(u, v) depend upon two parameters. A two-parameter (= sucfatstrained)

process of motion s is thus defined in this that way. We can bring the tdas of §
16 into play if we interpret thevin them as Pfaff forms. We then obtain the difféisgn
equations:

(21.2) dQj = Q« ax , ak + ax = 0.

On the left, one must sum over the indethat appears in it. The following integrability
conditions belong to (21.1):

(21.2) dak = [ws @,

in which the sum ovesis again implied.
We further set:

(21.3) pi=99, »=99 (§(=1223)

and find from this, by differentiation, and from (21.1) a@dj, that:

(21.4) dpj = POy, dp) = PO, Ok + 6= 0y +0y =0,
with:
(21 5) O3 = W3~ Wy, O3=W3~ Wy 0 7W ;7 W
0J23 = 0123— ajor 0-'31: ajSl_ ajoz g 17 W 12 W 03
and the integrability conditions:
(21.6) dai = [T 0w, doj =[o}04].

For the surface elements:
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Q, =[0,0,], Q,=[0,0 Qoo

(21.7) ; ; , ; ,
Q, =[o,0,], Q,=[0,0 QA0

it follows from (21.2) that:

Ql =+ dCUOl— da)zg, Q 2: + da)oz_ Ck‘)31 Q 3: + Ch) 03 Ch) 12

(21.8) : , ,
Ql:_da)ol_da)23, sz_da}oz_ Ck‘)31 Q i Ch)03_ Ch)lZ

We add some relations between our surface elementsefageneral case that come
from (21.5) and (21.7):

2[%20)0J +2[C()310)1; = Q l+ Q’!L
(21.9) Ay + 2w w,] =Q ,+Q',
2wy, + 2l w, 0] =Q + Q'

We would like to apply these formulas. Namely, we wdike to find out how the
lines [Qo Q3] through a point:

(21.10) T = Qo CcosP + Q3 Sin g, ¢ =¢ U,V

can be arranged in order that the surfadbat is described b¥ intersects the linexJ
3] at right angles. Due to (21.1), one has:

(21.11) dP = (- Qo sin g + Q3 cosg)(aps + dP) + Q1 (a1 COSP + a1 Sin P)
+ 9, (a2 COSP — a3 Sing).
Our demand thus implies that:

(21.12) a3=dg,  dws=0, ¢=—] s,

and ¢ is determined from this up to an additive constant. Tlsetieerefore a family of
“parallel surfacesF with the common normals), Q3).

From (21.8) and (21.12), normal congruences are charactesized
(21.13) Q3= Q;,

i.e., from (21.4) and (21.7), the map of the two image sph@e® (p,;) is surface-
preserving. The fact that any such map:

, 6]3 6]3 , ap' ap'}
21.14 , N V), 3 3| = 3 3 ,
( ) ps(U V) ps(u V) [Pg du av} [Pg ou ov
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belongs to a one-parameter family of “parallel” twograeter rotation processes can also
be seen directly with no detourfg, as we would like to briefly discuss.

We thus cover the left-hand sphege) ith a family S of curvesC that all begin at a

point Uy, Vo and cover a neighborhood of this point simply. Let family that
corresponds under the map (21.14) to the right-hand sigpgrée S, and let its curves

beC'. We choose the unit vectgrguo, Vo) and p; (u,,V,) atuo, Vo to be perpendicular to
p3(Uo, Vo) and p;(u,,V,), but otherwise arbitrary. We then displageand p; parallel to

Uo, Vo along a pair of corresponding poinisv along corresponding lineS, C'. The
parallel displacement of Lord KELVIN and LEVI-CIVITAidefined in such a way that

alongC andC' one must have:
(21.15) Oi2 = <o, dp1> =0.

The association (21.14) is then established by this. Thidbeaoroved in two ways.
First: The association (21.14) remains unchanged when oies the families of curves
SandS. We thus see that under such a variapipand p; will be rotated through the

same angle(u, v). (This follows from the lemma: The angle betw&ea vectors along
the same line remains the same under parallel dispéateand if one displaces a vector
along a closed line then the angle between its irati@ final positions is equal to the
area traversed, up to an additive constant). Secoridiyrel rotates the vect@i(uo, Vo)

through the angler then any axis-crosg; (u,v) will be rotated aroundy(u,v) through
the same angle .

§ 22. From the theory of surfaces iRz

To the clarification in the conclusion of § 21, we adde facts from the theory of
surfaces in EuclidiaR; . The axis-crossy{ p1, p2, p3} depends upon two real parameters

u, v. Its origingy may therefore describe a surfd&eandps; shall mean the unit vector of
the surface normal ¢f aty. One then has differential equations of the form:

dr=p,0,+p 0,

(22.1)
dp1:p20-3_pﬁ2’ dpzngl_pgs dpangz_pgn

with the integrability conditions:

do, =+[o,0), do,=+[T0o], 0=[oglH{aogl

(22.2)
dO’l:—[0'20'3], d0'2:—[0'30'], dUSZ—[Up'L

The ratio of the surface element of the sphericalgengs) of F to the surface element of
F gives the Gaussian curvatufeat a point of:
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_loo,] __ dag;
[0,51] (0.0

(22.3)

Thus, from (22.2), one has:

(22.4) 4o, 5, 9%, ,

6] ' [55)

2+

Thus,K depends upon the metric &rthat is determined by, , g, (GAUSS’stheorema

egregiumn).
If one continually hags = 0 along a lineC on F then, according to Lord KELVIN
and LEVI-CIVITA, the vectorsp; are parallel along C on F, and one speaks of the

displacemenbf p; alongC onF.
Under the rotation:

(225) plD =+ COS¢ + po sin ¢, pg == sin ¢ + o COS¢, pg =ps,

our axis cross becomes:
(22.6) oy = <dp,p; > = & +dg.

Thus, if the vectors; are parallel alon@ onF then the vectors; will also be that way

for a fixed ¢. Furthermore, for a simply-connected dom8iron F and its unique
surrounding boundanyB, one has the following integral formal [cf., (2]):8

(22.7) j [0,0,] = j K[g,T,] =- j do, :—9503.

If one takesp; to be tangent tdB then one will have:

(22.8) [Klag,] == [(05-dp) =+27~o,.
B dB dB
The integral:
O.D
(22.9) oy =]ga, g=—=, g, =0, +0;
dB g

of the geodetic curvature yields the total geodetivature of the boundadB (g is the
geodetic curvature ang is the element of arc length @B).
We thus obtain theormula of GAUSSand BONNET (1848):

(22.10) j K[g,T,] + j 9o =27
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§ 23. Surface theory irEs

We now take the special case of § 21 in which the suHadteat is described b$2
intersects the linesdy, Q] at right angles, such that the tangent planEqcdt Qo goes
throughQ;, Q,. One then has:

(23.1) ah3 = 0.
We abbreviate:
(23 2) %1 = al’ 0)02 = aZ’ 0)03: a 3: 0'

%3:ﬁl’ w31:ﬁ27 a)12:ﬁ3
and thus find the differential equations:

dQ,= * +Qua, +Qa, *
dQ, = -Q.a, * +Q,8, ~Q 8,
dQ, = -Q.a, -Q,5, * +Q 6,
dQ,= -~ +Q.6, —Q.,6, * .

(23.3)

For the two image spheres, we correspondingly set:

dp,= * +p,0, ~p 0, dp,=  *  +p,0, —p0,
(23.4) dp,= -po; * +pgo, dp, = -po; * +po,
dp, = +p,0, —p0, * , dp; = +p0, —p0; *

The integrability conditions follow from (23.3):

dg =[5 B, dB,=[B.B),  dB:=[B.LLH a gl

23.5
(23.5) da, =[B,a),  w.= B, 0=[8,8] +a a}

The following relations exist between our Pfaffian fsrm

By-a;=0;, o to, =243,
B+a, =0, 0 -0 =20q .

J I J

(23.6)

In particular, one has:
(23.7) B=0,=0.

We have the integrability conditions for tbe

dal = [03 02]’ dUZ :[ 0-10-;’ dUSZ[ o 20-]1’

(23.8) ) : ;
do=[0}0), do,=[0\0), 4oL 00,
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It follows from (23.7), (23.8) that:
(23.9) Q=[a o] =[o0,)],

in agreement with (21.8). Conversely, for a congruepgepf) with surface-preserving

spherical images:
(23.10) Q:=Q,=Q

there is a family of parallel surfaces that are ortmagto it.

Between the surface elemenits, @3 of the mutually polar surfacds, F; that are
described by the pointgo, Q3, namely:

(23.11) ®o = [ a2, ©3 =[5 B,

and the common surface eleménin the spherical image, there exists the relation:
(23.12) Do+ D3 = Q.

For the Gaussian curvatukg of the arc length elements l&d:

(23.13) dg = a/ +aj,
we find, from (22.3), that:

(23.14) Koz—id %al_i_dazaz :_dﬁs :¢0+¢3:£.
d, | P, P, @, @D, D,

Likewise, for the arc length elementfef

(23.15) ds = B2+ 32

one gets the curvature:

(23.16) Ksz—id %:81'*'(1'82,32 :_dﬁs :¢0+¢3:£.
q)3 q)3 q)3 q)3 q)3 q)3

§ 24. Curvature lines. Osculating lines.

Let P be a point of the surface normalQd, 3} of our surfacer, that is described
by Qoi
(24.1) T =0 cosP + Q3 sSing.
From (23.3), it then follows that:
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(24.2) dm:(_QOSin¢+Q3 cosp )j¢+Q1 01 CO¢+,32 sig
' +9,(a,cosp - B, sinp ).
Shouldd3 again belong to the surface normals then one would have

(24.3) a1 cos¢g +[5sing =0, a,cos¢g —fising =0.

The defining equation of thaurvature linedollows from this:

or, from (23.6):
(24.5) ol +0; = 0+ 0.

Thus, the curvature lines & have the characteristic property that the sphenmabes
are related to each other in a distance-preserving Wée alternating product of the
formulas (24.3) gives:

(24.6) [pna2] cos ¢ — (B + [@2B]) cosg sin g + [B3] sin’ ¢ = 0.

For the roots of these equations, one immediately finds:

tang, [tang, = la,a,]

@ (06410,

t L+t , = 1771 2 ‘

A Y = B
or, when we introduce the surface elements:
(24.8) Do = [103], 2V =[] + [2/2], O3 = [B4)],
we find:

) W

(24.9) tang, - tang, = cTO tang, + tang, = 2 o

We now go on to the determination of teculating linegasymptotic lines) on our
surfaceF, . By a differentiatiory, it then follows from (23.3) that:

(24.10) AYp=a X+ XK+ ... =— Q3 (0’1,32— 0’2,31) + ...,

in which the dots mean only termsd, Q1, Q> . ShouldddQo then lie in the tangent
plane then one would have:

(24.11) - o =0.
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The osculating lines oRy are characterized by either this or by:
(24.12) g0,-0,0, =0.

The curvature lines and osculating lines are preserved timeléransition fronk to the
polar surfacd-3.
If we choose the tangent8)§ 21} and {Qo 2} of Fy to be tangents to the curvature

lines then we get:
(24.13) PB] =[xz ] = 0.
§ 25. Surfaces of zero curvature
If the curvatureKg vanishes identically oo then, from (23.14), one would also
have:
(25.1) Q=Pg+D3=0,
and furthermore, from (23.14), (23.7):

(25.2) dB=dos = do, = 0.
If we fix Qo, Q3 and rotatelq, o:

(25.3) Q) =i cosy+Qrsiny, Q) =-9Q; sin +Q, cosy
then we get:
(25.4) Bs =B +dy.

