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The representation of Lorentz transformations by quaternions allows one to develop the theory of semi-
vectors and spinors very simply.  The decomposition of semi-vectors of the first (second, resp.) kind into 
two spinors of the first (second, resp.) kind then corresponds precisely to the decomposition of quaternions 
into two right-invariant (left-invariant, resp.) subalgebras.  This decomposition is mediated by idempotent 
quaternions and depends upon the choice of two complex parameters that establish the two of the ∞1 
invariant planes that generate the minimal cone in the space of semi-vectors of the first (second, resp.) kind. 
 
 
 The connection between the theory of spinors that was developed by van der 
Waerden 1) and the theory of semi-vectors that was introduced by Einstein and Mayer 2) 
has been the subject of numerous investigations 3).  The connection between quaternions 
and semi-vectors has also been treated already 4).  Here, it shall be shown the entire 
theory of semi-vectors and spinors can be developed in a unified and elementary way 
from the theory of quaternions by the addition of the idempotent quaternions. 
 In § 1, the Lorentz transformations will be discussed in general.  § 2 presents the 
essential concepts of the theory of quaternions, from which the idempotent quaternions 
will be introduced in § 3, and the decomposition of quaternions into two left-invariant 
(right-invariant, resp.) subalgebras that they make possible will be developed.  § 4, which 
is linked with § 2, treats the well-known representation of quaternions by matrices.  In § 
5, the results that were found in § 3 will be carried over to the representation and 
developed further.  § 6 presents the geometric interpretation of these results.  In § 7, the 
representation of Lorentz transformations by quaternions will be treated, and § 8 
discusses the theory of semi-vectors and spinors that follows from it. 
 In this paper, we restrict ourselves to the group of proper Lorentz transformations, 
and in a later publication we would first next to go into the transformation properties of 
semi-vectors and spinors under the transformations of the complete Lorentz group from 
the standpoint that is chosen here. 
 
 
 

                                                
 1) Cf., O. Laporte and G. Uhlenbeck, Phys. Rev. 37 (1931), 1380.  
 2) A. Einstein und W. Mayer, Berl. Ber. (1932), pp. 552.  
 3) J. A. Schouten, Zeit. Phys. 84 (1933), 92; V. Bargmann, Helv. Phys. Acta 7 (1934), 57; J. Ullmo, 
Journ. de phys. 5 (1934), 230.  
 4) W. Scherrer, Comment. Math. Helv. 7 (1935), 141.  
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§ 1.  Generalities on Lorentz transformations. 
 
 In our investigations, we will always denote the spatial coordinates by x1, x2, x3 and in 
place of the time t, we shall employ the Minkowski variable x4 = ict (c = speed of light).  
This has the advantages that Lorentz transformations (LT) will be orthogonal 
transformations of these four variables, and that the difference between covariant and 
contravariant quantities goes away. 
 The translations L of the full Lorentz group divide into two classes: The class of 

proper LT’s, L0 – i.e., the orthogonal transformations of the variables x1, x2, x3, x4 whose 

transformation matrix has the determinant + 1 − and the class of improper LT’s, L1, 

which can each be composed of a reflection s in the spatial coordinates: 

 
s:  1

sx  = − x1, 2
sx  = − x2, 3

sx  = − x3, 1
sx  = x4 , 

 
and a proper LT.  The improper LT’s, in contrast to the proper LT’s, do not define a 
group, since the composition of two improper LT’s always yields a proper LT. 
 In the sequel, we will regard the LT as vector maps in four-dimensional space R4 .  
By {x} ([ x], resp.), we would like this to mean the matrix with one column (one row, 
resp.) that contains the components x1, x2, x3, x4 of the vector x in the column (row, resp.).  
The vector x will be associated with the vector x′ under a LT.  For a transition from one 
to another not-necessarily-orthogonal coordinate system, we would like to denote the 
components of x by ix∗ . 

 Upper-case Latin symbols will denote square matrices in what follows.  From now 
on, A  means the matrix whose elements are complex conjugates of those of the matrix A, 

A× means the transposed matrix that arises from A by reflection in the main diagonal, Aɶ  
is the matrix that is adjoint (i.e., Hermitian conjugate) to A, A−1 is the matrix that is 
reciprocal to A, and | A | is the determinant of the matrix A. 
 We can then write the LT in the form: 
 

{ x′} = L {x}      (1) 
or in the form: 
              [x′] = [x] L−1, 
where: 

L× = L−1,      (2) 
 
since the LT is orthogonal.  One thus has: 
 

| L | = ± 1,      (3) 
 
where one has + or – according to whether we are dealing with a proper or improper LT, 
respectively.  The condition (2) and the one (3) that follows from it are not the only ones 
that the matrix of a (proper or improper) LT L is subject to.  One must still observe the 
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reality properties.  Namely, the matrix that corresponds to an LT L must be real in the 

coordinate system x1, x2, x3, x0 = ct: If we introduce these coordinates by means of: 
 

{ x*} = U {x}, 
where 1): 

U = 

1

1

1

i

 
 
 
 
 − 

, 

 
then the matrix of the LT L that is referred to these coordinates: 

 
L* = U L U−1 

must be real; i.e., one must have: 
U L U−1 = 1U LU − . 

