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 At the beginning of the Winter semester from 1881 to 1882, Herrn Prof. Weierstrass 
posed the following problem in the mathematical seminar: 
 
 Prove that a ray system whose rays possess the property of being normal to a surface 
in an isotropic medium will always retain that property when one comes back to an 
isotropic medium after various reflections and refractions in media with arbitrary wave 
surfaces. 
 
 In my efforts to go into optical ray systems in more detail, I found, among other 
things, the following theorem of Herrn Prof. Kummer that he published in the 
Monatsberichten der Berliner Akademie der Wissenschaften in the year 1860: 
 
 Any infinitely-thin optical ray bundle inside of a homogeneous, transparent medium 
has the property that its two focal planes cut out two curves from the wave surface of 
light that belongs to that medium, whose center can be chosen to be on the axis of the ray 
bundle, that intersect in conjugate directions.  Any ray bundle that has this property is 
also actually optically-representable. 
 
 Since Kummer did not publish a proof of that theorem, which you will allow me to 
refer to as Kummer’s theorem, I sought to derive a proof of it.  That led to the 
development of the present work, whose content is the following: 
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 § 1.  Light seeks to travel from the point P with coordinates (x0, y0, z0) to a point Q 
with the coordinates (x1, y1, z1) in the shortest time.  The point P lies in a medium for 
which one lets the velocity (ρ) of light in the direction (ξ, η, ζ) be: 
 

ρ = ϕ(ξ, η, ζ). 
 

 The point Q lies in a medium for which one lets the velocity of light (ρ1) in the 
direction (ξ1, η1, ζ1) be: 

ρ1 = ϕ1(ξ1, η1, ζ1). 
 
 Let the equation of the separation surface of both media be: 
 

f(x, y, z) = 0. 
 

 The light ray that goes from P to Q meets the separation surface at the point S with 
the coordinates x, y, z. 
 If the segment PS = r has the direction (ξ, η, ζ) and the segment SQ = r1 has the 
direction (ξ1, η1, ζ1) then one will have: 
 

ξ = 0x x

r

−
, η = 0y y

r

−
, ζ = 0z z

r

−
, 

 

r = + 2
0( )x x−∑ , 

 

(1)     ξ1 = − 0

1

x x

r

−
, η1 = − 0

1

y y

r

−
, ζ1 = − 0

1

z z

r

−
, 

 

r1 = + 2
1( )x x−∑ , 

 
in which, now as well as later, I interpret the simple symbol “Σ” to mean that the 
summand that is written down is to be added to two other summands that have the same 
interpretation relative to the y and z axes that the term that is written down has to the x-
axis.  The time (T) that light needs in order to travel from P from Q is: 
 

(2)     T = 1

1

rr

ρ ρ
+ . 

 
 T is a function of x, y, z whose magnitude must satisfy the condition f(x, y, z) = 0.  
Should T be a minimum, then the following equations would have to be true: 
 

(3)   
T f

x x
µ∂ ∂−

∂ ∂
 = 0, 

T f

y y
µ∂ ∂−

∂ ∂
 = 0, 

T f

z z
µ∂ ∂−

∂ ∂
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where µ is an undetermined factor such that these three equations will yield only two 
condition equations between the determining data of the incident and refracted rays.  
Now, if, e.g.: 

(4)     
T

x

∂
∂

= 1

1

rr

x xρ ρ
  ∂ ∂+   ∂ ∂   

 

 
then with the use of equations (1) one will get: 
 

   
r

x ρ
 ∂
 ∂  

 = 
1 (1/ ) (1/ ) (1/ )r

r
x x x x

ρ ξ ρ η ρ ζ
ρ ξ η ζ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

or 

(5)   
r

x ρ
 ∂
 ∂  

 = 
1 (1/ ) (1/ )ρ ρξ ξ
ρ ξ ξ

 ∂ ∂− ⋅ + ∂ ∂ 
∑ = λ ⋅⋅⋅⋅ A. 

 
 One obtains similar expressions for: 
 

r

y ρ
 ∂
 ∂  

 = λ ⋅⋅⋅⋅ B, 
r

z ρ
 ∂
 ∂  

 = λ ⋅⋅⋅⋅ C. 

 
 In the same way, one gets: 
 

(6)   1

1

r

x ρ
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 ∂  

 = − 1 1
1 1

1 1 1
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and analogously: 

1

1

r
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 = − λ1 ⋅⋅⋅⋅ B1, 1

1

r

z ρ
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 ∂  

 = − λ1 ⋅⋅⋅⋅ C1 . 

 
 If follows from (5) that one has: 
 

λ ∑ A d(ρ ξ) = 
1 (1/ ) (1/ )ρ ρξ
ρ ξ ξ

  ∂ ∂− +  ∂ ∂  
∑ ∑  (dρ ⋅⋅⋅⋅ ξ + ρ ⋅⋅⋅⋅ dξ). 

Since: 

∑ ξ 2 = 1, ∑ ξ dξ = 0, 
(1/ )

d
ρ ξ

ξ
∂

∂∑ = 
1

d
ρ

 
 
 

, 

one will have: 

(7)     λ ∑ A d(ρ ξ) = 
1 1

d dρ ρ
ρ ρ

 ⋅ + ⋅  
 

 = 0. 

 One likewise obtains: 
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∑ A1 d(ρ1 ξ1) = 0, 
 
from which, it will follow that the quantities A, B, C are proportional to the direction 
cosines for the normal to the wave surface of the first medium at the point at which the 
radius vector that points in the direction (ξ, η, ζ) meets it, and the analogous statement 
will be true for the second medium. 

 If one defines  ∑ λ ⋅⋅⋅⋅ A ρ ξ with the help of equations (5) then one will obtain: 
 

 ∑ λ ⋅⋅⋅⋅ A ρ ξ = 
1 (1/ ) (1/ )ρ ρξ ρξ ρξ
ρ ξ ξ

  ∂ ∂− ⋅ ⋅ + ⋅  ∂ ∂  
∑ ∑  

  = 21 (1/ ) (1/ )ρ ρρ ξ ξ ξ
ρ ξ ξ

  ∂ ∂⋅ − ⋅ ⋅ + ⋅  ∂ ∂  
∑ ∑ = 1. 

Thus: 
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1
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1 1 1

1
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Thus, we will now have: 
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 Since one gets analogous expressions for the remaining quantities, one can now write 
equations (3) as: 

 1

1 1 1
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A Aρξ ρ ξ
−

∑ ∑
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f
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 If one multiplies equations (9) by the arbitrary quantities X, Y, Z, resp., and adds them 
then one can give the final equation the form: 
 

(10)   1

1 1 1

1 1
AX A X

A Aρξ ρ ξ
   

− − −      
   

∑ ∑
∑ ∑

 = µ 
f

x

∂
∂∑ X . 

 

 If one regards X, Y, Z as running coordinates then the equation 
AX

Aρξ
∑
∑

– 1 = 0, which 

one can also give the form ∑ A (X – ρ ξ) = 0, will be the equation of the tangential plane 
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that is drawn at the point (ρξ, ρη, ρζ) to the wave surface in the first medium that is 
constructed with its center at the starting point. 

 Similarly, 1

1 1 1

A X

A ρ ξ
∑
∑

– 1 = 0, or ∑ A1 (X – ρ1 ξ1) = 0, will be the equation of the 

tangential plane that is drawn at the point (ρ1ξ1, ρ1η1, ρ1ζ1) to the wave surface in the 
second medium, which is likewise constructed with its center at the starting point. 

 Furthermore: 
f

X
x

∂
∂∑ = 0 is the equation of the plane that goes through the starting 

point that is parallel to the tangential plane that is drawn through it at the point (x, y, z) of 
the separation surface at which the incident ray meets it. 
 Since eq. (10) will then be an identity equation for any system of values for X, Y, Z, 
this equation expresses the idea that each of the three planes goes through the intersection 
of the other two.  One therefore finds the refracted ray in the following way: Let the wave 
surfaces of both media be constructed with their centers at the starting point O.  One 
draws a radius vector of the wave surface in the first medium that is parallel to the 
incident ray, lays a tangential plane through its endpoint on that surface and lays a plane 
ON through the point O that is parallel to the tangential plane to the separation surface at 
the point at which the incident ray meets it.  Finally, if one lays a tangential plane to the 
wave surface in the second medium through the intersection N of both planes then the 
radius vector OM to the contact point M of it will give the direction and velocity of the 
refracted ray. The tangential planes to the two wave surfaces must lie on the same side of 
O. 
 Since the principle of fastest arrival time is likewise true for reflections, eq. (9) and 
eq. (10), which is derived from it, will also be true for them.  Now, the first medium is 
also to be considered as being the second medium: The wave surface of the second 
medium will then coincide with that of the first one.  However, since the directions of the 
incident and reflected rays lie on opposite sides of the tangential planes to the separation 
surface (which would be better called the “reflecting surface”), the two tangential planes 
NL and NM must lie on opposite sides of O, here.  If one can lay several tangential planes 
from the line of intersection N to the wave surface in the second medium on the same 
side of the point O then the incident ray will split by refraction (reflection, resp.) into a 
corresponding number of rays. 
 