Due to (25.2), (25.4), we can choagén such a way that:
(25.5) L=0=0,=0.
The differential equations (23.3), (23.4) then simplify to

dQ,= * +Qa, +Qa, * ,
dQ, = -Qa, * * -Q.0,

(25.6)
sz = _Qoaz * * +Q3ﬁ1
dQsz * +Q1,32 _Qzﬁl *
and
dp,= * *  -p0, dpy= * % —p,0,
(25.7) dp,= * *  +po, dp,= * *  +p0o

dp, = po, —pg, * , dp; = po, —po, *
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These lead to the integrability conditions:

(25.8) df =dB,=0, [B,Al+a,a]=0,
dal = d02 =0, [,82 a'l] +[a'2ﬁﬂ =0,

with the relations:

(25.9) B-a,=0, p+a,=0,

,82—0'2:0'2, :31+0'1:U'1'

In this case, not only are the lineQ{ s} surface normals to the mutually polar surfaces
Fo, F3, but also, from (25.6), the surfadés F, that are described by, 9, are mutually

polar with the normals; Q2}.
From (25.8), (25.9), it follows that:

(25.10) doi =do = 0, [6i o] = 0,

and thus the; depend upon jusineparameteu, and likewise, they, depend upon only

one paramete.
One can see from (25.8) that the curya¥, (p2) arecarrier lines(= tractrices) of the

curve fs); i.e., the great circles that contagh)( (p2), and always run through the
corresponding poinis; corresponding statements are true for the spgiere

If we set:
(25.11) pi(u) = RU) pO) R,  pj(v) = R, O)R' (V)
then we get:
(25.12) Qi(u, v) = R(u) (0, 0)R' (V).

One then sees that fpr 0 theu-curves, and likewise thecurves are congruent to each
other on the surfadé,. The surfacé is the is the elliptic analogue [ of a translation
surface in Euclidiam; .
Such surfaceby in E; with Ko = 0 in were first considered by L. BIANCHI (1856-
1928) (cf., L. BIANCHI, Opera VI, Roma, 1958, pp56-301).
8 26. Surface elements in the path surface

We consider a surface-constrained rotation process
(26.1) (U, v) = QU V) Q(U, v).
From (26.1), it follows by differentiating (23.3)s in (10.4), that:

(26.2) dr=(@pr—pry) o+ (xp2—p21) a2,
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or:
(26.3) dr = 2r X (paan+ p202).

One arrives at the vectorial surface element of theecsurface from this by constructing
the “alternating product” of 2(x p1) a1 with 2(x X p2)a:

(26.4) f=4[o ] (xxp1)x [ Xxp2) =4 [0 az] [xp1pa] t,
or:
(26.5) f=4[ar o] <t p3>r=4Po <t pa>r .

The geometric meaning of the vectpgsp,, and also that abg is included in this.
To each given surface-preserving npgp— p, of our image spherds — K' there

exists a one-parameter family of “parallel” associateoface-constrained rotation
processes that correspond to the associated paralletssinhEs . If such a process is
known then one obtains the other one from the faitdne rotates each axis-cross of the
first one around the associategby a fixed angle.

One constructs the rotation process that corresportie gurface&, in E; with Ko =
0 that were studied in 8§ 25 as follows: A cone of the mosygjem is constrained to
contact a cone of the rest system (both of theitioess are aO) continually along a
generator. More generally, one examines the rotaticcepses:

(26.6) r(u, v) = RU) &' R(V).

With this, one confronts the difficult problem of thetation processes that can be
represented in two essentially different ways in thenf@26.6), and thus, the translation
surfaces inEs with multiple generators. In the context of quatersjothis question
comes down to the general solution of the equation:

Qll(ul) Q[z(Uz) Q[3(U3) Q[4(U4) =1; Q[é[ =1.

IS

The corresponding question in Euglid%(or better, in affindRs) was solved by S. LIE
(1842-1809), 1882, H. POINCARE (1854-1912), 1901, W. WIRTINGER (1865-1845),
1938 by resorting to ABEL'’s theoreth

We would like derive the guiding conditions for a pointwith the canonical
coordinates; :
(26.7) r=Xipr+tXop2+X3ps

that guarantee thatis fixed in the moving system. Differentiation of (268) means of
(23.4) gives:

1) Cf., also W. BLASCHKE and G. BOIGeometrie der GewebBerlin, 1938, pp. 240.
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dr=p,dx +p,dx+p,dx

(26.8)
X (P03 P T)+X(P I —pg I+ X{p g 7P F),

and from (26.3), (26.7), one gets:
(26.9) dr == 2p1 X3 G2 + 2p3 X3 01 +2p3 (X102 — Xo1h).
The comparison of (26.8), (26.9) yields the desgedling condition:

dX1 = +X20J3 - Xsz
(26.10) = —x0, * X7,
dg = +x0, —x0;, *
Likewise, for the point:
(26.11) r= X P TP, Xy
one gets theest conditions:
d){ = +)(20'3 - ){pz
(26.12) %= —%o, * +Xg,
d)é = +>{0—2 - ){20-1 *

Perhaps from the guiding conditions (26.10) or from:
(26.13) dr = (%05~ X05) p1 + (X0, = X03) p2 +(XT, = %0 3 ,

it follows that the vectorial surface element of pfagh surface that is describedig:

(26.14) i[de x ] = {x[ 0,0) + X, o'g) + A, o'} ¢,
and thus, its scalar surface element is:

(26.15) x[0,0] +x[og] + ool

§ 27. On line congruences ik;

We consider theongruenceof lines {Qo, N3} that intersect a surface-constrained
motion process itz (8 21). In order to ascertain the “focal point” oRef Q3}, we take
the point:

(27.1) P =0 cosSP + Q3 Sing
and demand that, from (21.1):
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dB = Q,(w,, cosp + w,, Sip }Q, Ww,, COP—w,, Sip

(27.2) +(-Q,Sing +Q, cox g +w,; )

lies on our line. This yields the equations:
(27.3) b1 COSP + a1 Sing =0, @w2CcoSP — wszsing =0.

Increasingg yields the defining equation of the developable surfagessér) in our
congruence:

(27.4) ah1ah3 + bk = 0.
The alternating product of the equations (27.3) yield$at& point:
(27.5) lap1ad2] cOS @ — {[ cwrapa] + [awocaa]} COS P Sin @ + [apsasd] i’ ¢ = 0.

The corresponding calculation for the congruence ofitles {Qi, Q,} that are polar to
{Qo, Qs3} yields:
(27.6) W1 CoOSY+ wsSiny =0, wi1CoSyY —wssiny=0,

and from this, by preserving (27.4) for the focal point:
(27.7) [ab1a1] cOS W — {[ aprars] + [av2a1]} COS W sin ¢ + [apaari] sily = 0.

If one chooses the pointQy, Qs in such a way that the focal points (27.5) are
harmonically separated, and correspondingly for thetpali, Q,, then from (27.5),
(27.7), one gets:

(27.8) kwiaz1] = 0, [a2a31] = O,
and we have, in our case:
(27.9) 23 0,5] = 0, [331 0] = 0.

One calls congruences whose spherical imaggs (p;) are conformally (= angle-
preserving) related to each othsstropic congruencesDue to (21.4):

(27.10) dps = G31 p1 — Gz a2, dp; = 05, P~ 03P,
we have, in our case:

(27.11) 0,00, —0,0,.=0, 0,,=COs, 0Oy =CO,
and from this:

(27-12) b’zs 0—;3] =0, [0-23 0—;,1] = [0—;30-31]1 [0-31 0—;,1] = 0.

For the common perpendicular( p,) of neighboring lines of the congruence, one has:
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p=1f O, xdp;= fUpo+p O3),

(2713) ’ ] ] ’ ] [} ro
pr=1"0psxdps = F'lp 0+ p' o).

In our case, one then has:
(27.14) p'=xf- (p0,,+p0,).

The pencils of rays of the andp’ are thus congruences. From this, it follows: For

isotropic congruences, the common perpendicular of adfndhe congruence and its
neighbor define two mutually polar pencils of rays. Asha Euclidian case, these
isotropic congruences are closely clinked with the @gmer curves (imaginary curves
with null length).

Another noteworthy case of congruences in elliptic spadte one in which the
spherical images are curves:

(27.15) s a1l = [0,,05] =0, pa=pa(u),  p; = p5(V).

They are the normal congruences of translation surfaces
Finally, one must observe the TSCHEBYSCHEEthgruencesfor which the arc
length elements of their spherical images may be broughtha following form:

(27.16) 0%, +0’, =du®+2dudvtost + dv,
' o2 +02 =du®+2dudvtost’ + dv
The curve nets, v = fixed onK, K" are then TSCHEBYSCHEFF nets.
On the situation that was treated in § 21-27, cf., W. BCAKE, “Sulle congruenze
rettilinee nello spazio ellittico,” Annali di Mat. (48 (1959), 209-221.

Similar to what we did in 8 17, one can also derivegraketheorems for surface-
constrained motion processes. Thus, the GAUSS-BONfNEula for the surfacgg in
E; can also be regarded kinematically.



CHAPTER FOUR

ALGEBRA OF SPATIAL KINEMATICS

§ 28. Dual line coordinates

Let a be an “axis” in Euclidiams, a, a unit vector oru (its direction vecto), and let
a be its moment vector about the orignamely:

(28.1) a =rXa,

if t means any point on (more precisely, this means the vector fl@rto r). @ is then
independent of the choice of poinbn a since:

(28.2) f+fa)xa=¢rxa.

Conversely: If an axis1 is given by the two vectors a then (28.1) characterizes the
pointzona.

The dependencies:
(28.3) Qa>=1, <aa>=0

exist between the two vectoss a. One can combine them into a single one by the
introduction ofe with:

(28.4) £=0,

when one sets:

(28.5) a=a+ea.

One then has, in fact:

(28.6) wa>=<aa>+2&<aa>=1.

One calls numbers of the form, (a; b, b real):

(28.7) a=a+teca, b=b+¢b
with
(28.8) ab=ab+ gab +ba)

dual numbers. For calculations with them, one must observe thadiision by “null
parts” € a is not allowed.

From (28.6), it emerges that: The axesn R; may be mapped to the “dual points”
on the unit sphere (28.6) in a one-to-one way.

For two axesa, a', we have:
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(28.9) aa'>=<aa>+d<a a'>+<aa >}

Lett, ¢’ be the base points of the common perpendicular,te’ on these axes, and lgt
be the angle between them, whieis their shortest distance. One then has:

<aa' >=cosg,

(28.10) _ — ' ' :
<aa >+<ada >=-[r' -r,a,d]=—-@sing.

If we set:

(28.11) f(p+ec@) =1(p) +cdt' (@)

then we can combine equations (28.10) into one:

(28.12) <aa'>=cosg, p=¢+cd.
In particular:
(28.13) «a'>=0

means the perpendicular intersectiorugfa’.

§ 29. Motions in line space

Let:
(29.1) 9 =>e(q+eq) =Q+e0

be a “dual quaternion.” In it, one shall hagyes = €. We takeQ to be normalized;
i.e., we let:

(29.2) D O>=<QO>+2:<Q O>=1,
SO:

(29.3) QO>=1, «©A>=0.
Then:

(29.4) a=0d90, 99=1,

in which the tilde means the sign changeein e, e;, represents a dual-orthogonal
substitution of the dual unit vectots, and thus a dual rotation of the unit spherethéf
axesa are interpreted as being in line sp&sehen, due to the invariance of (28.9) this
gives a motion oRs that is applied to its axes.

One might see that one obtains all of the motoihthe continuous, six-parameter
groupGg of R; from (29.4) as follows: First, the transformatialefine a group, and then
by composition of the motiong,, £, one produces the motioQ, Q,. Furthermore,
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from § 2,Gg includes the grouf®s of all rotations®, 99 = 1 around the origin. On the
other hand@Gs includes the grous, of all translations:

(29.5) Q=1+eQ, Q+0=0 Q=g
From (29.4), (29.5), it follows that, in fact:

=(1-&q)a’(1+£9),

(29.6) T
a=a, a=a-—-qa tag=a +2(@ %xq).

A translation is produced, in fact, for the points:

(297) ;:F'+U, ;Xa:(};’Xa)+(UXa),
or for the axes:
(29.8) a=a, a=a +@xa).

It then suffices to saet = — 2q in (29.6) in order to obtain the translation (39.The fact

that the determinant of (29.4) is equal to + 1 mighow from continuity or the fact that
it is true for the two groupSs, G;.

A further proof employs formula (1.23) for the elehinant:
(29.9) —4[Q0 2203 = 200,0.+90090,, 290979009 .