Since: 
U  = U−1, U2 = (U2)−1 = G, 

where: 

− G = 

1

1

1

1

− 
 − 
 −
 + 

 

 
is the matrix that represents the reflection s, this leads to the equation: 

 
L  = G L G,           (4) 

 
which expresses the fact that the matrix elements of L that stand in the fourth row and the 
fourth column are pure imaginary, except for l44 

2).  We must further require of an LT L 

that it should not invert the time direction, which leads to the condition: 
 

l44 > 0.      (5) 
 
Equations (2), (4), and (5) already encompass all of the conditions to be imposed upon L.  
Equation (4) can also amount to a statement about the reflection s: Namely, it expresses 

the fact that the reflection s that is represented by G commutes with an LT L when and 

only when L degenerates into merely a transformation of the spatial coordinates.  

                                                
 1) For diagonal matrices, we omit the zeroes that lie outside of the diagonal.  
 2) lik means the element of the matrix L that appears in the ith column and the kth row.  
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However, in the present paper, we shall restrict ourselves to the proper LT L0, so in 

addition to (2), (4), and (5), we further assume that: 
 

| L | = 1. 
 

 
§ 2.  Quaternions. 

 
 We understand a quaternion a to mean a four-component hypercomplex number 1): 
 

a = a1 e1 + a2 e2 + a3 e3 + a4 e4 , 
 
whose components a1, a2, a3, a4 can be arbitrary complex numbers, and whose basis 
quantities (i.e., unit quaternions) e1, e2, e3, e4 obey the following multiplication rules: 
 

2 2 2
1 2 3 0 4 4

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

, ( 1,2,3,4),

, , .
i i i i = = = − = = =

= − = = − = = − = 

e e e e e e e e e

e e e e e e e e e e e e e e e
  (6) 

 
e4 is therefore the principal unit of the quaternions.  We understand the sum of two 
quaternions a and b to mean the quaternion c whose components ci are given by ai + bi .  
A quaternion will be multiplied by a number when all of the components of this 
quaternion are multiplied by this number.  The product of two quaternions will be defined 
by (6) and the distributive laws: 

( ) ,

( ) .

+ = + 
+ = + 

a b c ab ac

a b c ac bc
     (7) 

 
The validity of the associative law follows from (6) and (7): 
 

a (b c) = (a b) c. 
 

On the other hand, from (6), the commutative law is no longer true for the multiplication 
of two quaternions. 
 The conjugate quaternion a

⌣
 to the quaternion a is defined by: 

 
a
⌣

 = − a1 e1 − a2 e2 − a3 e3 + a4 e4 . 
 

 By the term adjoint quaternion aɶ  to the quaternion a, we would like this to mean the 
quaternion: 

aɶ  = − 1a e1 − 2a e2 − 3a e3 + 4a e4 

 
whose components are complex conjugate to those of a

⌣
.  We would like to call a 

quaternion for which a = aɶ  self-adjoint. 

                                                
 1) Cf., e.g., H. Rothe, Enc. Math. Wiss. III, sec. 11, pp. 1300.  
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 We would like to denote the quaternion whose components are complex conjugate to 
those of a by a .  One then has: 

aɶ  = a
⌣

 = a
⌣

. 
 
 We will call a quaternion for which a =a  real. 
 We understand the norm Na of a quaternion a to mean the (generally complex) 

number: 
Na = 2 2 2 2

1 2 3 4a a a a+ + + . 

 
If the norm of a quaternion a equals: 

Na = 1 

then we call a a unit quaternion.  If: 
Na = 0 

 
for a quaternion a then we call a a null quaternion 1). 
 The reciprocal quaternion a−1 to a quaternion a, for which one would have: 
 

a−1a = a a−1 = e4, 
 
 is defined when and only when Na ≠ 0.  One then has: 

 

a−1 = 
1

a
a
⌣

N
. 

 
 The norm of the product of several quaternions is equal to the product of their norms.  
Furthermore, one has the equation: 

�abc = cbaɶɶ ɶ .      (8) 
 

Likewise, the conjugate quaternion to  the product of several quaternions is the product of 
the conjugate quaternions in the opposite sequence. 
 
 

§ 3.  Idempotent quaternions. 
 

 We would now like to introduce a special class of quaternions: the idempotent 
quaternions, which have the property that they coincide with their squares.  An 
idempotent quaternion εεεε is then defined by the requirement that 2): 
 

εεεε εεεε = εεεε. 
 

