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The representation of Lorentz transformations by qoates allows one to develop the theory of semi-
vectors and spinors very simply. The decompositiogeafi-vectors of the first (second, resp.) kind into
two spinors of the first (second, resp.) kind thenesponds precisely to the decomposition of quaternions
into two right-invariant (left-invariant, resp.) sugabras. This decomposition is mediated by idempotent
quaternions and depends upon the choice of two complex parartteie establish the two of the'
invariant planes that generate the minimal cone in theespfasemi-vectors of the first (second, resp.) kind.

The connection between the theory of spinors thas dewveloped by van der
Waerdent) and the theory of semi-vectors that was introduced bgt&n and Mayef)
has been the subject of numerous investigatfpndhe connection between quaternions
and semi-vectors has also been treated alréadyHere, it shall be shown the entire
theory ofsemi-vectors and spinors can be developed in a unified and elementary way
from the theory of quaternions by the addition of the jolet®nt quaternions.

In 8 1, theLorentz transformations will be discussed in general. 8§ 2 presents the
essential concepts of thieeory of quaternions, from which theidempotent quaternions
will be introduced in 8§ 3, and thdecomposition of quaternions into two left-invariant
(right-invariant, resp.) subalgebras that they makeilpleswill be developed. § 4, which
is linked with § 2, treats the well-knowspresentation of quaternions by matrices. In §
5, the results that were found in 8 3 will be carried aeethe representation and
developed further. 8 6 presents teemetric interpretation of these results. In 8§ 7, the
representation of Lorentz transformations by quaternions will be treated, and § 8
discusses the theory s#mi-vectors and spinors that follows from it.

In this paper, we restrict ourselves to the grouproper Lorentz transformations,
and in a later publication we would first next to go ithie transformation properties of
semi-vectors and spinors under the transformatioritieotomplete Lorentz group from
the standpoint that is chosen here.

1) Cf., O. Laporte and G. Uhlenbeck, Phys. R&#/(1931), 1380.
) A. Einstein und W. Mayer, Berl. Ber. (1932), pp. 552.

% J. A. Schouten, Zeit. Phy84 (1933), 92; V. Bargmann, Helv. Phys. Adtg1934), 57; J. Ulimo,
Journ. de phy$ (1934), 230.

*) W. Scherrer, Comment. Math. Hel/(1935), 141.
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8 1. Generalitieson Lorentz transformations.

In our investigations, we will always denote the spat@rdinates by, Xz, X3 and in
place of the time, we shall employ the Minkowski varialig = ict (c = speed of light).
This has the advantages that Lorentz transformatidt’y (ill be orthogonal
transformations of these four variables, and that fifierehce between covariant and
contravariant quantities goes away.

The translationst of the full Lorentz group divide into two classes: Thassl of

proper LT's,£o — i.e., the orthogonal transformations of the \@eiax;, Xz, X3, X4 whose
transformation matrix has the determinant + &Bnd the class of improper LT'€};,
which can each be composed of a reflecsiamthe spatial coordinates:

S

s X ==X, X =~ X, X5 =~ X3, X =X,

and a proper LT. The improper LT’s, in contrast to theppr LT's, do not define a
group, since the composition of two improper LT’s alwgigdds a proper LT.

In the sequel, we will regard the LT as vector mapfuim-dimensional spacesR
By {x} ([X], resp.), we would like this to mean the matrix witheazolumn (one row,
resp.) that contains the componexts<,, xs, X4 of the vectox in the column (row, resp.).
The vectorx will be associated with the vectgrunder a LT. For a transition from one
to another not-necessarily-orthogonal coordinateesystwe would like to denote the
components of by x.

Upper-case Latin symbols will denote square matriceshat iollows. From now
on, A means the matrix whose elements are complex conjugfitiesse of the matriA,

A*“ means théransposed matrix that arises from by reflection in the main diagonaf
is the matrix that isadjoint (i.e., Hermitian conjugate) td, A™ is the matrix that is
reciprocal toA, and |A | is the determinant of the matAx

We can then write the LT in the form:

{X}=L{x (1)
or in the form:
KI=DpaL™
where:
=L 2)

since the LT is orthogonal. One thus has:
[L]=+1, 3)

where one has + or — according to whether we are deaiihga proper or improper LT,
respectively. The condition (2) and the one (3) thédvies from it are not the only ones
that the matrix of a (proper or improper) lCTis subject to. One must still observe the
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reality properties. Namely, the matrix that correspawdan LT £ must bereal in the
coordinate systemy, Xz, X3, Xo = ct: If we introduce these coordinates by means of:

{xX}=U{x,

where?):

must be real; i.e., one must have:
uLul=uLU™.
Since:

where:

+1
is the matrix that represents the reflectiothis leads to the equation:

L =GLG, (4)

which expresses the fact that the matrix elementstbét stand in the fourth row and the
fourth column are pure imaginary, except ffar’). We must further require of an LT

that it should not invert the time direction, whichdsdo the condition:
l44> 0. (5)

Equations (2), (4), and (5) already encompass all oéahditions to be imposed upan
Equation (4) can also amount to a statement about fleeti@en s: Namely, it expresses

the fact that the reflectiomn that is represented iy commutes with an L when and
only when £ degenerates into merely a transformation of the spatiardinates.

) For diagonal matrices, we omit the zeroes thatutside of the diagonal.
%) |, means the element of the mattithat appears in th& column and th&" row.
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However, in the present paper, we shall restrict ougselo the proper LTy, SO in
addition to (2), (4), and (5), we further assume that:

IL|=1.

§ 2. Quaternions.
We understand guaternion a to mean a four-component hypercomplex nuniper
azaetaetazestas ey,

whose components a;, ap, as, a; can be arbitrary complex numbers, and whbags
guantities (i.e., unit quaternions) e, &, €3, e,0bey the following multiplication rules:

(6)

e€=e’=el=-e, ee,=eg =€ (i=12,3,4), }
€e,=-"€eL,=e, eg,=-eg,=€,eg,~-eg~-¢€
e, is therefore the principal unit of the quaternions. WM#eerstand the sum of two
guaternions andb to mean the quaternianwhose components are given bya + b .
A quaternion will be multiplied by a number when all ¢ietcomponents of this
guaternion are multiplied by this number. The product ofduaternions will be defined
by (6) and the distributive laws:
a(b +c) =ab +ac,
(a+b)c=ac+bc.

(7)

The validity of the associative law follows from @)d (7):
a(bc=(@b)c

On the other hand, from (6), the commutative law isonger true for the multiplication
of two quaternions.
Theconjugate quaterniona to the quaternion is defined by:

A=y - G-z taey.

By the termadjoint quaterniona to the quaternioa, we would like this to mean the
guaternion:

a=-ae-3ae-ae+ae

whose components are complex conjugate to thosa.ofWe would like to call a
qguaternion for whicla = & self-adjoint.

Y Cf, e.g., H. Rothe, Enc. Math. Wiss. lIl, sec. fifi, 1300.
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We would like to denote the quaternion whose componeatscanplex conjugate to
those ofa by a. One then has:

a =

I
o

We will call a quaternion for whica =a real.
We understand thaorm Aa of a quaterniora to mean the (generally complex)
number:
2

Na=df +a+al+al.

If the norm of a quaternioa equals:

Na=1
then we calb aunit quaternion. If:

Na=0

for a quaterniom then we calk anull quaternion ).
The reciprocal quaternian® to a quaterniom, for which one would have:

a'lazaa'l=e,
is defined when and only whevia # 0. One then has:

_ 1 _
al=_——a.

I

The norm of the product of several quaternions is equaktproduct of their norms.
Furthermore, one has the equation:

abc = ¢ha. (8)
Likewise, the conjugate quaternion to the product of ségaedernions is the product of
the conjugate quaternions in the opposite sequence.
§ 3. Idempotent quaternions.
We would now like to introduce a special class of quatemi theidempotent
qguaternions, which have the property that they coincidén whieir squares. An

idempotent quaterniomis then defined by the requirement that

EE=E.

l) We distinguish this from the quaternion O, for whégh= a, =az =a, = 0.
3 Cf., e.g., H. WeylTheory of Groups and Quantum Mechanics, London, 1931, chap. lll, § 13, chap.
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With the exception of the principal umt and the quaternion 0, a quaterngn
E-aetoetaataey
fulfills this condition if and only if:

NEZO, & =

N

so:
Fraj+a;=-4, &=

)