Bibliography. The use of dual numbers in geomgtgs back to W. K. CLIFFORD
(1845-1879). One can learn about this significgabmeter in the book: W. K.
CLIFFORD, The common sense of the exact sciendew York, 1955. Further, see A.
P. KOTJELNIKOW (1865-1944)Die Schraubenrechnung und ihre Anwendungen auf
Geometrie und MechanilKazan, 1895; J. PETERSEN (= HIELMSLEV) (1873-1950
Géométrie des droites dans I'espace non euclid@penhagen Verhandl. Akad., 1900,
pp. 308-330; G. FUBINI, “Il parallelismo di Cliffor negli spazi ellittici,” Annali della
Scuola Normale, Pis@ (1904), 74 pages (dissertation); E. STUDSeometrie der
Dynamen Leipzig, 1903; E. Study, “Ziele der analytischKmematik,” Sitzungsber.
Berlin. Math. Ges12 (1913), 36-60.

One finds a thorough discussion of quaternionsir thistory, generalizations, and
geometric applications, along with the associaefdrences, in H. ROTHE, “Systeme
geometrischer Analyse,” Enc. math. Wiss., art. dd¢c. 11, Leipzig, 1921. Cf., also W.
BLASCHKE, Differentialgeometrie Bd. I, Berlin 1921 and later editions; R. v. MISE
(1883-1953), “Motorrechnung, ein neues Hilfsmittir Mechanik,” Z. angew. Math.
Mech.4 (1924), 155-181; R. v. MISES, “Anwendungen der &4otchnung,” Z. angew.
Math. Mech. 4 (1924), 193-213; E. A. WEISS (1900-194Zjnflhrung in die
Liniengeometrie und Kinematik_eipzig und Berlin, 1935; W. BLASCHKENiIcht-
Euclidische Geometrie und Mechanikeipzig und Berlin, 1942; W. BLASCHKE,
Analytische Geometrj@" ed., Basel/Stuttgart, 1954.
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§ 30. An invariant for three axes
If we take three pair-wise skew axes:

(30.1) a;, =g+ €a;, <a, Ej>:11

and define the determinant:
(30.2) [a,a,a;]=[a1 a2 ag] + [ @,02 ag] + [a1@, as] + [a1 a2 @, ]}

then this yields the following invariant under the motiohRs:

(30.3) j= e +agal Hap g}
. [a,0,04] .

We would like to interpret this geometrically. dhe substitutes, perhaps, in J by
way of:
(30.4) a; =Cia,+ Cq,+ Ca,,

with realc; , that satisfies the condition:

(30.5) <lal>=1
121

thenJ remains unchanged; howevar, is any line of the ruled family of the quadric

througha,, a,, a,. Thus,J depends upon only this ruled family. If we take tuadric
in the form:

3
(30.6) Da X% =0 o = 1,ax = ay)
0

in rectangular coordinates, x., Xs then we find that:

(30.7) J= %(a11+a22+833)
with
3o 301 B 8 2 a a
1 2
(30.8) A= |Bo B B By o=, a, a].
ay 8y A, &, o a a
8 8 8y, 8 P

If yy means a point on; then the formula also yields:
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_ S0,05 <1, 7150, <A50,2<T ;71,0 ,>F<af ST T .02

(30.9) J
[a,0,0,]
Thus, if:
(30.10) J=0,
in particular, then it must follow that:
(30.11) aj1 +agpt+ags=0.

E. A. WEISS also concerned himself with the inaatd in the reference cited in § 29
with the use of the “complex symbolism” of line geetry that was introduced by R.
WEITZENBOECK (1885-1955).

8 31. The spatial hexangle with only right angles

Let a; (j =1, 2, 3) be pair-wise skew lines and tet be the common perpendicular
froma,, to a,, ( mod 3). The six lines,, b,, a,;, b,,a,, b, define a spatial
hexangle with nothing but right angles. Up to aldicalar factor, one then has:

(31.1) b, =a,x a,,

f=>]

, = 0% ay, b,=a,%Xa,.

Let ¢; be the common perpendicular of the opposite sidgls, . One again has, up to a

dual-scalar factor:
(31.2) ¢, =a,xb, =a;x(a,xa,)=<a,6,>a,-<a,a,>a,,

and cyclic permutations of 1, 2, 3. It then follothat:
(31.3) Gt gt =0,

and that meanghe three common perpendiculars of the opposite sides, ,b; again

have a common perpendicular.

This FIGURE of PETERSEN (= HIJIELMSLEV) and MORLEY808) is connected,
on the one hand, with the fact that the altitutes spherical triangle intersect, and on the
other hand, with the FIGURE of DESARGUES in projeigeometry. Our figure that is
composed of the ten lines,, b, ¢;, 2 has, in fact, the symmetry property that each of

its lines will be met at right angles by three otbees.
If, for a line:

(31.4) a=3§+36+ a8

one introduces the ratios of the duals as its homogeneous coordinates, and one
considers the grou@;e of line transformations:
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3
(31.5) QJ'D: zgjkg'k
1

with dual ¢, and determinant 1 then this defines a counterpart to plaosjecpve

geometry that E. STUDY called “dual-projective.” Onethss compelled to introduce
“ideal lines.” for which the coordinates:

(31.6) a, =g+ &9
have allg; equal to zero.

If one carries over the figure of DESARGUES to dualgxbye geometry then one
obtains the aforementioned figure of the hexanglea $imilar way, one may carry over
the figure of PAPPOS to line space. It consists of heoets of lines on different
“sheets” in such a way that every line of the oneesheeets precisely three other ones at
right angles.

One obtains a hexangle with only right angles, f@neple, from the twelve edges of
a cube when one omits the six edges that meet atpgpasae corners.

§ 32. The cylindroid

In this and the following section, we give a brief mew of the simplest figures in
dual-projective geometry, which one cadleains (Ketten). K. G. CH. v. STAUDT
(1798-1867), in his investigations into complex projective genmetnsidered chains of
such points in the points of a line; i.e., the totalifyath of them that determine a real
double ratio with three given ones.

Correspondingly, among the lines that cut a given aneight angles, one can
determine chains of such lines when one measures the datioledby means of the
double ratio of the values of the tangent of the half Fdurgle” with a fixed line of that
type g'. Thus, this dual angle will be defined by:

(32.1) P =p+ep,

in which ¢ means the angle angl means the shortest distance frgmto g. We thus
have:

(32.2) taM = tanﬂ + £(1+ tarf QJQ :
2 2 2)2

Obviously, such a chain of lines is determined uelg by three of its elements, no two
of which run parallel.

In projective geometry, four points of a line hav® same double ratio as their
connecting line with a point that does not lie de tnitial line. In our dual-projective
geometry, this corresponds to the statementgLla¢ four lines that meet a given anat

right angles. The common perpendiculgfs of the g; with a further linea’ then have
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the same double ratio. If the lingsthat meeta at right angles define a chain then the
common perpendiculag’ of g with a' also define a chain (W. R. Ball). In particular,

the lines of a pencil define a chain, since all of tldeiuble ratios turn out to be real.
Thus, the common perpendiculag"s of the linesg of a pencil define a chain. One

easily shows that one can generate all chains in #@ys Wollowing A. CAYLEY (1821-
1895), one calls the ruled surface that is swept out byiriee of a chain aylindroid.
With a suitable choice of rectangular coordinates z, its equation reads:

(32.3) € + YA z= 2axy,

with the single invariant of the motiam Thez-axis is a double line of the surface. Its
generators lie in the spaze< a>. The cylindroid was introduced by W. R. HAMILTON
(1805-1865) in 1830 and was investigated in 1868 by J. PLUCKER (1801-1868), and
was treated thoroughly by W. R. BALL (1840-1913); cf., W. R.,BEheory of Screws
London, 1902 and E. STUDY (1862-193@¢ometrie der Dynameheipzig, 1903.

If a circular cylindefZ rolls without slipping inside of another oAeof double radius
then every plane section gafdescribes a cylindroid, as long as its interior does eairi
Z'. Fora= 0, the cylindroid degenerates into a pencil of lines.

§ 33. Two-parameter chains
We now turn our attention to the two-dimensional cadée take three dual vectors

(lines):
(33.1) g, =gjt €y, g,20(=1,2,73),

and we consider thgvo-parameter chaiof lines:

(33.2) g =Cig, +Cg, +Cg;
with realc; . We set:
3 3
(33.3) gj= zgjkg , ﬁj: zgjkg
1 1
and demand that:
(33.4) Dety # 0.

We can then eliminate tleefrom the equations:

(33.5) he=>cg,, h =2.¢T;
and find that:
(33.6) h =2 a.h

with realc; for our chain. If:

(33.7) h =>bH. Detby # 0
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is a second chain then one has:

(33.8) 2 (0 +eh)(if +el)= Y hH +e(a, + ) h b
If we then take:
(33.9) ax + bk =c¢ g

then we see: Between our two chains, one has tharoeal relationship that to any line
of the one, a one-parameter chain of the second cabwmsg that meets the first line at
right angles.

PLUCKER, BALL, and STUDY, in his “Geometrie der Dynam’ have examined
such chains (also three-parameter ones). Their fitaswin under the grou@:s of dual-
projective geometry or under the gro@g of Euclidian motions raises no difficulties,
although it especially misleads one into excessiveiterlogy by the introduction of
ideal and imaginary elements (BALL, STUDY).

8 34. Relationship with projective line geometry

If we replace the inhomogeneous rectangular coordimat®, xs with homogeneous
ones, where we writg : Xo in place ofx, then the “PLUCKER line coordinates” (8 8)
for the line connecting two poinkg, y; are written in the form:
(34.1) Ok =X Yk = X Y -
For the determinant of four pointsy; X, y, one finds:
(34.2) D(9, 9) = 902+ GosGost- -
in which the dots mean cyclic permutations of 1, 2, 3.
(34.3) D(g,g)=0
is then the condition for the intersection of time$g, ', and:
(34.5) D(9,9) = 2@1923+ ...) =0

gives the dependency of the line coordinggefor a lineg. By comparison, if one takes
the g;, to be arbitrary in (34.2), but possibly skew-symmetric:

(34.6) g) + g =0.

then (34.3) represents a three-parameter totality of fpeshich R. STURM (1840-
1949) called @ghreadand J. PLUCKER (1801-1868) calledirsear complex

If one introduces the value gffrom (34.1) into (34.2) then one obtains the bilinear
equation:



IV. Algebra of spatial kinematics 53

(34.6) Z OX % =0,

where one sums over all even permutationg kfr, s that arise from 0, 1, 2, 3. If the
determinant ofg,, namely:

(34.7) Detg,, = 3Det(d, ¢),

is not equal to zero then (34.6) represents an involutanglation that associates any
point x with a pointy that represents a plane throughand for which any line of the
thread (34.3) corresponds to itself. Following A. F. MOBI(1$90 to 1868), one calls
this correlation aull system If the determinant (34.7) vanishes then the thread ¢ensis
of all lines of intersection af' (viz., a degenerate thread).

We now return to the general case (34.7)y if a “point at infinity” — i.e.yo = 0 —
then we find for the null point the plane at infinity:

(34.8) 9% =0 k=1,273)
or
(34-9) gtl)gxz_ goz)% =0,

and cyclic permutations of 1, 2, 3. The direction ofgbkx of the plane at infinity thus
agrees with the directio,,, g,,, dos- A line h that is perpendicular to it satisfies the

equation:
(34.10) 1901+ Noadoot NeeGe = 0,

and therefore lies on the degenerate thggad

91=0, 9=0, do=0,

(3411) n ! U !
923 = gOl’ g3l: gOZ’ 912: gOS

In the “pencil of threadsy' + tg"” there is then a degenerate thread for which:

(34.12) D(g +tg",g +tg") =D(d', g) + 2 D(d, g") =0,
or, more precisely:

(34.13) Jo1Q23 t ... +t(g§1 +...)=0.
For:

(34.14) g: +...20

the lineg + tg" is therefore defined uniquely, and one calls itdkes of the thread'g
where the term “axis” is now given a different meanimgntthe one that it had in § 28.
After this digression into line geometry, we now retiarkinematics.
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8§ Special motions

In § 29, we established that the orthogonal dual tramsfdon v - t:

', Q9 = Q =Q+e9

|Dl

(35.1)

represents a motion in Euclidi&, when applied to the linesin Rs, and that any such

motion of the group of motionSg can be represented in that way, from which the dual,
normalized quaternion is defined uniquely, except for its sign. If we set:

(35.2) Q =cos¢ +asin g, <aa>=1 ¢=¢+ep

then a means thescrew axisof the motionL, 2¢, is its rotation angle, an@g is a
“shift” along a. The determination ofx breaks down forQ = 1 - i.e., for the

displacements
We now look for thenvolutory motions- i.e., the motions that have period 2:

(35.3) Q0 =+1 QQ#+1
From:
Q=0,+q,
(35.4) Q0 =g +<qq>=+1,
QO =0;-<qq>+2q,q =%1,
it follows that either:
(35.5) 902 =1, q=0
or
(35.6) q, =0, <qgq>=1

(385.7) T =-qrq, <gqgq>=1,

and we obtain theeversal(i.e., the rotation through the angtgof the lineq.

