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STATICS.

ON THE EQUILIBRIUM OF A FLEXIBLE CURVE
ON A CURVED SURFACE

By BOBILLIER, Professor at College royal d’Amiens

Translated by D. H. Delphenich

PROBLEM: What is the curve of double curvature that is affected by a ponderous,
homogeneous, perfectly-flexible, and inextensible filament of welkedelength that is
fixed at its two extremities by two points on an given, but arbitanmyed surface that is
subject to the action of gravity on that surface when one assumes tlsatfihee exerts
no friction? What is the tension in the filament at any of the points @oagd what is
the normal pressure that it exerts on the curved surface at that point?

SOLUTION: Let S = 0 be the equation of the proposed surface in terms ypfz
when it is referred to three rectangular axes thaichosen in such a way that thaxis
is vertical. One lets, £, ydenote the three angles that the normal at the (qigt 2)
makes with the respective coordinates. Upon setting:

d_S:P, d_S:Q, d_S:R, (1)
dx dy dz
— =y, (2
PZ +Q2+ R2
to abbreviate, one will have:
cosa=PV, cosf=QV, cosy=RY, (3)
and the differential equation for the surf&weill be:
P dx+ Q dy+R dz= 0. 4)

Upon taking the sum of the products of equations (3) RitQ, R, respectively, one
will find that:

P cosa + Q cosfS+ Rcosy= (P2+Q2+R2)V:$. (5)
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In these various formulas, the sign\6fwill vary in such a way that the flexible curve
will lie on one side of the surfacor the other. One must determine it for each problem
by considering the particular case, just as one deterntimesconstants in integral
calculus.

If we consider an arbitrary arc of the flexible cuieved replace the tensions at the
extremities of that arc with equivalent forces that tangent to that curve at those points
then we must define an equilibrium system in which dopuuim will still persist when
we suppose that this portion suddenly becomes inflexible wittf@anging its curvature.

That portion of the flexible curve exerts a pressurehensurfaces at each point of
that curve that one can replace with an equal and dpplsce that is normal to that
surface, but one must nonetheless remove it from the gart that pertains to that arc
of the flexible curve that is kept in equilibrium by thei@c of all those forces and will
thus become a free system of invariable form in whiclidhees must consequently have
a zero resultant. The sums of their componentsIphtalthe three axes must then be
zero separately, which will lead us to three equationkargivens and the unknowns of
the problem. We shall therefore address the study oé thqsations.

Take the arc of the flexible curve that goes fromatgelst point, at which its tangent
is horizontal, up to any one of its points ¥, z). Its tension at the lowest point can be
associated with a weight, so we suppose that if omleeldhe curve at that location then if
one were to maintain equilibrium, it would be necessargdd a vertical prolongation of
a lengtha of the same density that passes through an infinitabfdixed pulley. Now
take the unit of weight to be the weight of a unit léngt that curve, so we can say that
the tension at its lowest pointas Furthermore, since theandy axes are simply subject
to being rectangular in the horizontgtplane and can have arbitrary directions in that
plane, moreover, we can make them turn in such a haythe tangent at the lowest
point of the curve, and consequently the tensiat that point, will be parallel to the
axis. As for the tension at the poirt ¥, 2) that points along the tangent at that point, we
represent it byi. When we lets denote the arc of the curve that is found between the
lowest point and the latter point, the component$aif tension parallel to the three axes
will be:

pO pdy pdz
ds ds ds
resp.

Let N be the normal pressure that is exerted by the flexiloleecon the surfac8 at
the point &, y, 2. That pressure will be a function of the three dowtes of that point
and will vary with it. However, along the entire exttef an elementls one can regard it
as constant and proportional to the extent of that eerfor which it will thus be
expressed b ds and since it is normal to the surfa8ets components parallel to the
axes will be:

N ds[kosa, N ds[kosf, N dsl[ktosy

respectively. We must then replace the sum of tingpoments parallel to the axes of the
pressure of the entire arc from the lowest point, wheclhthe origin ofS with the
integrals:

—chosads, —chos,Bds, —chosyds,
resp.



