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At the beginning of the Winter semester from 1881 to 18&2rrHProf. Weierstrass
posed the following problem in the mathematical seminar:

Prove that a ray system whose rays possess the property of being toaralrface
in an isotropic medium will always retain that property when one cdmek to an
isotropic medium after various reflections and refractions in medta avbitrary wave
surfaces.

In my efforts to go into optical ray systems in matetail, | found, among other
things, the following theorem of Herrn Prof. Kummer tth@ published in the
Monatsberichten der Berliner Akademie der Wissensamatitéhe year 1860:

Any infinitely-thin optical ray bundle inside of a homogeneous, transparentimedi
has the property that its two focal planes cut out two curves fromdkie surface of
light that belongs to that medium, whose center can be chosen to be ors thietha ray
bundle, that intersect in conjugate directions. Any ray bundle that haprbperty is
also actually optically-representable.

Since Kummer did not publish a proof of that theoremciwvlyou will allow me to
refer to as Kummer’s theorem, | sought to derive a pafoft. That led to the
development of the present work, whose content ifflweving:
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8§ 1. Light seeks to travel from the poltwith coordinatesxg, Yo, 2) to a pointQ
with the coordinatesx{, yi, z1) in the shortest time. The poiRtlies in a medium for
which one lets the velocityj of light in the direction, 77, {) be:

p =9 1. Q).

The pointQ lies in a medium for which one lets the velocity mht (o)) in the
direction &, m, &) be:

o1 = ¢1(é1, 1, ).
Let the equation of the separation surface of bothariesl
f(x,y, 2 =0.

The light ray that goes frof to Q meets the separation surface at the pdintth
the coordinates, y, z

If the segmenPS =r has the directionq 7, ¢{) and the segmer8Q = r; has the
direction (¢, /1, 1) then one will have:

f2XTh oY% o273
r r r

r=+2(x=%)",

(1) a=-2"0 =Lk g 2%

I I I

=+ (x=%)7,

in which, now as well as later, | interpret the simpigmbol Z” to mean that the
summand that is written down is to be added to two cthermands that have the same
interpretation relative to thg andz axes that the term that is written down has toxthe
axis. The timeT) that light needs in order to travel frdfromQ is:

) T=—1+1L,

T is a function ok, y, z whose magnitude must satisfy the conditi¢q y, z) = O.
ShouldT be a minimum, then the following equations would haveettrue:

oT _ of _ ot _ ot _, oT _ of

3 —=-u— =0, =0,
3) o0x ”ax

y Moy oz Maz”
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where i is an undetermined factor such that these three eqsatidinyield only two
condition equations between the determining data of nbelent and refracted rays.
Now, if, e.g.:

@ ar_ofr),ofxn
ox ox\p) ox(p

then with the use of equations (1) one will get:

i@ _Lr 6(220)%+0(;,/70)£g+6(1/p)g£}

ox\ p P 0X ox 0{ 0x
or

o(r)_(1_so9o@/p) 0@/p)_
© 6x(pj (p 275¢ ‘(jm g

One obtains similar expressions for:

M) s 9" i
oy\ p 0z\ p

In the same way, one gets:

O(h)-_[L_yodin) olp,)_ _
(6) ax[plj [pl Z ag(l glj |__4(1+ agl Al ml,

and analogously:

i[ij =- A [By, i(ij =- A OC;.
oy\ o, 0z\ p,

If follows from (5) that one has:

Since:

o1/ p) 1
2 = 1, d = 01 d = d !
2 & 2 &dé > Y & [pj
one will have:

1 1
(7) AZAc(pE):;Ej,cwad[;j =0.
One likewise obtains:
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YA dp &E)=0

from which, it will follow that the quantitie, B, C are proportional to the direction
cosines for the normal to the wave surface of trset fnedium at the point at which the
radius vector that points in the directiofy f, {) meets it, and the analogous statement
will be true for the second medium.

If one defines. A [A p & with the help of equations (5) then one will obtain:

Y AApé = ZKE—ZMHJEM a(l’p)wof}

0é 0é
:'OEE(% Za(1/p) Jsz 6(1/,0) } N
Thus:
(8) J=t and likewise A;= —— .
> AoE 2 AL
Thus, we will now have:
E(Lj __A E(Lj - _A
xlp) Y ApE’ x\p) DAL

Since one gets analogous expressions for the m@rgaguantities, one can now write
equations (3) as:

A A =y ﬂ
S AoE D Apé ox’
B B, _ o of
9 - —,
© D AoE Y Apé oy
cC o

SAcE Y ApE ez

If one multiplies equations (9) by the arbitrapaqtitiesX, Y, Z, resp., and adds them
then one can give the final equation the form:

R

AX
If one regard¥, Y, Z as running coordinates then the equa%A—g— 1 =0, which
Yo,

one can also give the forly A X =p & =0, will be the equation of the tangential plane
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that is drawn at the poinpé§, pn, p{) to the wave surface in the first medium that is
constructed with its center at the starting point.

X
Similarly, Z—A— 1=0, orz At X =0 &) = 0, will be the equation of the
> AL
tangential plane that is drawn at the pojté(, o171, ,1&1) to the wave surface in the
second medium, which is likewise constructed withatster at the starting point.

Furthermore:zg—fx = 0 is the equation of the plane that goes through Hrarsg
X

point that is parallel to the tangential plane thairégavn through it at the poink,(y, z) of
the separation surface at which the incident ray nieets

Since eq. (10) will then be an identity equation for aystesm of values fok, Y, Z,
this equation expresses the idea that each of theplaees goes through the intersection
of the other two. One therefore finds the refractgdmahe following way: Let the wave
surfaces of both media be constructed with their cerdgerthe starting poi®. One
draws a radius vector of the wave surface in the firsdivne that is parallel to the
incident ray, lays a tangential plane through its endmmrhat surface and lays a plane
ON through the poinO that is parallel to the tangential plane to the separ surface at
the point at which the incident ray meets it. Finaflypne lays a tangential plane to the
wave surface in the second medium through the inteoselstiof both planes then the
radius vectolOM to the contact pointl of it will give the direction and velocity of the
refracted ray. The tangential planes to the two waviases must lie on the same side of
O.

Since the principle of fastest arrival time is likeaitrue for reflections, eq. (9) and
eg. (10), which is derived from it, will also be true tbem. Now, the first medium is
also to be considered as being the second medium: The suaface of the second
medium will then coincide with that of the first onelowever, since the directions of the
incident and reflected rays lie on opposite sides ofghgdntial planes to the separation
surface (which would be better called the “reflectindexg”), the two tangential planes
NL andNM must lie on opposite sides Of here. If one can lay several tangential planes
from the line of intersectiol to the wave surface in the second medium on the same
side of the poinDO then the incident ray will split by refraction (redtion, resp.) into a
corresponding number of rays.

8§ 2. Kummer regarded the determining data of a ray systeiven functions of two
independent variables in his treatise on general ray systerh will also be very
preferable to think of all of the given or calculated diti@s as given (determined, resp.)
functions of two independent variabigsy in the present article.

