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 In Borchartdt’s Journal for pure and applied mathematics (Bd. 98, Heft 1, pp. 87), I 
considered the following case as an example to explain a general theorem: 
 Two pulleys are connected by a belt that can be displaced back and forth parallel to 
the axes of the pulleys in a manner that is similar to how one displaces a belt from an 
active pulley to an unused pulley (Leerscheibe) or conversely.  The one pulley is tapered 
in one direction, while the other one is tapered in the opposite direction according to a 
law that makes the same belt always fit when it is displaced in the manner described.  
Such a displacement of the belt implies a certain variability of the radii r1 and r2 of the 
two pulleys, and therefore the transmission ration a = r1 / r2, as well. 
 Therefore, if ω1 is the angular velocity of the one pulley, while ω2 is that of the other, 
then one will have ω2 = a ω1 .  If a is variable then one can choose a and the total angular 
rotation w1 for the first pulley during a certain time interval to be the coordinate of a point 
P that either belongs to the second pulley or is fixed with it.  That will be a non-
holonomic coordinate, since it does not amount to the same thing when one first changes 
a and then w1 , or conversely, first w1 and then a, by the same amounts. 
 One would achieve the same effect when one rotates a disc S that cannot slip in any 
rotating body and which can be displaced parallel to its axis of rotation between two 
rotating conical bodies that are tapered in the opposite direction. 
 One might perhaps doubt whether such conditions can be realized without any 
slipping.  However, in any event, the conditions to which we imagine that our mechanical 
system composed of pulleys is constrained have precisely the same properties that Hertz 
required in his mechanics with non-holonomic constraints (Hertz’s Mechanik, Book I, 
Section IV). 
 The increase in the rectangular coordinates of each of those points can be represented 
in the form: 

dx = A dw1 + B da, 
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in which B = 0, but A depends upon a, such that dx will not be a complete differential.  
Therefore, e.g., an infinitely-small angle of rotation dw2 of the second pulley will be 
equal to a dw1 . 
 In the reference that was cited to begin with, I hesitated to not apply the Lagrange 
equations to this case, but later, I recognized that such an application would not be 
permissible, as the following considerations will show: 
 The sum of the vis vivas of all of the masses that are linked with the two pulleys can 
be expressed as a function of a and dw1 / dt .  One has: 
 

T = 
2

2 11
2 ( )

dw
K La

dt
 +  
 

, 

 
if t is the time and K and L are the moments of inertia of all of masses that are associated 
with first (second, respectively) pulley relative to the respective axes of rotation.  We 
think of all of the remaining components as therefore massless, so all of the other belts 
(the disc S, resp.).  Partial differentiation of T with respect to dw1 / dt will give the correct 
force that acts on the coordinate w1 and which we can think of as being applied to a point 
that is fixed in the first pulley. 
 a depends upon only the coordinates that determine the position of the belt (disc S, 
resp.).  However, the differential quotients of those coordinates with respect to time do 
not enter into T, in fact, but those coordinate coordinates probably do enter into T 
undifferentiated.  When one partially differentiates the quantity T, the Lagrange equations 
will then yield forces along those coordinates that act upon those coordinates; i.e., they 
try to change them, but they do not exist. 
 The Lagrange equations are correct for only holonomic coordinates then, and it would 
probably be worth the effort to ask what equations would appear in place of Lagrange’s 
for non-holonomic coordinates. 
 In order to answer that question, we next imagine that the positions of the 
components of an arbitrary mechanical system (an arbitrary number n of material points) 
are determined by rectangular coordinates.  Let xi be any one of them.  Condition 
equations can exist between them that we can write in the form: 
 

ηj dt + i
j i

i

dxη∑  = 0,  j = 1, 2, 3, …, σ.   (1) 

