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In Borchartdt’s Journal for pure and applied mathematics (Bd. 98, Hgip187), |
considered the following case as an example to explganaral theorem:

Two pulleys are connected by a belt that can be disglaack and forth parallel to
the axes of the pulleys in a manner that is simdandw one displaces a belt from an
active pulley to an unused pullelyeerscheibgor conversely. The one pulley is tapered
in one direction, while the other one is tapered indpposite direction according to a
law that makes the same belt always fit when it spldced in the manner described.
Such a displacement of the belt implies a certamakdity of the radiir; andr, of the
two pulleys, and therefore the transmission raéieiry / r,, as well.

Therefore, ifa is the angular velocity of the one pulley, whilgis that of the other,
then one will havey =a a . If ais variable then one can cho@sand the total angular
rotationw, for the first pulley during a certain time interval tothe coordinate of a point
P that either belongs to the second pulley or is fixechwutit That will be a non-
holonomic coordinate, since it does not amount to theeghing when one first changes
a and thenw; , or conversely, firstv; and thera, by the same amounts.

One would achieve the same effect when one rotatesc& that cannot slip in any
rotating body and which can be displaced parallel toxts af rotation between two
rotating conical bodies that are tapered in the oppdsietion.

One might perhaps doubt whether such conditions cane&&ed without any
slipping. However, in any event, the conditions to whighimagine that our mechanical
system composed of pulleys is constrained have prediselsame properties thdertz
required in his mechanics with non-holonomic constrgiHtartz’s Mechanik Book |,
Section IV).

The increase in the rectangular coordinates of eatttosé points can be represented
in the form:

dx=Adw +B da
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in which B = 0, butA depends upoa, such thatdx will not be a complete differential.
Therefore, e.g., an infinitely-small angle of rotatidow, of the second pulley will be
equal toa dw .

In the reference that was cited to begin with, | thésd to not apply the Lagrange
equations to this case, but later, | recognized that suchpplication would not be
permissible, as the following considerations will show:

The sum of thevis vivasof all of the masses that are linked with the two psllean
be expressed as a functionacdnddw; / dt. One has:

2

dwy
T=4(K+La’
(K + a)(dtj

if t is the time and andL are the moments of inertia of all of masses thatasociated
with first (second, respectively) pulley relative tetrespective axes of rotation. We
think of all of the remaining components as thereforesieas, so all of the other belts
(the discS resp.). Partial differentiation dfwith respect taw / dt will give the correct
force that acts on the coordinateand which we can think of as being applied to a point
that is fixed in the first pulley.

a depends upon only the coordinates that determine the posttithe belt (discS
resp.). However, the differential quotients of thoeerdinates with respect to time do
not enter intoT, in fact, but those coordinate coordinates probably deranto T
undifferentiated. When one partially differentiatee guantityT, the Lagrange equations
will then yield forces along those coordinates thatugon those coordinates; i.e., they
try to change them, but they do not exist.

The Lagrange equations are correct for only holononacdioates then, and it would
probably be worth the effort to ask what equations woulcapm place of Lagrange’s
for non-holonomic coordinates.

In order to answer that question, we next imagine that positions of the
components of an arbitrary mechanical system (an arbiwambem of material points)
are determined by rectangular coordinates. .ebe any one of them. Condition
equations can exist between them that we can writeeiform:

n; dt + Z/]}dx =0, i=1,2,3,..0 (1)

Some of them can be holonomic, while others canooeholonomic. Naturally, the
left-hand sides of the equations above are integrable thbgrare holonomic.

The positions of all parts of the mechanical systeall siiso be determined by
generalized coordinatgg , and indeed we next consider the case in which théauaf
generalized coordinates is equal to the nurslidrdegrees of freedom of the system, so
it is equal to the difference between the numbeiof3rectangular coordinates and the
numbero of condition equations that exist between them.

However, thex (or at least one of them) shall be non-holononocthe differentials
of the rectangular coordinates shall be given by the geredtatoordinates with the
equations that have the form:
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dx =& dt+> &"dp, . (2)

The right-hand sides of arbitrarily-many of these eignatcan be integrable, such
that equations in question can be brought into the form:

s=f(, py,p2 -..)

however, some of them shall not be integrable, suahgéneralized coordinates are not
holonomic. The quantitieg and /7 are functions of the coordinates that might also
possibly include the timeexplicitly.

Let the forcesX; be given that act upon the various material pointhefsystem in
the directions of the rectangular coordinatesAs is known, one will then have:

Z_n‘,(xi—m X)0x=0, 3)

from the Lagrange-d’Alembert principle.

In the following, we shall not consider the caseme-sided constraints, for which an
inequality sign will enter in place of the equalign.