N

In the sequel, we will always understaadto mean an idempotent quantity that is
different from 0 andy, thus a null quaternion for which (9) is true. Due to é9ng
with g, €, €, and§ are also idempotent. In particular, one has:

eE=€€e=0 (10)
and
E+E=&. (12)

One calls two idempotent quantitiselependent when (10) is true. We can characterize
€ as aprimitive idempotent quaternion, as compareddq sinceg, in contrast te,, may
no longer be decomposed into the sum of idempotents andano quaternions. One
easily proves by means of (11) thats the only primitive quaternion that is independent
of €.
Equation (11) allows one to define the following decompmsifor an arbitrary
guaterniora:
a:ae4:a(s+é):as+aé::i1+§, (12)
where:
a=ag, §=aé. (12a)

The quaternionsit andg then fulfill the equations:

a=ae, a=-aé€.
1 1 2 2
The totality of quaternion§ for which one has (for a fixeg):

X€ =X (13)

defines a left-invariant subalgebrg#) inside of the algebra of quaterniofs Namely,
along withzil andtl) :

) Also called deft ideal; cf., e.g., B. L. van der Waerdevipderne Algebra, Berlin, 1930.
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atb=-ag+be=(a+b)e (14)
1 1 1 1 1 1

also belongs to this totality, and furthermore, along v?ithc:il (c, an arbitrary number)

also belongs, and along with, one also has:
1

za =zag, (15)

if zis an entirely arbitrary quaternion. All of the quatens that belong to:f&) can also
be characterized by the requirement:

X € =0, (16)

which is equivalent to (13), since in the event thatakeequation is true, one also has:
X=Xe=X(E+E)=XE+XE=XE.
1 1 1 1 1 1

Likewise, the totality of all quaternionzsfor which:

X €=X
2 2

defines a left-invariant subalgebra(#), for which equations that are analogous to (14),
(15), (16) are true.

Since, according to (12), any quaternian(for a giveng) can be uniquely
decomposed into a quaternion that belongsife) Rnd one that belongs ta(®), the
algebra of quaternions is the sum of the two left-invirgubalgebras ;&) and B(g).
According to (13) [(16), resp.§ (€, resp.) plays the role of right unity in the subalgebra
P1(€) [P2(€), resp.].

By means of an idempotent quantiey we can also perform yet another
decomposition of an arbitrary quaternemamely:

1 2
a-ega=(E+€g)a=-cga+ga=a+a, a7)
where:
1 2 _
a=ga a=E¢ga

1 2
a anda now fulfill the equations:

[N
1

o(

[N

1 1
a =ga,
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1
The totality of quantitiex for which one has:
1 1
€ X =X,

1 1
defines a right-invariant subalgebra(€}, one likewise shows that along with andb,
1 1
their sum also belongs ta(®), and along witha, ca also belongs. Furthermore ziis
1 1
an arbitrary quaternion then along wigh az also belongs to ). A second right-

2
invariant subalgebra &) will be defined by the totality of quaterniomsfor which one
has:

2 2
€X = X.
According to (17), the algebra of quaternions is then onee the sum of Re) and
Ra(€).

Any quaternion that belongs to a right-invariant or ieWariant subalgebra is
naturally anull quaternion, sincee is a null quaternion.

8 4. Representation of the quaternions by two-rowed matrices.
As is known, the quaternions may be represented by tweerawatrices in an
invertible way; i.e., any quaternion may be associatedavitho-rowed matrix in such a
way that the sum (product, resp.) of two quaternionsesponds to the sum (product,

resp.) of the associated matrices, and conversely.
The basis quantities will thus be associated with the following matrices

e (0 e (0" eo(1 0 e [10
== io) TP o) BT o4) T oy

The quaternion:
At tazesta ey

then corresponds to the matrix:

A= [aﬂ a“j . [a“ﬂ_ag _azfialj. (18)
&y Ay a,tla, a,~la,

Conversely, an arbitrary matrix:

) All other possible representations in terms of taved matrices come from this one by similarity
transformations; in the representation employed, thés b@gantities will be represented by unitary
matrices.
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B — (bll ble
Ql b22

corresponds uniquely to a quaternion:

b=be+hhe+tbe+hie,

where:
i 1
by = — L (b2 + by, b = — = (biz — bay),
2 2
i 1
bsz—%(bll—bzz), bs = + = (bu + bzo).