 
 § 2.  Kummer regarded the determining data of a ray system as given functions of two 
independent variables in his treatise on general ray systems.  If will also be very 
preferable to think of all of the given or calculated quantities as given (determined, resp.) 
functions of two independent variables u, v in the present article. 
 In general, xs, s+1, ys, s+1, zs, s+1 might denote the coordinates of a point of the separation 
surface between the sth and (s + 1)th medium, which are coupled by the equation: 
 

fs, s+1 (xs, s+1, ys, s+1, zs, s+1) = 0, 
 
and ξs, ηs, ζs might mean the direction cosines of the rays of the ray system in the sth 
medium, or − as I would like to say more briefly − the sth ray system.  I imagine the wave 
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surfaces of all media as being constructed with their centers at the coordinate origin, and 
generally let the wave surface in the sth medium be given by the equation: 
 

0 = fs (ρs ξs, ρs ηs, ρs ζs), 
 
where ρs refers to the radius vector to the wave surface that is parallel to the ray (ξs, ηs, 
ζs), and as such, it will imply the velocity of light in the medium in a unit time.  It will be 
assumed that all surfaces possess no singularities for the components that come under 
consideration.  Furthermore, As, Bs, Cs ; As+1, Bs+1, Cs+1 ; As, s+1, Bs, s+1, Cs, s+1 might refer to 
quantities that are proportional to the direction cosines of the normal to the wave surface 
of the sth medium, the normal to the wave surface (s + 1)th medium, and the normal to the 
separation surface of the sth and (s + 1)th medium, respectively.  Let the length of a ray in 
the sth medium be rs , such that: 

(1)     rs = 2
, 1 1,( )s s s sx x+ −−∑ . 

 
  It will follow from the definition of rs that: 
 
 xs,s+1 = xs−1,s + rs ξs , 
(2)     ys,s+1 = ys−1,s + rs ηs , 
 zs,s+1 = zs−1,s + rs ζs . 
 
 Let the quantities xs−1,s , ys−1,s , zs−1,s , ξs, ηs, ζs, rs be determined already as functions of 
the two independent variables u, v, and in fact, as single-valued and continuous functions 
of u, v for a well-defined ray complex that has been taken from the sth ray system.  They 
can then be determined as functions of u, v for the same symbols, but with quantities that 
are denoted with the next higher index, as well as rs, as follows. 
 The equation of a ray of the sth ray system reads: 
 

1,s s

s

X x

ξ
−−

 = 1,s s

s

Y y

η
−−

 = 1,s s

s

Z z

ζ
−−

. 

 
 Should this ray meet the separation surface of the sth and (s + 1)th medium at the point 
(xs,s+1, ys,s+1, zs,s+1) then one would need to have: 
 

, 1 1,s s s s

s

x x

ξ
+ −−

 = , 1 1,s s s s

s

y y

η
+ −−

 = , 1 1,s s s s

s

z z

ζ
+ −−

. 

 
 xs,s+1, ys,s+1, zs,s+1 can now be determined as functions of xs−1,s , ys−1,s , zs−1,s , ξs, ηs, ζs, 
and also as functions of u, v, from these two equations and the equation fs,s+1(xs,s+1, ys,s+1, 
zs,s+1) = 0 of the separation surface.  These functions will be multi-valued functions, in 
general.  However, if one directs one’s attention to just the values of xs,s+1, ys,s+1, zs,s+1 that 
correspond to the points at which the rays of the complex considered cut the surface 
fs,s+1(…) = 0 for the first time in the direction (ξs, ηs, ζs) then one can regard xs,s+1, ys,s+1, 
zs,s+1 as single-valued, continuous functions of u, v.  (The component of the surface at 
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which the rays cut the surface the second time after they are refracted is to be considered 
as being a component of the surface fs+1,s+2(…) = 0.)  Since xs,s+1, ys,s+1, zs,s+1 are 
determined as functions of u, v, rs will also be defined as a function of u, v.  Eq. (9) of the 
previous paragraph must be valid between the sth and (s + 1)th ray system, which now 
reads, in the other notation: 

1

1 1 1

s s

s s s s s s

A A

A Aρ ξ ρ ξ
+

+ + +

−
∑ ∑

 = µ As,s+1. 

 
 The other two equations are analogous. 

 Since one can set As = 
( )

s

s s

f

ρ ξ
∂

∂
, one can regard As, Bs, Cs as being given functions of 

ρs ξs , ρs ηs , ρs ζs ; likewise, As+1, Bs+1, Cs+1 are given functions of ρs+1 ξs+1 , ρs+1 ηs+1 , ρs+1 
ζs+1 (xs,s+1, ys,s+1, zs,s+1, resp.).  Now, since ρs, ξs , ηs , ζs , xs,s+1, ys,s+1, zs,s+1 are known 
functions of u, v, eq. (3) will yield two relations between the four quantities xs,s+1, ys,s+1, 
zs,s+1, and u, v when one eliminates the undetermined µ.  By means of it and the equations 
fs+1(ρs+1 ξs+1 , ρs+1 ηs+1 , ρs+1 ζs+1) = 0 and 2

1sξ +∑  = 1, the four quantities can now be 

determined as functions of u¸v.  These functions will be multi-valued functions, in 
general.  However, if one chooses a well-defined pair of values (u0, v0) that correspond to 
a central ray of the complex to be one that is determined by a system of values of ρs+1, 
ξs+1 , ηs+1 , ζs+1 that belongs to it – which I would like to denoted by ξ0 , η0 , ζ0  – then one 
can, within certain limits, represent the differences ρs+1 − ρ0, ξs+1 − ξ0, ηs+1 − η0, ζs+1 − ζ0  
as powers of the differences u − u0, v − v0 , and one can extend the domain of validity of 
these series to all rays of the complex, since the functions ρs, etc., are single-valued and 
continuous for them, and since the surface fs+1 = 0 possesses no singularities for them, 
and the quantities ρs+1, ξs+1 , ηs+1 , ζs+1 are not infinitely large, moreover.  These power 
series then define the quantities ρs+1, ξs+1 , ηs+1 , ζs+1 as functions of u, v.  The (s + 1)th ray 
system that is obtained from this kind of determination belongs to an arbitrarily-chosen 
one of the ray systems that emerge from the sth ray system by refraction.  If one draws a 
line through a fixed point that is parallel to each ray of the chosen (s + 1)th ray system 
whose length yields the velocity of light in it in a certain system of units then the end 
points of these lines will define a surface that I would like to call the wave surface of the 
(s + 1)th ray system, and which is a component – or, as one can also say, a shell – of the 
general wave surface of the (s + 1)th medium.  ρs+1 is the radius vector of that shell. 
 Let the first ray system be determined by the coordinates x01, y01, z01 of a point 
through which a ray goes and by the direction cosines ξ1 , η1 , ζ1 of that ray.  Let these six 
quantities be given functions of u, v, and indeed, in such a way that they are single-valued 
and continuous for the chosen ray complex.  The points x01, y01, z01 define a surface that 
will be called the initial surface of the ray system.  Furthermore, let the velocity ρ1 of the 
ray with the direction cosines ξ1 , η1 , ζ1 be determined uniquely by these givens, and thus 
also as a single-valued, continuous function of u, v.  As a consequence of the foregoing 
discussion, one can now determine all of the quantities that are present as single-valued, 
continuous functions of u, v from these and the other given quantities, and indeed in such 
a way that the ray in an arbitrary one of the various ray systems that belongs to a well-
defined pair of values (u, v) will correspond to the ray in the first ray system that belongs 
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to the same pair of values (u, v), in such a way that it arises from that ray by various 
refractions and reflections. 
 The theorems that will be derived in what follows will also be valid when the 
functions are multi-valued, since the necessity of the functions being single-valued will 
not enter into them anywhere.  I have assumed that they are single-valued only in order to 
not make it necessary to modify their statements or corollaries in places at which double-
valuedness can possibly arise. 
 
 
 § 3.  Let the nth ray system be the last one.  The systems of equations (2) and (3) in 
the previous paragraph then yield the following equations, which are valid for s = 1, 2, 
…, n − 1: 
 xs,s+1 = xs−1,s + ξs rs , 
(1) ys,s+1 = ys−1,s + ηs rs , 
 zs,s+1 = zs−1,s + ζs rs , 
 

 1

1 1 1

s s

s s s s s s

A A

A Aρ ξ ρ ξ
+

+ + +

−
∑ ∑

 = µ As,s+1 , 

(2) 1

1 1 1

s s

s s s s s s

B B

A Aρ ξ ρ ξ
+

+ + +

−
∑ ∑

 = µ Bs,s+1 , 

 1

1 1 1

s s

s s s s s s

C C

A Aρ ξ ρ ξ
+

+ + +

−
∑ ∑

 = µ Cs,s+1 , 

 
in which the quantities A are defined such that the following equations exist: 
 

 ∑ As d(ρs ξs) = 0, 

(3) ∑ As+1 d(ρs+1 ξs+1) = 0, 

 ∑ As,s+1 dxs,s+1 = 0. 
 
 If one chooses the initial surface of the last (i.e., nth) ray system to be a surface (xn,n+1, 
yn,n+1, zn,n+1), instead of the separation surface (xn−1,n, yn−1,n, zn−1,n) of the (n – 1)th and nth 
medium, such that up to it the rays of the nth system cover the segment rn in the nth 
medium, where rn is a temporarily arbitrary function of u, v, then the following equations 
will be true: 
 xn,n+1 = xn−1,n + rn ξn , 
(4) yn,n+1 = yn−1,n + rn ηn , 
 zn,n+1 = zn−1,n + rn ζn . 
 