 
 Some of them can be holonomic, while others can be non-holonomic.  Naturally, the 
left-hand sides of the equations above are integrable when they are holonomic. 
 The positions of all parts of the mechanical system shall also be determined by 
generalized coordinates pk , and indeed we next consider the case in which the number of 
generalized coordinates is equal to the number s of degrees of freedom of the system, so 
it is equal to the difference between the number 3n of rectangular coordinates and the 
number σ of condition equations that exist between them. 
 However, the pk (or at least one of them) shall be non-holonomic, so the differentials 
of the rectangular coordinates shall be given by the generalized coordinates with the 
equations that have the form: 
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dxi = ξi dt + h
i h

h

dpξ∑ .     (2) 

 
 The right-hand sides of arbitrarily-many of these equations can be integrable, such 
that equations in question can be brought into the form: 
 

si = f (t, p1, p2, …), 
  
however, some of them shall not be integrable, such that generalized coordinates are not 
holonomic.  The quantities ξ and η are functions of the coordinates that might also 
possibly include the time t explicitly. 
 Let the forces Xi be given that act upon the various material points of the system in 
the directions of the rectangular coordinates xi .  As is known, one will then have: 
 

3

1

( )
n

i i i i
i

X m x xδ
=

−∑ ɺ = 0,     (3) 

 
from the Lagrange-d’Alembert principle. 
 In the following, we shall not consider the case of one-sided constraints, for which an 
inequality sign will enter in place of the equality sign. 
 The symbols have the usual meanings here, namely, m1 = m2 = m3 is the mass of the 
first material point, m4 = m5 = m6 is that of the second, an overhead dot means the first 
differential quotient with respect to time, two means the second, and δxi are the so-called 
virtual displacements, which fulfill the conditions (1) at a certain unvarying moment in 
time at which dt = 0, but δxi is set equal to dxi , such that one will have: 
 

3

1

n
i
j i

i

xη δ
=
∑ = 0,  j = 1, 2, …, σ.    (4) 

 
 We call the differential quotients of xi with respect to t that follow from equations (2) 
when we hold all pi constant the partial derivatives with respect to t and denote them by 
∂xi / ∂t ; ∂xi / ∂pk has an analogous meaning, such that one has: 
 

ix

t

∂
∂

= ξi , i

k

x

p

∂
∂

= k
iξ .     (5) 

 
 It follows from the same equations: 
 

ixɺ  = ξi +
1

s
h
i h

h

pξ
=
∑ ɺ .     (6) 

 
 By contrast, time is to be kept constant when one defines the δxi such that one has: 
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δxi = 
1

s
h
i h

h

pξ δ
=
∑ .     (7) 

  
 If one then understands a partial differential quotients with respect to ixɺ  to mean one 

for which the variables t, xi , and ixɺ  are kept constant, except for one, with respect to 

which one differentiates, so: 

i

h

x

p

∂
∂
ɺ

= 
1

hs
i i

h
hh h

p
p p

ξ ξ
=

∂ ∂+
∂ ∂∑ ɺ ,    (8) 

 

i

h

x

p

∂
∂
ɺ

ɺ
= h

iξ  = i

h

x

p

∂
∂

,     (9) 

 
the last of which follows from equations (5).  When one differentiates those equations, it 
will follow that: 

i

h

xd

dt p

 ∂
 ∂ 

 = 
1

k ks
i i

k
k k

p
t p

ξ ξ
=

∂ ∂+
∂ ∂∑ ɺ .    (10) 

 One then has: 

i i

h h

x xd

p dt p

 ∂ ∂−  ∂ ∂ 

ɺ

ɺ
 = 

1

h k hs
i i ii

k
kh h k

p
p t p p

ξ ξ ξξ
=

 ∂ ∂ ∂∂ − + −  ∂ ∂ ∂ ∂ 
∑ ɺ . 