In generalxs s+1, ¥s s+1, Zs, s+1 Might denote the coordinates of a point of the sejparat
surface between tr#' and 6+ 1)" medium, which are coupled by the equation:

fs st1 (Xs st1, Y5, s+15 Zs s+1) = O,

and &, 75, s might mean the direction cosines of the rays ofrthesystem in tha"
medium, or- as | would like to say more brieflythes" ray system. | imagine the wave
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surfaces of all media as being constructed with theirecgrmat the coordinate origin, and
generally let the wave surface in #femedium be given by the equation:

O :fs(psfs,psﬂs,psZs),

where pos refers to the radius vector to the wave surfaceishparallel to the ray&, 7,

{s), and as such, it will imply the velocity of light the medium in a unit time. It will be
assumed that all surfaces possess no singularitiethdocomponents that come under
consideration. Furthermor8s, Bs, Cs; Ast1, Bst1, Cs1; As s+1, Bs s+1, Cs s+1 Might refer to
guantities that are proportional to the direction cosofdbe normal to the wave surface
of thes" medium, the normal to the wave surfase (L)" medium, and the normal to the
separation surface of ti#® and 6+ 1)" medium, respectively. Let the length of a ray in
thes" medium be, such that:

(1) rs= \/Z(Xs,sﬂ - Xs—l,s)z :

It will follow from the definition ofrs that:

Xsst1 = Xs-15 + Is &s
(2) VYsst1 = Ys-15 t Is /s,
Zsst1 = Zs1s H s s .

Let the quantitieSs-1s, Ys-15, Zs-1s, S s {s F's e determined already as functions of
the two independent variablasv, and in fact, as single-valued and continuous functions
of u, v for a well-defined ray complex that has been taken fioes"” ray system. They
can then be determined as functionsi,of for the same symbols, but with quantities that
are denoted with the next higher index, as wetkaas follows.

The equation of a ray of ti# ray system reads:

X = X1s _ Y - Yeas _ Z- Zi1s

$s s ¢

Should this ray meet the separation surface of'ttend 6+ 1)" medium at the point
(Xss+1, Yss+1, Zss+1) then one would need to have:

X1~ Xs1s - Yost1 ™ Yers _ Ls1 ™ Zeas

$s s ¢

Xss+1, Ysst1, Zss+1 Can Now be determined as functionxofs, Ys-1s, Zs-1s, s s s
and also as functions of v, from these two equations and the equaltion(Xss+1, Yss+1,
Zs+1) = 0 of the separation surface. These functions veillmulti-valued functions, in
general. However, if one directs one’s attentiorusd jhe values ofssi1, Yss+1, Zss+1 that
correspond to the points at which the rays of the comptesidered cut the surface
fssr1(...) = O for the first time in the directiod{ 775, {) then one can regabds:1, Yss+1,
Zss+1 a@s single-valued, continuous functionswiv. (The component of the surface at
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which the rays cut the surface the second time afésrdhe refracted is to be considered
as being a component of the surfdg@s:a(...) = 0.) SiNCe&Xssr1, Yss1, Zssr1 are
determined as functions afv, rs will also be defined as a functionafv. Eq. (9) of the
previous paragraph must be valid betweenghand 6 + 1)" ray system, which now
reads, in the other notation:

A _ A,
DAPL DAL L

= U Assi1.

The other two equations are analogous.

Since one can sét = a(af}) , one can regaré, Bs, Cs as being given functions of
PsS's
Osés, Ps s, Ps §s; likewise,Asi1, Bsi1, Csrq @re given functions qlsia &si1, Ose1 sr1, Osea
{sr1 (Xss+1y Yssrl, Zsst1, ME€SP.). Now, sincex, &, s, (s, Xssly Ysstl, Zss+1 are known
functions ofu, v, eq. (3) will yield two relations between the fayuantitieSxss«1, Yss+1,

Zss+1, @andu, v when one eliminates the undeterminedBy means of it and the equations
2

fsr1(Osr1 Sor1 s Osr1 Msrr s Psi1 {sv1) = 0 andz 2. = 1, the four quantities can now be

determined as functions afv. These functions will be multi-valued functions,
general. However, if one chooses a well-definad gfavalues (i, Vo) that correspond to

a central ray of the complex to be one that isrdateed by a system of values ,0f.1,
&1, Ms+1, {sr1 that belongs to it — which | would like to denotedé, 770, (o —then one
can, within certain limits, represent the differesgs.1 — o, &1 = &, Msi1— Mo, {sv1 — (o

as powers of the differences- up, v — Vo , and one can extend the domain of validity of
these series to all rays of the complex, sincefuhetions o, etc., are single-valued and
continuous for them, and since the surface= 0 possesses no singularities for them,
and the quantitie@s1, &1, Ms+1, {1 are not infinitely large, moreover. These power
series then define the quantitjgss, &1, sr1, (o1 @s functions ofi, v. The 6+ 1)" ray
system that is obtained from this kind of determarabelongs to an arbitrarily-chosen
one of the ray systems that emerge fromdtheay system by refraction. If one draws a
line through a fixed point that is parallel to eaely of the chosers(+ 1)" ray system
whose length yields the velocity of light in it & certain system of units then the end
points of these lines will define a surface thatoluld like to call thewave surface ahe
(s+ 1)" ray systemand which is a component — or, as one can algoashell— of the
general wave surface of the« 1) medium. ps.1 is the radius vector of that shell.

Let the first ray system be determined by the dmatesxoi, Vo1, z01 Of a point
through which a ray goes and by the direction @assfp, 771, {1 of that ray. Let these six
guantities be given functions ofv, and indeed, in such a way that they are singleeda
and continuous for the chosen ray complex. Thetp&i, Vo1, Zo1 define a surface that
will be called thanitial surface of the ray systenfurthermore, let the velocig of the
ray with the direction cosine§, 771, {1 be determined uniquely by these givens, and thus
also as a single-valued, continuous functiom,of. As a consequence of the foregoing
discussion, one can now determine all of the gtiastihat are present as single-valued,
continuous functions af, v from these and the other given quantities, andaeddn such
a way that the ray in an arbitrary one of the uagioay systems that belongs to a well-
defined pair of valuesau( v) will correspond to the ray in the first ray systéhat belongs
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to the same pair of values, (v), in such a way that it arises from that ray by aasi
refractions and reflections.

The theorems that will be derived in what follows wilka be valid when the
functions are multi-valued, since the necessity offtimetions being single-valued will
not enter into them anywhere. | have assumed tbgtate single-valued only in order to
not make it necessary to modify their statementowoollaries in places at which double-
valuedness can possibly arise.

§ 3. Let then™ ray system be the last one. The systems of equa@yrend (3) in
the previous paragraph then yield the following equations,hwéwe valid fors = 1, 2,
T o e

Xsst1 = Xs-15 + &s I's,

(1) Vss+1 = Ys15 t M)sTs,
Zssi1 = Zs1s + s Ts,
A A _
- - ﬂ AS, +1
YALL Y AL, )
B B
(2) S _ stl — ,U B s+l
YALL YAy
C C
L = ﬂ CS,S+1 )

SALE, S A0 L

in which the quantities are defined such that the following equations exist:

> Asd(ps & =0,
3) Y At d(sr1 &sr1) = O,
Z Assi1 O¥se1 = 0.