 If one multiplies eqs. (2) by dxs,s+1, dys,s+1, dzs,s+1, in turn, and considers the third of 
eq. (3) then if one brings the second term on the left-hand side to the right-hand side then 
one will obtain: 
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(5)     , 1s s s

s s s

A dx

A ρ ξ
+∑

∑
 = 1 , 1

1 1 1

s s s

s s s

A dx

A ρ ξ
+ +

+ + +

∑
∑

. 

 
 As a result of equations (1), one will have: 
 

(6)    ∑ As dxs,s+1 = ∑ As dxs−1,s + ∑ As d(rs ξs). 
 Now, one has: 
 

∑ As d(rs ξs) = s
s s s

s

r
A d ρ ξ

ρ
 

⋅ 
 

∑  = ( )s s
s s s s s s

s s

r r
d A A dρ ξ ρ ξ

ρ ρ
 

+ 
 

∑ ∑ , 

 
or, as a result of the first of eqs. (3): 
 

∑ As d(rs ξs) = s
s s s

s

r
d A ρ ξ

ρ
 
 
 

∑ . 

 

 If one substitutes this in eq. (6) and divides by ∑ As ρs ξs then one will obtain: 
 

(7)     , 1s s s

s s s

A dx

A ρ ξ
+∑

∑
 = 1,s s s s

s s s s

A dx r
d

A ρ ξ ρ
−  

+  
 

∑
∑

. 

 
 Since eq. (4) have the same form as eq. (1), that will yield, in the same way: 
 

(8)     , 1n n n

n n n

A dx

A ρ ξ
+∑

∑
 = 1,n n n n

n n n n

A dx r
d

A ρ ξ ρ
−  

+  
 

∑
∑

. 

 
 With consideration given to eq. (7), eq. (5) now reads: 
 

(9)     1,s s s s

s s s s

A dx r
d

A ρ ξ ρ
−  

+  
 

∑
∑

 = 1 , 1

1 1 1

s s s

s s s

A dx

A ρ ξ
+ +

+ + +

∑
∑

. 

 
 Since s can assume the values 1, 2, …, n – 1, eq. (7) will represent (n – 1) equations.  
If one adds them together then one will see that for s = 2, 3, …, n − 1, each term: 
 

1,s s s

s s s

A dx

A ρ ξ
−∑

∑
 

 
on the left-hand side will cancel an equal term on the right-hand side, and one will then 
obtain: 
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(10)    
1

1 01

11 1 1

n
s

s s

A dx r
d

A ρ ξ ρ

−

=

 
+  

 

∑ ∑
∑

 = 1,n n n

n n n

A dx

A ρ ξ
−∑

∑
. 

 
 With the use of eq. (8), one can also write eq. (10) as: 
 

(11)    1 01

11 1 1

n
s

s s

A dx r
d

A ρ ξ ρ=

 
+  

 

∑ ∑
∑

 = , 1n n n

n n n

A dx

A ρ ξ
+∑

∑
. 

 
 Up to now, rn was an arbitrary function of u, v.  Now, if one determines rs in such a 
way that: 

1

n
s

s s

r
d

ρ=

 
 
 

∑  = 
1

n
s

s s

r
d

ρ=
∑  = 0, 

or 

(12)  
1

n
s

s s

r

ρ=
∑  = C, 

 
and thus equal to a constant, then if eq. (12) is true then eq. (11) will read: 
 

(13) 1 01

1 1 1

A dx

A ρ ξ
∑
∑

 = , 1n n n

n n n

A dx

A ρ ξ
+∑

∑
. 

 
 Since eq. (13) is true for any increase in the variables u, v, and thus for any value of 
du / dv, it will express two relations that exist between the first and last ray system.  
However, as was emphasized in § 1, only two relations exist between two ray systems, 
one of which arises from the other by refraction or reflection, with the exception of the 
relation that corresponding rays of both systems must cut in a point of the separation 
surface.  However, the latter restriction drops out under multiple refractions, such that in 
general only two relations will exist between two ray systems, one of which arises from 
the other by various refractions and reflections, and they will be expressed by eq. (13). 
 Eq. (12) tells one how the initial surface of the second ray system should be chosen in 
order for the relations that exist between the ray systems to be expressible in the form of 
eq. (13). 
 Eq. (11), as well as eq. (12) and eq. (13), which are derived from them, also tells one 
how large that n can be.  Therefore, n can also be infinitely large – i.e., the light can go 
through inhomogeneous media.  One can then think of an inhomogeneous medium as 
being decomposed into infinitely many infinitely-small strips and regard each of those 
pieces as a homogeneous medium. 
 ρs denotes the velocity of light in the sth medium in the direction (ξs ηs, ζs), in some 
system of units, and rs is the length of the path that the light follows in the same direction 
in the sth medium, so rs / ρs will be the time during which a light ray traverses the sth 

medium, and therefore 
1

n
s

s s

r

ρ=
∑ will be the time that light ray needs in order to travel from 
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the surface (x01, y01, z01) to the surface (xn, n+1, yn, n+1, zn, n+1) through the different media.  
Eq. (12) then says that all rays take the same length of time in order to travel from the 
surface (x01, y01, z01) to the surface (xn, n+1, yn, n+1, zn, n+1). 
 If one chooses an arbitrary infinitely-thin ray bundle from the first ray system then it 
will correspond to a likewise infinitely-thin ray bundle in the last ray system, which 
emerges from the latter by various refractions and reflections.  Now, if one lays a plane 
through the first ray bundle that is perpendicular to normal of the wave surface in the first 
system (namely, the normal at that point of the wave surface at which the radius vector 
that is parallel to the central ray meets the wave surface) that corresponds to the central 
ray (i.e., the axis) of the bundle and considers this plane to be the initial surface of the 
rays of the bundle then one will have: 
 

∑ A1 dx01 = 0. 
 

 Should eq. (13), and with it, eq. (12), be true then, since ∑ An ρn ξn becomes 
infinitely large only when one has ρn = ∞, one must have: 
 

∑ An dxn,n+1 = 0. 
 
 The initial surface of the rays of the corresponding bundle of the last ray system must 
then be chosen to be likewise a plane that is perpendicular to the normal to the wave 
surface of the last ray system that corresponds to the axis of the bundle, and one can 
therefore express the relations between the ray systems in the following way: 
 
 If a ray system arises from a given ray system by various refractions and reflections, 
and one assumes that the rays of any infinitely-thin ray bundle of the first system 
simultaneously go through a plane that is parallel to the tangential plane to the wave 
surface of the first ray system at the endpoint of the radius vector that is drawn parallel 
to the axis of the bundle then the rays of the infinitely-thin ray bundle of the second ray 
system that arise from that bundle will also simultaneously pass through a plane that is 
parallel to the tangential plane to the wave surface of the second ray system at the end 
point of the radius vector that is drawn parallel to the axis of the bundle. 
 
 This theorem also expresses the relations that were given by eqs. (12) and (13) 
completely; one then chooses another arbitrary initial surface 01 01 01( , , )x y z′ ′ ′ , instead of the 

plane (x01, y01, z01), in the infinitely-thin ray bundle of the first system and sets: 
 

01x′  = x01 – d1 ⋅⋅⋅⋅ ξ1 , 01y′  = y01 – d1 ⋅⋅⋅⋅ η1 , 01z′  = z01 – d1 ⋅⋅⋅⋅ ζ1. 

 
 If one likewise chooses another initial surface . 1 , 1 , 1( , , )n n n n n nx y z+ + +′ ′ ′ , instead of the plane 

(xn,n+1, yn,n+1, zn,n+1), in the infinitely-thin ray bundle of the lat system and sets: 
 

, 1n nx +′  = xn,n+1 + dn ⋅⋅⋅⋅ ξn , , 1n ny +′  = yn,n+1 + dn ⋅⋅⋅⋅ ηn , 
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, 1n nz +′  = zn,n+1 + dn ⋅⋅⋅⋅ ζn  

 
then that will yield, in the same way that eq. (7) follows from eq. (1): 
 

1 01 1

1 1 1 1

A dx d
d

A ρ ξ ρ
′  

+  
 

∑
∑

 = 1 01

1 1 1

A dx

A ρ ξ
∑
∑

 

and 

, 1n n n

n n n

A dx

A ρ ξ
+′∑

∑
 = , 1n n n n

n n n n

A dx d
d

A ρ ξ ρ
+  

+  
 

∑
∑

. 

 
 Due to the position of the planes, one will have: 
 

∑ A1 dx01 = ∑ An dxn,n+1 = 0. 
 
 As a result, the foregoing equations yield: 
 

1 01 1

1 1 1 1

A dx d
d

A ρ ξ ρ
′  

+  
 

∑
∑

 = , 1n n n n

n n n n

A dx d
d

A ρ ξ ρ
+′  

−  
 

∑
∑

. 

 

 Now, from the aforementioned theorem, one has: 
1

n
s

s s

r

ρ=
∑  = 0. 

 Therefore, the last equation will also remain correct when one writes it as: 
 

1
1 01 1 1

21 1 1 1

n
s n n

s s n

A dx r r dd r

A ρ ξ ρ ρ ρ

−

=

′ +++ + +∑ ∑
∑

 = , 1n n n

n n n

A dx

A ρ ξ
+′∑

∑
. 

 
 Now, (d1 + r1) is equal to the r1 that corresponds to the surface 01 01 01( , , )x y z′ ′ ′ , and (dn 

+ rn) is equal to the rn that corresponds to the surface . 1 , 1 , 1( , , )n n n n n nx y z+ + +′ ′ ′ , and therefore 

this equation is eq. (11), only in a somewhat different notation, from which it follows that 
the relations that exist between the ray systems can once more be given completely. 
 