§ 36. Incidence

For a quaternion:
(36.1) Q = +&G,) + (q +&7q),

we have defined the “conjugate: by way of:
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(36.2) 9 = (G +£0,) — (4 +£7).

In addition, we would like to consider the quaterniQp that arises fron by changing

the sign ofe.
(36.3) 9Q,= (-G, + (@ —£79).
One then has, in more detail:

9 =qo+&Gy+ q +£7, dp=90 +9+9,+9,,

9 =qo+eG,—q -7, 49, = Q+9-9,-9,,
(36.4)

9, =qo+£0,— q —£7, 4=9 -9 +9,-9,,

5;22 :qo_fqo_q‘*fa, 4£a: 5‘_] _5;2 _9£+5§£'

We have associated a point with the rectangulardioatesx; with the vector:
(36.5) r=xiet X e tXxes.

We would now like to assign it to the quaternion:

(36.6) X =l+er=1l+eie +x & +X6),
moreover. Analogously, a plane whose equationE®&SE normal form reads:
(36.7) Up + Up Xg + Up Xp + Ug X3 = 0, uw+w+uw =1

shall correspond to the direction unit vector:

(36.8) U =Ug X+ Up Xo + Uz Xa, <uu>=1,
and the quaternion:
(36.9) U =u+tew.

We then have for points that:

(36.10) X-% =0, X+X=2 XxX-=1
and for planes that:
(36.11) d+4.=0, Uid=1
For a pointX and a lingy:
(36.12) g=g+eg, <gg>=1,

we calculate the expression:
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(36.13) gX-Xg. =249 —(kxg)}
Thus:
(36.15) gxX-Xg.=0

means théncidence of the point and the plane.
For a line and a plane, we find:

(36.16) g +4g,= 2{~<gu> + Lo g + (5 X W)}
Should this expression vanish, we would then have:

(37.17) gu>=0.

Furthermore, it is a point ofg then one will have:

(36.18) g =rxg,

and from the vanishing of (36.16), it would then follow, dué3&17), (36.18), that:

(36.19) Uog + (g xu)) =Uog + (xxu)Xu={up+<cu>}g =0,
and thus:

(36.20) Up + <c u>=0.

One thus shows that:

(36.21) gU+Ug,=0

is thecondition for the incidence of the plane and the line.
Finally, we have for a point and a plane:

(36.22) Ux, - x4, = 26{uo + <u >},
and this means that:
(36.23) UX, Xy, = 4X+x4=0

is thecondition for incidence of the point and the plane.

§ 37. Motions of points and planes

We consider the motion IR; that is applied to itBnes:
(37.1) g =9¢9, <90N>=1.

We assert: The same motion, when applied tpthets X of R, gives:
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IL’J%

(37.2) x=9%x'9,.

In order prove this, we first observe that under (37.®)tpdX’ go to pointsX , since the
equations (36.10) are preserved:

g_

(37.3) ‘ -~ X)2=0,

(X=X
x99, X9=1.

leR
R [eRe
g IDI

We then need only to show that the condition (36r&Bains true for the incidence of a
line and a point under (37.1), (37.2):

(37.4) X - Xg.= Q,(gX, -X'gl)Q.

Correspondingly, we see: The motion (37.1), whaplied toplanes gives:

(37.5) 4=949,

since

(37.6) g, =Q,@W+g)Q =0  ud=90u9 0. d9=1
§ 38. Screws

We take a motior, as in § 29, to be:

(38.1) 90=1, Q=Q+¢9, <0NO>=1, VWOQ>=0
and
(38.2) Q =CcoSw + a Sinw, a+da =0, <aa>=1.

For dual arguments of-aperhaps analytie functionf, one sets:

(38.3) f(x + &y) =f(x) + £y F(¥).
One then has:
=CcoSsw, inw ,
(38.4) bhmeosw, ames _
0, = —WsSinw, q =a Sinw+aw Cosw
and thus:

q Q%9
a= = + &£ NCTCR
= 1_ qg (1_ q§)3/2

(38.5) _ _
q= q s 0% g

1-¢¢  (@-g9)**
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In the case of a translation, this formula says tmdy:.

(38.6) Jo=1, h=0=0=0, Q=1+&q.

For w @, we have:

(38.7) Cosw=qp, Sinw=.1-¢, @=-—0 =
1_%

If we set:

(38.8) Q =RE=GR,

with:

(38.9) R =cosw+ asinw G =1l+caw,

then R represents the rotation around the axighrough the angle@ From (37.2),
when & is applied to points, it gives the displacement:

(38.10) X=0Q-caw)X' (1-€caw),
or
(38.11) r=r - 2aw.

Thus,- 2@ is the shift in the direction. One sees thal actually represents a rotation
arounda from the fact that the poirt remains fixed o :

(38.12) aX -Xa,=0
under:
(38.13) X =(cosw-asin @ X' (cosw+ a,sin .

One recognizes the fact that we are dealing witlotation through the anglea2by
considering the “spherical part:”

(38.14) g=

of our rotation, as in 8 2.
In particular, the inversion along the axiswill be represented by:

1R

gR

(38.15) g=—aga.
Any motion £ can be represented as the product of two invession
(38.16) Q =a,a,.

The axesa,, a, cut the screw axis perpendicularly with an angld ahortest distance
between them that equals one-half the rotationeaagdl shift of the screw.
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8§ 39. Transfers

If one composes the reflection through the or@jmamely:

= =&

(39.1) g=-g., X=X, U=- 4,

with a motion (37.1), (37.2), (37.5):

(39.2) g=9g9, X=9X9, 4=949Q,
then one obtains the formula fotransferin Ry :
(39.3) g=-0g.2, X=90%.9,, $=-24.9,.

In order for a transfer to be involutory — i.e., toobg@eriod 2 — it is necessary that:

(39.4) Q,9=+1.
If one observes that:
(39.5) 9Q9=1, <KVWO>=1, VA>=0

then it follows from (39.4) that:

(39.6) (@ 1)+ 2pqg+e@g-gq)=+1,
or
(39.7) g -1=+1, Qoq=0, qxq = 0.

From the second equation, it follows that either:

(39.8) q=0
or
(39.9) )

In the former case, (39.8) gives, from (39.5):

(39.10) Qo =% 1.
From (39.5), one further has:

(39.11) QG +<qq>=0,
and therefore, due to (39.8), (39.10):

(39.12) q, =0,

So:

(39.13) Q =+1+£7.
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Since the choice of sign fof is inessential, it suffices to take the positive sign
(39.13). The second formula (39.3) then gives:

(39.14) 14r=1-9)1-€r)(1-£7),
or
(39.15) r=-1r-29.

This is thereflection(symmetry)through the point7q.
In the second case (39.9), one will have:

(39.16) Q=q+&£(@@+q), qxq=0.

The second formula (39.3) now gives:

(39.17) L= 20,9 *qr'a, <qg>=1,
or

(39.18) rq+qr +2q,=0.

The points of the plane:

(39.19) 41>-G, =0

go to themselves under the map (39.18). Therefore, (39. Bf)sneeeflection through
the plang(39.19). For the reflection in a plané, one has the following formulas:

For lines:

(39.20) g=-ugfd=+ugd,,
For points:

(39.21) X =-UX U =-gxy,
For planes:

(39.22) B =+ UB U =- UBY.

We still need to determine the meaning Qf in the general case of the transfer
(39.3). In order to do that, if we compose the reflectiwough the poing:

(39.23) g =-Pg.B, P =1-g

with the rotation around the axis throughyp:

(39.24) a :a+‘9(p><a):a+£pa;a]:j
through the angle 2
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(39.25) gD ={cosw— (a +ep xa)sina} g {cos w+ (a +&p x a) sina}

then we get (39.3), with:
(39.26) 9 =(1—-¢&p){cosw+ (a+ep xa)sina
and

(39.27) g, =cosw, T, =<pa> Sinw

g=asSinw, q=-pcow.
8 40. Simple manifolds of axis-crosses

In the projective space; with homogeneous coordinatgs q; (j = 0, 1, 2, 3), we
have the two “absolute quadrics”:

(40.1) QA =G+F+E+ g =0
and B
(40.2) 0V A>=q0,+qq+ g+ ¢g=0.

The manifold Mg of all axis-crosses (right-angled crosseQ) in P; satisfies the

homogeneous equation (40.2).
We next consider the manifolds; of all Q that arise fromQ = 1 by rotations

around the origi®. We find the lineaMs; for them on the quadric (40.2):
(40.3) 0,=0=0,=0G,=0.

For the axis-crosses that arise fraih = 1 by all translations, that yields the linear
manifold M} on (40.2):

(40.4) qo Sh=C=0s= 0.

Finally, for the axis-crosses that are found by mseaf all reflections ofQ = 1 through
all planes, we find the linear manifod; on (40.2):

(40.5) Q=¢=0=0¢ =0.

Thus, M; and M; have the characteristic property that any twohefrtaxis-crosses go

to each other under a rotation. The number 3eiditghest dimension number for a linear
manifold on the quadric (40.2).

Yy Cf., perhaps, E. BERTINIEinfihrung in die projektive Geometrie mehrdimensionale Raiime
Vienna, 1924, chap. VI, E. STUDY, “Grundlagen und Ziele defyisehen Kinematik,” Sitzungsber.
Berlin. Math. Ges12 (1913), 36-60, and the next book to appear in this series BJIJRAU.
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We now give two examples of quadratic manifolds of-akisses, namely, first, the
manifold Ms of axis-crosses that are coupled with a ljp@and cut a fixed ling. From 8

29, we have:

(40.6) g =0g9,
and in more detail:
(40.7) g=9g 9, T =990+Q¢Q+0g0.

From (28.10), the condition for the intersectiongoaindh reads:

(40.8) —2{<hg>+<hg>}=hg +gh+ hg+gh=0.

(40.8), (40.7) yield the vanishing of the real part (i.e.lasqzart) of:

(40.9) {(hQg +hAQF+h g} Q+h gD,
If we take, in particular:
(40.10) g=h=e, G=h=0

then the vanishing of the real part of:

(40.11) H(QgQA+Qg Q)

would follow from that. From that, it follows, due (40.5), that the equation of oMis
is:

(40.12) G%h- 4G~ &G+ GG = 0.

We further take théV; of all axis-crosse®2? whose origirO lies in the planes = 0.
If we apply the motion (37.2) to the origit’ = 1 then we find:

(40.13) X=1+er=09=1+2{Gq-0d+@x 9}
This then gives the equation for oMr; as:
(40.14) %%~ %%+ 44~ ¢q=0.

Finally, we consider the manifold, of all axis-crosseqQ that result from a fixed
Q' by the inversions in all lingg:

(40.15) Q=9 g.
One then has:
(40.16) g=9'9,

and therefore:
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(40.17) g+§=9090+99 =2<09>=0.

[

Our M, thus satisfies the condition:
(40.18) VA'>=0.
From this, according to STEPHANOS (cf. § 19), it follavat:

To any three position®,, Q,, Q, of a rigid body, there is, in general, precisely
one fourth oneQ’ that goes to thed ; by inversions through lines. The single exception
arises when thed ; are permuted by rotations around parallel axes.