If one chooses the initial surface of the last (i) ray system to be a surfaog, {1,
Y1, Zons1), instead of the separation surfag iy, Yn-1n, Zr-1n) 0f the fi — 1" andn™
medium, such that up to it the rays of tife system cover the segmentin the n™
medium, where,, is a temporarily arbitrary function of v, then the following equations
will be true:

Xnn+1 = Xn-1n +Tn &,
(4) Y+t = Yn-10 M /0,
Zont1 = Zn-1nt M én .

If one multiplies eqs. (2) b§ixssi1, dYss+1, dZs+1, in turn, and considers the third of
eg. (3) then if one brings the second term on thehkefid side to the right-hand side then
one will obtain:
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DIAdX,, _ D ALdX .,

5 = .
( ) Z &psgs Z A¥+lps+1<(5+1

As a result of equations (1), one will have:

(6) Z As OXsi1 = Z Asdx 15+ Z Asd(rs &).
Now, one has:

Y A& =S A d[%wsj = d{%jz AspsfﬁfZ Adpé),
or, as a result of the first of egs. (3):

2 Ad(rs & = d (ﬁjz ApE..

If one substitutes this in eq. (6) and divideszpy\s@ &then one will obtain:

ZA&dxssfl _ Z'A&dxﬂ,s (I’ j
7 = d —=|.
") D ApE. D APL, ' P

Since eq. (4) have the same form as eq. (1), thbyiedtl, in the same way:

Z'Ahd)%,nﬂ _ Z'Ahd)%—l,n [r j
8 = df 2 |.
? D ALL D ALE, * 0,

With consideration given to eq. (7), eq. (5) now reads:

Z'A&dxﬂ,s (I’ j _ ZA&+1d)%s+1
9 oo rtad] S | =&t
( ) ZA&'OSgS ' IOS Z&ﬂpsﬂg&l

Sinces can assume the values 1, 2, n.5 1, eq. (7) will represenh 1) equations.
If one adds them together then one will see thas fo2, 3, ...,n— 1, each term:

D AdX,
> ApS,

on the left-hand side will cancel an equal term on igiat+hand side, and one will then
obtain:
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D Adx, & [ j D A%,
10 ST L N .
(10) Z‘Apﬁf; o) D ApE

With the use of eq. (8), one can also write eq. (10) as:

D Adx, & [ j_ZAqum
11 d == _
() Z‘Ap1<i+; p.) D AP,

Up to now,r, was an arbitrary function af, v. Now, if one determines in such a
way that:

SR

s=1 s=1 ,03
or

(12) YL =c

and thus equal to a constant, then if eq. (12) is truedhe(ll) will read:

LA _ D AN
DAL Y AL,

(13)

Since eq. (13) is true for any increase in the variahlgsand thus for any value of
du / dv, it will express two relations that exist between ftinst and last ray system.
However, as was emphasized in § 1, only two relatiorst égtween two ray systems,
one of which arises from the other by refraction eftection, with the exception of the
relation that corresponding rays of both systemstrusin a point of the separation
surface. However, the latter restriction drops out unadtiple refractions, such that in
general only two relations will exist between two ragteyns, one of which arises from
the other by various refractions and reflections, anduhikye expressed by eq. (13).

Eqg. (12) tells one how the initial surface of the secray system should be chosen in
order for the relations that exist between the ratesys to be expressible in the form of
eq. (13).

Eqg. (11), as well as eq. (12) and eq. (13), which are denwedthem, also tells one
how large thah can be. Thereforey can also be infinitely large — i.e., the light can go
through inhomogeneous media. One can then think of an od®mous medium as
being decomposed into infinitely many infinitely-small g¢riand regard each of those
pieces as a homogeneous medium.

o denotes the velocity of light in t/# medium in the direction& 775, &), in some
system of units, and s the length of the path that the light follows ie game direction
in the s" medium, sors / ps Will be the time during which a light ray traverses e

medium, and therefor{‘L will be the time that light ray needs in order to travem

s=1



Blasendorff — Dissertation. 10

the surfacexps, Yoi, Zo1) to the surfacexq, n+1, ¥n n+1, Zn, n+1) through the different media.
Eq. (12) then says that all rays take the same lengtimefin order to travel from the
surface Xo1, Yo1, Zo1) to the surfacexq, n+1, Yn n+1, Zn, n+1)-

If one chooses an arbitrary infinitely-thin ray bunfitem the first ray system then it
will correspond to a likewise infinitely-thin ray bundie the last ray system, which
emerges from the latter by various refractions andatiles. Now, if one lays a plane
through the first ray bundle that is perpendicular tonad of the wave surface in the first
system (namely, the normal at that point of the evawrface at which the radius vector
that is parallel to the central ray meets the wawéase) that corresponds to the central
ray (i.e., the axis) of the bundle and considers plase to be the initial surface of the
rays of the bundle then one will have:

> A dxor = 0.

Should eq. (13), and with it, eq. (12), be true then, sheeé\, o & becomes
infinitely large only when one has = «, one must have:

Y ArdXone1 = 0.

The initial surface of the rays of the correspondingdle of the last ray system must
then be chosen to be likewise a plane that is perpaladito the normal to the wave
surface of the last ray system that corresponds t@xlseof the bundle, and one can
therefore express the relations between the ragmgsin the following way:

If a ray system arises from a given ray system by various tefingcand reflections,
and one assumes that the rays of any infinitely-thin ray bundle of thesyssem
simultaneously go through a plane that is parallel to the tangential plane twake
surface of the first ray system at the endpoint of the radius véi@brs drawn parallel
to the axis of the bundle then the rays of the infinitely-thin ray leuoidthe second ray
system that arise from that bundle will also simultaneously pass thropgina that is
parallel to the tangential plane to the wave surface of the second r&amsgstthe end
point of the radius vector that is drawn parallel to the axis of the leund

This theorem also expresses the relations that geen by eqgs. (12) and (13)
completely; one then chooses another arbitrary Irsitisface (x,,, Y., Z,,), instead of the

plane &o1, Yo1, Zo01), In the infinitely-thin ray bundle of the first dgsn and sets:
X =Xo1—0h K1, VYo, =Yor—0h 071, 7y, =Zoa—di .

If one likewise chooses another initial surfdeg, .., Y, .1: Z, +1), instead of the plane
(Xan+1, Ynn+1, Zan+1), iN the infinitely-thin ray bundle of the lat systemd sets:

X,'mﬂ = Xnn+1 + h O y,'mﬂ = Yane + 0 O7n
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Z.'mﬂ = Zone1 + 0o K,

then that will yield, in the same way that eq. (7)ofek from eq. (1):

Zﬁd%1+d[gj _ LAY,
N ApsE o) D ApE

and

DA D _ DA dxmm[g}

Y A0S D ALE o,

Due to the position of the planes, one will have:

Z A d)Q)l = Z An dXn,n+1 =0.