Bobillier — On the equilibrium of a flexible curve on aeed surface. 3

Finally, to the components parallel to thaxis, one adds the weight of the curve,
taken negatively, and from the preceding conventions erclieice of units of weight
and length, that must be expressed sy —

If we then express the idea that the sums of the coems parallel to the three axes
are separately zero and observe that the tersiomst have the opposite sign to the
component off parallel to thex-axis, we will have:

T%—J.Ncosads—a: 0,
ds
Tﬂ—.[ NcosA ds = 0,

ds

dz
T——-| Ncosyds—s=0.
ds I 4

One can infer the values of the two unknowresndN from those three equations, along
with an equation irx, y, z that is independent of those unknowns, and which wilhbe t
equation of a surface that cuts the surf&ealong the required curve. Upon
differentiating them, they will become:

dT @(;I‘I—)S(+ Tde(— Ncosa ds= O,

ds
dTBd—y+Td$/ - Ncosg ds= 0, (6)
ds ds

dT Bd—z+ Tdiz— Ncosy ds= 0.
ds ds

Since one has:

dX + dy? + dZ = d, (7
it will then follow upon considering to be the independent variable that one has:

axt1 X+ ayoa Y+ ana¥ = o, (8)
ds ds ds

In addition, since the normal to the surf&at (, y, 2) is perpendicular to the tangent to
the curve at that point, one will have:

%cosa+$’cosﬁ+d—z cosy=0. (9)
ds ds ds

Finally, when equation (7) is divided kg that will give:
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%dx+$’dy+d—zdz: 0. (20)
ds ds ds

Having said that, if one takes the sum of the productsjeétions (6) withlx, dy, dz
respectively, while keeping the relations (8), (9), (10) indnthen when one divides by
dsthat will give:

dT=dz
SO
T=z+A, (12)

in which A is an arbitrary constant. Hence, the tenSiaat the pointX, y, 2) is entirely
independent of the length of the arc of the curve betwesrpoint to the lowest point of
the curve, as well as the surface on which it is kdatThat tension depends upon only
the vertical distance between those two points; the distance between the horizontal
planes that contain them, respectively.

If one letsc denote the vertical coordinate of the lowest poirthefcurve then it will
be necessary that= c must pertain td = a, which will give:

a=c+A (12)

Hence, one will see that if one arranges the arbittgplane in such a way that one has
c = a, it will result thatA = 0, and as a result=z; i.e., if one replaces the tension at the
lowest point by a prolongation of the curve to a sidfit length that it can pass through
an infinitely-small, frictionless pulley and hang veally then one can replace the
tension at another arbitrary point of that curve waighrolongation of the same nature that
must then terminate below with the former on the shareontal plane. Hence, one can
conclude, more generally, that if one replaces thedeasat the two extremities of an
arbitrary arc of the curve with prolongations of thatve of a sufficient length to pass
through infinitely-small pulleys and hang vertically thehose two prolongations must
terminate below in the same horizontal plane [Therefore, it will further result that the
difference between the tensions at two arbitrary pahtthe curves will be constantly
equal to the weight of a portion of that curve whoseatlens equal to the vertical
distance between those two points.

In order to preserve our results in full generality, keepA, and upon replacing
anddT with their valuesz + A anddz resp., in equations (6) and dividing &g those
equations will become:

X
—_— ——— Ncosa = 0,

ds ds (z+ A dé

dz dy dy

——+(z+ A—— Ncosf = 0, 13
ds ds (z+ A dé s (13)
dz dz

—_——+ —= Ncosy=1

dsds( A 8 4

() Asone sees, that is a generalization of what kstt@dl in vol. XIX, pp. 347.
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In order to easily infer the value of the normal puesN at the pointX, y, 2 from
those equation, we take the sum of their products®yi, R, respectively, and when we
recall the relations (4) and (5), that will give:

’x d’y _dz) N
+ + R -— =R;
g xR déj v

d
(z+ A)(Pd

hence, one will infer that:

or rather (2):

N = . (14)

JPP+Q*+ R

Upon substituting that value in the last of equadi(13), along with the value (3) of
cosy, we will get:

(z+ A)[ Pi—szx+ Qf'j—gyj = PP+ Q) {(z+ A)z—sf—l} S PPHQ+ RZ)G—Q (15)

for the second-order differential equation of aface that must cut the surfaBealong
the desired curve.