 
 § 4.  Eq. (11) of the previous § reads: 
 

1 01

11 1 1

n
s

s s

A dx r
d

A ρ ξ ρ=

 
+  

 

∑ ∑
∑

 = , 1n n n

n n n

A dx

A ρ ξ
+∑

∑
. 

 
 This equation also says how one might choose the initial surfaces in the first and last 
ray systems.  Now, if the first ray system were composed of rays that start from a 
luminous point, and one chooses the initial surface to be that luminous point then, since it 
can possess no extension, one will have: dx01 = dy01 = dz01 = 0. 
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 The equation will then read: 
 

(1)     , 1n n n

n n n

A dx

A ρ ξ
+∑

∑
= 

1

n
s

s s

r
d

ρ=

 
 
 
∑ . 

 
 If one again chooses rn such that one has: 
 

(2)      
1

n
s

s s

r

ρ=
∑  = C, 

 
where C is a constant, then, since the denominator does not become infinite, eq. (1) will 
read: 

(3)      ∑ An dxn,n+1 = 0. 
 
 The surfaces that are determined by eq. (2) are, as a result of their definition, arranged 
in such a way that all of the rays that emanate from the luminous points that generate the 
ray system at the same time will meet each of these surfaces at the same time, or that a 
light motion that has started from a luminous point at any time has propagated from a 
well-defined surface in the last medium that is defined by eq. (2) at some point in time.  
Therefore, these surfaces could be given the name of “wave surfaces” in the Kirchhoff-
Helmholtz sense.  However, in order to avoid confusion with the surfaces that I have been 
calling “wave surfaces” up to now, I would like to call the surfaces that were defined in 
eq. (2) “surfaces of equal arrival time,” where “equal” is taken to mean “simultaneous.” 
 Eq. (3) now says that the direction cosines of the normals to these surfaces are 
proportional to An, Bn, Cn, and we therefore have the theorem: 
 
 1) For optical ray systems, the rays are inclined with respect to the surfaces of equal 
arrival time in all directions in the same way as the radius vectors of the wave surface of 
the ray system (which they are parallel to) are inclined with respect to the wave surface. 
 
 The following theorem then follows from this immediately: 
 
 2) For optical ray systems whose wave surface is a sphere, the rays of the system 
will be normal to the surfaces of equal arrival time. 
 
 3) If the rays of an optical system with an “aspherical” wave surface possesses the 
property that they are normal to a surface and the surfaces that are parallel to it – 
surfaces that I would like to call “normal surfaces” – then these normal surfaces can 
never coincide with the surfaces of equal arrival time.  However, this must be the case for 
optical ray systems whose wave surfaces are a sphere. 
 
 4) The necessary and sufficient condition for a ray system in an optical medium to be 
representable is that its rays be normals to a surface. 
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 The first of the stated theorems is an analogue of the Malus-Dupin theorem for optical 
ray systems in media with arbitrary wave surfaces.  The fourth one is an extension of that 
theorem, insofar as the media in which the light must travel before it returns to an 
isotropic medium can be not just isotropic or crystalline, but media with completely 
arbitrary wave surfaces. 
 Eq. (1) (pp. 12) yields that if the nth ray system is to be optically-representable then 

the quantities , 1n n n

n n n

A dx

A ρ ξ
+∑

∑
 must be equal to a complete differential of a function W of u, 

v; however, this condition is also sufficient.  If one then assumes, for the sake of 
simplicity, that the given ray system arises directly from a single refraction or reflection 
from a ray system whose rays start from a luminous point, and that this luminous point 
lies at the coordinate origin then one will have n = 2, and the condition will read: 
 

2 23

2 2 2

A dx

A ρ ξ
∑
∑

= dW = 1 2

1 2

r r
d

ρ ρ
 

+ 
 

. 

 
 Since x23, y23, z23, ξ2, η2, ζ2 are given functions of the independent variables u, v, and 
likewise ρ2 [as a given function of (ξ2, η2, ζ2)], dW will be a given quantity.  ρ1 , which 
gives the velocity of light in air for a certain unit of time, is a known, constant quantity. 
 It follows from eq. (4) that: 

(5)      1 2

1 2

r r

ρ ρ
+  = W, 

 
where W can still contain an arbitrary constant.  Moreover, one has: 
 
 x12 = r1 ξ1 , x23 = r1 ξ1 + r2 ξ2 , 
(6)  y12 = r1 η1 , y23 = r1 η1 + r2 η2 , 
  z12 = r1 ζ1 , z23 = r1 ζ1 + r2 ζ2  . 
 
 If one eliminates the twelve quantities r1, r2, r3, ξ1, η1, ζ1, ξ2, η2, ζ2, x23 , y23, z23 from 
the seven equations (5) and (6), from the seven given functions of u, v, and from the 
equation 2

1ξ∑ = 1, and then from u and v, then one will obtain the equation of the 

separation surface of both media, namely, an equation between x12 , y12, z12 .  Now, since 
the separation surface of both media can actually be determined, the ray system will also 
be optically-representable. 
 
 
 § 5.  I shall now alter the notation slightly.  Let the coordinates of the points of the 
initial surface of a given ray system be x′, y′, z′, and let those of its wave surface be x = 
ρξ, y = ρη, z = ρζ, where ρ is the radius vector.  If A, B, C are quantities that are 
proportional to the direction cosines of the normal to the wave surface then the condition 
for the optical representability of the system will read: 
 



Blasendorff – Dissertation. 14 

(1)      
Adx

Ax

′∑
∑

 = W, 

where W is a function of u, v. 
 If one denotes an increment in the quantities in question by the prefix of d1 (d2, resp.) 
when the ratio τ = dv / du equals τ1 (τ2 , resp.) then one must also have: 
 

(2)    1Ad x

Ax

′∑
∑

 = d1W and 2Ad x

Ax

′∑
∑

= d2W. 

 
 Now, since one has d2 d1W = d1 d2W, one will also have: 
 

(3)     2
1

Ad x
d

Ax

 ′
  
 

∑
∑

 = 1
2

Ad x
d

Ax

 ′
  
 

∑
∑

. 

 
 If one carries out the differentiation and considers that: 
 

(4)     ∑ A d1x = 0 and ∑ A d2x = 0 
 

then, since ∑ A d1 d2 x =∑ A d2 d1x, and if one multiplies it by (∑ Ax)2, eq. (3) will read: 
 

(5)  ∑ Ax∑ d1A d2x′ − ∑ A d2 x′ ∑ d1 Ax = ∑ Ax∑ d2 A d1x′ − ∑ A d1x′ ∑ d2Ax . 
 
 One can write the left-hand side of eq. (5) as: 
 

(6)   ∑ d1A d2x′ (Ax + By + Cz) − ∑ d1A ⋅⋅⋅⋅ x (A d2x′ + B d2y′ + C d2z′). 
 
 Since the quantities A, B, C are proportional to the direction cosines of the normal to 
the wave surface, one can set, under the assumption that τ1 and τ2 are different from each 
other: 
(7)    A = d1y d2z – d2y d1z,  B = d1z d2x – d2z d1x, 

C = d1x d2y – d2x d1y . 
 
 If one consolidates the sums in the expression (6) and sets A, B, C equal to the value 7 
then one will get: 
 

∑ d1A [(d2x′ ⋅⋅⋅⋅ y – x d2y′)( d1z d2x – d2z d1x) + ( d2x′ ⋅⋅⋅⋅ z – x d2z′)( d1x d2y – d2x d1y)], 
 

or 

(8)   ∑ d1A ⋅⋅⋅⋅ 2 1 2 2 1 2 2

1 2 2 2 1 2 2

[ ( ) ( )]

[ ( ) ( )].

d x d z xd y y d x d y z d x x d z

d x d z x d y y d x d y z d x x d z

′ ′ ′ ′− − − − 
 ′ ′ ′ ′+ − + − 
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 If one removes the quantity d2x ⋅⋅⋅⋅ d1x (y d2z′ − z d2y′) from the first summand in the 
curly brackets and adds it to the second summand then the expression (8) will read: 
 

∑ d1A { d2x [−∑ d1x [y d2z′ – z d2y′)] + d1x [∑ d2x (y d2z′ – z d2y′)]}, 
or 

(9)    − | d1x x d2x′ | ⋅⋅⋅⋅ ∑ d1A d2x + | d2x x d2y′ | ⋅⋅⋅⋅ ∑ d1A d1x, 
 
if one understands the symbol | … | to mean a determinant whose first row is written out, 
while the other two arise from the first one by replacing the symbol x with y and z, resp. 
 The right-hand side of eq. (5) will emerge from the left-hand side when one 
exchanges d1 and d2 with each other.  If one then exchanges d1 and d2 with each other in 
the expression (9) then one will obtain the right-hand side of eq. (5) as a result, but with 
the opposite sign, since one would set A equal to d2y d1z – d1y d2z, instead of d1y d2z – d2y 
d1z (and thus, the opposite value), and likewise for B and C, and since the expression is 
homogeneous and linear relative to the quantities A, B, C.  If one now brings the right-
hand side of eq. (5) over to the left-hand side then it will read: 
 

(10)  1 2 1 2 2 2 1 1

2 1 2 1 1 1 2 2

| | | |

| | | | 0.

d x x d x d Ad x d x x d x d Ad x

d x xd x d Ad x d x x d x d Ad x

′ ′− ⋅ + ⋅
′ ′− ⋅ + ⋅ =
∑ ∑
∑ ∑

 

 

 As a result of eq. (4), one will have: d2 ∑ A d1x = d1 ∑ A d2x = 0, or: 
 

(11)    ∑ d2A d1x = ∑ d1A d2x = − ∑ A d1d2x . 
 