As a result, the foregoing equations yield:

Mm[gj Zﬂh_d&d[d_j
>Apé o) DALE  \p.)

n
. r
Now, from the aforementioned theorem, one @si =0.
s=1 ps

Therefore, the last equation will also remain corvdaen one writes it as:

DA dtrn G r+d, QA
D ApE Py szzz:ps P, D ALE

Now, (d; + ry) is equal to the, that corresponds to the surfaCe,, yq,, Z,,). and ¢,
+ ) is equal to the, that corresponds to the surfa@e ..., Y, .1 Z, 1), and therefore

this equation is eq. (11), only in a somewhat differenatiaxt, from which it follows that
the relations that exist between the ray systems ica@ more be given completely.

8 4. Eqg. (11) of the previous § reads:

Z'Ald)%l o d[Lj - Z'Ahd)%,ml
Z/ﬂpﬁf; p) DAL

This equation also says how one might choose thelisitifaces in the first and last
ray systems. Now, if the first ray system were posed of rays that start from a
luminous point, and one chooses the initial surfacestthat luminous point then, since it
can possess no extension, one will hae; = dyp; = dz1 = 0.
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The equation will then read:

D A, ( rj
1 Okt 1 | O
@ Y ApL, ;ps

If one again choosesg such that one has:
- rS —_
2) > —= =C,

whereC is a constant, then, since the denominator does notreemfinite, eq. (1) will
read:

3) 2 Aq dXyne1 = 0.

The surfaces that are determined by eq. (2) are, aslaagttheir definition, arranged
in such a way that all of the rays that emanate filmenuminous points that generate the
ray system at the same time will meet each of thedaces at the same time, or that a
light motion that has started from a luminous pointiay time has propagated from a
well-defined surface in the last medium that is defineddy(2) at some point in time.
Therefore, these surfaces could be given the name afesurfaces” in th&irchhoff-
Helmholtzsense. However, in order to avoid confusion withstiiéaces that | have been
calling “wave surfaces” up to now, | would like to call thefaces that were defined in
eq. (2) “surfaces of equal arrival time,” where “equaltaken to mean “simultaneous.”

Eqg. (3) now says that the direction cosines of tbamals to these surfaces are
proportional toA,, By, C,, and we therefore have the theorem:

1) For optical ray systems, the rays are inclined wehlpect to the surfaces of equal
arrival time in all directions in the same way & tradius vectors of the wave surface of
the ray system (which they are parallel to) ardimed with respect to the wave surface.

The following theorem then follows from this immeeigt

2) For optical ray systems whose wave surface is @rgphthe rays of the system
will be normal to the surfaces of equal arrival &m

3) If the rays of an optical system with an “asphelioaave surface possesses the
property that they are normal to a surface and sefaces that are parallel to it —
surfaces that | would like to call “normal surfac¢es then these normal surfaces can
never coincide with the surfaces of equal arrivale. However, this must be the case for
optical ray systems whose wave surfaces are a spher

4) The necessary and sufficient condition for a ragteay in an optical medium to be
representable is that its rays be normals to aaef
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The first of the stated theorems is an analogubed¥ialus-Dupintheorem for optical
ray systems in media with arbitrary wave surfaces. fdtigh one is an extension of that
theorem, insofar as the media in which the light ntustel before it returns to an
isotropic medium can be not just isotropic or crysta)J but media with completely
arbitrary wave surfaces.

Eq. (1) (pp. 12) vields that if the" ray system is to be optically-representable then

Z Ah dx‘l n+1

the quantitieszph—g must be equal to a complete differential of a fumcWéof u,

pn n
v, however, this condition is also sufficient. If otieen assumes, for the sake of
simplicity, that the given ray system arises digeom a single refraction or reflection
from a ray system whose rays start from a luminaastpand that this luminous point
lies at the coordinate origin then one will have 2, and the condition will read:

DI T d[iu_zj_
D> A p,¢, o P,

Sincexos, Vo3, 223, &, 2, {2 are given functions of the independent variables and
likewise p, [as a given function of&, 77, {)], dW will be a given quantity.o, , which
gives the velocity of light in air for a certain unittime, is a known, constant quantity.

It follows from eq. (4) that:

(5) L+r_2 :W,

P P

whereW can still contain an arbitrary constant. Moreoweee has:

Xi2 =11 &, Xsz=né+ré,
(6) Yig =l /1, Yz=rijL+r21,
Zio=11{, Z3=r1{atrnd.

If one eliminates the twelve quantitiesry, rs, &, M, {1, &, N2 &, %3, Va3, Z23 from
the seven equations (5) and (6), from the seven givectifuns ofu, v, and from the

equation Z.{fz 1, and then fronu andv, then one will obtain the equation of the

separation surface of both media, namely, an equagitmelenx;,, yi,, z12 . Now, since
the separation surface of both media can actually Frdieted, the ray system will also
be optically-representable.

8 5. | shall now alter the notation slightly. lthe coordinates of the points of the
initial surface of a given ray system key', Z, and let those of its wave surfacexoe
pé Yy = pn, z = p¢, wherep is the radius vector. A, B, C are quantities that are
proportional to the direction cosines of the normah®wave surface then the condition
for the optical representability of the system welad:
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) > AdX —w

> Ax
whereW is a function ofl, v.
If one denotes an increment in the quantities in dguesly the prefix ofd; (dz, resp.)
when the ratiar = dv/ du equalsr (72, resp.) then one must also have:

Ad X Ad, X
(2) Z—dl =dW and Z—dz: doW.

> Ax ' > Ax

Now, since one hadb d;W = d; d,W, one will also have:

b )

If one carries out the differentiation and considbsd:

(4) 2 AdXx=0 and 2, Adx=0
then, sincez A dh dhX :Z A ddix, and if one multiplies it be AX)?, eq. (3) will read:

(5) DA GADBX -2 AhX D di AX=D A th A dX — 2 A thX . doAX.

One can write the left-hand side of eq. (5) as:

(6) D diA X (Ax+By+C2 -2, diA DK (A X + B by + C 7).

Since the quantitie&, B, C are proportional to the direction cosines of tbenmal to
the wave surface, one can set, under the assumption tnad 7> are different from each
other:

(7) A=dy bz—-dyy 01z B = diz dx —dyz dx,
C=dix by —dx chy.

If one consolidates the sums in the expression @G)yatsA, B, C equal to the value 7
then one will get:

2 AhA [(dX Oy —X cby')( thz X — oz dhX) + ( chX' [Z—X bZ)( X chy —doX chy)],
or

(8) ZdlAD{ d,x[-d, 4 xd y— yd ¥%— dy zgd % xzd)]z}

+dx[d,{ xd y- yd X+ dy zg'x xdk
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If one removes the quantitgx Odix (y &bZ — z dby’) from the first summand in the
curly brackets and adds it to the second summand thexpinession (8) will read:

2. diA {dox [-2. dix [y dhZ —Z dhy)] + chix [ dox (y &Z —2Z cby)]},

or
(9) — | dix X X | D chA dhx + [ dox X &by | D diA ch,
if one understands the symbol | ... | to mean a determinarsieviinst row is written out,

while the other two arise from the first one by replgche symbok with y andz, resp.