As a first application of these general formulagppose that the curve lies on an
inclined plane, and in order to make the tangemhatowest point be parallel to tike
axis, as those formulas require, make the inclplade pass through that axis, anddet
be the angle that it makes with tkeeplane. Its equation will be:

y COSw=1zsin w. (16)
Here, we will have:
S=ycosw-zsinw

ds ds .
P=—==0, = _— =(CO0S R=— =—-sin

dx dy “ dz “
SO

P+Q°=codwy P +Q+R=1.
Upon substituting those values in formulas (14) @), they will become:

N=(z+a) [%cosw—z—z; sirwj+ sinw a7)
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&Y s 82 dz
(z+a) {dsz sinw+ 02 cozu} cosu+( dJ =cod w, (18)

resp. However, after two differentiations, equat(t6) will give:

dy dZ@ina} d’y dzzE§ina)

ds ds cosw’ d$ ds® cosw’ (19)
If one substitutes those values in equations (hd)(&8), they will become:
N=sinw (20)
(z+ A)iz + (izjz =co w (21)
dx*  dx

resp. Equation (20) tells us that the pressurthernclined plane is constant at all points
of the curve, and that for a unit length of thatveu it will be equal to the unit of weight
multiplied by the cosine of the inclination of th@dane above the horizon.

Equation (21) amounts to:

d{(z+ A)dz}

—dX: CO§ )
ds

which will give:

(z+A)%: scos w+ B cosw,
X

upon integrating, in whiclB is an arbitrary constant. Upon multiplying byd2 and
integrating once more, one will infer from this tha

(z+A)? =< cos w+ 2Bscosw+ C,

in whichC is a new constant.
One infers from the last equation that:

scosw:—Bi\/(z+ A?-(C- B) ;

hence, upon differentiating:
dscosw=+ (z+ A dz

J(z+ A*-(C-B)

and upon squaring:
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(z+ A? d7

d cod w; ie., @¢+dy +d?) cof w= A —(C-B)’

or rather, upon replacimdy’ co$ wwith dZ sirf wusing (19):

(z+ A? d7
(z+ A*~(C-B)’

dx cosw= +/C - B? dz .
J(z+ A*-(C- B)

d¥ co€ w+dZ =

which will give:

That is then the differential equation of the pctien of the curve onto thez-plane.

If one desires that the-axis should be tangent to the lowest point thewilik be
necessary foz = 0 to refer todz / dx = 0, which will giveC — B = A%, by means of
which, the equation will become:

Adz
J(@z+ AP - R

dx cosw=

However, from (12), one will have= 0, soA = a, which will give:

adz
J@+ai-a&

Upon integrating once more, that will give:

2
e(xcosa))/a - zZ+ a+\/ (Z+ 5) - é

D

dxcosw=

in whichD is a new constant. If one desires, in additibat the lowest point should be
the origin of the coordinates then it will be nesaey thatx andz should be zero at the
same time, which will giv® = a, and as a result:

alja—(xcosw)/a —z+a+ ’(Z+ a)z_ a2’

which is an equation that will finally give:
2 (Z+ a) = a{e(xcosw)/a+ e—(xco&))/? ’ (22)
when it is solved with respect to + a, which is then the original equation of the

projection of the curve onto the verticaplane. If one supposes that= 0, SO cosv=
1, then it will become:
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2@z+a)=a(e*+e”?;
i.e., the equation of the ordinary catenary, as ittroas).

As a second application, suppose that the curve is gitoatan arbitrary cylindrical
surface that has its rectilinear elements vertiaad, @onsequently parallel to tlzeaxis.
Thez-coordinate will not enter int8then, in such a way that one will have:

R :d_S: 0,
dz

so when one divides equations (14) and (15pby Q? they will then become:

d*x od°y
.- (Z+A)(Pdsz+%d§j

’P2+Q2 !
d?z ( dz)\’

@+ Aoz (st =1, (24)

(23)

The last equation is nothing by equation (21) inctone has set cas= 1 and changed
X into s. If, as we have done, we then place the lowestt gt the origin of the
coordinates then, from (22), it will give:

2@+a)=a(e®’*+e™'9. (25)

However, if one develops the cylindrical surfaceaowertical plane themands will be
the rectangular coordinates of the curve. Henge,development of a curve that is
situated on a cylindrical surface with vertical thewear elements will be an ordinary
curve, which should have been easy to predict.