                                                
 1) We distinguish this from the quaternion 0, for which a1 = a2 = a3 = a4 = 0. 
 2) Cf., e.g., H. Weyl, Theory of Groups and Quantum Mechanics, London, 1931, chap. III, § 13, chap. 
V, § 3. 
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With the exception of the principal unit e4 and the quaternion 0, a quaternion εεεε: 
 

εεεε = ε1 e1 + ε2 e2 + ε3 e3 + ε4 e4  
 
fulfills this condition if and only if: 
 

Nεεεε = 0,  ε4 = 1
2 , 

so: 
2 2 2
1 2 3a a a+ +  = − 1

4 , ε4 = 1
2 .     (9) 

 
In the sequel, we will always understand εεεε to mean an idempotent quantity that is 
different from 0 and e4, thus a null quaternion for which (9) is true.  Due to (9), along 
with εεεε, 

⌣εεεε , εεεε , and ɶεεεε  are also idempotent.  In particular, one has: 
 

εεεε 
⌣εεεε  = 
⌣εεεε  εεεε = 0     (10) 

and 
εεεε + 
⌣εεεε  = e4 .      (11) 

 
One calls two idempotent quantities independent when (10) is true.  We can characterize 
εεεε as a primitive idempotent quaternion, as compared to e4, since εεεε, in contrast to e4, may 
no longer be decomposed into the sum of idempotents and non-zero quaternions.  One 
easily proves by means of (11) that 

⌣εεεε  is the only primitive quaternion that is independent 
of εεεε. 
 Equation (11) allows one to define the following decomposition for an arbitrary 
quaternion a: 

a = a e4 = a (εεεε + 
⌣εεεε ) = a εεεε + a 

⌣εεεε  = 
1 2

+a a ,   (12) 

where: 

1
a = a εεεε, 

2
a = a 

⌣εεεε .    (12a) 

 
The quaternions 

1
a  and 

2
a then fulfill the equations: 

 

1
a = 

1
a εεεε, 

2
a = 

2
a
⌣εεεε . 

 
 The totality of quaternions 

1
x  for which one has (for a fixed εεεε): 

 

1
x εεεε  = 

1
x      (13) 

 
defines a left-invariant subalgebra P1(εεεε) inside of the algebra of quaternions 1).  Namely, 
along with 

1
a  and 

1
b : 

                                                
 1) Also called a left ideal; cf., e.g., B. L. van der Waerden, Moderne Algebra, Berlin, 1930.  
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1
a + 

1
b = 

1
a εεεε + 

1
b εεεε = (

1
a + 

1
b ) εεεε   (14) 

 
also belongs to this totality, and furthermore, along with 

1
a , c

1
a (c, an arbitrary number) 

also belongs, and along with 
1
a , one also has: 

 
z

1
a = z

1
a εεεε,     (15) 

 
if z is an entirely arbitrary quaternion.  All of the quaternions that belong to P1(εεεε) can also 
be characterized by the requirement: 
 

1
x
⌣εεεε  = 0,     (16) 

 
which is equivalent to (13), since in the event that the last equation is true, one also has: 
 

1
x = 

1
x e4 = 

1
x (εεεε + 

⌣εεεε ) = 
1
x εεεε + 

1
x
⌣εεεε  = 

1
x εεεε    . 

 
 Likewise, the totality of all quaternions 

2
x for which: 

 

2
x
⌣εεεε  = 

2
x  

 
defines a left-invariant subalgebra P2(εεεε), for which equations that are analogous to (14), 
(15), (16) are true. 
 Since, according to (12), any quaternion a (for a given εεεε) can be uniquely 
decomposed into a quaternion that belongs to P1(εεεε) and one that belongs to P2(εεεε), the 
algebra of quaternions is the sum of the two left-invariant subalgebras P1(εεεε) and P2(εεεε).  
According to (13) [(16), resp.], εεεε (

⌣εεεε , resp.) plays the role of right unity in the subalgebra 
P1(εεεε) [P2(εεεε), resp.]. 
 By means of an idempotent quantity εεεε, we can also perform yet another 
decomposition of an arbitrary quaternion a, namely: 
 

a = e4 a = (εεεε + 
⌣εεεε ) a = εεεε a + 

⌣εεεε a = 
1 2

+a a ,      (17) 
where: 

1

a  = εεεε a,  
2

a  = 
⌣εεεε a. 

 
1

a  and 
2

a  now fulfill the equations: 
 

1

a  = εεεε
1

a , 
2

a  = 
⌣εεεε

2

a . 
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The totality of quantities 
1

x  for which one has: 
 

εεεε 
1

x  = 
1

x , 
 

defines a right-invariant subalgebra R1(εεεε), one likewise shows that along with 
1

a  and 
1

b , 

their sum also belongs to R1(εεεε), and along with 
1

a , c
1

a  also belongs.  Furthermore, if z is 

an arbitrary quaternion then along with 
1

a , 
1

a z also belongs to R1(εεεε).  A second right-

invariant subalgebra R2(εεεε) will be defined by the totality of quaternions 
2

x  for which one 
has: 

⌣εεεε
2

x  = 
2

x . 
 