One can also investigate the geometry of axis-crobs¢site based in the gro@s
of projective transformation that take the quadric (4@aself. ")

) On the projective geometry of the quadric (40.2) drelassociated “triality principle” (viz., the
relationship between its points and its two families “génerators” M3), cf., also E. A. WEISS,
Punktreihengeometrjé_eipzig and Berlin, 1939, pp. 154.



CHAPTER FIVE

COMPULSIVE SPATIAL MOTION PROCESSES

8 41. The canonical axis-cross

We now consider a one-parameter (= compulsive) mationess irR; whose effect
on linesg is represented by means of an equation:

(41.1) a(t) = QM) Q9 =1,
and its effect on point&¥ by means of (37.2):
(41.2) X(t)= QM)X'Q,(1).

In these equations, the real variabfeeans “time.”
By extending equations (9.3) to “dual’ ones, wdaob the following differential
equations Q = Q,):
dQ,= * +Qp * 7
dglz _902 * +5~_]2Q %,

(41.3)
dQ,= * -Q0 * +Q4
dQ,= * * -Q,r %
with
(41.4) p=p+tec, o=0+&0, T =T+ €T .

Separating the real and dual parts in (41.3) theasgthe spherical part of our spatial
motion process in the form of formulas (9.3), alevith:

dﬁoz * +Q1,0 * * * +le * *
T e

dQ,= * -Qo0 * +QJf * -Qo * +97

d553: * * _sz * * * _521- *

One then comes to the “dualization” of the prodabte (9.5). It gives, for example:

(41.6) 09,+99,=p,, 929+99=F.
Since:
(41.7) P, P> =, [p.p.pal=+1
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the linesp; define a right-angled axis-cross that we cafionicalrelative to the moving

system; likewise, thq_:'j define the canonical axis-cross in the rest systenangAWith
the differential equations (9.11), one then has:

dp,= * +p,A * 4P K
(41.8) dp,= —p A * 4pfl pA * +Pu

dﬁ3: S Y 7 A * —EZ,U *
and

dj/ = %+l A
(41.9) dp, = —p A" * Hp T -pA * AU,

dp, = * -p,g * oo

The following connection exists in them:

og=A=1, g=A=21,
(41.10) 2p= - u, 2p=H-H,
2r = + U, 2T = + 1.
Corresponding to (10.4), we have:
(41.112) dg =2(gxp,)p,
and therefore:
(41.12) dg =0 for g=p;.

This means:p, is the axis of the instantaneous screw in the negystem. From the
fact that:
(41.13) $;p,>=0, <p, dp,>=0,

it follows: p, is the common perpendicular to two neighboringewcexesp,, p, +
dp,. This explains the meaning of the canonical aress.

Now, let; be the origin of the canonical axis-cross:
(41.14) FXpi= .

If we differentiate (41.14) foy = 1, 2, 3 then it follows, with the use of thefeiential
equations:

(41.15) (d3xp,) +(3xp)A = +pA +DA,

(d3xp3) = (33X P ) = =P H = U,
and thus, from (41.14), that:
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(41.16) d3 X p1=+p,A, ds x ps=—p,[.
From this, it follows that:
(41.17) d; = +pd+pA,

and correspondingly in the rest system:
(41.18) dy' = +pi 7 +pA".

The point; is the intersection point of the screw axg with the common
perpendicularp, to p,, p, + dp,, and for that reason it is called tbenterof the axis
surface f,) on p,. The meanings op,o, r are obtained with no further assumptions

by dualizing the meanings of g, rin § 9.
We now consider some simple special cases.

If we have:
(41.19) A=A1'=0
for all t then we have:
(41.20) dpy = dp, =0,

and therefore the axis surfacgs), (p;) are cylinders. One then also calls the process

of motioncylindrical. For:
(41.21) p =0, o=n

the two axis surfacegp,), (p;) will be developable onto each other, and the motion

process will be generated by the rolling without slippinggf on (p;) .

If (41.19) and (41.21) are true simultaneously then we arbndeaith a planar
motion processhat arises from the rolling without slipping of the cyéndp,) on the

cylinder (p3), The relations:
(41.22) p=0=1=0

characterize the translation processes whose spheoimponent is the identity.

8§ 42. The axis surface

From the formula:
(42.1) dp,

p,A, A =A+ek,

it follows that A is the angle andl is the shortest distance between neighboring screw
axesp,, p, +dp,. Corresponding statements are true for the axis su(fggen the rest

system.
From:
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(42.2) A=A A=

we see that the axis surface in the have the dawvist (= division parameter) in
corresponding axes:

(42.3)

!

A

7 -

IR
N

The axis surfaces contact each other at each time fpalohg the common screw axis
p,, and have their common center there. One speaks &gtineling” of the moving

surface on the rest surface. From (41.17), (41.18):
(42.3) - ==2p

measures the shift alorg. Since:
(42.5) <P, p;>=0, <p,;, p;+dp,>=0,

p, is the common perpendicular ¢f, p,+dp,. The relationship between the ruled
surfaces(p,), (p;) is therefore reciprocal.

We then seek theurvature axisq of (p,) that has same angle and distance from
three “neighboring” generators. This follows byans of the basic equations:

<qp,>=¢, <ﬂ£2>=O,

(42.6)
<P >A-<aps> 4 =0

From this, one has:
_ Pt pA

/AZ+H2’

(42.7) q
or, in more detail:

puftp PHAPA+P LA N +up

(42.8) = q=
Ve D At

Furthermore, one has:

(42.9) c=——2 c=—H c A _AM+up

Therefore,q is the common perpendicular g, p, +dp,. If we set:
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(42.10) C =cos¢ =cosp —£@sing

then we have:

(42.11) cogp=—H_ p=MATHL T
/12 + 12 AC+us A A

Corresponding formulas are true for the rest axis seifp,) .

8§ 43. Velocity

Differentiation of formula (41.2), while observing theslsaequations, gives:

(43.1) dx = 9, ¥'0.p+2%¥'Q,.p = Q,9%p+X9.9.0,,
and from that, according to (9.5):

(43.2) dx :_E1£B+£Els_£

In more detail:

(43.3) d(1 +&a) == (pr + ep)(L +&)(p+£p) + (L +&)(p1—£€p,)(0— D),
and therefore:

(43.4) dr = 2{(x X p1) = P} o 21P.

If one introduces the originof the axis cross, which fulfills the equation:

(43-4) 3Xp1= 51’
then one gets:
(43.6) dr = 2{(xr —3) X pi}o— 21P0.
If we set:
(43.7) PR P-R
dt dt
then we get: B
(43.8) vb=¢ =2{(-3) *ptR-:R

for the vectom of the absolute velocity, or when we introdwegonical coordinates:

(43.9) r =3 +Xap1 + Xop2 + Xaps,
this becomes:
(43.10) 30 =31 = (Xap2 —XPps) R—p1R.

From (41.17), one has:
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(43.11) 5=pM+p.lL; M =

2|
—
1]

S| >

If one differentiates the canonical point coordinates:

(43.12) X =<t -3 p>
then one gets thguiding conditions:
% =-M+xL,
(43.13) X, ==x L+ xM,
% =—L-xM,

which confirm that a point (43.9) is fixed in the moving eyst Correspondingly, for:

(43.14) EE3 ot %yt X
one gets theest conditions:
X =-M+X%L
(43.15) X, ==X L+ XM,
X =-L- %M

They are true for a point at rest.
For aplanewith the canonical equation:

(43.16) Up + Up X1 + Up X2 + Uz X3 = 0,

one finds by differentiating (43.16), and by means of (43.18)gtiding conditions:

U, =+u M+ u,L,
u =+u,L,
(43.17) 1 2 ,
u, =-ulL+uM,
u, =-u,M’,
and the rest conditions:
Up = +U,M + UL,
U =+u L,
(43.18) 1 2
u, =-u L+ UM,
Uy = —u, M.

For aline with the coordinateg, g; relative to the canonical axis-cross, the guiding
conditions read:
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g=9L 0g=-glL+gM, g=-gM,
9, =+g,L+7,L

62:_91[+ 93M'_§1L+_93M’
63:—g2M'—§2M',

(43.19)

and the rest conditions:

9=0L ¢=-gL+4M G=-4¢M
g, =+g,L+T,L,

g, =-gL+gM-GL+GM,
g;é:_glzl\_/l_@;M-

(43.20)

8 44. Normal thread

Should the line:
(44.1) n=n+én

be perpendicular to the path tangent tten, from (43.10), one would have:
(44.2) Npo —MNXp+nxp=0.

On the other hand, sinae runs through, one has:

(44.3) rXn=n, X3 = XNz =N,

It then follows that all of the path normals at astantt satisfy the linear equation:

(44.4) npo+np =0
or, more generally:
(44.5) fp>p +{<np,>+<np>}p=0.

One calls the structure that is represented by a legaation in the line coordinates
n, a “linear complex” or a “thread” (§ 34); (44.4) or (44.5)rthepresents the desired

normal thread. Fop = 0, the thread degenerates into the set of linesterfsection of
the screw axig; .
One finds the following canonical line coordinates farghth tangents:



V. Compulsive spatial motion processes 71

g, =P, 51:_(X§+X§)p’
(44.6) 9, = +X0, 0, = +X%0+ X X0,
0; = ~%P, 0; = +X%,0+ X X0.

They define the quadratic complex:

(44.7) (0,0, + g, G)p+(F+ ¢)p =0.

8 45. Twist and center of the path ruled surface

Let g(t) be a ruled surface. The common perpendichlaof two neighboring
generators is then:

b:Ldg, 0,2 :<dg’dg>’
(45.1) _ o
b= (gxdg) +(gx dg) _a,
a a

The centen on g is defined by the point of intersection gfand b :

(45.2) pxg=g, bnxbh=ph.

From the latter relation, it follows that:

(45.3) b, b, dg] = <b, dg>,
or, due to (45.1):

[g,dg, dg]
45.4 = ===
(45.4) 9 g> <dg.dg >

If we apply these formulas to the ruled surfadest tare described by the lines in
moving system then, singe = 0, one has:

dg=2(gxp,)p,

45.5
(49 dg =2(gxp, )0+ 2@%p,)D.

The anglea between two neighboring generators will then coraenf
(45.6) o = <dg, dg> = 4(g; + ¢3)p’,

and for its shortest distan@e, one has:
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(45.7) ad =<dg, dg>=4(g,0,+ 9,;%:)0° + 4(g+ &)op .
It then follows that théwist a : & of our ruled surface is:

— 9,0+ %G +

a
(45.8) a
a g; +0;

P

P

Thus, for intersecting linesx = 0), in particular, one has:
(45.9) (9,0, + G WP+( G+ E)p =0.

Due to (45.5), it then follows from (45.4) that:

0,0;~ %0,

(45.10) 9 g>= 95 " g§ 0,
and thus, due to (45.2):
n=~Ag+(gxg),
(45'11) A= gzgs B ga@z 9.
9; +9;

For the common perpendicular of neighboring geoesaof a path ruled surface, it
follows from (45.1), (45.5) that:

(45.12) = (alg—pl)%p, B =y xbh.

8 46. Intersection of neighboring planes and lines

Let:
(46.1) Up +UpXp +UaX2 +Usxz3 =0

be a plane in the moving system at the timé&n order to ascertain its intersection with its

neighboring position at timé + dt, we differentiate (46.1), when we apply the rest
conditions (43.15) to thg and the guiding conditions (43.17) to the

(46.2) WP+ (U~ W) 0 = 0.
The coordinates of the intersection limeof (46.1), (36.2) are, up to a common factor:

— (124112 -
n=-(U;+uz)p r,=+uup,

—_ 2—= —_ —
n=-up, r, =Ud0—uup,

=+uup,

(46.3) _
=-uup- uup.

rs
T
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We further seek the intersection point of neighboringdi We have:

(46.4) g =rxg, dg =r xdg,
and from (45.5):
dg=2(gxp,)p,

46.5
(46:9) dg =2(gxp, )0+ 2@%p,)D.