 We now set: 
h
ii

hp t

ξξ ∂∂ −
∂ ∂

= h
ir , 

k h
i i

h kp p

ξ ξ∂ ∂
−

∂ ∂
 = hk

ir ,   (11) 

 
for brevity, such that we can write: 
 

i i

h h

x xd

p dt p

 ∂ ∂−  ∂ ∂ 

ɺ

ɺ
 = 

1

s
h hk
i i k

k

p
=

+∑ ɺr r .   (12) 

 
 The geometric meanings of the quantities that were introduced here are implied by 
the following considerations: 
 If one first lets ph increase by dph and then increases pk by dpk then the quantities xi 

will first increase by h
i hdpξ , and then by 

k
ik

i h k
h

dp dp
p

ξ
ξ
 ∂

+  ∂ 
.  Those locations in space 

through which the material point whose mass is mr is displaced from its initial location 
during the entire process will be called hk

rB .  Now, conversely, let pk be increased by dpk 

and then ph by dph , such that the xi will first increase by k
i kdpξ  and then by 

h
ih

i k h
k

dp dp
p

ξ
ξ
 ∂

+  ∂ 
.  In that way, the same material point whose mass is mr will move 
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from its undisplaced position by hk
rA .  One sees directly that when i = r, r + 1, or r + 2, 

the quantities: 
k h
i i

h k
h k

dp dp
p p

ξ ξ ∂ ∂
−  ∂ ∂ 

= hk
i h kdp dpr  

 
will be nothing but the projection of the straight connecting line hk hk

r rA B  between the two 

points hk
rA  and hk

rB  onto the coordinate axis along which the xi is measured.  If one 

denotes that projection by hk hk
r rC D  then one will have: 

 

hk
ir = lim 

hk hk
r r

h k

C D

dp dp
. 

 
 Similarly, let h

rE  and h
rF  be the two points in space to which the mass-particle mi 

displaces when one first increases t by dt and then ph by dph , and then in the other case, 
one first increases pk by dpk and then t by dt.  Furthermore, let h h

r rG H  be the projection of 
h h
r rE F  onto the coordinate axes along which the xi is measured.  In the same way that one 

obtained the geometric meaning of the hk
ir  before, one will now find that: 

 

h
ir = lim 

h h
r r

h

G H

dt dp
. 

 
 If one denotes the factors that Lagrange multiplied the condition equations (4) by λ1, 
λ2, …, λσ then it will follow from (3) and (4) in the known way that: 
 

Xi = 
1

i
i j j

j

m x
σ

λ η
=

+∑ɺɺ ,  i = 1, 2, 3…, n.   (13) 

 
 In one introduce the δph , in place of the δxi , in the expression by using equations (7) 
then one will get: 

3

1

n

i i
i

X xδ
=
∑ = 

3

1 1

s n
h

i i h
k i

X pξ δ
= =
∑∑ .     (14) 

 
 The coefficient of δph in the expression on the right shall be called the force that acts 
upon the coordinate ph , as it is for holonomic generalized coordinates, and denote it by 
Ph, such that one will have: 

Ph = 
3

1

n
h

i i
i

X ξ
=
∑  = 

3

1 1

n
i i

i j j
i j h

x
m x

p

σ

λ η
= =

  ∂+  ∂ 
∑ ∑ɺɺ ;   (15) 

 
the latter is true because of equation (13). 
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 We would now like to differentiate the expression i
i

h

x
x

p

∂
∂
ɺ

ɺ  with respect to time, as one 

cares to do in the derivation of Lagrange’s equations.  It follows that: 
 

i
i

h

xd
x

dt p

 ∂
 ∂ 
ɺ  = i i

i i
h h

x xd
x x

p dt p

 ∂ ∂+  ∂ ∂ 
ɺɺ ɺ .    (16) 

 
 For holonomic coordinates, one can obviously set: 
 

i

h

xd

dt p

 ∂
 ∂ 

= i

h

x

p

∂
∂
ɺ

. 