As for the normal pressure (23) that is exertedheycurve on the cylindrical surface
at each point, one senses that it must differ awgrto the nature of that surface. In
order to give an example of the manner of calcogatti in each case, suppose that one is
dealing with a cylinder of revolution of radius edjio r that has the-axis for its axis;
one will have:

X +yP =12 (26)

() One can arrive at the differential equation of ¢atenary on an arbitrary inclined plane directly by
considering the fact that gravity along an inclined plamething but gravity in a vertical plane multiplied
by the sine of the inclination of the plane. One thencludes the differential equation of the catenary on
an arbitrary curved surface by considering that at eadl pbints, that curve will be found to be situated
in the tangent plane to the curved surface at that.pdme can also obtain the equation of the catenary
that is situated on a curved surface by proposing to trace curve on that surface such that the distance
from its center of gravity to they-plane will be the least possible, which presentstanesting application
of the method of variations.
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SO
S=x+y-r?

P=Gi= 2 Q= = @A) =4’

Upon substituting this in (23) and observing that oneAwas here, that will give:

rN=(z+ a)[x% y ?j;yj (27)

However, after two successive differentiations, equg@én will give:

2 2 2 2 2
XB‘F y d y: - (%j —(ﬂlj = (d_zj -1.
ds’ ds ds ds ds

Upon substituting that in (27), one will then have:

rN= (z+a){(g—3 —1};

on the other hand, equation (25) will give:
d_Z_ 1 s/a —s/a)

ds
SO

dz 2_1 2s/a -2/a
d_S _Z(e —€ _2)1

dz ’ 2s/a -2/a eS/a+e ’ Z+a ’
| -1=i@E® - ®1 = Z— | =| .
ds 2 a

Upon substituting, that will give:

and

(z+a)

a‘r

e., if one draws another plane below ttyeplane that is also horizontal and is at a
distance that is equal to the length of the arcthef curve whose weight brings
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equilibrium to the tension at the lowest point them phessures will grow like the cubes
of the altitudes of the various points of the curve abitmat plane. All other things being
equal, they will grow larger as the radius of the cylingtervs smaller.

As a third application, suppose that the curve sits oon&al surface of revolution
that has the-axis for its axis, the origin for its summit, and gfsnerating angle equal to
w ; that is the problem that was posed on page 87 of volll X¥ the Annales The
equation of the cone will then be:

(¢ +y?) cog w=7Z sirf w (28)
in such a way that one will have:

S= (¢ + VA cos w-Z sirf w
so
ds

= 2 cof w Q=—=%cos w R=

=—2zsirf
dy “

Q_|O-
X1
Q_|O-
NI

PP+ Q*=4 (¢ + V) cod w, P*+Q* + R = 4{(¢ +V?) cod w+ Z sirl a},

and when one substitutes those values in formulas (it4)1%), they will become:

d’x d’y __dz .
o (z+ A){ xOISZ + ygjcoszw % smza)}+ zsifw
\/(x2+ y?)cos' w+ Z° sifw ’

Z(z+A) sirf wcos w+ (¢ +y°) {(z+ A)z—;z—l} cod w

2
+ {(x2 +y®)cos' w+ 7 sin“w} (g—zj =0.
S

Upon next replacingxt + y*) coSwwith its valueZ si win these two equations,
they will become:

o d’x  d’y __dz .
Nzsin w= (z+A){x—dsz R jcosza) 23 sirf w}+ sirf @ (29)
d’x, Py _dz dy
(z+A)[xdsz+yd§+zd§jco§w+{ dﬁ-zco§a). (30)