According to (17), the algebra of quaternions is then once more the sum of R1(εεεε) and 
R2(εεεε). 
 Any quaternion that belongs to a right-invariant or left-invariant subalgebra is 
naturally a null quaternion, since εεεε is a null quaternion. 
 
 

§ 4.  Representation of the quaternions by two-rowed matrices. 
 

 As is known, the quaternions may be represented by two-rowed matrices in an 
invertible way; i.e., any quaternion may be associated with a two-rowed matrix in such a 
way that the sum (product, resp.) of two quaternions corresponds to the sum (product, 
resp.) of the associated matrices, and conversely. 
 The basis quantities ei will thus be associated with the following matrices 1): 
 

e1 → E1 = 
0

0

i

i

 
 
 

, e2 → E2 = 
0 1

1 0

− 
 
 

, e3 → E3 = 
0

0

i

i

 
 − 

, e4 → E4 = 
1 0

0 1

 
 
 

. 

 
The quaternion: 

a = a1 e1 + a2 e2 + a3 e3 + a4 e4 
 
then corresponds to the matrix: 
 

A = 11 12

21 22

a a

a a

 
 
 

 = 4 3 2 1

2 1 4 3

a ia a ia

a ia a ia

+ − + 
 + − 

.    (18) 

 
Conversely, an arbitrary matrix: 

                                                
 1) All other possible representations in terms of two-rowed matrices come from this one by similarity 
transformations; in the representation employed, the basis quantities will be represented by unitary 
matrices.  
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B = 11 12

21 22

b b

b b

 
 
 

 

 
corresponds uniquely to a quaternion: 
 

b = b1 e1 + b2 e2 + b3 e3 + b4 e4 , 
where: 

    b1 = − 
2

i
(b12 + b21),  b2 = − 

1

2
(b12 − b21), 

    b3 = − 
2

i
(b11 − b22),  b4 =  + 1

2
(b11 + b22). 

 
 This representation has the following properties: 
 
 1. The norm of the quaternion a is equal to the determinant of its associated matrix. 
 2. The spur (i.e., trace) of the matrix A, SP A is equal to 2a4 . 

 3. If the matrix A is associated with the quaternion a then the adjoint quaternion aɶ  is 

associated with the matrix Aɶ  that is the Hermitian conjugate of A. 
 
 

§ 5.  Decomposition of quaternions. 
 

 From the theorems above, it follows that a matrix E represents a primitive idempotent 

quaternion εεεε if and only if: 
| E | = 0, SP E = 1.    (19) 

 
 The matrix representation allows one to give very simply relations that the 
components of a quaternion must satisfy if that quaternion is to belong to one of the two 
left-invariant (right-invariant, resp.) subalgebras that are determined by εεεε.  Equation (16) 
reads, in matrix form 1): 

1
X
⌣
E = 0, 

 
and leads to the following equations for the elements of 

1
X : 

 

12
1

11
1

x

x
 = 

22
1

21
1

x

x
= − 22

21

ε
ε

.     (20) 

 
Likewise, we get for the quaternions 

2
x  that belong to a P2(εεεε): 

                                                
 1) In which we understand 

⌣
E  to mean the matrix that is associated with 

⌣εεεε .  
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12
2

11
2

x

x
 = 

22
2

21
2

x

x
= − 21

11

ε
ε

.     (21) 

 

 One gets similar equations for the components of a quaternion 
1

x  that belongs to an 
R1(εεεε): 

1

21
1

11

x

x
= 

1

22
1

12

x

x
 = 21

11

ε
ε

     (22) 

 

and finally for the quaternions 
2

x  that belong to R2(εεεε): 
 

2

21
2

11

x

x
= 

2

22
2

12

x

x
 = − 21

22

ε
ε

.     (23) 

 
 The idempotent quaternion εεεε will already be determined uniquely by the two ratios 
that appear in (20) and (21): 
 

22

21

ε
ε

= 4 3

2 1

i

i

ε ε
ε ε

−
+

, − 11

21

ε
ε

= − 4 3

2 1

i

i

ε ε
ε ε

+
+

= χ, 

 
where the two numbers ϕ and χ must be different from each other 1).  If we regard ϕ and 
χ as the parameters of εεεε then this yields the components of εεεε: 
 

ε1 = − 
1

2

i ϕχ
ϕ χ
−
−

, ε2 = 
1 1

2

ϕχ
ϕ χ
+
−

,  ε3 = 
2

i ϕ χ
ϕ χ

+
−

,  e4 = 
1

2
.     (24) 

 
 Equations (20) and (21) express the fact that in the matrix 

1
X  (

2
X , resp.) that is 

associated with the quaternion 
1
x  (

2
x , resp.) the second column is equal to ϕ (χ, resp.) 

times the first column.  By contrast, equations (22) and (23) express the fact that in the 

matrices 
1

X  (
2

X , resp.) that are associated with the quaternions 
1

x  (
2

x , resp.) the first row 
equals – χ (− ϕ, resp.) times the second row. 
 The decomposition of the quaternion a into two quaternions 