It follows from (46.4), (46.5) that:

(46-6) J2X2 + g3X3 = 0, 93,(_)'*'@3,0_ 0, XpP = 0, 92,5'*'@2,0'*' O X0 = 0,

and from this, it follows that:
(46.7) 0.0.,0 = (0; + 93)P,

in agreement with (45.9).
8§ 47. Acceleration

For the sake brevity, if we once more employ then6ecacal time”:

(47.1) s:jp, ds=p

then one has that:
(47.2) R=1

in (43.7) and thus, in (43.8), the absolute velocity becomes

(47.3) i =2{( -3 *xptR- 2R,
or, in more detail: B
(47.4) 1t =—-p1R+ X3 p2 — Xo p3.

By differentiating with respect t@, it then follows, when one applies the guiding
conditions (43.13) ta and equations (10.15) to that theaccelerationis:

(@75 3§ =R+ xUp,~(T+ RL2x)p, + (0L - 29) bs.

In this, from (41.10), (47.1), one sets:

(47.6) M'-=M =2,
For the vector product:
(47.7) = 2iX¥,

we find that:
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W, = =% (LR+ D=2+ %)+ xx% L
(47.8) w, = X LR+ x;R—Z ){F& XxL
w,=R(LR* D+2% R+ xR XL

For theinflection pointsof a path, one has = 0, or:

(47.9) g+ fr =0.
From (47.4), (47.5), one then has:

s o —xL =R+ R
(47.10) * 2% +xf = LR+ L
xL-xf -2x =0.

ForL # 0, this gives the location of the inflection paifats:
_ :2_1L2{4_.R+ fIl(LR+ D+4 R+ £ R f_l}l,

L ReT) e fBe £
(47.12) - 2_Z{(Lm DL+ fRe FR,

For R # 0, this is a cubic lin€; that goes through the point at infinity pf (f = o),

where it has the line at infinity of the plare= 0 for its tangent and the plane at infinity
for its osculating plane. It lies on the parabaoitinderws = 0. For:

(47.12) L0, R=0, R#0,

Cs degenerates into a parabola, and for:

(47.13) L=0, R#0,
into a line. Finally, for:
(47.14) L=0, R=0, R=0, L#0,

we obtain the locus of the inflection points of theular cylinder:
(47.15) 20¢ +x2)+ %L = 0.
For the inverse motion process, we have:

(47.16) p=-p p°=-p, A=+ A0=+7.
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For the locus through which three neighboring lines gomust, for that reason, apply
the map:
0

(47.17) X ==X, X ==X, X =+ X3
toCs.

8 48. Three neighboring positions of lines

If we consider three “neighboring” positions of a ligethat is defined in the moving

system then they generally uniquely determine a quadric hdmtthose lines for its
generators. In order to show this, one can employolleeving equation for the quadric
through three lineg,, g,, g, :

[§1§2§3] +{<§392>_<g3§2>{9293i} <§1ZC>
(48.1) H<0,09;>-<0,0:>19.0,4} <gxr>
+{<§292>_<92§1>+[9192ﬂ} <§325> =0.

For the center of this quadric, one gets the equation:
(48.2) {<9:0,>-<g;0,>Hg,0:0} gFr<gxr>(gaxgs) +..=0,

in which the dots mean cyclic permutations of 1, 2, 3.



CHAPTER SIX

SURFACE-CONSTRAINED SPATIAL MOTION PROCESSES

8 49. Line congruences

Whereas the compulsive motion processes have trdaisalighly, in particular, by
engineers, ones with several parameters have still dmesidered only slightly, despite
the fact that they are especially attractive for gi@meter. Here, we would like to
restrict ourselves to two-parameter ones (= surfaostned) and first introduce some
prefatory facts from the differential geometry oflicongruences.

Let {r: t1, t2, t3} be an axis-cross iR; that depends upon two real variables with

the originy and the perpendicular unit vectey®n the axes. We set:

dy, =v,0,-t0, dv,=rg -—tg, dkk~tg ;rg,

(49.1) _ _ _
dr=v0,+v,0,+t 0,

In this, theomean Pfaffian forms in the, v. We will assume that the;, o are linearly
independent:

(49.2) o] =Q#0.

The integrability conditions follow from (49.1) by exw@ridifferentiation:

dO’l:—[0'20'3], dﬁlz—[ﬁpg—[aﬁL
(49-3) d0'2 :_[0301]’ d5’2:—[5'30'1 —[ Ug]r
d0'3:—[0'10'2], d5'3:—[5'10'3—[0'p_']2.

We consider the congruenkeof the axeg; with:

(49.4) r,= 3t £y, T, Tr X3,
One will then have:

(49.5) de, =v0,-v,0,+t0,—tg,.

For a pointy ont ,, one has:

(49.6) p=r+hrs,

and from this:

(49.7) dy = v (0, +ho,) +v,(0,~ho) +r{T ,+ dh.

A focal pointy of K on x, will then be defined by the following requirement:

(49.8) o, +ho =0, 0, —ho=0.
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By eliminatingh, we find the differential equation for the developabldamas inK from
this:
(49.9) 0,0,+0,0,=0,

while alternating multiplication of (49.8) yields thelléaving equation for the focal
points:
(49.10) (0.0 Hl 0] { o4} hi od, i =0.

8 50. Differential invariants of line congruences

For the centey of the focal points on ,, it follows from (49.10) that:

o 1[3.0]+15.0]

1 = )
(50-) 3=rtioT 2 [o0]

We introducecanonical axedy two requirements:
First, we takg to be the origin; from (50.1), that gives:

(50.2) [G,0]+T,0) =0.

Second, the axas, t, shall separate the null directions of (49.9) harically. For the
moment, if we set:

(50.3) 0, =Aog +Bo , 0,=Co+Do
then (49.9) gives:
(50.4) Ac? +(B+C)oo,+ Do; = 0.

Our second requirement thus leads to the condition:

(50.5) B+C=0,
or:
(50.6) [G.0]-[7,0] =0.

From (50.2), (50.6), one then has:

(50.7) [50] =0, [5,0)] =0,
or:
(508) 5’1 = k]_Oj_ , 0_'2 = k20'2 .

For the half-distancEl of the focal point, it now follows from (49.10)ah

(50.9) H?=-k ko .
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If we introduce canonical coordinatgdor a pointp by the requirement:

(50.10) P=3+Xep1+X P2+ X3p3

then it follows from (49.7) that the equation of feeal plane which generally contacts
thefocal surfacehat is described by the focal points at the focal poisits

(50.11) kX2 + kX = 0.
For the surface element of the spherical imagjeof K, we have, from (49.1):

(50.12) Q =[a 7],

and by “dualization” one gets another invariant surfacexete from this:

(50.13) Q= [0.0,]Ho0o],
and in the canonical case:
(50.14) Q = (k+k)Q.

For our irrational invariants of motida, ko of K, we thus have, in general:

(50.15) Ky + ko= 9 = [0,0,] t{0,0]
Q [0,07]

and

_ _ _ _ 2
(50.16) ko =— H2 = [0 _po _ (0.0 _1{[0101 *{0201} |

[0,0,] [o0,] 4 [o0]
Theks, k» then satisfy the quadratic equation:
(50.17) K —% k-H?=0.
It finally follows that:

—\2

(50.18) ke —ko)? = 4H2 + [gj .

From (49.3), (50.12), (50.13), we emphasize thieviohg relations:

(50.19) dx=-Q, do,=-0Q.
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8§ 51. Displacement in congruences

The concept of “displacement” (8 22) may now be triampd from surfaces to
congruences with no further assumptions. We considengruenceK = (x,) with the

associated axis-cross, (j =1, 2, 3), and set, from (49.1):

(51.1) dr, =x,0,-x0,, T =gt e, g, =0 +¢&0;.

We choose a ruled surfaBsfromK and call the lineg; alongR parallel when one has:
(51.2) g, =0, x=0, g,=0

alongR, and then speak of tlidsplacemenof v, alongR. In this, g, = 0 means that
the path of the intersection points ef and r, cuts the generators, of R at right
angles. On the other hangy = 0 means that the vectarson the spherical image &
run parallel to the unit spheres). Displacement inK is defined by these two
requirements. By dualization, one gets from § 22 thtteiflinesx, onR are parallel

then so are the lines:
(51.3) t] = r,C08p —x,Sing, ¢ = fixed.

Moreover, from (50.19), we have:
(51.4) jGQ == oy, ijz =-¢a,.
dB dB

From the last formulas, one infers that: 3
(51.5) Q=0

characterizes theormal congruencesin general, the last integral in (51.4) measures the
“‘opening” of a transverse perpendicular line to the generatidR during a circuit.

8 52. The cylindroid of the common perpendiculars

The common perpendiculay of a line r, of the congruence and a neighboring line
r,+dzx, will be given by:

(52.1) qg=—2 p=p+ep, ,92:<d£3,d£3>.

It explicitly follows from this that:



80 Kinematics and quaternions

xd T, xdr,)+ x dt ol
(522) q — t3 v 3 , a - (tB t3) (t3 tS) _Bq .
P P P

For a point on gq, one immediately has:

(52.3) q =rXxq,
or

PExdR) +(5x 0 ~Argx ) | Xk

(52.4) P P

:£{<t, de,>—-<rtr,>de].

The scalar product witties gives:

(52.5) k3, dt;, de3] = — < v3> <dvs, drs>,
or, in canonical coordinates, sinecg = 0:

(52.6) ks, t,T, -0, 110 — 1201 = —x,(0 + 7).

From this, it follows that:

_00,-0,0, _ 0,0,
(52.7) = 710 = (ko —ky) Z+oE
If we set:
(52.8) 0i = p COSQ, oG =psing
then we will get:
— kz _ k1 ;
(52.9) X3 = > sin 2¢.

From (52.2), (52.9), it follows that the common gendicular for variablep in the
overbarred surface is, in canonical coordinates:

(52.10) (O +X) % = (ke —ke) X1 %o .
This cylindroid lies between the planes:
(52.11) 2 k| = |ka —kal,

and one calls their intersection points with (x: = x; = 0) itsboundary points
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8 53. Isotropic congruences

We have already considered the normal congruences tavghiter ago. As a second
family of special congruences, we look at the “isotropames, which can be
characterized by the fact that their focal planes (50atd)isotropic, so they satisfy the
equation:

(53.1) X +x =0,

from which, due to (50.11), it follows that:

(53.2) ko =k .

These congruences will thus also be characterized bfatheéhat their boundary points

(8 52) coincide, so the cylindroid of the common perperaiswlegenerates into a pencil
of lines. From (52.7), one then has:

(53.3) 0,0,-0,0, =0,
and thus, from (49.1):
(53.4) <z, d3> =0,

if 3 means the center of the focal points. Thereforejsibtropic congruences will also be
characterized by the fact that the surfaggeaid the spherical images) “correspond to
the element (53.4) by orthogonality.” From (53.4), twoates §), (v') with:

(53.5) p=3+hes, by =3-hesg, h=fixed
have the arc length elements:

(53.6) <y, dy> = <dy’, dy'> = <dj, d3> + <drs, dvs> h?,

and are thus related to each other in a distance-presevang our case. From (53.1),
the focal surfaces are isotropic — i.e., enveloping opatr planes. If we write the
eqguation of two such planes in the form:

(1-$)é, +i(l+ ), - 25, = +2iw(9),

(53.7) 5 _ )
(1_t )g(l—l(l+t )52_ 253:_2k ( )1

in whichs=u +iv, t =u —iv are complex conjugates angqs), k(t) are complex

conjugate analytic functions, then it follows that Hesociated isotropic congruence of

the real cut linegt,) has the parametric representation:
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_stt wWl- )+ k(1- £)

n

C1est’ ! (1+ sty
(53.8) co STt _wl+t)-Ki+ S)
. 2 j(@+st)’ 2 i(L+ st)?
[ =1zst o 2(wtt k9

C1+st’ P (1+ st

8 54. Further formulas for line congruences

Now, let the general line congrueri€de given by the formulas:

(54.1) t =t(u, v), T=t(uv), <cv>=1,

< t>=0.

We would like to calculate its invariants of motisam this. For the base poiptof the

perpendicular from the origi@ to the linet , we have:

(54.2) p=tXt,
so it follows from (54.2) that:

(54.3) $t>=0, pxr=T.