This representation has the following properties:

1. The norm of the quaterni@ns equal to the determinant of its associated matrix.

2. The spur (i.e., trace) of the matAixSP A is equal to 2, .

3. If the matrixA is associated with the quaterniathen the adjoint quaternia is
associated with the matriA that is the Hermitian conjugate Af

§ 5. Decomposition of quaternions.

From the theorems above, it follows that a mafrbepresents primitive idempotent
quaterniore if and only if:
|€]=0, SPE=1. (29)

The matrix representation allows one to give versnpdy relations that the
components of a quaternion must satisfy if that quaterisiom belong to one of the two
left-invariant (right-invariant, resp.) subalgebras thig determined bg. Equation (16)
reads, in matrix form):

XE =0,
1

and leads to the following equations for the element)l'i of

X K,
1 =1 =22 (20)
)(%1 Xfl é‘21

Likewise, we get for the quaterniopzxsthat belong to aX¥):

) In which we understand to mean the matrix that is associated véth
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E:E:—i. (21)

Xll X21 gll
2 2

1
One gets similar equations for the components of a mu@ex that belongs to an
Rl(E)Z

1 1
Xy _ X,y _ &
R (22)
Xll X12 1
- . 2
and finally for the quaternions that belong to Re):
2 2
Xoy _ Xy _ &
=T T (23)
Xll X12 2

The idempotent quaternicnwill already be determined uniquely by the two ratios
that appear in (20) and (21):

Ep _ E,715, En_ _Et1E _
£, &, +ig, £, & +ig

where the two numbenrg and y must be different from each oth§r If we regardg and
x as the parameters ®then this yields the componentseof

i 1- 11+ i@+
R S SR £ N 1) SR

(24)
2¢-x 29-x 2¢-x

N =

Equations (20) and (21) express the fact thathe rhatrix >1( ()2(, resp.) that is
associated with the quaternion (x resp.) the seconcblumn is equal tog (x, resp.)
times the flrstcolumn By contrast, equations (22) and (23) express‘athtathat in the

matrlcesX (X resp.) that are associated with the quatern)orﬁx resp.) the firstow
equals - (- ¢, resp.) times the seconolw.
The decomposition of the quaterniamnto two quaternionsti andz; that belong to

two left-invariant subalgebras then correspondsheo following decomposition of the
matrix A that is associated with them:

) In fact, if one hadp = y then it would follow thaty; = — &5, which is impossible, according to (19).
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aZl a'22 az ¢a2 0'4 Xa4 1 2
which yields:
a. = a, ~ X _ ia, —a, — x(ia; +a,)
toex $-X
a, = X3, ta,, — _)((ia1+az)_ia3+a4,
X X (26)
a, = _a12+¢a11: ia1+az+¢(ia3+a4),
P-X P-X
a, = ¢a21_a22 — ¢(ia1+az)+ia3+a4.
P-X P-X
In more concise matrix form, this may be written:
{a} = S{a}, (27)
where:
i -1-iy —x
Sy -y -1
P o S S (27a)
g-x| - 1 g ¢
ig ¢ i -1
For a quaternion € = a, one then has, from (25):
a; =0, a, =0, (28)
and for a quaternioa € = a, one has:
a =0, a>=0. (28)

1 2
The decomposition of a quaternianinto the quaternion® and a that belong to
R1(€) and R(g) then corresponds to the following decompositioAof

A= [an auj — [_Xﬁl _Xﬁ2j+[_¢'83 _¢’84j = A+ E\, (30)
&1 8y A B B P

from which, one gets, in a similar way:

{6 =T{a} (31)

where:
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ig ¢ i 1
1 -

7= 1| 1ol gy (31a)

g-x|-ix —x - -1

- 1 iy —-x

For a quaternioe a = a, one has, from (30):
B =0, Bi=0, (32)
and for a quaterniogea = a, one has:

L£=0, 5 =0. (32)

8 6. Geometric interpretation of the decomposition.

The results obtained by be expressed simply when \wet tesa geometric manner of
expression. To that end, we consider the quateraido be a vector in a four-
dimensional space with, e, €3, & as its basis vectors. We can consider the product:

a=ba (34)

to be a map in this space by which any quatermiazan be associated with another
guaterniore’. A second group of maas— a’ can be induced by the product:

a'=ab, (35)
and finally, the mapa - a"':
a”" =bac
define a third group.
The totality of null quaternions is a three dimensiostalicture in this space: the
minimal cone, whose equation is:

a +aj +a+aj=0,

However, another structure remains invariant under the (84p$(35), resp.], to which
we would now like to turn.