 Eq. (10) will then also read: 
 

(12)    ∑ A d1d2x (| d2x′ d1x x | + | d1x′ d2x x |) 

+ | d2x′ d2x x | ⋅⋅⋅⋅ ∑ d1A ⋅⋅⋅⋅ d1x + | d1x′ d1x x | ⋅⋅⋅⋅ ∑ d2A ⋅⋅⋅⋅ d2x = 0. 
 
 This equation will be true for any two distinct increments. 
 
 
 § 6.  If one denotes the partial differential quotients of the quantities in question with 
respect to u (v, resp.) by the index 1 (2, resp.) then the equation: 
 
(13)     | dx′ dx x |  = 0 
will read: 

1 2 1 2x x x x xτ τ′ ′+ +  = 0 

or 

(14)   2
1 1 1 2 2 1 2 2x x x x x x x x x x x xτ τ′ ′ ′ ′+  +  +  = 0. 
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 Since this a second-degree equation in τ, there will always be two real or imaginary 
directions, which can also coincide for equal roots, for which eq. (13) is fulfilled.   If one 
now chooses the increments d1 and d2 in such a way that the values of τ : τ1 and τ2 that 
correspond to them are roots of eq. (14) then one will have: 
 
(15)    | d1x′ d1x x | = 0 and | d2x′ d2x x | = 0, 
 
and therefore if eq. (12) is to be valid, one must have either: 
 

(16)    ∑ A d1d2x = − ∑ d1A d2x = 0 
or 
(16′)    | d2x′ d1x x | + | d1x′ d2x x | = 0. 
 
 If one adds the quantity: 

| d2x′ d2x x | + | d1x′ d1x x |, 
 
which, from eq. (15), is equal to 0, to equation (16′) then that will give: 
 

0 = | d2x′ d2x + d1x x | + | d1x′ d2x + d1x x | 
or 

(16″)  0 = | d2x′ + d1x′ d2x + d1x x | = 4 2 1 2 1

2 2

d x d x d x d x
x

′ ′+ +
. 

 
 Now, one will have, e.g.: 
 

2 1

2

d x d x+
 = x1 + x2 1 2

2

τ τ+ 
 
 

= d3x, 

 

if one lets d3 denote an increment that corresponds to the value τ = 1 2

2

τ τ+
.  Eq. (16′) will 

then read: 
| d3x′ d3x x | = 0. 

 
 However, this equation is eq. (13), and since only two values of τ can satisfy it (if the 

equation is not fulfilled identically), one must have 1 2

2

τ τ+
= τ1 or τ2, which will yield τ1 

=τ2 , but this case is excluded. 
 Therefore, eq. (16) must be true: 
 

(16)    ∑ A d1d2x = − ∑ d1A d2x = 0. 
 
 Now, if eq. (16) is also always fulfilled when eq. (15) is true, no matter how little τ1 
and τ2 differ from each other, then it must likewise be true for the limiting case of τ1 =τ2 . 
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 In order to arrive at the geometric interpretations of eqs. (15) and (16), I imagine that 
the coordinate system has been parallel displaced in such a way that the its origin comes 
to lie at the point O of the initial surface whose original coordinates were x′, y′, z′, and 
that O has been constructed as the center of the wave surface of the ray system, 
moreover.  The ray that emanates from the point O will then intersect the wave surface at 
the point P(x, y, z).  Let the ray that emanates from the point R(dx′, dy′, dz′) be RS, and let 
the radius vector that is parallel to it be OQ, so the point Q will have the coordinates x + 
dx, y + dy, z + dz. 
 The equation of the plane that goes through Q, P, and O can then be written: 
 

| X x + dx x | = 0 
or 
(17)     | X dx x | = 0, 
 
where X, Y, Z are the running coordinates.  If the increment d is equal to one of the two 
increments d1 or d2, which satisfy eq. (15), then the coordinates of R will satisfy eq. (17).  
R, and therefore also the ray RS that goes through R, will then lie in the plane that is 
drawn through OP and OQ.  It then follows from this that the ray RS, which is infinitely 
close to the ray OP, will cut the first one, so it will lie in a focal plane of the infinitely-
thin ray bundle that has the axis OP.  Therefore, when eq. (15) are true, the points Q of 
the wave surface, which are infinitely close to the point P, which might correspond to the 
increments d1 and d2 and be denoted by Q1 and Q2, will lie in the directions in which the 
intersection curves of the focal planes of the bundle will cut the wave surface. 
 The equations of the tangential planes at the points P and Q1 read: 
 

∑ A (X – x) = 0 and ∑ (A + d1A)(X – x – d1x) = 0. 
 
 Both equations together will yield the equations of the line of intersection of both 
planes.  If one replaces the second equation with the difference of both equations, while 
neglecting the second-order infinitesimal quantities, and with consideration given to the 

equation ∑ A d1x = 0, then the equations of the line of intersection will also read: 
 

∑ A (X – x) = 0 and ∑ d1A (X – x) = 0. 
 
 Since these equations will be satisfied when one sets: 
 

X = x, Y = y, Z = z or X = x + d2x, Y = y + d2y, Z = z + d2z 
 
[the last one is true because eq. (18) (pp. 15) is true], the points P and Q2 will lie on that 
line of intersection, and therefore the tangents PQ1 and PQ2 are conjugate tangents, and 
as such, will lie in conjugate directions. 
 Conversely, if eq. (16) is true for the two increments d1 and d2 for which eq. (18) (pp. 
15) is fulfilled then the condition for the optical representability of the ray system will be 
fulfilled, which one will deduce from the following: 
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 Since the values τ1 and τ2 of τ = dv / du that correspond to two increments d1 and d2 
are roots of eq. (14) (pp. 15), one will have: 
 

(18)  τ1τ2 = 1 1

2 2

| |

| |

x x x

x x x

′
′

,  τ1 +τ2 = − 1 2 2 1

2 2

| | | |

| |

x x x x x x

x x x

′ ′+
′

. 

 
 Furthermore, from eq. (16), one will have: 
 

0 = ∑ d1A d2x = ∑ (A1 + A2 τ1) (x1 + x2 τ2) 
or 

(19)    ∑ A1 x1 + τ1 ∑ A2 x1 + τ2 ∑ A1 x2 + τ1τ2 ∑ A2 x2 = 0. 
 
 Now, analogous to eq. (11) (pp. 15), one will have: 
 

(20)    ∑ A2 x1 = ∑ A1 x2 = − ∑ A x12 , 
 
if the double indices 11, 12, 22 denote the corresponding second partial differential 
quotients of the quantities in question. 
 As a result of eq. (20), eq. (19) will read: 
 

(21)   − (τ1 + τ2) ∑ A x12 + ∑ A1 x1 + τ1τ2 ∑ A2 x2 = 0. 
 
 If one substitutes the values of τ1τ2 and τ1 + τ2 that follow from eq. (13) in this then 
one will obtain: 
 
(22) 1 2 2 1 12 2 2 1 1 2 1 2 2(| | | |) | | | |x x x x x x Ax x x x A x x x x A x′ ′ ′ ′+ ⋅ + ⋅ + ⋅∑ ∑ ∑  = 0. 

 

 One can derive the condition that 
A dx

A x

′∑
∑

 is a complete differential in the following 

way: One has: 
A dx

A x

′∑
∑

 = 1 2A dx A dx
du dv

A x A x

′ ′
+∑ ∑

∑ ∑
. 

 
 Should this be a complete differential then one would need to have: 
 

(22)[sic]   1A x

v A x

 ′∂
  ∂  

∑
∑

 = 2A x

u A x

 ′∂
  ∂  

∑
∑

. 

 
 This equation is analogous to eq. (3) (pp. 14), and when it is developed, it will give 
eq. (22), which emerges from eq. (12) (pp. 15) when one replaces the increment d1 (d2, 
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resp.) with the partial differential quotient with respect to u (v, resp.), and therefore eq. 
(22) also expresses the condition for optical representability. 
 Kummer’s theorem is proved completely with that, which now reads: 
 
 Any infinitely-thin optical ray bundle inside of a homogeneous, transparent medium 
has the property that its two focal planes cut out two curves from the wave surface of the 
light that belongs to this medium, whose center is assumed to lie on the axis of the ray 
bundle, and they will intersect in conjugate directions.  Any ray bundle that has this 
property is also actually optically-representable. 
 
 One can now also assume that the increments d1 and d2 in eq. (12) (pp. 15) are such 
that one has: 

∑ d1 A d1x = 0  and ∑ d2 A d2x = 0 . 
 
The increments d1 and d2 will then correspond to directions that are not mutually-
conjugate directions, since each of them will be conjugate to itself, when one excludes 
the case in which the two directions coincide.  In order for eq. (12) to be fulfilled, one 
must then have: 

2 1 1 2d x d x x d x d x x′ ′+  = 0. 

 
 I have, however, found no sufficiently simple and obvious geometric interpretation 
for this expression that I could give here. 
 