1
a  and 

2
a  that belong to 

two left-invariant subalgebras then corresponds to the following decomposition of the 
matrix A that is associated with them: 
 

                                                
 1) In fact, if one had ϕ = χ then it would follow that ε11 = − ε22, which is impossible, according to (19). 
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A = 11 12

21 22

a a

a a

 
 
 

 = 1 1 3 3

2 2 4 4

α ϕα α χα
α ϕα α χα
   

+   
   

 = 
1 2
A A+ ,  (25) 

which yields: 

1 2 3 112 11
1

1 2 3 421 22
2

1 2 3 412 11
3

1 2 3 421 22
4

( )
,

( )
,

( )
,

( )
.

ia a ia aa a

ia a ia aa a

ia a ia aa a

ia a ia aa a

χχα
ϕ χ ϕ χ

χχα
ϕ χ ϕ χ

ϕϕα
ϕ χ ϕ χ

ϕϕα
ϕ χ ϕ χ

− − +− = = − −


− + − +− + = = − − 
+ + +− + = =
− −
+ + +− = =
− − 

   (26) 

 
In more concise matrix form, this may be written: 
 

{ α} = S {a},      (27) 
where: 

S = 

1

11

1

1

i i

i i

i i

i i

χ χ
χ χ

ϕ ϕϕ χ
ϕ ϕ

− − − 
 − − − 
 −−
 − 

.     (27a) 

 
 For a quaternion a εεεε = a, one then has, from (25): 
 

α3 = 0,  α4 = 0,     (28) 
 
and for a quaternion a 

⌣εεεε  = a, one has: 
 

α1 = 0,  α2 = 0.     (28) 
 

 The decomposition of a quaternion a into the quaternions 
1

a  and 
2

a  that belong to 
R1(εεεε) and R2(εεεε) then corresponds to the following decomposition of A: 
 

A = 11 12

21 22

a a

a a

 
 
 

 = 3 41 2

3 41 2

ϕβ ϕβχβ χβ
β ββ β

− −− −   
+   

   
 = 

1 2

A A+ ,  (30) 

 
from which, one gets, in a similar way: 
 

{ β} = T {a},      (31) 
where: 
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T = 

1

11

1

1

i i

i i

i i

i i

ϕ ϕ
ϕ ϕ

χ χϕ χ
χ χ

 
 − − 
 − − − −−
 − − 

.    (31a) 

 
 For a quaternion εεεε a = a, one has, from (30): 
 

β3 = 0,  β4 = 0,     (32) 
 
and for a quaternion 

⌣εεεε a = a, one has: 
 

β1 = 0,  β2 = 0.     (32) 
 

 
§ 6.  Geometric interpretation of the decomposition. 

 
 The results obtained by be expressed simply when we resort to a geometric manner of 
expression.  To that end, we consider the quaternion a to be a vector in a four-
dimensional space with e1, e2, e3, e4 as its basis vectors.  We can consider the product: 
 

a′ = b a     (34) 
 
to be a map in this space by which any quaternion a can be associated with another 
quaternion a′.  A second group of maps a → a″ can be induced by the product: 
 

a″ = a b,     (35) 
and finally, the maps a → a″′: 

a″′ = b a c 
define a third group. 
 The totality of null quaternions is a three dimensional structure in this space: the 
minimal cone, whose equation is: 

2 2 2 2
1 2 3 4a a a a+ + + = 0. 

 
However, another structure remains invariant under the maps (34) [(35), resp.], to which 
we would now like to turn. 
 The totality of quaternions for which (13) is true obviously lies in a plane, whose 
equation is (28), and which is already determined uniquely by the parameter ϕ from (26).  
This plane remains invariant under all maps (34), since, from (15), the quaternion a′ lies 
in that plane.  Since the parameter ϕ admits no restriction, there is a simply infinite 
family of planes that remain invariant under the maps (34), and which all lie on the 
minimal cone; we can call each such plane left-invariant.  We also see that, conversely, 
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equation (28) has only one solution ϕ for every null quaternion; therefore, one and only 
one left-invariant plane goes through each point of the minimal cone 1). 
 Any primitive idempotent quaternion εεεε now defines two (not necessarily distinct) 
planes p1 and p2, whose equations are given by (28) [(29), resp.].  Therefore, p1 depends 

upon only the parameter ϕ, while p2 depends upon only the parameter χ.  All left-

invariant subalgebras P1(εεεε) lie in the plane p1, and all of the quaternions that belong to the 

left-invariant subalgebra P2(εεεε) lie in the plane p2 .  Any quaternion can be decomposed 