The right-hand side of eq. (5) will emerge from thet-f@ind side when one
exchangesl; andd; with each other. If one then exchangesndd, with each other in
the expression (9) then one will obtain the right-hade sif eq. (5) as a result, but with
the opposite sign, since one would Aetqual todyy iz —diy bz, instead othy bz — dyy
di1z (and thus, the opposite value), and likewiseBandC, and since the expression is
homogeneous and linear relative to the quantaieB, C. If one now brings the right-
hand side of eq. (5) over to the left-hand side therlliread:

—ldxxd X[ d Ad x| d xxd{}y, dAdx

(10 “ldxxd XY d Ad* | d xxgd A d Adx0

As a result of eq. (4), one will ha\@:z Adx=d; Z Adx=0,or:

(11) D A chx =D diA bx =— 0 A chdX .

Eqg. (10) will then also read:

(12) 2 A dhhx (JdoX dix x| + |dax' DX X|)
+ | X dox X | D chA Thx + | doX chx x| D dbA CHox = 0.

This equation will be true for any two distinct increngent

8 6. If one denotes the partial differential quotieritdhe quantities in question with
respect tai (v, resp.) by the index 1 (2, resp.) then the equation:

(13) ldX dx x| =0
will read:

| X+ %7 x+xr X =0
or

(14) X % x|+ % % X+ % x {]+7°| ¥ x }=0.
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Since this a second-degree equatiom, ithere will always be two real or imaginary
directions, which can also coincide for equal rootswhbich eq. (13) is fulfilled. If one
now chooses the incrememtsandd; in such a way that the values of r; and r» that
correspond to them are roots of eq. (14) then one will:have

(15) |dixX dix x| =0 and X dox x| =0,

and therefore if eq. (12) is to be valid, one must hahere

(16) D Adhx=-2. chA bx=0
or
(16) |dox' dix x| + |diX dox x| = 0.

If one adds the quantity:
| dox' dox X| + |diX dix X,

which, from eq. (15), is equal to 0, to equationliéen that will give:

0 = |dbX doX + dix X| + |diX doX + diX X |
or

(16') 0 = [dx' +dux d2x+d1xX|:4‘ dX+dx dxdx |

2 2

Now, one will have, e.g.:

d,x+ d x I,+7,
—S = =X +X = dgX,
2 1 2( 2 3

. : + .
if one letsds; denote an increment that corresponds to the \laluélz—r2 Eq. (16) will

then read:
| dsx’ dsx x| = 0.

However, this equation is eq. (13), and since twty values ofr can satisfy it (if the

. o : T, +T : .
equation is not fulfilled identically), one must\,iea%: r; or 1, which will yield 1,

=7, but this case is excluded.
Therefore, eq. (16) must be true:

(16) D Achdx=-2 chA bx = 0.

Now, if eq. (16) is also always fulfilled when €45) is true, no matter how littlg
and 7, differ from each other, then it must likewise bgetfor the limiting case af, =7>.
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In order to arrive at the geometric interpretatiohsgs. (15) and (16), | imagine that
the coordinate system has been parallel displaced inasu@y that the its origin comes
to lie at the poin© of the initial surface whose original coordinates werg/, Z, and
that O has been constructed as the center of the wave suofache ray system,
moreover. The ray that emanates from the pOimtll then intersect the wave surface at
the pointP(x, y, z). Let the ray that emanates from the p&dx, dy, dZ) beRS and let
the radius vector that is parallel to it ©€), so the poinQ will have the coordinates+
dx,y+dy, z+dz

The equation of the plane that goes thro@gR, andO can then be written:

| X x+dxx|=0
or
a7) |X dx x| =0,

whereX, Y, Z are the running coordinates. If the incremeig equal to one of the two
incrementgd; or dy, which satisfy eq. (15), then the coordinateRefill satisfy eq. (17).
R, and therefore also the r&Sthat goes througR, will then lie in the plane that is
drawn througlOP andOQ. It then follows from this that the r&S which is infinitely
close to the raPP, will cut the first one, so it will lie in a focallgne of the infinitely-
thin ray bundle that has the axig®. Therefore, when eq. (15) are true, the poihisf
the wave surface, which are infinitely close to thapB, which might correspond to the
incrementgd; andd; and be denoted B9; andQ-, will lie in the directions in which the
intersection curves of the focal planes of the bandll cut the wave surface.
The equations of the tangential planes at the pBiaisdQ; read:

DAX-3%=0 and D (A+dhA)(X —x—dx) =0.

Both equations together will yield the equations of the dihéntersection of both
planes. If one replaces the second equation witldifference of both equations, while
neglecting the second-order infinitesimal quantitiesl &ith consideration given to the

equationz A dix = 0, then the equations of the line of intersectidhalso read:

2ANX=-X=0 and > dhA(X—%=0.
Since these equations will be satisfied when one sets
X=x,Y=y,Z=z or X=x+dx, Y=y+dy,Z=2+dz

[the last one is true because eq. (18) (pp. 15) is truehdmtsP andQ. will lie on that
line of intersection, and therefore the tangdt@s andPQ, are conjugate tangents, and
as such, will lie in conjugate directions.

Conversely, if eq. (16) is true for the two incremehitandd, for which eq. (18) (pp.
15) is fulfilled then the condition for the opticapresentability of the ray system will be
fulfilled, which one will deduce from the following:
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Since the valueg andr, of 7 =dv/ duthat correspond to two incrememtksandd,
are roots of eq. (14) (pp. 15), one will have:

(18) np= 1% % Xl pep = X% XIT 1% % x|

1% % x| 1% % X]|

Furthermore, from eq. (16), one will have:

0= chA chx =, AL+ A1) (X1 + X 1)

or

(19) DA At ) AXet+ il D, Ag X = 0.
Now, analogous to eq. (11) (pp. 15), one will have

(20) D A= A X ==, AXaa,

if the double indices 11, 12, 22 denote the cooedmg second partial differential
guotients of the quantities in question.
As a result of eq. (20), eq. (19) will read:

(21) ~(n+T) 2 Axe+ 2 Axa+ it D, Ay % = 0.

If one substitutes the values af, and r; + 7, that follow from eq. (13) in this then
one will obtain:

22) (% % X|+[% x xDD A+t % x X Ax |'x x D, A;=0.

A dX _ - :
One can derive the condition th% Is a complete differential in the following
X

way: One has:

D AdX _ ZAdgde Ady

D AXx - D AX D AX

Should this be a complete differential then onelldmeed to have:

- 2R

This equation is analogous to eq. (3) (pp. 149, when it is developed, it will give
eq. (22), which emerges from eq. (12) (pp. 15) whea replaces the incremesht (d,
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resp.) with the partial differential quotient with respe u (v, resp.), and therefore eq.
(22) also expresses the condition for optical reprebdity.
Kummer’'stheorem is proved completely with that, which nowdsea

Any infinitely-thin optical ray bundle inside of a homogeneous, transparentimedi
has the property that its two focal planes cut out two curves fronvatie surface of the
light that belongs to this medium, whose center is assumed to lie axishef the ray
bundle, and they will intersect in conjugate directions. Any ray bundlehidmithis
property is also actually optically-representable.

One can now also assume that the increnm@énésdd, in eq. (12) (pp. 15) are such
that one has:

> diAdx=0 and . d A bx=0.

The incrementsd; and d; will then correspond to directions that are not mutually
conjugate directions, since each of them will be conjugateself, when one excludes
the case in which the two directions coincide. In orderefy. (12) to be fulfilled, one
must then have:

|d,X dx x|+ d%x d x %=0.

| have, however, found no sufficiently simple and obsigeometric interpretation
for this expression that | could give here.