 
That will no longer be the case only for non-holonomic ones.  One will then have: 
 

ixɺ = ξi + 
1

s
k
i k

k

pξ
=
∑ ɺ , 

so: 

i

h

x

p

∂
∂
ɺ

 = 
1

ks
i i

k
kh h

p
p p

ξ ξ
=

∂ ∂+
∂ ∂∑ ɺ , 

while: 

i

h

x

p

∂
∂
ɺ

= h
iξ ; 

hence: 

i

h

xd

dt p

 ∂
 ∂ 

 = 
1

k hs
i i

k
k k

d
p

dt p

ξ ξ
=

∂+
∂∑ ɺ . 

One then has: 

i
i

h

xd
x

dt p

 ∂
 ∂ 
ɺ  = i i i i

i i i
h h h h

x x x xd
x x x

p p dt p p

 ∂ ∂ ∂ ∂+ + − ∂ ∂ ∂ ∂ 

ɺ ɺ
ɺɺ ɺ ɺ ,    (17) 

 
or, from equation (12): 
 

i
i

h

xd
x

dt p

 ∂
 ∂ 
ɺ = 

1

s
k kki i

i i i i i k
ih h

x x
x x x p

p p =

∂ ∂  + − + ∂ ∂  
∑

ɺ
ɺɺ ɺ ɺ ɺr r .   (18) 

 

 We now multiply that equation by mi , add 
1

i i
j j

j h

x

p

σ

λ η
=

∂
∂∑  to both sides, and finally sum 

over i from 1 to 3n. 
 If we begin with the far left and proceed to the terms in equation (18) that lie 
increasingly to the right then: 
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 1. From equation (9): 
 

3

1

n
i

i i
i h

xd
m x

dt p=

 ∂
 ∂ 

∑
ɺ

ɺ = 
3

1

n
i

i i
i h

xd
m x

dt p=

∂
∂∑
ɺ

ɺ

ɺ
 = hdq

dt
.   (19) 

 
 qh has the known meaning.  It is the momentum that relates to the hth coordinate, and 
will be defined when one expresses the vis viva: 
 

T = 
3

2

1

n

i i
i

m x
=
∑ ɺɺ       (19) 

 
as a function of the ph and hpɺ , and then partially differentiates with respect to hpɺ . 

 
 2. The ph shall fulfill the condition equations identically.  For constant time, one will 
then have: 

3

1

n
i
j i

i

xη δ
=
∑ = 0      (20) 

 
for each j = 1, 2, …, σ when the ph change arbitrarily, so also when all of the other ones 
remain constant along with time, except for one, which we would like to call ph .  In other 
words, we will have: 

3

1

n
i i
j

i h

x

p
η

=

∂
∂∑ = 0,  j = 1, 2, 3, …, σ   (21) 

for each value of j and k. 
 When the time also increases by δ t, the x will become somewhat different functions 
of p, in addition, and one will have: 

ηj dt +
3

1

n
i
j i

i

xη δ
=
∑ = 0 

for every j. 
 However, that equation is not true for our present considerations, since no variation of 
time was coupled with any of the variations that were denoted by the sign δ up to now. 
 
 3. From equation (15), one has: 
 

3

1

( )
n

i i
i i j j

i h

x
m x

p
λ η

=

∂+
∂∑ ɺɺ  = Ph .    (22) 

 
 4. If follows from equation (19) that: 
 

3

1

n
i

i i
i h

x
m x

p=

∂
∂∑
ɺ

ɺ  = 
h

T

p

∂
∂

.     (23) 

 That will then imply that: 
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hdq

dt
= Ph + 

3

1 1

n s
h hk

i i i i
i kh

T
m x

p = =

∂  − + ∂  
∑ ∑ɺ r r .   (24) 

 
 Now let vr be the magnitude, as well as the direction, of the velocity of the rth 

material point, which has mass mr = mr+1 = mr+2 , such that rxɺ , 1rx +ɺ , 2rx +ɺ  are the 

components of vr along the three coordinate directions.  Moreover, let h
ru  and hk

ru  be the 

magnitudes and directions of the lines that were previously denoted by h h
r rE F  and 

hk hk
r rA B , resp.  One can also write equation (20) in the form: 

