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On the mechanical analogiesfor
the second law of ther modynamics

(By Ludwig Boltzmanin Graz.)

Translated by D. H. Delphenich

Among all pure mechanical systems for which equatiorst &éhat yield analogues for
the so-called second law of the mechanical theorgaf, lit seems to me that the one that
| (") andMaxwell (") have examined in several treatises plays the mostriamaole, by
far. Not only is the analogy with the equations of theory of heat true for all such
systems without exception, and for all equations thatrid@te their behavior without
exception, but it is also true for most of the othgstams, to the extent that under
mechanically simple conditions they will exhibit faaoling and undeniable analogies
that are subordinate to whisliaxwelland | considered as special cases. Moreover, other
mechanical grounds exist that make it likely that warmedsodenerally carry with them
the character of the latter systems.

In the last-cited treatise, | merely cited the geinénaorem that relates to the
convertibility of internal energy into external workrfoemed for these systems without
proof. We first imagine an arbitrary mechanical systwhose internal forces are
conservative. The relative positions of all the pafthe system shall be determined by
b coordinates, p2, ps, ---» Po, Whose differential quotients with respect to time,chhi
we would also like to call theelocities shall be calledp;, p,, ..., p,. Let the internal

and external forces that act upon the system be gisdunctions of the coordinates, and
in addition, let the total entire energy content of #ystem be given. That will
correspond to a warm body for which the internal naextgrnal forces, and temperature
are given. Experience teaches us that the behavitiheofvarm body is determined
completely, as opposed to that of the mechanical systdnth can be completely
different according to its initial state. Howevenyi@e variety can exist in the number of
initial conditions that are required in order to deterntime form of the motion of the
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mechanical system. The motion of the system isrohated by D first-order differential
equations in the 2 independent variablep:, p2, ..., p», P, P>, ..., P, and the

independent variable time Their integrals will include 2 integration constants, to
which, one can always add a constantt,t@ince we exclude the case in which the
equations of motions include the absolute value of timeiadhpl we would like to
denote it by —z. From the usual rules,b2initial values must be given in order to
determine the integration constants, and thus the vafuss @ordinates and velocities
for t = 0. Now, since one of these initial values determthesvaluet, and this gives
merely when the motion takes place, the form oftipgations (i.e., the form and position
of the paths in space and the type and manner by whigh ates described) are
determined by B — 1 values, or speaking more generally, along with theerdiftial
equations for the motionb2- 1 mutually independent quantities must be given for the
purpose of the complete determination of the form ofntl¢ion, and we would like to
call these quantitieparameters. However, the quantity merely determines the time
when the path is defined. Nonetheless, exceptions ndnwall occur, in general.
Namely, one can find integral equations that can bsfeatiby not just one, or a finite
number of combinations of coordinates and velocitiespipwan infinite number of them,
such as the way that the equation aresm A arcsiny will be satisfied by an infinite
number of value pairs for andy whenA is irrational. If we think of all the integration
constants as being given then we can express any oétiadlesp;, p2, ..., pp (€.9.,p1)

as a function of the second one (em), and the B-1 integration constants when we
eliminateps, ps, ..., pp andt — 7. Now, the resulting equation can be arranged suc¢httha
will be fulfilled by a single number or a finite numbervalues ofp; for given values of
the integration constants. However, like the equatiosimx = A arcsiny that was cited
above, it can also be satisfied by a sequence of valugs that go to each other
continuously, such that; is merely included between certain limits, inside of Wwhids
capable of assuming an arbitrary value.

An example of this is given by the motion of a mafepoint in a plane with
rectangular coordinate y, upon which the force€ = — a’, Y = - b% act in the two
coordinate directions, which then moves according tséme laws as the point of light
in the Lissajousfigures. Whera andb, and thus, the period of oscillation of the two
tuning forks, are commensurable, the material point wdcdbe a closed curve. If we
then choose the two rectangular coordinatesdy for p; andp, then, as long as the
values of the integration constants anare given, that oy will be restricted to a finite
number of values. By contrast,afandb are incommensurable then the material point
will traverse the entire interior of a surface thas in a rectangle over a very long time
interval, and as soon &ss given,y is merely included between two limits.