Even though the normal surfaces of optical ray systesitis “aspherical” wave
surfaces (i.e., the normal surfaces to the so-cdliezjular” ray systems) then lose the
property of likewise being wave surfaces in Kiechhoff-Helmholtzsense, it still seems
worth investigating whether there are any irregulgr sgstems, at all, whose rays are
normals to a surface.

8 7. Since it will prove to be more convenient for fyast of the examination to give
the arbitrary variables, v a well-defined geometric meaning, they might be conferred
that meaning from the outset.

If one letsU denote the curves of the wave surface for whickaries andv is a
constant that changes from curve to curve andetsnote the ones for whichvaries
andu has a constant value, and one assumes that thes 8uave the curves in which the
spheres that are concentric with the wave surfacehatitstirface and that the curuds
intersect the curveg at right angles then one can set:
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and the expression for the rectangular intersectidootif curves will be:

0=2 %= (08100 d:2,
maoreover.
One first has:

@) 2 E=1, 2EL=0, LEL=0.
It follows from the first condition equation for v that:
(b) PL==pP2,  pu=20, P2=pu-p2=0.

It follows from the second one, with consideratiareg to eq. § and ), that:

0=2 (-2 é+p&) P&=-p2 &+ L&,

or
(©) 2 &&=0.
| now set, to abbreviate:
(d) Y E=E, Y. &=G,

from which, it will follow that:

=3E, u:%Ez
© 251511 _2 1 Zgﬁ( .

252512‘%61’ 2524(22:

Eg. @), with consideration given to egs) @nd (), will yield:

0=Q &)= D& &+, & or 2. E&,=0,
0=Q &&= 2E+D & or 2 E&i=-F,
0:(2552)222522+fo22 or Y. E&=-0G.

Thus, one will have:

(f) 2 &&,=0, 2 E&=-E 2 &&=-G.

Eqg. €), with consideration given to ea){ yields:

0:(251 &)1 = 251152"'251 & or Zfz éu=-3E2,
0= (Zfl &)z = 251252"'251 &2 or Zfl $2==-3G1.

One then has:
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(9) 252511:—%E2, 251522:—%61-

Some expressions can now be derived that will find ancapioin later on. First, let
it be remarked that the cases in whi€lr G are identically equal to 0 will be excluded;
the equationE = 0 will then represent a conic surface, and the equ&icen 0 will
represent a curve with double curvature. Let the ratithefdirection cosines of the
normal to the wave surface to the quantifie8, C be chosen such that:

(a) D ApE=1.

Moreover, it follows from, A dpo ¢ =0 and eq.h) that:

) YA =XA(-FE+p&E) =0,
» YA =2Ap&H=0.
If one sets:
(9 A=AE+ b +vé, B=An+uni+vn,, C=A{+ Ui+ v

then it will follow from egs. p), (9), (a), and €) that:

0=DAPE=pA2E & +pud.e& +pv > .&2, or  pl Y &=0,
SO:
€] v=0.

Moreover, it follows from eqgs.d), (9), (&), (a), and () that:

1=2Apf=pA 2 E+pu2 & &, or  1=pl
Sso:
9 a=1
Yo,
and finally, it follows from eqgs.A), (9, (&), (), (&), and ¢) that:

0= A(~f &+ p&) = Z(%E + ﬂcij(—pzf +041)
or

0=—pl&?+ 2 - P 2 Ea+up Y. & =—p+up Y. &,

or
u=x
E!

and therefore eqd[ will read:
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1 1 1 1 1 1
1 A=—¢+=4, B=—n+=n, C=—{+=(,,
1) pf Eé pn = pZ EQ
when the following equation is true:

(2) D ApE=1.

The equations of two planes that are drawn thrahghradius vector to the wave
surface, which points in the directiofl ¢, {), through each of which, a radius vector that
points in the directiond+ dié, 7+ dinp, {+ did) [(E+ A&, n +dan, + dQ), resp.] goes,
read:

IXEE+hE]=0 o XEE|=0 and K EdE|=0.

Should both planes be perpendicular to each diiem,one would need to have:

2 (17 chd— Edu) (17 el = ¢ o) =0,
or

0= chdthl+ 2.2 iy g =20 o I chd— 0.0 b T chuy .

If one writes down another suitable summand unkde®. sign, instead of the ones
that are written, and, at the same time, adds @iects the quantities:

22 hEdE= D EhEDEhE

then the equation will read:

0=28%018hé+ 28201 donp + 2.E2 il 0ol
~ D EBEERE — 28 E T dhn - DEBEX il

or

2ED dif -2 Edé DD EdiE=0.
If one now setshé =& + & n, 8= + & 1, and similarly fordy s, did, dan, don,
then, sincezg‘2 =1, one will have:
LE+&n)(a+&n)-LEE+eEn DR E(h+&nE)=0.
If one resolves the brackets and considers @)s(dj, (d) (pp. 19 and 20) then one
will get:

(3) E+Grnn=0.

Equation (3) is then the condition for two direas that emanate from a point of the
wave surface (for which the corresponding values afe denoted by; and ;) and
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describe two planes that are laid through that point andethieer of the wave surface to
be perpendicular to each other.

From eq. (16) of § 6, (pp. 16), the condition for two dimts that emanate from a
point of the wave surface (for which the correspondingesbfr might be denoted by
n, andr,) to be conjugate directions reads:

0 :ZA dldlx:ZA X121+ X12 (11 + ) + X3 11 1Y)

or
(4) ZAX11+(T1+T2)ZAX12+ TzZAXzzZ 0.

Now, as a result of eq. (1) and o). (pp. 20), one will have:
2 Axi1 =2 A (pd): = Z[%&éflj (20’ §- 20 &+ p &u).
If one employs eqd), (d), (f), and €) then one will get:

Y Axu= 20 ~E~ 20 + 12 E = 4E (- 27+ pE),

D AX=2 A (0812 = Z(%f‘*%ﬂj (0 &+ p &),
If one employs eqd), (f), and €) then one will get:
D Axip= Z—JI-E,OEZ,

D AXe=2 A (08)22 = Z(%f‘*%ﬂj Pé2
or, when one employs eq$) &nd @):

-1
Y AXpp=-G- Z—%Gzz = (2EG + pGy)

If one substitutes the calculated expressions into egn@multiplies it by E then it
will read:

(5) C 2B+ pE) +pE(+ ) — (EG+pG) nn 1= 0.

8 8. If one temporarily excludes the case in which eqis(B)entical to eq. (4) then
one can determing; and 7> from these equations uniquely as roots of a quadratic
equation. Therefore, in general, there will be only pag& of mutually perpendicular
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planes that go through a radius vector of the wave sudad cut the wave surface in
curves that intersect in conjugate directions. If orterd@nes these directions for each
radius vector then one will obtain two new familiekcurvesP and Q on the wave
surface in such a way that, in general, only one cBraad one curv€ will go through
each point of the surface that intersect in conjugagetidns in such a way that the two
planes that are laid through the starting point and ohehe directions will be
perpendicular to each other. Now, if surfaces can berdeted in such a way that their
lines of curvature correspond to the families of cuiveand Q that are defined on a
given surface in such a way that the normals along aofieirvature are parallel to the
radius vectors that are drawn from the corresponding$ointhe corresponding curves
P or Q of the given surface then the normals to a surfage-dietermined will define an
optically-representable ray system with the given amafas its wave surface, so
Kummer’'stheorem will be fulfilled by an infinitely thin ray bdie of this system as a
result of the definition of the lines of curvature.