The symbols have the usual meanings here, nameky,m, = mg is the mass of the
first material pointyy = ms = Mg is that of the second, an overhead dot meansriie f
differential quotient with respect to time, two meahe second, and; are the so-called
virtual displacements, which fulfill the conditioii$) at a certain unvarying moment in
time at whichdt = 0, butox is set equal tax, such that one will have:

3n
2.1;6% =0, j=12 .0 ()
i=1

We call the differential quotients &fwith respect td that follow from equations (2)
when we hold alp; constant thgartial derivatives with respect toand denote them by
0x; / dt ; 0% / dpk has an analogous meaning, such that one has:

0% 0% _ «
hah B 2 =gk 5
5t & on. § (5)
It follows from the same equations:

X :5+Z§ihpn. (6)

By contrast, time is to be kept constant whendefenes thedx; such that one has:
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5 = igﬁ 50, . @

If one then understands a partial differential quotievitis respect tox to mean one
for which the variable$, x; , and x are kept constant, except for one, with respect to
which one differentiates, so:

. s h
0% _ 04 +26<ﬁ
op, 0p, W= op,

Pr» (8)

f5)4 ox

_.X': fih = _x, (9)
ap, op,

the last of which follows from equations (5). When diféerentiates those equations, it

will follow that:
d [ ox 08 S 0&¢ .
_ = L+ ! ] 10

dt[amj ot ; on, " (10)

One then has:

0% _g(axj _og _og FSh {6_4“_6_5“j

op, dt{ap, op, Ot op, 0p,
We now set:
-~ 9&" &k aé&"
%_i: tih, gl —i = tihk, (11)
op, ot op, 0P
for brevity, such that we can write:
6)(, d 6)§ h o hK
Pours Bl Bl E ) R - (12)
o, dt(apnj 28R

The geometric meanings of the quantities that weredoted here are implied by
the following considerations:
If one first letsp, increase bylp, and then increasqw by dp then the quantities

&K
will first increase byé&"dp,, and then b{gﬂ" +£dp1j dp.. Those locations in space

h
through which the material point whose massigs displaced from its initial location
during the entire process will be call@}“. Now, conversely, lg be increased bgpx

and thenp, by dp, , such that thex will first increase by &'‘dp, and then by
0¢

h
{gﬂh +$dp(j dp,. In that way, the same material point whose msss will move
k
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from its undisplaced position bj'™. One sees directly that wherr, r + 1, orr + 2,
the quantities:
(&ﬂk 9¢

dp, dp.= t™dp, d
. 0DJ M, dR m, dR

will be nothing but the projection of the straight cecting line A™B™ between the two
points A™ and B! onto the coordinate axis along which theis measured. If one
denotes that projection @™ D™ then one will have:

Cthhk
= lim —/—— .
dp, dp,
Similarly, let E" and F" be the two points in space to which the mass-panicle

displaces when one first increasdsy dt and therpy by dp,, and then in the other case,
one first increases by dpc and thert by dt. Furthermore, leG'H" be the projection of

E'F" onto the coordinate axes along whichxhis measured. In the same way that one
obtained the geometric meaning of tH& before, one will now find that:

h h
r

"= lim —/——
dtd|q1

If one denotes the factors thaagrange multiplied the condition equations (4) Ry,
A2, ..., Agthen it will follow from (3) and (4) in the known walyat:

=mx+y An, i=1,23...n (13)
=1

In one introduce thépy,, in place of thedx;, in the expression by using equations (7)

then one will get:
3n

ixiéx:i X &aop, . (14)

i=1 k=1 i=1

The coefficient ofdp, in the expression on the right shall be called theefdhat acts
upon the coordinatpy, as it is for holonomic generalized coordinates, deaote it by
Pr, such that one will have:

Ph= i_n:xi & = Z[mx Z/] 1; j X (15)

i=1 aph

the latter is true because of equation (13).
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We would now like to differentiate the expressufq%i with respect to time, as one

h
cares to do in the derivation of Lagrange’s equationfolldws that:

af o8 g0, (o 6
dt{‘amj ‘aph“‘dt[apnj' (16)

For holonomic coordinates, one can obviously set:
d(ox |_ 0%
dt op, 6ph

That will no longer be the case only for non-holonoomes. One will then have:

S

=&+ 2N,
k=1
Sso:
65.
+
aph Pr Zaph
while:
0% _ 4o
1 = fl
op,
hence:
d(ox ) _ dé& iaahp
dt dp, dt 4Zaop
One then has:
d 0X ox ., . 0%  .[dox 0X
+ + x| —— -1 17
{Xanj xaph Y ap, )'{dtanq MJ )
or, from equation (12):
d. ox \_ . ox . . 0% .[k s kk.j
—| X =X + - X+ : . (18)
dt(xaphj “op, op, U Z:” R