For the pointy of * one thus has:

(54.4) n=p+he,

and from this:

(54.5) dy =dp + hde +vdh

For a focal point, one then has:

(54.6) dp + hde = A,

or

(54.7) fex t)+ (@xdr)+hde= A

Taking the scalar product with gives:
(54.8) E, dt, dtv ] = h <dt, de>.

We introduce the following abbreviations:
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<tr,>=E, <t ,>=P,

— v — — 2 _
<tr,>=F, <t,5,>=Q, [ttr ]=W, EG- P = W,
<ty,>=F, <tr,>=R,

<tr,>=G, <ryr,>=S

(54.9)

It then follows from (54.7) by scalar multiplication wit,, v, that:

(54.10) [tT, v ]du+cr, v] duH E duw Fagv I¥0,
' [t v ]Jdu+[rr,v] dut( F du+ Gdv IO,
or after multiplying byw:

(FP-ER du+( FQ- E$ dv WV Edu F)iw0,
(GP- FR du+(GQ- F$ d¥ W Fdu Giwo0,

(54.10)
and taking the alternating product of both formgass:

(54.11) PS—-QR +WQ-Rh+Wh* =0

for the focal points. The arc length elemghin the spherical image is:
(54.12) 0 =E dUf + 2F du dv+ G dV/,

and from this it follows that, dually:

(54.13) oo =P d + (Q + R) du dv+ S d.

The second form will be made to vanish for the tpable surfaces iK, and it follows
from (54.11) that the center of the focal points is

1R-Q
54.14 ho = =——=.
( ) VY

For canonical axes, one has, from (54.11), (54.13):
(54.15) Qo =0, Ry = 0.

The common perpendiculay of r, x+ dx is:

(54.16) q= rxde

P

or, in more detail:
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txde _ _ (rtxdv)+(xxdr) p
(54.17) q= . g = exdorlexdy _po
P P P
For the intersection point:
(54.18) r=p+he
of t with q,we have:
(54.19) q =rXxq.

By substituting (54.17), (54.18) in (54.19), itlés that:

(54.20) h= lndedel
<dt,dc >
Multiplication by:
(54.21) W=[rrun
gives, from (54.9):
Edu+ Fdv Pdur Q
_ |Fdu+Gdv Rduw Sj:

54.22 Wh= ,
( ) Edu +2Fdudw Gdt

or

(54.23) Wh= (Er-FP)dU +{( ES- GP+ ER P dudf{ FS &Q 2d.

EdU +2F dudw Gd¥

We have the invariants:

», _(Q+R?-4PS
EG-F?

_GP+ES- RQ+ B

Q
Q EG-F?

(54.24) H
andk;, ko are roots of equation (50.17):

(54.25) kz—%k—HZ:O.

From this, one has:

(54.26) Ky —ko)? = 4H? + [gj .

For the surface elemef¥ of the spherical image, one has:

(54.27) Q =[rryv] [dy dV,

and from this, by dualization, and due to the that [t t, t,] = 0, one gets:
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(54.28) Q ={[t T r]+[ve,T]}[du dv.
Taking the product of both formulas and dividing®3yields:

=GP-F(Q+R) +ES

folle]

(54.29)

The condition (51.5) for normal congruences then givesvireshing of the bilinear
invariants of the quadratic forms (54.12), (54.13):

(54.30) GP-F(Q+R) +ES=0.

Since this means that the null lines of these formsl4.(54.13) are harmonically
separated, we see: The normal congruences are thustehaesl by saying that their
focal planes intersect at right angles.

The isotropic congruences in 8 53 were characterized bpso focal planes, so the
following equations must be compatible with them:

Eduw+2F dudw Gd¥=0,

54.31
( ) Pduw+(Q+ R dudw Sdw~=0.

A thorough presentation of the differential geometfylioe congruences in the
German language will appear soon: S. P. FINIKOWeorie der KonguenzemBerlin,
1959 (translated from the Russial).

8 55. Differential equations for surface-constrained motion pcesses

Let:
(55.1) tuV) =QUV (L YUy, 99 =1

be a surface-constrained motion process that adtiseolinesr . We extendQ(u,Vv) to a
polar tetrahedron, for which we s€ = 9, and assume thadQ ,, dQ,, dQ, are
linearly dependent. One then has differential @qoa of the form:

dQ,= * +Q@a, +Q0a, * ,
dQ, = -Qa, * +0Q,8, —Q L,
dQ, = -Q.a, -Qp; * +Q 5,
dQ, * +Q.6, —Q.,6, *

(55.2)

and

1) Cf., also: R. SAUERProjektive Liniengeometrje Berlin and Leipzig, 1937; V. HLAVATY,
Differentielle LiniengeometrjeGronigen, 1945.
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dﬁo = * +Q15'1 +Q25'2 * * +55ﬂ1 +55£72 *
dle _Qoﬁl * +Qzﬁ3 _Qagz _le * +9 283_Q g’z

(55.3) = T o TH L ’
di_)z: -Q,0, —Q,6, * +Q L, _ng_gpa _* +Q S,
dQ3 = * +Q1,82 _Qzﬁl * * +Q1ﬂ2 -Q 281 *

with

(55.4) <9j gk >:q_k1 [90919293]:-‘_ 1.

In this, a, B, @, B are real Pfaffian forms in, v. As in § 9, we construct the unit
vectors:

| 9 9, By 3, 9, 4, 4,
Q| 1 p by by Q| 1 -p, -1, b,
(55.5) Q-p 1 -p, b, Q| p 1P P,
{)2 P, P; 1 w2 Qz p’2 ]J'3 1 _p’1
Dal-pa by by 1 Llws e bl

and their dual components; for example:
(55.6) B = 9,0,+9,9,.

We then have the following differential equations thep, p':

dp,= * +p, 0, —p0o, dpy= % +p,0, —p0,
(55.7) dp,= -po; * +pgo, dp, = -po; * +po,
dp, = +po, —po, * , dp; = +p0, —p0; *

and the dual components to them; e.g.:

(55-8) dﬁl = p20_-3_p30_-2+5203_5p5-
Thus, one has:

o=0F-a, o =0+a a,=0,
(55.9) S

o, =p-a, o =4+a, a=0,
and

<p.p >=90,, <p. p. >=9,
(55.10) PRl K szl

[popopd =+L  [p'p'p'] =+

Let; be the intersection point of the three pair-wisgppndicular axesg ;, so:

(55.11) Py =3%p,
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and thus:
Z =<pyp,>==<p,p;>,

(55.12) Z,=<p, Py >=—<pyp,;> 3=2p,t Zp,t B,
Z,=<p,p,>==<p,p,>,

One then obtains the following relations by differemgt(55.12):

(55.13) d3 = p0,+p0,+p T,

§ 56. Integrability conditions

It follows by exterior differentiation of (55.2) that:

da,=[Ba), da,=[ap], 0=+pBalHapl

(56.1)
dB =[BB.),  dB,=[BB], dB,=Hagl B8

corresponding to (55.3):

da, =[Ba,l + Ba],

da, =[a,8] +{a,B],
0=[Ba.l+[5a]+a B} H apl

dB, =B8]+ BB,

dB, =[B.L] + BB,

st = _[5'10'2] _[aﬁi —[ Bﬁl —[ ﬁﬁ]z

(56.2)

From (55.7), we obtain the equivalent conditions:

dO’l:—[0'20'3], dO_'l:—[O_'ZO'; —[Uﬁ]s’
(56-3) d0'2:—[0'30'1], d5’2:—[0_'30'] —[Ug]r
do,=-[o0o,|, do,=-[co]opg)

Corresponding formulas are true for te In particular, it follows from (55.9), (56.3)
that:
O3 = 0J3’ 0;= 5Js1
(56.4) [0,0,] =[0,0],
[0,0,] Ho0o] = a0) 4 o9,

If we introduce the surface elements:
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[aa,)=®,  [aa]Hag)l =@
[BB1=Y, [BBIHBAL=Y
[00]=Q [00)Hog) =Q
[0,0]] =Q, [T} HoT}=Q

(56.5)

then, from (56.3), (56.4), we get:

~dg, =-do,=-dB,=Q=0Q,

(56.6) T 8T T
~do,=-do,=-dB,=0=0.

Moreover, it follows from (56.1), (56.2), and (56.6) that:

Q=0p+Y,
(56.7) -

Q=0p+Y,
and from (56.1), (56.5) that:

da. da d d
(56.8) :Fla1+?2a2 :%ﬁl+ q:fz B,
and finally, from (56.3) that:
do, do

(56.9) o3 = cb101+ cbzaz.

The Gaussian curvatures of the quadratic foafis- o, o,° + 0.’ are, from (22.8),
equal to 1, the curvatui& of af +a? is:

Q _ o+w
56.10 Ke=— =
( ) =% s
and that of 8> + 3 is:
Q _ o+
56.11 Kg=— =
( ) Ty v

8 57. Guiding and rest conditions

For the direction of advance vectak of a guided pointy, we obtain, by
differentiating (41.2), by means of (55.2), andresponding to (43.1):

(57.1) %d}f = —(p1671+p2672+p1672+p ﬁz) +{r % (p101 + p22)},

or, due to (55.11):
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(57.2) 20r =~ (p,a, +p0,) + {(x —3)% (101 + p2c2)}-

If we introduce the canonical coordinat¢$or ¢ by way of:

(57.3) I =3 +Xap1 + Xop2 + Xap3
then we will get:

(57-4) %d? = _(_5_71 - Xzaz)p1+ (_5'2'*' X30'1)p 2+(XQ’ 2 Xg )p .
(57.3), (57.4) yield thguiding conditions:

dx = -0, * +X0; - X0,
(57.5) dx, = =0, —X0, * +Xg,
dx,= =0; + X0, = X0, *

and correspondingly for the point:

(57.6) r=3 ot ps+ Xp,
one gets theest conditions:
d){:_a_-l * +)<20'3_){ﬂ2
(57.7) dx, = -0, -Xo, * +3Xg,
d)é: -0, +)(10'2 _Xpl *

!

Guiding and rest conditions fdines with the canonical coordinates , r; are
produced by dualizing our formulas (26.10), (26.12):

drl = +r20J3 _rﬂz
(57.8) dr,= -ro, * +rg,
dr3: +I’10"2 _r20,1 *

ap= * +ro,-rg, * +Fg,-g,
(57.9) dap,= -ro, * +rg, —fg, * g,

de,: +r10J2 _r20,1 * _H,—sz _r_gll *
and

dy=* +ro, -rg,
(57.10) d,=-ro, * +rgo,

!

dr3: tho, —rgo, *
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= Lo, —rgo, * tro,-rg,
= —no, * tro, ro, * o,
dT3'2+I’10'2 o, * o, g, *

2.8

(57.11)

For theplane:
(57.12) Up + U1 Xg +Up X2 + Uz X3 =0,

one ultimately finds the guiding conditions:

duy, = +Ug; +ug, + ug,
duy= * +uo, —ug,
du, = ~uog; *
du, = +uo, —ug; *

(57.13)

and the rest conditions:

dy, = +Ug, +ug, + ug,
(57.14) du,l: +%OJ3 i

duz: —L£0'3 +U30-1

du;: +L£0-2 _uza-l *

§ 58. Canonical axes

If we rotate our associated tetrahedron:

Q7 =9, 0Q)=9Q,,
Q’=0,cosp -9, sing Q7=9,sip+Q, cog
Q7=90,cosp-9Q, sip-QP ,

Q)= sing+9Q, cogp+Qp

(58.1)

then the Pfaffian forme&, @ change as follows:

a,=a,cosp-a, sing ,
ay=a,sing+a,cosp ,
a’=a,cosp—a, sinp—ap
a’=a,sing+a,cosp+a.p

(58.2)

Likewise, thes, B transform as:
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ﬁlD:ﬁlcow_ﬁz S|r¢ )
B, = Bising + B, cosp
B’ = B,cosp - B, sinp - B,
B, = Bising + B, cogp+ B,

(58.3)

On the other hand, fg&, B:

(58.4) G5 =—dg, By = B,-dg.
Under the assumption that:

(58.5) b ao] 20,

if we set down the relations:

(58.6) a, =Am +Ba, a, =Ca1+Da
then we get:

A” = AcoS ¢ — (B+ C)co® sip+ D sihg |,
D"= Asin®¢ + (B+ C)cosp sip+ D cog ,
B"”=(A- D)cosg sing+ B cos¢ — C sifp —@
C"=(A- D)cosy sing— B sifig+ C cog+§ .