_________ 
 
 

 Even though the normal surfaces of optical ray systems with “aspherical” wave 
surfaces (i.e., the normal surfaces to the so-called “irregular” ray systems) then lose the 
property of likewise being wave surfaces in the Kirchhoff-Helmholtz sense, it still seems 
worth investigating whether there are any irregular ray systems, at all, whose rays are 
normals to a surface.  
 
 
 § 7.  Since it will prove to be more convenient for this part of the examination to give 
the arbitrary variables u, v a well-defined geometric meaning, they might be conferred 
that meaning from the outset. 
 If one lets U denote the curves of the wave surface for which u varies and v is a 
constant that changes from curve to curve and lets V denote the ones for which v varies 
and u has a constant value, and one assumes that the curves V are the curves in which the 
spheres that are concentric with the wave surface cut that surface and that the curves U 
intersect the curves V at right angles then one can set: 
 

u = 
1

ρ
, 
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and the expression for the rectangular intersection of both curves will be: 
 

0 = ∑ x1 x2 = ∑ (ρ ξ)1 ⋅⋅⋅⋅ (ρ ξ)2 , 
moreover. 
 One first has: 

(a)    ∑ ξ2 = 1, ∑ ξ ξ1 = 0, ∑ ξ ξ2 = 0. 
 
 It follows from the first condition equation for u, v that: 
 
(b)    ρ1 = − ρ2 , ρ11 = 2ρ2 , ρ2 = ρ11 – ρ22 = 0. 
 
 It follows from the second one, with consideration given to eq. (a) and (b), that: 
 

0 = ∑ (−ρ2 ξ + ρ ξ1) ⋅⋅⋅⋅ ρ ξ2 = −ρ2 ∑ ξ ξ1 +  ρ2
 ∑ ξ1 ξ2 , 

or 

(c)      ∑ ξ1 ξ2 = 0. 
 I now set, to abbreviate: 
(d)     2

1ξ∑ = E, 2
2ξ∑ = G, 

 
from which, it will follow that: 
 

(e)     
1 1

1 11 1 1 12 22 2

1 1
2 12 1 2 22 22 2

, ,

, .

E E

G G

ξ ξ ξ ξ
ξ ξ ξ ξ

= =
= =

∑ ∑
∑ ∑

 

 
 Eq. (a), with consideration given to eqs. (c) and (d), will yield: 
 

 0 = (∑ξ ξ1)2 =  ∑ξ2 ξ1 + ∑ ξ ξ12 or ∑ ξ ξ12 = 0, 

 0 = (∑ξ ξ1)1 =  ∑ 2
1ξ + ∑ ξ ξ11 or ∑ ξ ξ11 = − E, 

 0 = (∑ξ ξ2)2 =  ∑ 2
2ξ + ∑ ξ ξ22 or ∑ ξ ξ22 = − G. 

 
 Thus, one will have: 
 

(f)    ∑ ξ ξ12 = 0,    ∑ ξ ξ11 = − E,     ∑ ξ ξ12 = − G. 
 
 Eq. (c), with consideration given to eq. (e), yields: 
 

 0 = (∑ξ1 ξ2)1 =  ∑ξ11 ξ2 + ∑ ξ1 ξ21 or ∑ ξ2 ξ11 = − 1
2 E2 , 

 0 = (∑ξ1 ξ2)2 =  ∑ξ12 ξ2 + ∑ ξ1 ξ22 or ∑ ξ1 ξ22 = − 1
2 G1 . 

 
 One then has: 
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(g)     ∑ ξ2 ξ11 = − 1
2 E2 , ∑ ξ1 ξ22 = − 1

2 G1 . 

 
 Some expressions can now be derived that will find an application later on.  First, let 
it be remarked that the cases in which E or G are identically equal to 0 will be excluded; 
the equation E = 0 will then represent a conic surface, and the equation G = 0 will 
represent a curve with double curvature.  Let the ratio of the direction cosines of the 
normal to the wave surface to the quantities A, B, C be chosen such that: 
 

(α)      ∑ A ρ ξ = 1. 
 

 Moreover, it follows from ∑ A d(ρ ξ)  = 0 and eq. (b) that: 
 

(β)     ∑ A (ρ ξ)1  = ∑ A (−ρ2 ξ + ρ ξ1)  = 0, 

(γ)     ∑ A (ρ ξ)2  = ∑ A ρ ξ2 = 0. 
 If one sets: 
 
(δ)   A = λξ + µξ1 + νξ2 , B = λη + µη1 + νη2 , C = λζ + µζ1 + νζ2  
 
then it will follow from eqs. (γ), (δ), (a), and (c) that: 
 

0 = ∑ Aρξ2 = ρλ ∑ξξ2 + ρµ ∑ξ1 ξ2  + ρν 2
2ξ∑ , or ρ ⋅⋅⋅⋅ν 2

2ξ∑ = 0, 

so: 
(ε)       ν = 0. 
 
Moreover, it follows from eqs. (α), (δ), (ε), (a), and (d) that: 
 

1 = ∑ Aρξ = ρλ ∑ ξ2 + ρµ∑ξ1 ξ2,  or 1 = ρλ 
so: 

(ζ)       λ = 
1

ρ
, 

 
and finally, it follows from eqs. (β), (δ), (ε), (ζ), (a), and (d) that: 
 

0 =∑ A (−ρ2 ξ + ρξ1) = 2
1 1

1
( )ξ µξ ρ ξ ρξ

ρ
 + − + 
 

∑  

or 

0 = −ρ ∑ξ 2 + ∑ ξξ1 – µρ2 ∑ ξξ1 + µρ 2
1ξ∑ = − ρ + µρ 2

1ξ∑ , 

or 

µ = 
1

E
, 

and therefore eq. (δ) will read: 
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(1)   A = 1

1 1

E
ξ ξ

ρ
+ , B = 1

1 1

E
η η

ρ
+ , C = 1

1 1

E
ζ ζ

ρ
+ , 

 
when the following equation is true: 
 

(2)      ∑ A ρ ξ = 1. 
 
 The equations of two planes that are drawn through the radius vector to the wave 
surface, which points in the direction (ξ, η, ζ), through each of which, a radius vector that 
points in the direction (ξ + d1ξ, η + d1η, ζ + d1ζ) [(ξ + d2ξ, η + d2η, ζ + d2ζ), resp.] goes, 
read: 

| X ξ ξ + d1ξ | = 0 or | X ξ d1ξ | = 0 and | X ξ d2ξ | = 0. 
 
Should both planes be perpendicular to each other, then one would need to have: 
 

∑ (η d1ζ – ξ d1η) (η d2ζ – ζ d2η) = 0, 
or 

0 = ∑η2 d1ζ d2ζ + ∑ζ 2 d1η d2η – ∑η d2η ⋅⋅⋅⋅ ζ d1ζ – ∑ζ d2ζ ⋅⋅⋅⋅ η d1η . 
 

 If one writes down another suitable summand under the ∑ sign, instead of the ones 
that are written, and, at the same time, adds and subtracts the quantities: 
 

∑ξ 2 d1ξ d2ξ = ∑ξ d2ξ ⋅⋅⋅⋅ ξ d1ξ 
then the equation will read: 
 

0 = ∑ξ 2 d1ξ d2ξ + ∑ξ 2 d1η d2η + ∑ξ 2 d1ζ d2ζ 

− ∑ξ d2ξ ⋅⋅⋅⋅ ξ d1ξ  − ∑ξ d2ξ ⋅⋅⋅⋅ η d1η − ∑ξ d2ξ ⋅⋅⋅⋅ ζ d1ζ 
or 

∑ξ 2 ⋅⋅⋅⋅    ∑ d1ξ d2ξ − ∑ξ d2ξ  ⋅⋅⋅⋅    ∑ ξ d1ξ = 0. 
 
 If one now sets d1ξ = ξ1 + ξ2 τ1, d2ξ = ξ1 + ξ2 τ2, and similarly for d1η, d1ζ, d2η, d2η, 

then, since ∑ξ 2 = 1, one will have: 
 

∑ (ξ1 + ξ2 τ1)(ξ1 + ξ2 τ2) − ∑ ξ (ξ1 + ξ2 τ2) ⋅⋅⋅⋅ ∑ ξ (ξ1 + ξ2 τ1) = 0. 
 
 If one resolves the brackets and considers eqs. (a), (c), (d) (pp. 19 and 20) then one 
will get: 
(3)      E + G τ1 τ2 = 0. 
 
 Equation (3) is then the condition for two directions that emanate from a point of the 
wave surface (for which the corresponding values of τ are denoted by τ1 and τ2) and 
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describe two planes that are laid through that point and the center of the wave surface to 
be perpendicular to each other. 
 From eq. (16) of § 6, (pp. 16), the condition for two directions that emanate from a 
point of the wave surface (for which the corresponding values of τ might be denoted by 
τ1 and τ2) to be conjugate directions reads: 
 

0 = ∑ A d1d1x = ∑ A [x11 + x12 (τ1 + τ2) + x23 τ1 τ2] 
or 

(4)    ∑ A x11 + (τ1 + τ2) ∑ A x12 + τ2 ∑ A x22 = 0. 
 
 Now, as a result of eq. (1) and eq. (b) (pp. 20), one will have: 
 

∑ A x11 = ∑ A (ρξ)1 = 1

1 1

E
ξ ξ

ρ
 + 
 

∑ (2ρ3 ξ – 2ρ2 ξ1 + ρ ξ11). 