The totality of quaternions for which (13) is true obvioukdg in aplane, whose
equation is (28), and which is already determined uniquely byaremeteg from (26).
This plane remainswariant under all maps (34), since, from (15), the quateraidies
in that plane. Since the parametgradmits no restriction, there is a simply infinite
family of planes that remain invariant under the maps (844, which all lie on the
minimal cone; we can call each such plégfeinvariant. We also see that, conversely,
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equation (28) has only one solutignfor every null quaternion; therefore, one and only
one left-invariant plane goes through each point of timnmal cone').

Any primitive idempotent quaterniog now definestwo (not necessarily distinct)
planesp; andp,, whose equations are given by (28) [(29), resp.]. Thergipdepends
upon only the parametep, while p, depends upon only the parameger All left-
invariant subalgebras, ) lie in the plangs, and all of the quaternions that belong to the
left-invariant subalgebra,f) lie in the planep, . Any quaternion can be decomposed
into the sum of two quaternions that lie in distinct-leftariant planes.

Entirely analogous considerations may be applied tgithep of maps (35). There is
a family of right-invariant [i.e., invariant under the maps (35)] planes that hetloe
minimal cone. One and only one right-invariant plgoees through each point of the
minimal cone?). Any primitive idempotent quaternion defirte® right-invariant planes
t1 andr,, to which the right-invariant subalgebragd® and R(g) belong. Therefore;
is determined uniquely by the parameteaccording to (32) aneb, by the parametep
according to (33).

The decomposition of quaternions into two left-invarignght-invariant, resp.)
subalgebras is therefore equivalent to the decompositiotheo space that we are
considering into two irreducible subspaces that invariamter the maps (34) [(35),
resp.].

We thus return to the maps (34) and introduce new bastersg, such thato;, a,,
a3, a, become the componentsafn the new coordinates. The basis vectpase then
determined uniquely by the requirement that:

2.ae = al. (36)

[1, 12 lie in the left-invariant plane that is determinedgogndls, 14 lie in the left-invariant
plane that is determined ky and indeed, from (31), (31a), and (36), this yields:
—-g(e,+ie) +te,—ie],

¢( 2 I 1) 4 I 3]} (37)

e, ~ie +@(e, +iey).

I3 andl, are obtained frorh andl; when one replacegg with y.
A special transformation law under the maps (34) isfouéhe components; . The
equation:
ae=bacs

[”%' ¢”§j =B [”1 mj. (39)
@ ¢a;) " \a, pa,

) Except for the point 0, 0, 0, 0, which is common tdradériant planes.
3 Naturally, this plane is always distinct from tleé-invariant plane that goes through this point.

reads, in matrix form:
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(38) is obviously equivalent to:
a, a
{ ;} :B{ } 39)
aZ aZ
Likewise, one has:
) =2 et
0'4 0'4

For the maps (35), we introduce new basis vectpssich thap, 5, £, S become
the components @ in the new coordinate system. From (31) and (31a)ert thllows

} (40)

e,—ie — x(e,~iej)],

that:
=3l
I x(e;+ie) +(e, +ie)).

r,=

One then gets; andr, when one replacegwith ¢ inry andr .

For the map:
a' =ab,

we get the following transformation law for tfgefrom (30):

L
1] B

LR
A Py

8 7. Representation of Lorentz transfor mations by quaternions.

(41)

It is well-known that the LT’s can be representedjbsgternions). We would like to
briefly derive this fact. The four-vector may regarded as the quaternion:

X=X1€ +X € + X363+ X4 €4;
sincexy, Xo, X3 are real andy is imaginary the quaterniar is self-adjoint. Furthermore,

if g, andq, are two arbitrary unit quaternions then:
(42)

Yy =01X0Q2

represents an orthogonal four-dimensional transfaomasince

Y F. Klein, Phys. Zeit12 (1911), 17; L. Silbersteiheory of Relativity, London, 1924.
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Ny = NX.

However, in order for (42) to represent a IiX;, along withiy, must be self-adjoint, so,
from equation (8), one must have:

i X 2= qzqu-
One easily confirms that this requirement leads teethation:
g2 =% ql-

Thus, it is only with the use of the + sign that tequirement (5) is fulfilled. For an LT,
one then has:
X' =g Xx§. (43)

This transformation is always a proper LT. The quaterrdqonvill therefore be
determined uniquely by the L%,, up to sign.