 

hdq

dt
= Ph + 

1

cos( , ) cos ( , )
s

h h hk hk
r r r r r i r r

r kh

T
m

p =

∂  + + ∂  
∑ ∑v u v u u v u ,  (25) 

 
in which r runs through only the values 1, 4, 7, …, 3n – 2 in the first sum. 
 1. then proves that the Lagrange equations, in their unaltered form, are not valid 
applied to a non-holonomic coordinate, and 2. gives the correction term that one must add 
in order for them to be valid again. 
 The proof will suffer only an inessential modification when the number n of 
generalized coordinates is greater than the number s = 3n − σ of degrees of freedom in 
the system.  ν – s = τ condition equations will then remain between the generalized 
coordinates, some of which can be holonomic, while other can be non-holonomic.  Of the 
σ condition equations that exist between the rectangular coordinates, only σ – τ of them 
will be fulfilled identically by the generalized coordinates then. 
 The σ equations (4) will be true for the variations δxi of the rectangular coordinates at 
constant time, as before.  We can combine all of those equations into a single one when 
we multiply each of them by an arbitrary factor λ and add them together.  In that way, we 
will obtain the resulting equation: 

3

1 1

n
i

j j i
j i

x
σ

λ η δ
= =
∑∑ = 0.     (26) 

 
 Establishing that this equation should be true for arbitrary values of the λ comes 
down to the σ equations (4) completely. 
 If we now replace the δx in equation (26) with the δp then the number of arbitrary 
factors λ must be reduced from σ to r, since indeed only τ equations exist between the δp, 

which we would like to write in the form: 
 

1

r
i
j i

i

pζ δ
=
∑ = 0,  j = 1, 2, …, r.    (27) 

 
 Equation (26) must then reduce to the following one when one introduces the δ p : 
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1 1

r
i i
j j i

j i

p
τ

µ ζ δ
= =
∑∑ = 0, 

 
in which the µ are likewise τ linear mutually-independent functions of the λ . 
 The factors λ1 , λ2 , …, λσ are now chosen in such a way that the expression: 
 

23

2
1 1

n
ii

i i j j i
i j

d x
X m x

dt

σ

λ η δ
= =

 
− + 

 
∑ ∑  

 
vanishes for all values of the δxi .  After one introduces the generalized coordinates, that 
expression will be converted into: 
 

3

1 1 1 1

n
h hk ih

h i i i i j j i
h i k jh

dq T
P m x p

dt p

ν ν τ

µ ζ δ
= = = =

 ∂  − + − + +  ∂   
∑ ∑ ∑ ∑ɺ r r  = 0, 

or 
 

1 1 1

cos ( ) cos ( )h h hk hk ih
h r r i r r i r r j j i

h r k jh

dq T
P m p

dt p

ν ν τ

µ ζ δ
= = =

 ∂  − + + + +  ∂   
∑ ∑ ∑ ∑v u v u u v u = 0, 

 
in which r again runs through the values 1, 4, 7, …, 3n – 2.  Due to the choice of λ, from 
which analogous properties will result for the µ, the left-hand side of the last two 
equations will vanish for all possible values of the δpi , and one will get the equations of 
motion: 

hdq

dt
= Ph + 

3

1 1 1

n
k hk i

r r i i j j
i k jh

T
m x

p

ν τ

µ ζ
= = =

∂  + + + ∂  
∑ ∑ ∑ɺ r r , 

or 

hdq

dt
= Ph + 

1 1

cos ( ) cos ( )h h hk hk i
r r i r r i r r j j

r k jh

T
m

p

ν τ

µ ζ
= =

∂  + + + ∂  
∑ ∑ ∑v u v u u v u = 0. 

 
 The additional terms in the Lagrange equations that are required by the lack of 
holonomity in the coordinates are therefore entirely the same as in the case where the 
number of generalized coordinates is equal to the number of degrees of freedom in the 
system, such that no equations between the generalized coordinates remain any longer, 
and the problem that was posed is then solved in full generality. 
 
 

____________ 
 