However, after two differentiations, one will infeEom equation (28) that:
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(x%+ yﬂljcos2 w = zd—zsin2 w,
ds ds ds

d’x,  d*y _d’z_, o (dx) (dy)’ d2)”
[XE+ ygjcﬁw = zOlsz sin® w {(ds} +( dsj }coszaﬁ( dJ sirf w,

or rather:

d’x_ P’y _dz_, | (dz) dz)”
[XE+ ygjcﬁw = zOISZ sin® w {1 (dsj }coszaﬁ(dsj sifw,

or finally:

d’x  d’y d’z ., (dzjz
—+ coS w =z—sinfw +| — | —cof w.
[Xd§ yd§j d< ds

Substituting that in equations (29) and (30) willeg

Nzsin w= (z+A) {(2—3 -cog a)}+ zsirf w,
z(z+A)(;—;Z+(22+ A){(%g - cog a)}: 0.

One can put the latter into the form:

d?z

(2z+A) \/cosz a)—(g—zj -z(z+A) ds’ =0,

2
\/ cos w—(dzj
ds
or, upon multiplying bydz

\/cosza)—(d—zj dz(z+A) +z(z+A) d\/cosza)—(d—zj =0,
ds d

d{z( 7+ A\/coszw—(d—zj }: 0,
ds

and upon integrating, that will give:

or rather:

11

(31)

(32)
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z(z+A) \/cosz w—(d—zj =E,
ds

in which E is an arbitrary constant. Upon lettinglenote the vertical coordinate of the
lowest point of the curve, as usual, it will be @esary that = ¢ must refer tadz/ ds= 0,
which will give:
c(c+A) cosw=E,
or rather (12):
E=accosw

in such a way that the integral will become:

2
z(z+ A)\/ cos w—(j—g =accosw. (33)
One can infer that:
2 2.2
d—Zj —cogw=-2- 0% COSZCZ'), (34)
ds z°(z+ A

which is a value that will give:

Z’(z+ Asin®w- & ¢cosw

N= 3 ,
Z’(z+ Asinw

(35)

when it is substituted in formula (31), and thisaidormula to which we shall return
shortly.

Since the right-hand side of equation (33) is tamtsand its left-hand side is the
product of three factors, the first two of whiclecriease witlg, it will follow that the third
factor must become smaller and smallez Bscomes larger and that it must be precisely
zero where is infinite, so one must then have:

d—Z: + cosw
ds

which can obviously be true only to the extent tiat curve coincides with a generator
of the cone. Hence, the asymptotes of the comgale will be two generators of the
surface on which it is found.

In the case df infinite, formula (35) will give simpl\N = sin «j and that must indeed
be the case, since the infinite branches of theecare the same as in the case of a
rectilinear curve that lies on an inclined planengl the direction of its greatest slope.

In the case where one has 0 orc =a, as in (12), formula (35) will become:

Z*sinw-a'cofw .

N = —_
Z Sinw
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the pressure will then be zero when one has:

a

Jtanw

That value ofz will be greater thara — i.e., greater than the distance from the lowest
point of the curve to the summit of the cone — whenthegenerator angl@is less than
half a right angle, so the lower part of the curvi \lwave the cone in order to become an
ordinary catenary. The extreme tensions of that cetenary will be (11):

Z sin w=a® cosw in which z=

T2
J tanw
Equation (34) will give:
2 2 3 2
(d_sj o IXrdy > Z(ZZ+A) —
dz dZ {Z(z+ A*- & dcos *w

and consequently:
2 2 ain2
b + dy? = z (zz+ A SII;] w+ azéc;)sza)dzz’
{Z(z+ A*- & dcos’w

or even better:
Z (z+ A)H(dX +dy’) cog w—dZ sirf a} = & & (d¥ +dy* + dZ) cos w;

however, one infers from equation (28) that:

dx+ ydy_cosw
S N zcosa)’ dz= X £ |
y sinw z X+ y Sinw

A= Asinw+4/ X + Y cosw

sinw

Z+

Upon substitution, that will give:

O + YA sinw+ X + ¥ cosad? {(0F +yP) (A + dy?) — (x dx+y dy?
=a’ {(X¢ +y) (d¥ + dyd) sirf w— (x dx+y dy)? cos w} sin® @
and that is the differential equation of the pragt of the curve onto they-plane.