into the sum of two quaternions that lie in distinct left-invariant planes. 
 Entirely analogous considerations may be applied to the group of maps (35).  There is 
a family of right-invariant [i.e., invariant under the maps (35)] planes that lie on the 
minimal cone.  One and only one right-invariant plane goes through each point of the 
minimal cone 2).  Any primitive idempotent quaternion defines two right-invariant planes 
r1 and r2, to which the right-invariant subalgebras R1(εεεε) and R2(εεεε) belong.  Therefore, r1 

is determined uniquely by the parameter χ according to (32) and r2, by the parameter ϕ 

according to (33). 
 The decomposition of quaternions into two left-invariant (right-invariant, resp.) 
subalgebras is therefore equivalent to the decomposition of the space that we are 
considering into two irreducible subspaces that invariant under the maps (34) [(35), 
resp.]. 
 We thus return to the maps (34) and introduce new basis vectors li, such that α1, α2, 
α3, α4 become the components of a in the new coordinates.  The basis vectors li are then 
determined uniquely by the requirement that: 
 

i i
i

a∑ e  = i i
i

α∑ l .    (36) 

 
l1, l2 lie in the left-invariant plane that is determined by ϕ and l3, l4 lie in the left-invariant 
plane that is determined by χ, and indeed, from (31), (31a), and (36), this yields: 
 

1
1 2 1 4 32

1
2 3 1 4 32

[ ( ) ],

[ ( )].

i i

i i

ϕ
ϕ

= − + + − 
= − + + 

e e e e

e e e e

l

l
   (37) 

 
 l3 and l4 are obtained from l1 and l2 when one replaces ϕ with χ. 
 A special transformation law under the maps (34) is true for the components αi .  The 
equation: 

a′ εεεε = b a εεεε 
reads, in matrix form: 

1 1

2 2

α ϕα
α ϕα

′ ′ 
 ′ ′ 

 = B 1 1

2 2

α ϕα
α ϕα
 
 
 

.    (38) 

 

                                                
 1) Except for the point 0, 0, 0, 0, which is common to all invariant planes.  
 2) Naturally, this plane is always distinct from the left-invariant plane that goes through this point. 
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(38) is obviously equivalent to: 

1

2

α
α

′ 
 ′ 

 = B 1

2

α
α
 
 
 

.    (39) 

Likewise, one has: 

            3

4

α
α

′ 
 ′ 

 = B 3

4

α
α
 
 
 

. 

 
 For the maps (35), we introduce new basis vectors ri, such that β1, β2, β3, β4 become 
the components of a in the new coordinate system.  From (31) and (31a), it then follows 
that: 

1
1 2 1 4 32

1
2 3 1 4 32

[ ( )],

[ ( ) ( )].

i i

i i

χ
χ

= − − − 
= + + + 

r e e e e

r e e e e
   (40) 

 
One then gets r3 and r4 when one replaces χ with ϕ in r1 and r2 . 
 For the map: 

a″ = a b, 
 
we get the following transformation law for the βi from (30): 
 

1

2

β
β

′′ 
 ′′ 

 = B 1

2

β
β
 
 
 

, 

(41) 

3

4

β
β

′′ 
 ′′ 

 = B 3

4

β
β
 
 
 

. 

 
 

§ 7.  Representation of Lorentz transformations by quaternions. 
 

 It is well-known that the LT’s can be represented by quaternions 1).  We would like to 
briefly derive this fact.  The four-vector x̂  may regarded as the quaternion: 
 

x = x1 e1 + x2 e2 + x3 e3 + x4 e4 ; 
 
since x1, x2, x3 are real and x4 is imaginary the quaternion ix is self-adjoint.  Furthermore, 
if 1q  and q2 are two arbitrary unit quaternions then: 

 
y = q1 x q2     (42) 

 
represents an orthogonal four-dimensional transformation, since: 
 

                                                
 1) F. Klein, Phys. Zeit. 12 (1911), 17; L. Silberstein, Theory of Relativity, London, 1924.  
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Ny = Nx. 

 
However, in order for (42) to represent a LT, ix, along with iy, must be self-adjoint, so, 
from equation (8), one must have: 

q1 x q2 = 2 1q xqɶ ɶ . 

 
One easily confirms that this requirement leads to the equation: 
 

q2 = ± 1qɶ . 

 
Thus, it is only with the use of the + sign that the requirement (5) is fulfilled.  For an LT, 
one then has: 

x′ = q xqɶ .     (43) 
 

This transformation is always a proper LT.  The quaternion q will therefore be 
determined uniquely by the LT L0, up to sign. 

 We can likewise write down equation (43) in matrix form when we associate the unit 
quaternion q with the unimodular matrix Q and the quaternion x with the matrix X.  One 
then has: 

X′ = Q X Qɶ .     (44) 
 

The element ikx′  of X′ can be calculated by the rules of matrix multiplication to be: 

 

ikx′  = 
2 2

1 1
ir ks rs

r s

q q x
= =
∑∑ ,    (45) 

from which, according to (18): 
 

x11 = x4 + ix3 ,  x12 = − x2 + ix1 , x21 = x2 + ix1,  x22 = x4 − ix3 . 
 