 
If one employs eq. (a), (d), (f), and (e) then one will get: 
 

 ∑ A x11 = 2ρ2 − E − 2ρ2 + 1
12 E

E

ρ
 = 1

2 E (− 2E2 + ρ E1), 

 

 ∑ A x12 = ∑ A (ρξ)12 = 1

1 1

E
ξ ξ

ρ
 + 
 

∑ (–ρ2 ξ2 + ρ ξ12). 

 
If one employs eq. (a), (f), and (e) then one will get: 
 

∑ A x12 = 2

1

2
E

E
ρ , 

∑ A x22 = ∑ A (ρξ)22 = 1

1 1

E
ξ ξ

ρ
 + 
 

∑ ρξ22 , 

 
or, when one employs eqs. (f) and (g): 
 

∑ A x22 = − G − 22
G

E

ρ
= 

1

2E

−
(2EG + ρG1). 

 
 If one substitutes the calculated expressions into eq. (4) and multiplies it by 2E then it 
will read: 
(5)    (− 2E2 + ρE1) + ρ E2 (τ1 + τ2) – (2EG + ρ G1) τ1 τ2 = 0. 
 
 
 § 8.  If one temporarily excludes the case in which eq. (2) is identical to eq. (4) then 
one can determine τ1 and τ2 from these equations uniquely as roots of a quadratic 
equation.  Therefore, in general, there will be only one pair of mutually perpendicular 
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planes that go through a radius vector of the wave surface and cut the wave surface in 
curves that intersect in conjugate directions.  If one determines these directions for each 
radius vector then one will obtain two new families of curves P and Q on the wave 
surface in such a way that, in general, only one curve P and one curve Q will go through 
each point of the surface that intersect in conjugate directions in such a way that the two 
planes that are laid through the starting point and one of the directions will be 
perpendicular to each other.  Now, if surfaces can be determined in such a way that their 
lines of curvature correspond to the families of curves P and Q that are defined on a 
given surface in such a way that the normals along a line of curvature are parallel to the 
radius vectors that are drawn from the corresponding points of the corresponding curves 
P or Q of the given surface then the normals to a surface thus-determined will define an 
optically-representable ray system with the given surface as its wave surface, so 
Kummer’s theorem will be fulfilled by an infinitely thin ray bundle of this system as a 
result of the definition of the lines of curvature. 
 One will obtain surfaces with the aforementioned special property, e.g., when one 
sets: 
(6)     x′ = a + κA, y′ = b + κB, z′ = c + κC, 
 
where x′, y′, z′ are the coordinates of a point on the surface, a, b, c, κ are constants. and A, 
B, C are the quantities that are defined by eq. (1) (pp. 21).  One will then have: 
 

(1)     ∑ ξ dx′ = κ ∑ ξ ⋅⋅⋅⋅ 1

1 1
d

E
ξ ξ

ρ
 + 
 

 

= κ 2
1 11 12

1 1 1 1
( )d d d du dv

E E
ξ ξ ξ ξ ξ ξ ξ ξ

ρ ρ
    + + + +   

   
∑ ∑ ∑ ∑  

or 

∑ ξ dx′ = k 11 12

du dv
du

E E
ξξ ξξ + + 

 
∑ ∑  = 0, 

 
due to eq. (f), (pp. 20). 

 Due to eq. (2), (pp. 21): ∑ A ξ = ∑ A ρ ξ = 1, so one has: 
 

(2)     
Adx

Ax

′∑
∑

= κ ∑ A dA = d(κ ⋅⋅⋅⋅ ∑ A2), 

 
so this is equal to a complete differential, and therefore, from eq. (1) of § 5, the condition 
for optical representability is fulfilled. 
 As a result of eq. (2) and eq. (6), one has: 
 

(7)    
x a ρξ

κ
′ − 

 
 

∑ = 1 or ∑ ξ (x′ – a) = 
κ
ρ

= ρ′. 
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 If one then thinks of the wave surface S of a medium as being constructed around an 
arbitrary, fixed point D whose coordinates are a, b, c, and a segment ρ′ = DE′ as being 
removed from a radius vector ρ = DE of D, which points in an arbitrary direction (ξ, η, 
ζ), such that ρ ⋅⋅⋅⋅    ρ′ = k, then the points E′ will define an inverse surface S′ to the surface S.  
If one erects a plane through E′ that is perpendicular to DE′ then, as a result of eq. (7), the 
point (x′,y′, z′) will lie on this plane, and indeed on the point of intersection E″ of the 
plane with the line DE″, which is parallel to the normal EG to the surface S at the point E.  
If the points E″ define the surface S″ then, as is obvious from the foregoing, the normal 
E″G″ to the surface S″ at the point E″ will be parallel to the radius vector DE of the 
surface S, so the plane E′E″ will also be a tangential plane to the surface S″, and all 
planes E′E″ will envelop the surface S″.  Therefore, the surface S′ is the base point 
surface of the surface S″, and therefore S″ will be the first negative base point surface to 
the surface S′.  With that, we have the theorem: 
 
 The normals to the first, negative base point surface of an inverse surface to the wave 
surface of a medium define an optically-representable ray system in that medium. 
 
 For κ = 0, such a ray system will go to a ray system whose rays all cross at a point.  
For a ray system of this kind, the spheres that are constructed around the crossing point 
will be normal surfaces, and the wave surfaces that are constructed around that point as a 
center, in the various units of length, will be surfaces of equal arrival time. 
 
 
 § 9.  As a result of the meaning of the equations, the surfaces for which eq. (2) in § 7 
is identical to eq. (4) or (5) of § 7 have the property that any pair of mutually-
perpendicular planes that go through the starting point will cut the surface in curves that 
intersect in conjugate directions. 
 For these surfaces, the following equations must be true: 
 
(8)      E2 = 0 
and 

2
12E E

E

ρ− +
= 12EG G

G

ρ− −
, 

or 

1 12

2

GE EG

EG EG

ρ +⋅ = 0, 

or 

(9)      1( )E G⋅  = 0. 

 
 The form of the surfaces that satisfy the condition E2 = 0 shall next be ascertained. 
 One can write the equations of the osculating planes of a curve U as: 
 

| X – ρξ (ρξ)1 (ρξ)11 | = 0 
or 
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| X – ρξ    − ρ2ξ + ρξ1    2ρ 3ξ – 2 ρ 2 ξ1 + ρξ11 | = 0. 
 

 If one splits the determinant into two pieces by separating the third column, one of 
which will vanish due to the constant ratio of the terms in the same places in two 
columns, and then divides by  ρ 2 then one will get: 
 

| X – ρξ  − ρξ + ξ1  ξ11 | = 0. 
 
 If one adds ξ2 times the first row to η2 times the second row (ζ2 times the third row, 
resp.) then one will get: 
 

2 2 2 1 2 2 11

1 11

1 11

X

y

x

ξ ρ ξξ ρ ξξ ξ ξ ξ ξ
ρη ρη η η
ρξ ρζ ζ ζ

− − +
− − +
− − +

∑ ∑ ∑ ∑ ∑
 = 0. 

 
 As a result of eq. (a), (c), (g), (pp. 19, 20), and eq. (8), the sums in the first row, with 
the exception of the first row, will be equal to 0, and therefore when the determinant is 

simultaneously multiplied and divided by G  and expanded, it will read: 
 

[ G  (−ρη + η1) ζ11 – (− ρζ + ζ1) η11] ⋅⋅⋅⋅ 2 X
G

ξ 
 
 

∑  = 0. 

 
 However, the expression in the square brackets can indeed vanish for special pairs of 
values of u, v, but not for all of them, especially since eq. (8) says that this expression, as 
calculation would show, is a function of u alone, multiplied by ξ2 .  Therefore, the 
equation of the osculating plane of a curve will read: 
 

(10)     2 X
G

ξ 
 
 

∑  = 0. 

 
 As a result of eqs. (f) and (e) of § 7, with consideration given to eq. (8), one will have: 
 

∑ ξξ12 = 0 and ∑ ξ1 ξ12 = 0. 
 
 Furthermore, from eqs. (a) and (c) of § 7, one has: 
 

∑ ξξ2 = 0 and ∑ ξ1 ξ2 = 0, 
 
from which, it follows that: 

12

2

ξ
ξ

= 12

2

η
η

 = 12

2

ζ
ζ

 = ν, 
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where ν is a proportionality factor that can be a function of u, v.  Now, if, e.g.: 
 

12

2

ξ
ξ

= 2[ln( )]
u

ξ∂
∂

 or ξ2 = ϕξ(v) ⋅⋅⋅⋅ e∫ v du, 

 
then similar statements will be true for η2 and ζ2 .  Therefore: 
 

G  = 2
2ξ∑ = 

2
( )

v du
e vξϕ∫   ∑   or G  = e∫ v du ϕ(v), 

 
from which, it follows that: 

(11)   2

G

ξ
 = 

( )

( )

v

v
ξϕ

ϕ
= fξ (v), 2

G

η
 = fη(v), 2

G

ζ
 = fζ (v). 