If we set:
X=rsing, y =r cosé,
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in order to pass to polar coordinates then it will ltethiat:

dx=drsin@+rd dcosfd dy=drcosd-rd@sing,
X +y?=r?  dé+dy? =dr’ +r?do?

which will give:

x dx+y dy=rdr,

r* (A sin w+r cosaw)® d8? cog w=a’ ¢ (dr? +r? dé? sirf ) sin w,
upon substitution, which is an equation from which oneicfen that:

_ acdrsinw
dog= :
ry (Asinw+r cosw §r? codw-ax? sifiw

It does not seem that this value is generally integralfiaite form.

As a consequence, we confine ourselves to consideencpde in whiclA = 0 andc
=a; it will then become:

2
40= a“drsinw |
ryrcos w-a* sifw

and upon integration, that will give:

2 ain?
, a“sin”w
2 (6+F) sin w= arccos————,

r’cos’ w

in which F is the arbitrary constant. In order to determinene must remark thad is
zero for the projection of the lowest point on yeplane and that one must then have

sinw
cosw’

r=a

which will give F = 0, in such a way that one has simply:

2 ain?
20sin w= arccosw : (36)
r’cos w

for the required polar equation, which will give:
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for r infinite; that is then one-half the angle that ibtemded between the projections of
the asymptotes of the curve in this case.

In this case, it will be easy to learn the naturehef curve that is described by the
flexible curve on the development of the cone. Rdte the radius vector of that curve,
whose projection is, and let® be the angle of the development of the cone thaaipert
to the angled, so one will have:

r= — =

sinw’ sinw

If one then substitutes that in equation (35) then ith@itome:

a’sin‘w
20 = arccos————,
R*cos w
or rather:
a? sin' w=R? cog wcos B =R (cog O — sirf O©) cosw.
If one sets:

Rsin@ =X, RcosO =Y,
in order to have rectangular coordinates then, wodstitution, it will become:
(Y2-X? cog w=a?sin w,

which will be the equation of an equilateral hymdebno matter what the generating
angle of the cone is, moreover.

As a last application, suppose that the curvedated on a sphere that is given by the
equation:

X +y +7=r? (37)
and after two differentiations, that will give:
x dx+y dy+z dz= 0, (38)
d’x  d’y _dfz
X + +z +1=0, 39
g Vg T (39)

and as a result:
P=x, Q=y, R=z PP+Q*=xX+y*=r’-7,

P+Q*+R=r°.
With the aid of those various results, formulas) @dd (15) will become:

N=- 22T A (40)
r
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r? (z+A)iZ+r2(izj2 +z(2z+A) =r? (41)
ds’ ds '

Formula (39) shows that, all other things being equat phessure is inversely
proportional to the radius of the sphere. In theipadr case oA = 0 orc = a, one will
haveN = - 2z /r, in such a way that the pressure will be proportitmahe elevation at
each point of the curve above the plane of the haidareat circle. It will have its
maximum at the pole of the circle, at which it will lsual to 2; i.e., to twice the weight
per unit length of the curve.

In that same special case, equation (41) will becomplgi

LNE
d& (ds rz '

d {@} +4d (r2_ &2)2 =0,

S

or rather:

which will give:

rz{w} +4(r2_&2)2:G

ds

after a first integration. One determines the tamss by observing that whedz/ ds or
d(r*-2z%)

" vanishes, one must haxe ¢, which will give:
S

4(1°-2)%=G

re {—d(rz ‘222)} = 4 - 2 - (- 227},
ds

and as a result:

Upon taking the square root, one will get:

2ds —-d(r*-22z%)
ro J?-22)2-(r?-22%)%

and upon integrating, that will give:

There is no point in adding a constant here, ssre® whenz = ¢, as it must be.
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At the point for whicle=r/,/ 2, one will have 8/r = w/ 2, sos = 7rr [ 4. In the
particular case in question, that will then be thetlerof the portion of the curve that is
found between the point in question down to the lowesttpdilence, it will follow that
the total arc length of the curve that is found betweenpoints that are situated in that
way is equal to precisely one-fourth of the circumfeseof a great circle.