(58.7)

From this, it follows that:

A"+ D"= A+ D,

B"-C"= B- C-27,
A"-D"=(A-D)cos— B+ C)sin®
B"+C"=(A- D)sin2p+ (B+ C)cos®

(58.8)

From (58.8), one can choose (and generally in essertizdyay)g, @ such that:
(58.9) B =C =0.

We then call the axisanonical This uniqueness breaks down only in the case:
(58.10) A-D=0, B+C=0.

We call the values ok , D’ that belong to the canonical axes:

(58.11) A =Ly, D' =L,.

They are the roots of the quadratic equation:

(58.12) L2~ (A+D)L+AD-{4(B+C)}’=0,
or
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(58.13) 2 _laal+ag] | Aaaiapbil ad.bad,”
. [ala2] [0’10'2]2 .

We have the two rational invariants:

[ava,] Haa]

L+L,=A+D=
[a.a.]
(5814 daalag){lad t agl} *
e G e —
From this, one has:
(58.15) L1 -L2)?=(A-D)*+ B +C)>

For the directions of the canonical axes, it fokowom (58.8) that:

(58.16) 2A-D) i ¢ - B+C) (a7 -a;) =0,
or
(58.17) Alaa){aal ag,{ ad. Fa@ a’-¢%=0.

For the center of the boundary points, we have:

_C-B

[aa)) +[a.a]
> ,

[na,]

(58.18) m=3+hps, h :%

if 3 means the axis intersection point.

8 59. Cylindroid of the screw axes

We consider two neighboring position3 and Q + df of our motion process
(55.1). Forthe axig of the infinitely small screw fron to Q + dQ, one then has:

Jw}

(59.1) p ==QdQ, p* =<dQ, dQ>=a +a;,

D+

or, more completely, taking (55.2), (55.5) into @aat:

1= 1= 1
(59-2) p:;QdQ :;Q(Q101+Q20’2) :;(pla’1+p20’2),

_ 1 _ . _ D
(59.3) p :;(p1a1+p2a2+pﬂ1+pg2)_§pa
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(59.4) p=al+a;, PP = ad, +ad,.

If we locate the origin at the intersection pointtié axesp ; then, sincep; = 0, (59.3)
simplifies to:

(59.5) p :i{pl[ﬁl_zalj+pz[ﬁz_zazj}-
P P P

If we make the intersection point pfwith p , be:

(59.6) r=p3xs
then due to (59.2), (59.6), we get:

-1
(59.7) p=—p3x(prar+p2)X3= (Pzﬁ—plﬂ}%-
p p tp

A comparison of (59.5), (59.7) then gives:

(59.8) X3P = a,p=a,P , Xsmp=a,p-a,p,
or, due to (59.4):
_aa,-aa
59.9 =12 21
(59.9) Zra’

If we employ the canonical coordinates of § 58 therget:

a,a
59.10 =(L,-L 172z
( ) X3 = (L2 2)af+a'22
If we now set:
(5911) X1: Xo=1 .42

then we find that the locus of the screw axesasctilindroid with the equation:

(59.12) (% + %) % = (L2 —L2) XXe.
On the other hand, if one sets:

(59.13) Q1. a2 =COS@:sing
then one gets:

(59.14) m:5_Hgnm.

For the “boundary point” ops, we then have:
L,-L,

(59.15) X1=%=0, Xxz3=% >
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The line p, is then the double line of the cylindroid (59.12) of the scesws, and
(59.15) yields a geometric interpretation for the invasan, L,, together with:

= 2 2
(59.16) P _ M.
yo, a;+a;

§ 60. Path congruences of lines

For a two-parameter motion process that acts on jinege have:

de =2t x (plal+pzaz)1

(60.1) _ _ _
dv =2vx(pa, +pa,)+ 2ex I +p T ,).

If we take:

(60.2) aL = dU, ar = dV, C_Yl =L, dU, 6_72 =L, dv

for the place in question then we get:

(60.3) ty = 2t X Py, ty = 2 X o,
and

(60.4) T = 2(vxpy) + 20 xp )Ly,

T, =2(txp,)+ 20 xp, )L,.
From (60.3), (60.4), (54.9), it follows that:
1E=r22+r3, %F:_rer’ %G:rg'”lz’

(60.5) ' p= . _ o~ _
TP=L(ry+r)-ri, Q=-Lyr,7r¢,
iR=-Lrr,—1, IS=L(r3+r))-rj,
If we seek — e.g., theormal lines— in moving bodies — i.e., the linas that fulfill the
condition (54.27) for a normal congruence with their neighbo + dr - then by
substituting (60.5) in the condition (54.27), we find theof@lhg condition:

(60.6) Litlyrs+ 7 =0.

In any event, the normal lines thus define a threashg¢ard complex) with the axjs;. It

degenerates only when:
(60.7) Li+L2=0,
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and indeed for the line in question of the agis
Correspondingly, by substituting the value (60.5) inatpeation:

(60.8) b —ko)® = 4"+ @ -0

one obtains the condition for a rayof a congruence with a neighber+ dr to belong
to an isotropic line congruence.

8 61. Surface elements

Starting from the formula (57.4), by forming the altemm@gtvector product, we
calculate the vectorial surface element:

sldexdi] ={[ @,0] x1 ag} %t ad, x»p,
(61.1) Hlaa) xH aal x,4 agl, xX¥;p,
Hlaa] Hlaal t agl) X;t adl,xX;p

If we set (under the assumption that pr] # 0):

(61.2) C_Yl =Aa; +Bas, 6_72: Cas +Dm

then we get:
1[dxxd

(61.3) —M:_{_CXJ_—DXZ"'X’SXl}pl"'{AX]_"'BX2+X2)Q’>}I32
8 [aa,]

+{AD-BC) + B—-C) X + X’} 2.

The singular points of the path surface thus fattiee condition:

(61.4) Br xde] =0,
or, from (61.3), the equations:

-Cx —Cx + % %=0,
(61.5) +AX + Bx + % %=0,

(AD-BC)+(B- Q x+ £=0.

In them, the last one is a consequence of thetfustwhen one does not haxe=x, = 0
simultaneously. The position of the singular peiof the path surface thus consists at
each moment of two real or conjugate-imaginaryslimethe planegs; = fixed that satisfy
the third equation.

The complex of the normals of the surface elen(i@ht3) yields:
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iy
1

—Cx, = DX, + %%,

+AX +BX+ X% X%,
(AD-BC)+(B- O %+ ¥%,
L =+(AD-BC)x — Cx %~ Ax X
r,==(AD-BC)x — Dx %~ Bx X
T, =AX +(B+C) x %+ DX

Nﬁ
I

wﬁ
I

(61.6)

For canonical axes (8 58), formulas (61.5) simplify to:
(61.7) LiXi +X X3 =0, L2 X = X3 % =0, Lila+ G =0,

and formulas (61.6) simplify to:

L
(61.8) L=4LX ¥ XX, T,=-LLX—LXX,
r,=+LX,+X L

8 62. Special motion processes

Three types of surface-constrained motion processessgecially noteworthy. First,
the ones for which:

(62.1) ® =[aa,) Haa)

vanishes, so in the canonical coordinates of § 58, onéavié:

(62.2) L; +L,=0.

From (60.7), these motion processes are characterizéek ldegeneracy of the thread of
normal lines.

Second, one considers the motion processes for wiectytindroid of screw axes (8
59) degenerates into a pencil of lines. From (59.9), tkasdghe condition:

(62.3) aa,-aa, =0,
or, in canonical coordinates:
(624) Ll - L2 =0.

Finally, the intersection of (62.2), (62.4) gives:
(625) Li=L,=0.

In general, the motion processes with:
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(62.6) a, =a,=0

will be generated in such a way that a rigidly moving amef “rolls” on a surfaceF
that is isometric to it in such a way that for evpayr of valuesy, v the pointy(u, v) of F

coincides with the point'(u, v) that corresponds to it under the isomdtry. F', where
F andF' contact each other at this point, and the line eleswi(, v), dr'(u, v) coincide.

This rolling motion (62.5) has been treated many times by ga) in particular, by L.
BIANCHI: cf., L. BIANCHI, Opera VII, “Problemi di rot@amento,” Roma, 1957.
We now cast our gaze on motion processes thatystitesitcondition:

(62.7) Q =0.
From (56.6), one then has:

(62.8) Q=Q =-dB, = -dg, =-dag, =0,

and due to (58.4) we can, by a suitable choicg parrange that:

(62.9) B, =0.

From (55.9), one therefore also has:

(62.10) B,=0,=0,=0.

Because of (55.13) — in fact, because of:

(62.11) d; = p,0, +p,0,, dpz=p1 & —p201,

the intersection poing of the axes then describes a surfacevith p, as its surface
normals. Correspondingly, describes a surfad€ with p’; as its surface normals:

(62.12) d;' = pi0, +p.0,,  dpy=p 0, —p, 0.
Due to (56.6), one has:
(62.13) Q=[o ] =Q' =[0g,0,],

and that means: The spherical image$, (p;) of the surface&, F' are related to each

other in an area-preserving way.
However, if the surfacegu, v), ¢'(u, v) are given with the curvatures:

(62.14) K#0, K' #0,

and, according to the condition (62.13), their sphericab@sas(u, V), p;(u,Vv)are also
related to each other in an area-preserving way, thennmiion process can be
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constructed. Starting from a poiag, Vo, one covers the sphergs) completely in a
neighborhood of this point with curvésthat begin auo, Vo, and displaces a vectpy
that contacts the sphergs) at up, Vo alongC. One likewise constructs the vectqgfs
Our motion process:

(62.15) 6 by P2, s} — {35 b1, p2, ps}

then takes the axis-crosses thus obtained to each other.
In the special case [cf., (55.9)]:

(62.16) og,—-0, =0, o,-0, =0,
and therefore [(55.6), (55.9)]:
(6217) Ll = 0, L2 = 01

the surface$, F' are related to each other in a length-preserving wayoananotion
process consists of the “rolling” éfonF'.

Corresponding to the cage = 0, one can also generally derive the motion process
E’j(u,v) - p;(u,v) that belongs to any pair of mutually related congruencs,v),
p'5(u,v) with:

(62.18) Q=Q'#20, Q=Q'"

§ 63. Outlook

Several question are connected with the consideratiotheofsurface-constrained
motion process (SMP that have not be treated up to now. For instatiee is the
derivation of theSMPs with:

(63.1) Li+L,=0,
and theSMPs with:
(632) Li—L,=0.

All of the integral theorems abo8MPs up to now break down then. Whereas we have
only set down the first derivatives here in the sntladire seem to be questions relating to
the appearance of second derivatives (such as the degoniof the curvature for the
path surfaces) that are connected with a great expéunsenputation.

Furthermore, one can ask about non-tri@&Ps for which a great number of points
move in a planar domain or a great number of lines @btbundary system move on a
fixed thread or run through the normals of a surface @drapic congruences).

Even the simplest algebra®@MPs merit attention. They correspond to algebraic

surfaces in the six-dimensional spacejof; (j =0, 1, 2, 3) with:

(63.3) Yo =1, >qq =0.
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One can also seek to convert the theorem that L. BIANfound on the two-
dimensional rolling of length-preserving surfaces to thegdicase 06MPs with Q =
0.

Finally, one can still look at the two-parameter motprocesses that lead back to
one-parameter ones:

(63.4) 2(u,v) = 2,(u) [Q,(V) -

The line congruences for which either:

(63.5) x(u,v) = x,(u)x,(v)
or
(63.6) (U V) = (5, () x 2 ,(V) 11 <1, (U),x ,()>?

have already been examined. Substantial invegtigaton the line congruences are
contained in volume VI of the complete works ofBIANCHI (Opera VI, “Congruenze
di rette e di sfere e loro deformazioni,” Roma, 29%long with the book of FINIKOW
that was cited in § 54.

| am perfectly aware that this present pamphléticlv will indeed be my last one,
exhibits many deficiencies and oversights. Hopgfuthis situation might induce
younger geometers to take up this classical subjssiv!