In that case, we would like to say that one of titegral equations finitely multi-
valued Precisely analogous cases also appear for centtammd the path is a closed
one then none of the integrals of the equations ofomatill be infinitely multi-valued,
while the latter case will come about as long as thbh ganot closed. Whenever an
integral is infinitely multi-valued, the number of indepentvariable parameters that are
required for the determination of the form of the motwill be one less, and thus, only
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2b—2(). In the first-cited example, the three integratomstants are two energies of
motion in the directions of th& andY axes and the phase difference between these two
motions. If the path is closed then a knowledgehefthree values of these quantities,
which play the roles of three completely-determinedialdes, is necessary for the
determination of the form of the motion.

However, ifa and b are incommensurable, so the path is not closed, then the
knowledge of the values of the first two integration tamis will suffice to determine the
motion completely. The first two integration constamre thus what | called the
parameters of the path; no matter what the initial ph#ésrence of the motions in the
two coordinate directions might be, in the course oindinitely-long time interval, all
possible phase differences will always occur. All pdtr which the values of the first
two integration constants are the same will go tdedber after a finite or infinite time
interval, so all of the remaining quantities will théetermine only the time interval over
which the path is traversed. We can also say: Whepatteis closed, all pairs of values
of x andy that correspond to a path will define a manifold ofyame dimension. If the
two energies in the two coordinate directions are given thfinitely many paths with
different forms will be possible. By contrast, in gecond case, all values>&ndy will
be traversed that are actually compatible with thedgguations of theis viva The third
integral of the equation of motion will lose its meaninthe moving pair of values of
andy thus now defines a manifold of two dimensions. Centiation with closed or
unclosed paths will also behave similarly.

A second integral of the equations of motion can beiiefinmulti-valued in just the
same way. For central motion, there can be a cylindigr an infinitely-small base of
arbitrary form, moreover (e.g., perpendicular to thanel of the path), on whose
circumference, the moving point will be reflected likeedastic ball. In that way, after a
very long motion, the values of the surface velocibuild be changed again and again,
and in the course of a very long time, they would agssaminfinite sequence of values
that went into each other continuously, such that tinlase equation would also lose its
meaning. (Cf., my treatise: “Losung eines mechanischeoblés,” Wiener
Sitzungsberichte, Bd. 58, Il Abtheilung, Jahrgang 1868.) HByslame device, a single
equation for thevis vivawould enter in place of the two equations. Moreovethat
cylinder had a position such that it would be met by atlhg that are compatible with the
equation of thevis viva(so for central motion, it would lie infinitely clego the circular
path and for thé.issajousmotion, it would lie infinitely close to the coordieabrigin)
then in the course of time, in fact, all possible corations of values of, y, dx/ dt and
dy/ dtthat are compatible with the equationvesf vivawould be traversed.

We would now like to consider the most general casewfich we assume thdt
integrals of the equation of motion are infinitely mwklued. After eliminating — 7,
only 20 — k — 1 integral equations would then remain, which would notnbeitely
multi-valued, and the variables could run through all fdssralues that are compatible
with the D —k — 1 equations in the course of time. In that way, weiroagine a system
in whichk = 2b — 2, so it will be one in which all possible values of Yheables will be