One will obtain surfaces with the aforementioned spgmoperty, e.g., when one
sets:
(6) X =a+kA VY =b+kB, Z=c+«kC,

wherex, y', Z are the coordinates of a point on the surfach, ¢, K are constants. aril
B, C are the quantities that are defined by eq. (1) (pp. 21).w@intden have:

1 1
(1) 2 EdX =k md[z&gaj

N, 1 1 1
=K{d[;jzs +;zfd5+d[Ejzfa+E25(5ﬂdu+azdv}

or

Y. &dX =k {du+d—$‘25§1+%’25§2} =0,

due to eq.f{, (pp. 20).
Due to eq. (2), (pp. 21)2 Aé= > Apé=1,soone has:

D AdX _ _ .
2) S =k, AdA=d(x D AY,

so this is equal to a complete differential, and tloeeeffrom eq. (1) of § 5, the condition
for optical representability is fulfilled.
As a result of eq. (2) and eq. (6), one has:

(7) Z(Xl_apfjﬂ or Y éX-a)=S=p
K p
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If one then thinks of the wave surfa8®f a medium as being constructed around an
arbitrary, fixed pointD whose coordinates aee b, ¢, and a segmem’ = DE' as being
removed from a radius vectgr= DE of D, which points in an arbitrary directiod, (7,

{), such thap 0o’ = k, then the point&’ will define an inverse surfac& to the surfac&.

If one erects a plane throughthat is perpendicular tOE’ then, as a result of eq. (7), the
point (X',y', Z) will lie on this plane, and indeed on the point of iséetionE" of the
plane with the lindDE", which is parallel to the normg&IG to the surfac& at the poinE.

If the pointsE” define the surfac&' then, as is obvious from the foregoing, the normal
E"G" to the surfaces’ at the pointE” will be parallel to the radius vect®E of the
surfaceS, so the pland&’'E" will also be a tangential plane to the surf&e and all
planesE'E" will envelop the surfac&’. Therefore, the surfac®’ is the base point
surface of the surfac®’, and therefor&' will be the first negative base point surface to
the surface&s’. With that, we have the theorem:

The normals to the first, negative base point surface of an ingertszce to the wave
surface of a medium define an optically-representable ray systdratimedium

For k = 0, such a ray system will go to a ray system whage all cross at a point.
For a ray system of this kind, the spheres that anstoucted around the crossing point
will be normal surfaces, and the wave surfaces thatarstructed around that point as a
center, in the various units of length, will be suraoéequal arrival time.

8 9. As a result of the meaning of the equations, tifacas for which eq. (2) in 8 7
is identical to eq. (4) or (5) of 8 7 have the property thay pair of mutually-
perpendicular planes that go through the starting poihtuti the surface in curves that
intersect in conjugate directions.

For these surfaces, the following equations must be true

(8) E>=0
and
-2E’+ pE, _ -2EG-pG

E G !
or

2p (GE+EG_

JeG 2JEc

or
(9) ER/G), =0.

The form of the surfaces that satisfy the condifig = O shall next be ascertained.
One can write the equations of the osculatinggdasf a curvéJ as:

| X =0 (0€)1 (0é)11]| =0

or
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|X=p& —PE+p& 203-2p° &+ p&a| =0.

If one splits the determinant into two pieces by sepaydhe third column, one of
which will vanish due to the constant ratio of thenterin the same places in two
columns, and then divides hy? then one will get:

| X=pé —pé+ & é11|=0.

If one addsf, times the first row tay, times the second rowytimes the third row,
resp.) then one will get:

Zfzx _,02&(2 _:02&(2'*'251@(2 252{11
y-pn =PI+, M | =0
X—p& -p¢ +{, $u

As a result of eq.d), (c), (9), (pp. 19, 20), and eq. (8), the sums in the first rowh wi

the exception of the first row, will be equal to Odaherefore when the determinant is
simultaneously multiplied and divided ByG and expanded, it will read:

[\/6 (=pn+m) &1— E p¢+ ) m DZ(%XJ =0.

However, the expression in the square brackets caadndnish for special pairs of
values ofu, v, but not for all of them, especially since eq. (8) sags this expression, as
calculation would show, is a function aof alone, multiplied by& . Therefore, the
equation of the osculating plane of a curve will read:

(10) Z[%xj = 0.

As a result of eqsf)(and €) of 8§ 7, with consideration given to eq. (8), one wall/é:

Z ¢62=0 and Z & &2=0.

Furthermore, from eqsa) and €) of 8 7, one has:

2.&&=0 and 2 &&=0,

from which, it follows that:

i:ﬁ:&:v
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wherev is a proportionality factor that can be a functidmi, v. Now, if, e.g.:

%=:—unn(@)} or &= gy

then similar statements will be true fgrand{, . Therefore:

G = S&=d" Y] or G =& (),

from which, it follows that:

62 _ ¢§(V)
11 22 =
() JG 4w

=), = =), % = ().

Since all of the planes that are defined by eQ) @b through the starting point (viz.,
the center of the wave surface), and since, duegtql1l), the direction cosines of the
normal to such a plane are functions of onlyand thus independent of it will then
follow that all osculating planes to a cutewill coincide; i.e., that all curveld will be
planar curves whose planes go through the stgobing.

Now, the direction cosines of the arc elementhef ¢urveV that starts at the point
(©¢, pn, p¢) are proportional to theof)z , (0n)2, (02, or to theéy, 1z, {, so they will
be equal to the direction cosines of the normath® plane of the curve that goes
through the pointdé, pn, p¢), and thus the arc element of the custhat starts from a
point of a plane curve will be perpendicular to the plane of that curvefollows from
this that:

If one lays three successive, infinitely-closevesU in the planes I, Il, 1ll, which
must then likewise be infinitely-close to each othad all go through the starting point,
(although generally they will not intersect in tekame line), and then rotates plane |
around the line of intersection (I 1) until it cwides with plane Il then the curiethat
lies in plane | will describe the part of the sedéahat lies between planes | and plane II
under the rotation, such that when planes | ambihicide, it will also coincide with the
curveU that lies in plane Il. Likewise, the part of thierface that lies between planes Il
and Il will be described by the cur\g that lies in plane Il when one rotates plane Il
around the line of intersection (11 111) until iafis upon plane 11, and so forth.

Thus, the surface will have the character of daserof rotation between any two
successive, infinitely-close curvdd. The totality of lines of intersection of two
successive, infinitely-close planes in which thevegU lie defines a conic surface. The
planes themselves are the tangential planes toctivat surface, and the rotation of a
plane around the intersection with the followingeamtil it coincides with it is the same
as when a plane rolls in the cone without slipping.