 We see that linear combinations of the coordinates (namely, the ikx′ ) transform under 

proper LT’s like tensorial objects of second rank on a two-dimensional (complex) 
manifold.  The question of what the tensors of first rank would be on this manifold 
likewise leads to the spinors.  Therefore, in the next paragraph we will arrive at the 
spinors in a natural way. 
 It is remarkable that by means of the representation (43) of LT’s one gets all of the 
conditions that were posed in § 1 with no further assumptions.  In particular, if q is a real 
unit quaternion − so Q is a unitary matrix − then (44) represents a similarity 
transformation under which the spur of X – thus, x4 – also remains invariant; (43) then 
represents a spatial rotation in this case. 
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§ 8.  Semi-vectors and spinors. 
 

 Equation (43) suggests the introduction of two types of quaternions, which transform 
under this LT according to the following schema: 
 

′u  = uqɶ ,     (46) 
′v  = q v ,     (47) 

 
where we put one (two, resp.) bars under a quaternion according to whether it transforms 
according to (46) [(47), resp.].  We will call a quaternion that transforms according to 
(46) [(47), resp.] a semi-quaternion of the first (second, resp.) kind. 
 We have essentially treated the transformations (46) and (47) already in § 6, and can 
thus briefly summarize them.  Since q is a unit quaternion, the transformations (46) and 
(47) are orthogonal.  The norm of a semi-quaternion of the first, as well as the second, 
kind is then an invariant under LT’s, and furthermore, for two semi-quaternions u , v  of 
the first kind the quaternion: 

w =u v⌣      (48) 
 
is an invariant under LT’s, and for two semi-quaternions u , v  of the second kind the 

quaternion: 
s = u⌣ v        (49) 

 
is an invariant.  Moreover, the quaternion that is adjoint to a semi-quaternion of the first 
kind is a semi-quaternion of the second kind, and vice versa; thus, if: 
 

u′ = u qɶ  
then, from (8), one has: 

′uɶ  = q uɶ . 
 
 The product of a semi-quaternion of the second kind with a semi-quaternion of the 
first kind: 

t = v u  (observe the order of the terms!) 

 
transforms like the position quaternion x, so it defines a four-vector. 
 We can identify the space of semi-quaternions of the first (second, resp.) kind with the 
space that we introduced in § 6 if we admit only the transformations (34) in it and restrict 
them with the demand of orthogonality, in addition.  If a semi-quaternion in this space 
were regarded as a vector then we would call it a semi-vector of the first (second, resp.) 
kind.  In the space of semi-vectors of the first (second, resp.) kind that we now consider, 
from § 6, there is a family of ∞1 invariant planes that generate the minimal cone.  The 
right-invariant planes of § 6 are now the invariant planes in the space of semi-vectors of 
the first kind and the left-invariant planes are the invariant planes in the space of semi-
vectors of the second kind. 
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 We can decompose each semi-vector of the first (second, resp.) kind into two special 
semi-vectors of the first (second, resp.) kind, each of which lies in an invariant plane.  
This decomposition may be accomplished simply with the help of a primitive idempotent 
quaternion εεεε by the formula: 

u  = εεεεu  + 
⌣εεεε u  

 
for a semi-vector of the first kind and by the formula: 
 

v  = v εεεε +v ⌣εεεε  

 
for the semi-vectors of the second kind. 
 The semi-vectors of the first (second, resp.) kind that lie in an invariant plane will be 
called spinors of the first (second, resp.) kind; they thus have only two independent 
components.  Each semi-vector of the first (second, resp.) kind can be decomposed into 
two spinors of the first (second, resp.) kind; however, this decomposition depends upon 
the choice of two complex parameters that determine the planes in which these spinors 
lie. 
 The transformation properties of spinors of the first (second, resp.) kind become 
especially simple when we introduce new basis vectors that depend on the choice of 
invariant plane.  If we introduce them in the same way as we did in § 6 by means of (40) 
[(37), resp.] and we denote the components of spinors of the first (second, resp.) kind in 
these new coordinates by ξ1, ξ2 (η1, η2, resp.) then we get from equation (41) for the 
spinors of the first kind: 

1

2

ξ
ξ

′ 
 ′ 

 = 1

2

Q
ξ
ξ
 
 
 

, 

 
and from equation (39), we get for the spinors of the second kind: 
 

1

2

η
η

′ 
 ′ 

 = 1

2

Q
η
η
 
 
 