() In general, it can happen that when the equations of matid the B —2 parameters are given, the
form of the motion is not determined uniquely, but atdéimumber of forms of motion are possible, such
that in order to obtain a unique determination, the litpésveen which the last integration constants lie
must be given.
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traversed that are compatible with the equation ofvitbeviva An example of this is
given by either th&issajousmotion that was perturbed by an infinitely thin cylinder that
was just discussed or central motion. All motions vigrich b = 1 serves as a much
simpler example. Such a system would take on the gmoperties that warm bodies
exhibit in experiments, to the extent that its stabeild be determined completely when
one knew the total energy that was contained withimigddition to the external and
internal forces. The probability of the differenatsts, as well as the total behavior of
such a system, can now be calculated with particidae.e (Cf., my cited “Studien,”
section Il and my treatise “Einige allgemeine SatzerWvarmegleichgewicht,” section
[I.) However, warm bodies even possess a propertyuchngreater generality, in that
the different phases that its state of motion assumethe course of time are not
experimentally noticeable, but due to the large numberofsin it, as soon as any atom
enters into another phase state, in exchange, it galinaassume a neighboring phase
state that the former previously possessed. It undoubteliyvé from this that only
completely random differences in the state of waodids will be brought about by the
different initial conditions, while all essential amdservable properties of them will
depend upon merely the total value of its energy, in additiche internal and external
forces. The precise mathematical expression of jist situation encounters
complications, however, and can best be formulated égns of the following artifice.
(Cf., on this, my previously-cited treatise “Einige allgemSatze Uber
Warmegleichgewicht,” section Maxwell’scited treatise, page 549.)

In place of a single system, we choose infinitely maystems that are completely
the same, and in each of which the same energy iained{ as well, but which possess
all possible initial states, moreover. All of theshould experience the same energy
increase, and the external conditions should changeisame way for all of them. All
properties that are independent of the random initial iiond must now also belong to
the totality of systems in the same way. For examiplthe work that a system exerts
against any external force were to contain the meargegrieat a component of the
system contains, or similarly, depend upon the initiakstdthe system essentially, then
the mean value of these quantities for the totalityystesns would naturally not equal
the value of it for a single system. However, if tlsdues of these quantities do not
depend upon the initial state in a perceptible way thanntiean value would have to be
equation to the value of the same quantity for each mhaalisystem. It is thus not at all
necessary for us to calculate the values of these qaantdr every individually-
determined system that is subject to initial conditidng, it will suffice to calculate its
mean value for the entire totality of systems. Thlsutation will be made easier by the
fact that it is left entirely to our discretion how weuld like to define the totality — i.e.,
if N is the number of systems, adl is the number of systems for which the initial stat
lies between certain infinitely-close limits th&N can contain an entirely arbitrary
function of the variable that determine the initisdtest For a suitable choice of that
function, we can now make it possible for equations tdrbe for the totality of all
systems that have the same simplicity as for agyshat runs through all possible states
that are compatible with the equationwd vivaby itself. Now, since we have proved
that for each individual system, the value of the qtiastithat are independent of the
initial conditions is equal to the mean value of thexesaguantities for an arbitrarily
defined totality of systems, it will suffice to determite mean value of such quantities
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for that totality for which the calculation becomessample as possible. We would now
like to make such a choice.

We thus imagine that we are given, not a single systes, but infinitely manyN)
equally-arranged systems. Moreover, we follow precideymethod that was given by
Helmholtz("), by which, at a single stroke, we will bring a hithenttsuspected clarity to
all of these investigations. We divide the coordinafesagh system into two classes:
of thems;, s, ..., s shall be completely constant, as long as the statbeo$ystem is
unvarying, and change into another state under a transitlgrextremely slowly. These
coordinates shall also have precisely the same valuedl fd systems, and their values
for all N systems shall change in precisely the same way. enhégory of heat, they
characterize what one cares to refer to as theretteonditions under which the warm
body is found. By contrast, the motion of heat shalfepresented by rapid variations of
the second class of coordinasp,, ..., pp . The differential equations that determine
the variation of these coordinates shall likewise beipety the same for alll systems.
All forces that strive to change the value of thedipvarying quantities shall be called
internal forces of the system. By contrast, thesothat act upon only the slowly-varying
coordinates shall be called external forces. The linédues of the rapidly-varying
coordinates shall be as diverse as possible for theatitfeystems; now, a totality that is
especially convenient is characterized by the fact tttethumber of those systems for
which the initial values of the coordinates lie betwdenlimits:

(1) p1 andp; + dpy, p2 andp, + dp, .., Po @andpy, + dp,,

and, at the same time, whose momenta lie betwedmtie

(2) 01 andag; + da, 02 andg, + daop, .., Op-1 @NdQp-1 + dgp-1,
is equal to:
dp, Ldp, [dp--- dplidgidg-- dg,
_ Po
©) d‘“‘NDﬁ Gp COp, -~ dp 00g0Idg — dg,
Po

The last momenturg, is determined from the equationw$ viva The integrations are
all extended over all possible values of the variables @ama run through during the
motion of all systems. AMaxwell (loc. cit., pp. 554, formula 28) has proved, if the
distribution of systems is a completely stationang e i.e., as long as the values of the
slowly-varying coordinates are constant — the number sftesys for which the
coordinates and momenta lie between the limits (1) 2nd/{l always remain the same.
(I have proposed the name efjodefor such a totality of systems.) In that regard, the
totality of all N systems then possesses precisely the property of wadrasbthat its
properties remain unchanged under the invariability oéxternal conditions (viz., thg
and the conservation of energy. Therefore, if thieler of any quantity does not change
noticeably under unchanged external conditions and theeoaation of energy, and also
does not depend upon the initial conditions in a perceptiblethen the value of these

() Sitzber. d. Akad. d. Wiss. zu Berlin, 6 March andveitch 1884.
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guantities for every individual system must equal its medue for the totality of alN
systems, which was already discussed thoroughly abovecawalways transform the
coordinates in such a way that the vivais represented as a sum of squares of momenta.
With no loss of generality, we can then assume tiratdnstans the equation of energy
for an individual system can be written in the form:

(4) LGP + B+ + 44,7 +V=L+V=E.

The force functiorV is a function of the slowly and rapidly varying cooad®s. It can
happen that some of the slowly-varying coordinatds not appear in the coefficients
they then play the role of parameters that entey the force function whose slow
variation represents the slow change in the rule bylwthe external forces act. By
contrast, othes can be true coordinates that will remain conservedafounchanged
state by suitable external forces (viz., thegrange forces) whose change, however,
represents a change in spatial position for certairs pathe system. Thesean also be
included in the coefficientg, along with the rapidly-varying coordinates. In order t
avoid misunderstanding, | remark that |1 never makeHbabknholtzassumption thaV
does not include the rapidly-varying coordinates, which iassamption that is replaced
with the consideration of a totality of very many sysseby me. Since the number of
systems for which the coordinates and momenta lie leetwbe limits (1) and (2)
remains stationary as long Bsands do not change, they are also always determined by
the formula (1). The number of systems for which jingt coordinates are included
between the limits (1), while the momenta have antyitvalues is:

dp,[Hp - dQ'UdO&[ﬁCL dq_l

_ o
an = NDH,,,dplEﬁpzmdrequDdg~- ag,

Py
() 1 .
= _(E-V):"dpdg--- dp.
=N \/,ululz"':ub

H.W444£444

(Cf., Maxwell loc. cit,, pp. 556, formula 41.)

We must now move on to the definition of one of thesmimportant concepts,
namely, the energy that is supplied from the outsiderumti@nsition from a certain state
to another one that differs from it by infinitelytld, and indeed, we sayQ is the
energy that is supplied by one of tiif#f systemsddQ is the energy that is supplied by

dN systems, andQ is the energy that is supplied by Blisystems. If all coordinatgs
ands have the same values in the varied state that they t@eioriginal one then the
energy that is supplied from the outside will obviouslyeheal to the increase in thes
viva d_; by contrast, if the values of the coordinates have eisanged in the varied state
then thevis vivawould have to increase from the wadk that is done by that coordinate

(E-V)*dpOdp--- dp
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change with no additional supply of energy. The tatatdase irvis viva d is thus
equal to thevis vivadQ that is supplied from the outside plus diethat is obtained by
doing work. One thus has:

(6) aQ=d -A

From equation (4), one hak = JE — V). In order to determiné@A, we would like to
always arrange that the variation implies that wesater the rapidly-varying variables as
not being capable of variation; i.e., we would always iikeompare the original state of

a system with the varied state of a system for wthehrapidly-varying coordinates have
precisely the same value. |If tkeare not true coordinates, but merely parameters that
enter into the force functioW, then any varied state will be compared to an unvaried
state in which all coordinates have the same val@@s will then havedA = 0, and the
energy that is supplied by each system will have theeval

3Q=d =S(E -\

Since these quantities possess the same value K alystemsddQ = dN OJE — V),
and the energy that is supplied byNkystems will be:

R = [ dNB(E-V).