We now multiply that equation by , addZ)l /7] ZK to both sides, and finally sum
Pr
overi from 1 to 3.
If we begin with the far left and proceed to the terim equation (18) that lie
increasingly to the right then:
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1. From equation (9):
3n d "
>m E( j Zm X q“ (19)
i=1

on has the known meaning. It is the momentum that etatéheh™ coordinate, and
will be defined when one expresses ¥iwviva

3n
T=>m¥ (19)
i=1
as a function of thp, and p,,, and then partially differentiates with respectio

2. Thepy shall fulfill the condition equations identicallfzor constant time, one will
then have:

3n
>0 o%x =0 (20)
i=1

for eachj = 1, 2, .., owhen thep, change arbitrarily, so also when all of the othersone
remain constant along with time, except for one, winehwould like to calp, . In other
words, we will have:

3n a .
2/7, x =0, i=1,2,3, .0 (21)
for each value gfandk.

When the time also increases &t thex will become somewhat different functions
of p, in addition, and one will have:

an
mdt+>17,0% =0
i=1

for everyj.
However, that equation is not true for our presensicterations, since no variation of
time was coupled with any of the variations that vekeoted by the sigdup to now.

3. From equation (15), one has:

S < iy 0% _
;(m X+A ’7j)a—ph =Pn. (22)

4. |If follows from equation (19) that:

o _ 0T
Zm X2 = (23)
h h

That will then imply that:
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%, Pﬁ%—Zm x[n +Zn“kj (24)

Now let v, be the magnitude, as well as the direction, of thecity of the r™
material point, which has mass = m.; = m. , such thatx, x,, X, are the
components of, along the three coordinate directions. Moreoveryfeand u™ be the
magnitudes and directions of the lines that were previodslyoted byE"F" and
A™B™, resp. One can also write equation (20) in the form:

dd% Ph+$+2mrn {u cosf, )+ZL# cosy Hhki’ (25)
h

in whichr runs through only the values 1, 4, 7, .n,-32 in the first sum.

1. then proves that the Lagrange equations, in theitewedl form, are not valid
applied to a non-holonomic coordinate, and 2. gives theddn term that one must add
in order for them to be valid again.

The proof will suffer only an inessential modificatiovhen the numben of
generalized coordinates is greater than the numbeBn — o of degrees of freedom in
the system. v — s= r condition equations will then remain between the gdimech
coordinates, some of which can be holonomic, whileratha be non-holonomic. Of the
o condition equations that exist between the rectanguladir@bes, onlyo — 7 of them
will be fulfilled identically by the generalized coordies then.

The oequations (4) will be true for the variatiods of the rectangular coordinates at
constant time, as before. We can combine all ofelempiations into a single one when
we multiply each of them by an arbitrary factoand add them together. In that way, we
will obtain the resulting equation:

ZU:Z)I 7 5% = 0. (26)

j=li=1

Establishing that this equation should be true for arbitvalyes of thed comes
down to theo equations (4) completely.

If we now replace thex in equation (26) with thep then the number of arbitrary
factorsA must be reduced fromrto ¢, since indeed only equations exist between the,

which we would like to write in the form:

3¢/ on=0, i=1,2, .. 27)

i=1

Equation (26) must then reduce to the following one whenrareduces thedp :
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T r

22 H¢lon=0,

j=1i=1

in which theu are likewiser linear mutually-independent functions of the
The factorsli, A2, ..., Az are now chosen in such a way that the expression:

3n d2)§ g ]
Z Xi—m dt? +Z/]j’7j oX
i=1 j=1

vanishes for all values of thd; . After one introduces the generalized coordinates, tha
expression will be converted into:

v d 6T 3n ) v T i
L (R N SR LI
i=1 k=1 =1

h=1 op,
or

y {ph ddc:w anq+2mn {u cos b, u; )+Zuhk cos ™ i iﬂéi}épzo’

h=1

in whichr again runs through the values 1, 4, 7, .n.-2. Due to the choice df from
which analogous properties will result for the the left-hand side of the last two
equations will vanish for all possible values of tgpe, and one will get the equations of
motion:

dd(11 |:>h+_+2mr X(t +zthkj+z’u] i
or

dq, _ =Py +a—+2mn {u cos @ u )+Zuhk cosi u,"™ %”LZT:H g'=o.
dt op, =

The additional terms in the Lagrange equations thatreqaired by the lack of
holonomity in the coordinates are therefore entirbly $ame as in the case where the
number of generalized coordinates is equal to the nunfbdegrees of freedom in the
system, such that no equations between the generalizediraies remain any longer,
and the problem that was posed is then solved in full gétyer