, 

 
where Q is the matrix that represents the quaternion q.  The spinors of the second kind 
thus transform as complex conjugates to the spinors of the first kind. 
 If one defines the spinors by starting with equation (45) in the previous paragraph 
then the individual character of the invariant planes in which these spinors lie is lost; by 
the introduction of basis vectors that are adapted to the invariant plane, the transformation 
is indeed equal to Q  (Q, resp.), so it is independent of the parameter that determines the 
plane.  Naturally, this parameter itself remains invariant under a proper LT, due to the 
invariance of the plane that it determines. 
 We further remark that for two semi-vectors of the first (second, resp.) kind that lie in 
an invariant plane, the quaternion: 
 

w = u v
⌣

 = u  εεεε 
⌣εεεε v
⌣

 = 0 
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which is invariant from (48), (the quaternion: 
 

s = u
⌣ v  = u  

⌣εεεε  εεεε v  = 0 

 
which is invariant from (49), resp.) must always vanish, so, in particular, the scalar 
product of two semi-vectors of the first (second, resp.) kind that lie in the same invariant 
plane must always vanish 1). 
 Many times, it can be advantageous to carry out the decomposition of semi-vectors in 
such a way that both of the invariant planes r1, r2 (p1, p2, resp.) into which the space of 

semi-vectors of the first (second, resp.) kind gets split are unitarily orthogonal to each 

other – i.e., such that for each arbitrary semi-vector of the first (second, resp.) kind 
1

u  (
1
v , 

resp.) that lies in r1 (p1, resp.) and for each arbitrary semi-vector of the first (second, 

resp.) kind  
2

u  (
2
v , resp.) that lies in r2 (p2, resp.) the equation: 

 
1 2 1 2 1 2 1 2

1 1 2 2 3 3 4 4u u u u u u u u+ + +  = 0,   (50) 

(the equation: 

1 1 2 2 3 3 4 4
1 2 1 2 1 21 2

v v v v v v v v+ + + = 0,    (51) 

resp.) is true.  Since: 
 

1

u  = εεεε
1

u , 
2

u  = 
⌣εεεε

2

u ,  (
1
v  = 

1
v εεεε, 

2
v  = 

2
v
⌣εεεε , resp.), 

 
(50) [(51), resp.] may be fulfilled if and only if: 
 

εεεε  ε ε ε ε = εεεε εεεε  = 0.     (52) 
 
However, since εεεε is always idempotent, like εεεε , and the only primitive idempotent 
quaternion for which (52) is true is 

⌣εεεε , one must have: 
 

εεεε  = 
⌣εεεε , 

 
so εεεε must be self-adjoint.  Since ε1, ε2, ε3 are then pure imaginary, it follows from 
equation (24) that: 

ϕ χ  = − 1. 
 

We then get the following simple formulas for the components of εεεε: 
 

                                                
 1) The fourth component of the product u v

⌣
 is, in fact, the scalar product of the semi-vectors u and v.  
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ε1 = − 
2 1

i ϕ ϕ
ϕ ϕ
+

+
, ε2 = − 

2 1

i ϕ ϕ
ϕ ϕ
−

+
, ε3 = − 1

2 1

i ϕϕ
ϕ ϕ

−
+

, ε4 = 
1

2
. 

 
 In summary, we can say: The decomposition of semi-vectors of the first (second, 
resp.) kind into two spinors of the first (second, resp.) kind corresponds precisely to the 
decomposition of quaternions into two right-invariant (left-invariant, resp.) subalgebras.  
Each of the ∞1 invariant planes in the space of semi-vectors of the first (second, resp.) 
kind can be regarded as the planes of spinors of the first (second, resp.) kind in it.  The 
great simplicity of all the formulas when one expresses them in terms of quaternions 
shows that the latter are suitable tools for the description of semi-vectors and spinors. 
 
 At this point, let me cordially thank the Fundusz Kultury Narodowej for making it 
possible for me to do this work by the granting of a stipend. 
 
 Remark in correction.  In the meantime, I have found that one can exhibit a wave 
equation very simply by means of quaternions that is invariant under the full group of 
Lorentz transformations.  It reads: 

,





d a b

d a b
⌣ ⌣

ψ = ϕ ,ψ = ϕ ,ψ = ϕ ,ψ = ϕ ,
ϕ = ψϕ = ψϕ = ψϕ = ψ

     (53) 

 
where ψψψψ is a semi-vector of the first kind and ϕϕϕϕ is a semi-vector of the second kind.  d 
means the quaternion whose components di are given by: 
 

di = 
ix

∂
∂

− i ε Φi , 

 
since Φi are thus the components of the four-potential.  a and b are arbitrary constant 
quaternions that are subject to only the requirement that: 
 

a = −aɶ , b = −bɶ . 
The four-current: 

I = a a
⌣
ɶ ɶψ ψ + ϕ ϕψ ψ + ϕ ϕψ ψ + ϕ ϕψ ψ + ϕ ϕ  

is then divergence-free. 
 The system of equations (53) proves to be essentially identical to that of Einstein and 
Mayer 1), which is know to explain the existence of two elementary particles with 
different masses.  However, in quaternion form, (53) makes the discussion of this system 
of equations much simpler, as will be shown in a paper that will appear shortly in this 
journal. 
 
 Wilno, Institut für theoretische Physik der Universität. 
 

__________ 

                                                
 1) Proc. Kon. Ak. v. Wet. Amsterdam 36 (1933), 497.  