By contrast, if true coordinates are also preaeming thes that determine the spatial
position of the system components, and therefag #ine also present in the coefficients
M, then the coordinatgs will indeed have the same values in the variedesaatin the
unvaried one that they are compared to, but notctimedinatess. Work will then be
performed by varying the last coordinates, which eainsist of two parts:

1) Ones that are exerted by the forces that aexrdmed by the force functioy;
the increase in thes vivaof the system that they produce will be:

2 oV

-y Y g,
= 0S,

and

2) Ones that are exerted by thegrangeforces, which insure that the coordinases
will stay constant. The latter work yields tis viva:

i

since thelLagrange force that acts against the growth of thepossesses the value
_ov _dL

o5 05

. The total value oA is then:
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if O means the total increase that arises from the sémnmtion of thes and theE while
thep are kept constant. Therefore, one will have:

Q= AE -V - A= dE-V) - > 2135,

If we would like to determinddQ from this then we would have to multiply by thdue
of d91 that is given by equation (3) and integrateqglover all possible values. Thus, one

does not think oE — Vas a function of thg, and furthermore one thinks that:

MJ'J'_.,QﬁqudCL"' dg.,
2 Ps
~dg [dg,--- dg.
Il N

is nothing but the mean value pfqg? /2, which is the same for al and is equal to —
V) / b. (Cf., Maxwell loc. cit, pp. 558, formula 52.) One will then have:

dd = dNE{J(E V)——(E \/)Zdﬂh}

h=1 h

The energy that is supplied by the totality ofsgftems is then:

o A { AE-V)=2(E V)Zaﬂh} EV"_ dpp-- op

e M |\ Oy 1

ﬂ...%dplmp[..dg

\/,ulglz"':ub

OQ:b

(E-»)*™*
2N Sff - deltdpz dgl

,:ulglz’" b

A possible variation of the limits produces no a#idn of the integral thus-determined,
since the function under the integral sign vaniséieshe limits, where it is not at all
capable of variation. When certain variables gcklta themselves, such as angles that
increase by 2 a variation of the limits does not actually exist one can say that the
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terms that arise by varying the upper and lower limits @ahcel. Since thes vivaof
all N systems combined possesses the value:

T= NG At

[T B an oy - a

M g& by
one can also write:

5Q 25| J'J' (E- V)2

%dpltdpzm dp ,

with which, the formula to be proved is presentetull generality. If one of the systems
moves during a very long tinte and if & is the increment in timg during which the
coordinates lie between the limits (1), then onié vave:

(E-V)**
dt= g Vet

NZRv Py

Thus, if everything depends upon a single varighieat again assumes the same value
after a finite time interval (viz., the period of oscillation) then one willvea

_ dp _
t—jzﬁﬂ, X = 2T Jin (T B).

Two masses andy that move in a circle with slowly-varying distaseeand from
two fixed centers with the likewise slowly-varyimggular velocitiesv and wcan serve
to make this concrete. Here, one hass,, p= S, W= p;, w= p,. N point-pairs must

be present, for which all possible pairs of valiogsy and cwcan occur for which:

mr*w? N Up’ew’
2 2

has the required valug of total energy. Naturally, the condition thae throperties of

each individual point-pair are independent of thaitial conditions is therefore not
fulfilled by this example, which is why the theordm be proved here will be true for
only the mean value over all point-pairs, but @ values of the individual point-pairs
themselves.

Graz, September 1885.