Thus, if an arbitrary planar curve is given, ahd plane of that curve rolls on an
arbitrary cone without slipping then the given @iwill describe a surfacg, = 0, and
one can think of every surfa&g = 0 as arising in that way.
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In addition to eq. (8)Ez = 0, eq. (9),(VE 3/G),= 0, must also be fulfilled. When

that equation is integrated, that will givéE 3/G =f(v). Sincedu = d(1 / ), one can
write it as:

(12) JE duid/Gdv= d%Df(v) Ctlv.

Let a circle around the starting po@twith radius 1 be described in the plane of the
curve U that goes through the poi8{o¢, pon, p{). It will cut the radius vecta®C at B.
Let OA be the line around which the plane must be rotaifttely little in order for the
curve to describe the part of the surface betwkanhdurve and the following infinitely-
close curvel. After that rotationB might lie atB, andC, atC,. The infinitely-small
angle of rotationdg) is independent ai = 1 / p, so it will be equal ta(v) dr: C,C will
then be equal to the arc element of the cWvthat goes through the poid, and

therefore:
BB, = /> & dv=+/G dv.

If one denotes the angheOB by # then one will have, on the other haB®; = sin &
dg, so:

JG dv=sing ¢ = sin < Op(v) dv.
Let the arc element of the curlethat starts a€ be CCy, so when the radius vector
OC, cuts the circle aBy:
BB =Y & du=JEdu;

on the other hand, one has:

BBI:ydu, SO x/Edu:ydu.
ou ou

Thus, eq. (12) reads:
03 . 1
—dusin £ Op(v) dv=d— (V) dv.
ou P

If one regardy as constant then one can %eﬁtdu = dJ, and one will then have a
u

differential equation that is true for any cutvesuch that the constants in the differential
eqguation can have different values for differentvegU. The differential equation reads:

dl =bsin3dJ
yo,

or, when integrated:
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Ol

=c-bcosd or p:b—.
1—Ecosz9

D+

If one setsb/c=+e, 1/c =+ a(l —c?, where the sign is chosen such taanda

are positive, then one will have:
+ -

(13) _+a(l-¢&)

" 1+ecosd

This is the equation of a conic section in polar coordnathose starting point
coincides with a focal point and whose axis coincideh thié principal axis of the conic
section. a ande, which are constant relative to the same curve, aaa Hifferent values
for different curvedJ, since they, likeb andd, can also be functions ef However,
since it emerges from the way that the surfaces ti#tfhs the conditiorE, = 0 come
about that all curvell exhibit the same form of one and the same curve, andiffan
only in relation to their position with respect to thetantaneous rotational ax@A that
lies in their plane, which is not the case here, siheanstantaneous rotational axis must
always coincide with the principal axis of the conicteex so it will follow that the
principal axis of the conic section is always the insta@ous rotation axis, so the surface
is a surface of rotation that arises by the rotatiba oonic section around its principal
axis.

The remark that was made at the beginning of this paragraldls the theorem:

Any surface that arises by the rotation of a caction around its principal axis will
be cut by every pair of mutually-perpendicular marthat go through one of the two
focal points of the surface in curves that intetseaonjugate directions, and only those
surfaces will possess that property.

This, and what was said in § 8, immediately yields thHeviing theorem:

Should the normals to an arbitrary surface defineoptical ray system in a medium,
and only them, then the wave surface of the meavooid have to be a surface that
arises by rotating a conic section around its pmpat axis, and a focal point of this
surface must be the so-called center of the suidace wave surface.

Of all these surfaces, the sphere is the only suftaocghich the center of the surface
coincides with the so-called center of the surfacea® surface.

8§ 10. If we return to the surfac&s = 0 that were determined in 8§ 9 then it will
follow immediately from their manner of definitiorsélf — namely, that the normals at
the points of a planar cunk that lies in that plane will then define the constamgle O
with the plane of the curvethat the curved will therefore define one family of lines of
curvature, and accordingly, the cuvevill define the other family, and that as a result of
this the families of curves will always intersect onggate directions. Moreover, since
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when one lays tangents planes through the starting aotheither of the two points of
the surface on a line of curvature, they will be perperaido each other, it will follow
that all curved® andQ (whose meaning was given in 8§ 8, pp. 24) will coincide wigh th
lines of curvature for the surfacBs = 0. Thus, if an optical ray system has a surkgce
= 0 for its wave surface and normal surfaces, in additlzen the lines of curvature of
each normal surface will correspond to lines of curvatdrdhe wave surface. Now, a
line of curvatureS, of a normal surface will correspond to a planar lihewvatureS of
the wave surface. Since the normals along the cyrixgo of which follow in sequence
and intersect infinitely-close to each other, will beafial to the radius vectors that are
drawn to the corresponding points of the cuBvevhich all lie in the plane of that curve,
it will follow that all normals along the curv&, and with them, the curv&, must lie in

a plane that is parallel to the plane of the ciBvd& hat will imply: One family of lines of
curvature of the normal surfaces are plane curves. nbhmals along such a line of
curvature will lie in its plane, and therefore the alements that emanate from such a
line of curvature will be perpendicular to the plane @& fbrmer. The surface will then
have the character of a surface of rotation betweerstwcessive, infinitely-close planar
lines of curvature. In order for mutually-correspondingnaltdines of curvature of both
surfaces — viz., the wave surface and one normal sutfacalways lie in parallel planes,
it is necessary for the instantaneous rotational asetave the same direction in
corresponding planes. Since the restriction thahsiéntaneous rotational axes must go
through a fixed point falls away for the normal surfaths, totality of all of them will
define a developable surface. One deduces the followiogetmefrom the foregoing:

In a medium whose wave surface is generated by an arbitrary planariousueh a
way that its plane rolls on an arbitrary cone without slipping, an opticalsystem will
only be defined by the normals to a surface that is generated by an aripi@asr curve
in such a way that its plane rolls without slipping on a developable surfacésthath
that the contact edge of any tangential plane to it is parallel to the coedae of the
tangential plane of the cone that the wave surface is based upon that is|gar#fiat
tangential plane.

The contact edge is then the current instantaneousorathaxis, and two points in
both curves, which generate the normal (wave, respayrivill correspond when, for
parallel position of the planes of both curves, thenabthat is drawn to the first curve at
a point is parallel to the radius vector that is draw the point of the second curve from
the vertex of the cone.

The developable surface can also be a conic surfacethahadone must then be
entirely equal to the cone of the wave surface.

If the cone that the wave surface is based upon shorkdite then the wave surface
will be a surface of rotation whose rotational axishis ine. The developable surface
that the normal surfaces are based upon will be a cylaldnsface whose sides have the
same direction as the rotational axis of the wavtaear It will then follow that:

In a medium whose wave surface is a surface of rotation, an opticalystgm will
be defined by the normals to any surface that is generated by an arbitazey @lrve in
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such a way that the plane of the curve rolls without slipping on a cylwtese sides
have the same direction as the rotational axis of the wave surface.

Since the cylinder can likewise degenerate into merdhe, it will then follow that:

In a medium whose wave surface is a surface of rotation, the normals surdage
of rotation whose rotational axis has the same direction as the rotationabfatkie wave
surface define an optical ray system.

The surfaces that enter into this paragraph werestteadre thoroughly by Monge in
his bookApplication de I'analyse a la géométrie.