We can likewise write down equation (43) in matrix forimen we associate the unit
guaterniong with the unimodular matri®) and the quaterniox with the matrixX. One
then has:

X' =QXOQ. (44)

The elementx, of X' can be calculated by the rules of matrix multiplicatio be:

2 2
Xi'k = zzqiqusxrs’ (45)

r=1 s=1
from which, according to (18):

X11 =X + X3, X12 == X2 +iXq, Xo1 = X2 + Xy, X2 =Xa — IX3 .

We see that linear combinations of the coordinates €harthex, ) transform under

proper LT’s like tensorial objects of second rank on a-timeensional (complex)
manifold. The question of what the tensors of firstkravould be on this manifold
likewise leads to the spinors. Therefore, in thet patagraph we will arrive at the
spinors in a natural way.

It is remarkable that by means of the representationd®4BY’s one gets all of the
conditions that were posed in 8 1 with no further aggioms. In particular, if is a real
unit quaternion— so Q is a unitary matrix— then (44) represents a similarity
transformation under which the spur X thus,xs — also remains invariant; (43) then
represents a spatial rotation in this case.
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§ 8. Semi-vectorsand spinors.

Equation (43) suggests the introduction of two types of quiates, which transform
under this LT according to the following schema:

< 1=
"

o]

<

(46)
(47)

1
ft
O

where we put one (two, resp.) bars under a quaternion aegdodwhether it transforms
according to (46) [(47), resp.]. We will call a quaternibat transforms according to
(46) [(47), resp.] @emi-quaternion of thefirst (second, resp.) kind.

We have essentially treated the transformations (4b)4r) already in § 6, and can
thus briefly summarize them. Singas a unit quaternion, the transformations (46) and
(47) are orthogonal. Theorm of a semi-quaternion of the first, as well as theosd¢c
kind is then an invariant under LT’s, and furthermore tfes semi-quaternions, v of
the first kindthe quaternion:

w=u

| <(

(48)

is an invariant under LT’s, and for tweemi-quaternions u, v of the second kind the

guaternion:
(49)

72}
I
[
<

isaninvariant. Moreover, the quaternion thatadjoint to a semi-quaternion of the first
kind is a semi-quaternion of the second kind, and viceayénss, if:

u=uq
then, from (8), one has:
a' =qa.

The product of a semi-quaternion of the second kind wgkrai-quaternion of the
first kind:
t=vu (observe the order of the terms!)

transforms like the position quaternignso it defines a four-vector.

We candentify the space of semi-quaternions of the first (second,)respl. with the
space that we introduced in § 6 if we adamity the transformations (34) in it and restrict
them with the demand of orthogonality, in addition.algemi-quaternion in this space
were regarded as a vector then we would callstgna-vector of the first (second, resp.)
kind. In thespace of semi-vectors of the first (second, resp.) kind that we now consider
from § 6,there is a family of o invariant planes that generate the minimal cone. The
right-invariant planes of § 6 are now the invariant ptam the space of semi-vectors of
the first kind and the left-invariant planes are tineariant planes in the space of semi-
vectors of the second kind.
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We can decompose each semi-vector of the first (skgcesp.) kind into twapecial
semi-vectors of the first (second, resp.) kindach of which lies in an invariant plane.
This decomposition may be accomplished simply with thp gk primitive idempotent
quaterniore by the formula:

u=gu-+eu

for a semi-vector of the first kind and by the formula:

<

=VE+VE

for the semi-vectors of the second kind.

The semi-vectors of the first (second, resp.) kind that lie in an invariant plane will be
called spinors of the first (second, resp.) kind; they thus have only two independent
components. Each semi-vector of the first (secoegh.) kind can be decomposed into
two spinors of the first (second, resp.) kind; howetleis decompositiomepends upon
the choice of two complex parameters that determine the planes in which these spinors
lie.