 
 Since all of the planes that are defined by eq. (10) go through the starting point (viz., 
the center of the wave surface), and since, due to eq. (11), the direction cosines of the 
normal to such a plane are functions of only v, and thus independent of u, it will then 
follow that all osculating planes to a curve U will coincide; i.e., that all curves U will be 
planar curves whose planes go through the starting point. 
 Now, the direction cosines of the arc element of the curve V that starts at the point 
(ρξ, ρη, ρζ) are proportional to the (ρξ)2 , (ρη)2 , (ρζ)2 , or to the ξ2, η2, ζ2, so they will 
be equal to the direction cosines of the normal to the plane of the curve U that goes 
through the point (ρξ, ρη, ρζ), and thus the arc element of the curve V that starts from a 
point of a plane curve U will be perpendicular to the plane of that curve.  It follows from 
this that: 
 If one lays three successive, infinitely-close curves U in the planes I, II, III, which 
must then likewise be infinitely-close to each other and all go through the starting point, 
(although generally they will not intersect in the same line), and then rotates plane I 
around the line of intersection (I II) until it coincides with plane II then the curve U that 
lies in plane I will describe the part of the surface that lies between planes I and plane II 
under the rotation, such that when planes I and II coincide, it will also coincide with the 
curve U that lies in plane II.  Likewise, the part of the surface that lies between planes II 
and III will be described by the curve U that lies in plane II when one rotates plane II 
around the line of intersection (II III) until it falls upon plane III, and so forth. 
 Thus, the surface will have the character of a surface of rotation between any two 
successive, infinitely-close curves U.  The totality of lines of intersection of two 
successive, infinitely-close planes in which the curves U lie defines a conic surface.  The 
planes themselves are the tangential planes to that conic surface, and the rotation of a 
plane around the intersection with the following one until it coincides with it is the same 
as when a plane rolls in the cone without slipping. 
 Thus, if an arbitrary planar curve is given, and the plane of that curve rolls on an 
arbitrary cone without slipping then the given curve will describe a surface E2 = 0, and 
one can think of every surface E2 = 0 as arising in that way. 
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 In addition to eq. (8), E2 = 0, eq. (9), 1( )E G⋅ = 0, must also be fulfilled.  When 

that equation is integrated, that will give E G⋅  = f(v).  Since du = d(1 / ρ), one can 
write it as: 

(12)    E du G dv⋅  = 
1

( )d f v dv
ρ

⋅ ⋅ . 

 
 Let a circle around the starting point O with radius 1 be described in the plane of the 
curve U that goes through the point C(ρξ, ρη, ρζ).  It will cut the radius vector OC at B.  
Let OA be the line around which the plane must be rotated infinitely little in order for the 
curve to describe the part of the surface between that curve and the following infinitely-
close curve U.  After that rotation, B might lie at B2 and C, at C2 .  The infinitely-small 
angle of rotation (dϕ) is independent of u = 1 / ρ, so it will be equal to ϕ(v) dr: C2C will 
then be equal to the arc element of the curve V that goes through the point C, and 
therefore: 

BB2 = 2
2ξ∑ dv = G  dv. 

 
 If one denotes the angle AOB by ϑ then one will have, on the other hand: BB2 = sin ϑ 
dϕ, so: 

G  dv = sin ϑ ⋅⋅⋅⋅ dϕ = sin ϑ ⋅⋅⋅⋅ ϕ(v) dv. 
 

 Let the arc element of the curve U that starts at C be CC1, so when the radius vector 
OC1 cuts the circle at B1: 

BB1 = 2
1ξ∑  du = E du ; 

on the other hand, one has: 
 

BB1 = 
u

ϑ∂
∂

du,  so E du = 
u

ϑ∂
∂

du. 

 
 Thus, eq. (12) reads: 

u

ϑ∂
∂

du sin ϑ ⋅⋅⋅⋅ ϕ(v) dv = 
1

d
ρ

 ⋅⋅⋅⋅ f(v) dv. 

 

 If one regards v as constant then one can set 
u

ϑ∂
∂

du = dϑ, and one will then have a 

differential equation that is true for any curve U such that the constants in the differential 
equation can have different values for different curves U.  The differential equation reads: 
 

1
d

ρ
 = b sin ϑ dϑ, 

or, when integrated: 
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1

ρ
 = c − b cos ϑ or ρ = 

1

1 cos

c
b

c
ϑ−

. 

 
 If one sets: b / c = + e, 1 / c = ± a(1 – c2), where the sign is chosen such that e and a 
are positive, then one will have: 

(13)     ρ = 
2(1 )

1 cos

a c

e ϑ
+ −

+
. 

 
 This is the equation of a conic section in polar coordinates whose starting point 
coincides with a focal point and whose axis coincides with the principal axis of the conic 
section.  a and e, which are constant relative to the same curve, can have different values 
for different curves U, since they, like b and d, can also be functions of v.  However, 
since it emerges from the way that the surfaces that satisfy the condition E2 = 0 come 
about that all curves U exhibit the same form of one and the same curve, and can differ 
only in relation to their position with respect to the instantaneous rotational axis OA that 
lies in their plane, which is not the case here, since the instantaneous rotational axis must 
always coincide with the principal axis of the conic section, so it will follow that the 
principal axis of the conic section is always the instantaneous rotation axis, so the surface 
is a surface of rotation that arises by the rotation of a conic section around its principal 
axis. 
 The remark that was made at the beginning of this paragraph yields the theorem: 
 
 Any surface that arises by the rotation of a conic section around its principal axis will 
be cut by every pair of mutually-perpendicular planes that go through one of the two 
focal points of the surface in curves that intersect in conjugate directions, and only those 
surfaces will possess that property. 
 
 This, and what was said in § 8, immediately yields the following theorem: 
 
 Should the normals to an arbitrary surface define an optical ray system in a medium, 
and only them, then the wave surface of the medium would have to be a surface that 
arises by rotating a conic section around its principal axis, and a focal point of this 
surface must be the so-called center of the surface as a wave surface. 
 
 Of all these surfaces, the sphere is the only surface for which the center of the surface 
coincides with the so-called center of the surface as wave surface. 
 
 
 § 10.  If we return to the surfaces E2 = 0 that were determined in § 9 then it will 
follow immediately from their manner of definition itself − namely, that the normals at 
the points of a planar curve U that lies in that plane will then define the constant angle 0 
with the plane of the curve − that the curves U will therefore define one family of lines of 
curvature, and accordingly, the curve V will define the other family, and that as a result of 
this the families of curves will always intersect in conjugate directions.  Moreover, since 
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when one lays tangents planes through the starting point and either of the two points of 
the surface on a line of curvature, they will be perpendicular to each other, it will follow 
that all curves P and Q (whose meaning was given in § 8, pp. 24) will coincide with the 
lines of curvature for the surfaces E2 = 0.  Thus, if an optical ray system has a surface E2 
= 0 for its wave surface and normal surfaces, in addition, then the lines of curvature of 
each normal surface will correspond to lines of curvature of the wave surface.  Now, a 
line of curvature S1 of a normal surface will correspond to a planar line of curvature S of 
the wave surface.  Since the normals along the curve S, two of which follow in sequence 
and intersect infinitely-close to each other, will be parallel to the radius vectors that are 
drawn to the corresponding points of the curve S, which all lie in the plane of that curve, 
it will follow that all normals along the curve S1, and with them, the curve S1, must lie in 
a plane that is parallel to the plane of the curve S.  That will imply: One family of lines of 
curvature of the normal surfaces are plane curves.  The normals along such a line of 
curvature will lie in its plane, and therefore the arc elements that emanate from such a 
line of curvature will be perpendicular to the plane of the former.  The surface will then 
have the character of a surface of rotation between two successive, infinitely-close planar 
lines of curvature.  In order for mutually-corresponding, planar lines of curvature of both 
surfaces – viz., the wave surface and one normal surface – to always lie in parallel planes, 
it is necessary for the instantaneous rotational axes to have the same direction in 
corresponding planes.  Since the restriction that all instantaneous rotational axes must go 
through a fixed point falls away for the normal surfaces, the totality of all of them will 
define a developable surface.  One deduces the following theorem from the foregoing: 
 
 In a medium whose wave surface is generated by an arbitrary planar curve in such a 
way that its plane rolls on an arbitrary cone without slipping, an optical ray system will 
only be defined by the normals to a surface that is generated by an arbitrary planar curve 
in such a way that its plane rolls without slipping on a developable surface that is such 
that the contact edge of any tangential plane to it is parallel to the contact edge of the 
tangential plane of the cone that the wave surface is based upon that is parallel to that 
tangential plane. 
 
 The contact edge is then the current instantaneous rotational axis, and two points in 
both curves, which generate the normal (wave, resp.) surface, will correspond when, for 
parallel position of the planes of both curves, the normal that is drawn to the first curve at 
a point is parallel to the radius vector that is drawn to the point of the second curve from 
the vertex of the cone. 
 The developable surface can also be a conic surface, and that cone must then be 
entirely equal to the cone of the wave surface. 
 If the cone that the wave surface is based upon shrinks to a line then the wave surface 
will be a surface of rotation whose rotational axis is the line.  The developable surface 
that the normal surfaces are based upon will be a cylindrical surface whose sides have the 
same direction as the rotational axis of the wave surface.  It will then follow that: 
 
 In a medium whose wave surface is a surface of rotation, an optical ray system will 
be defined by the normals to any surface that is generated by an arbitrary plane curve in 
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such a way that the plane of the curve rolls without slipping on a cylinder whose sides 
have the same direction as the rotational axis of the wave surface. 
 
 Since the cylinder can likewise degenerate into merely a line, it will then follow that: 
 
 In a medium whose wave surface is a surface of rotation, the normals to any surface 
of rotation whose rotational axis has the same direction as the rotational axis of the wave 
surface define an optical ray system. 
 
 The surfaces that enter into this paragraph were treated more thoroughly by Monge in 
his book Application de l’analyse à la géométrie. 
 

_______________ 
 