The transformation properties of spinors of thet fisecond, resp.) kind become
especially simple when we introduce new basis vedtwat depend on the choice of
invariant plane. If we introduce them in the same wawa did in 8 6 by means of (40)
[(37), resp.] and we denote the components of spinattsediirst (second, resp.) kind in
these new coordinates &y, & (1, 172, resp.) then we get from equation (41) for the

spinors of the first kind:
G| _ &4
HELH]

and from equation (39), we get for the spinors of thersg&ind:

gt}

7, 7,

whereQ is the matrix that represents the quatermjonThe spinors of the second kind
thus transform as complex conjugates to the spinotgedirst kind.

If one defines the spinors by starting with equation (@45he previous paragraph
then the individual character of the invariant planes ircwitihese spinors lie is lost; by
the introduction of basis vectors that are adapted totlagiant plane, the transformation
is indeed equal t&@ (Q, resp.), so it is independent of the parameter thatrdietes the
plane. Naturally, this parameter itself remains iravairiunder a proper LT, due to the
invariance of the plane that it determines.

We further remark that for two semi-vectors of thetf{second, resp.) kind that lie in
an invariant plane, the quaternion:

w=u =0

| <

—UE€EEg

| <
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which is invariant from (48), (the quaternion:

S=

|l
<

=ugev=0

<

which is invariant from (49), resp.) must always vanish, isoparticular, the scalar
product of two semi-vectors of the first (second, rekind that lie in the same invariant
plane must always vanish

Many times, it can be advantageous to carry out tberdposition of semi-vectors in
such a way that both of the invariant plangs; (p1, p2, resp.) into which the space of

semi-vectors of the first (second, resp.) kind gett ape unitarily orthogonal to each
1
other — i.e., such that for each arbitrary semi-vectohefirst (second, resp.) kina (\1/’

resp.) that lies i1 (p1, resp.) and for each arbitrary semi-vector of thst fisecond,

2
resp.) kind u (\2/, resp.) that lies im (p2, resp.) the equation:

12 12 12 1 2

uu, +u,u,+uu,+u,u, =0, (50)
(the equation:

vV, +V,V, +V,V,+ v,V ,= 0, (51)

1 2 1 2 1 2 1 2
resp.) is true. Since:

1 1 2 _ 2 _
u==eu, u==gu, (\l/—\l/s, \2/—\2/e,resp),
(50) [(51), resp.] may be fulfilled if and only if:
€e=eg€=0. (52)

However, sincee is always idempotent, likee, and the only primitive idempotent
guaternion for which (52) is true &, one must have:

€ =€,
so € must be self-adjoint. Since, &, & are then pure imaginary, it follows from
equation (24) that:
¢ x =—-1.

We then get the following simple formulas for the comgus of:

) The fourth component of the product is, in fact, the scalar product of the semi-vectoesmdv.
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__1 ¢+9 &:_j_¢—¢
21+ 99 21+ 09

i1-¢9
21+ 99

g=1
4 2

In summary, we can say: The decomposition of sexaiers of the first (second,
resp.) kind into two spinors of the first (secoresp.) kind corresponds precisely to the
decomposition of quaternions into two right-invatigleft-invariant, resp.) subalgebras.
Each of thex! invariant planes in the space of semi-vectorsheffirst (second, resp.)
kind can be regarded as the planes of spinorseofittst (second, resp.) kind in it. The
great simplicity of all the formulas when one exs®s them in terms of quaternions
shows that the latter are suitable tools for trecdption of semi-vectors and spinors.

At this point, let me cordially thank tHeundusz Kultury Narodows for making it
possible for me to do this work by the grantingaadtipend.

Remark in correction. In the meantime, | have found that one can eklabiave
equation very simply by means of quaternions thatvariant under the full group of
Lorentz transformations. It reads:

dma=¢a}

- (53)

dpa=yb,
wherey is a semi-vector of the first kind agdis a semi-vector of the second kind.
means the quaternion whose compondnése given by:

di:i—ié‘cbi,
0%

since ®; are thus the components of the four-potentmlandb are arbitrary constant
guaternions that are subject to only the requireriet:

a=-a, b=-b.
The four-current:
| = pap+oad
is then divergence-free.

The system of equations (53) proves to be esdlgritlantical to that of Einstein and
Mayer ), which is know to explain the existence of twereéntary particles with
different masses. However, in quaternion form) (Bakes the discussion of this system
of equations much simpler, as will be shown in pgpahat will appear shortly in this
journal.

Wilno, Institut fir theoretische Physik der Universitat.

l) Proc. Kon. Ak. v. Wet. AmsterdaB6 (1933), 497.



