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 In a treatise that appeared in volume 71 of this journal, Kirchhoff proved that two infinitely-

thin rings in a moving fluid that is at rest at infinity will be subject to a fluid pressure whose 

moment under any displacement will be equal to the moment of the forces that the rings would 

exert upon each other if certain electrical currents flowed in them. However, that remark is not 

true in general (*). When the rings are in motion, the forces that are being compared to each other 

can still differ by forces that depend upon the motion of the rings, and their moment for any 

displacement will be equal to zero. In fact, calculation will show that this is the case. 

 Since Kirchhoff produced the proof of the validity of the value that he found for the vis viva 

that is included in the fluid only for the case of a ring with a circular cross-section, I would like to 

make a start towards the general calculation of the vis viva that is included in the fluid for rings 

with non-circular cross-sections. In so doing, it will be shown how the so-called Hamilton 

principle can be applied to the calculation of the force that acts upon the rings, and it will be shown 

that the way that Thomson and Tait first applied that principle to the problems in hydrodynamics 

is inadmissible, in general, but it will lead to no flawed results in the cases that they considered, 

due to the vanishing of certain terms. Finally, in conclusion, I would like to carry out the direct 

determination of the pressure that acts on every surface element of the rings in a somewhat-more-

general way that also seems to be the simplest way for arriving at the results that are true for 

infinitely-thin rings. Let an inviscid fluid be surrounded by a surface O that is closed on all sides. 

Let arbitrarily-many bodies be immersed in that fluid, so all or some of it will nonetheless fill up 

a multiply-connected space. A generally-multivalued velocity potential shall exist at each point of 

the fluid. No forces shall act upon the fluid particles beyond the pressure that prevails in it. We 

first assume that all of the immersed bodies are found to be at rest. We can provide an expression 

for the velocity potential that will be very useful in the following investigations in the following 

way: We shall denote the rectangular coordinates of a point of the fluid by x, y, z, and the 

components of the velocity c that prevails there by u, v, w. Furthermore, the same quantities at a 

different point will be denoted by x , y , z , u , v , w . Finally, let r denote the distance between 

 
 (*) As Kirchhoff made me aware of in a conversation on this topic, he himself had already pointed that out. 
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the two points, and define three quantities A, B, C by the following integrals, which extend over 

the entire space that is filled with fluid: 

 

A = − 
1

4

u
dx dy dz

r


   , B = − 

1

4

v
dx dy dz

r


   , C = − 

1

4

w
dx dy dz

r


   , 

 

so we will then have: 

 

(1)  u = 
2 2 2

2 2 2

d A d A d A

dx dy dz
+ + , v = 

2 2 2

2 2 2

d B d B d B

dx dy dz
+ + , w = 

2 2 2

2 2 2

d C d C d C

dx dy dz
+ + . 

Moreover: 

(2)     
dA dB dC

dx dy dz
+ +  = 0 . 

 

One convinces oneself of the validity of the last equation by transforming each of those expressions 

in the following way: 

 

dA

dx
 = 

3

1 ( )

4

u x x
dx dy dz

r

 −
    = 

1 1 1

4 4

u du
dy dz dx dy dz

r r dx 

 
    − 

  , 

 

and imagining that: 

du dv dw

dx dy dz
+ +  = 0 

 

in the entire fluid-filled space, and that  u +  v +  w = 0 on its outer surface when , ,  are 

the direction cosines of the surface element in question. The fact that the fluid-filled space is 

multiply-connected does not alter the validity of those transformations, since u, v, w are 

everywhere single-valued. If one further sets: 

 

L = 
dB dC

dz dy
− ,  M = 

dC dA

dx dz
− , N = 

dA dB

dy dx
− , 

 

and transforms the differential quotients of A, B, C in the same way as before, while recalling the 

equations: 
dv

dz
 = 

dw

dy
, 

dw

dx
 = 

du

dz
, 

du

dy
 = 

dv

dx
, then one will get the following ones: 

 

L = 
1

4

a aw v
do

r

 



−
 , M = 

1

4

a au w
do

r

 



−
 , N = 

1

4

a av u
do

r

 



−
 , 

 

in which do is an element of the fluid surface, ua, va, wa are the components of the velocity that 

prevails there, and , ,  are the cosines of the angles that the normal to do that points to the fluid 
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interior defines with the positive coordinate axes. The integration is over the entire fluid surface, 

so it extends over the surfaces of the immersed bodies, as well as the boundary surface O. However, 

one has: 

dN dM

dy dz
−  = 

2 2 2

2 2 2

d A d A d A d dA dB dC

dx dy dz dx dx dy dz

 
+ + − + + 

 
 = u 

 

as a consequence of equations (1) and (2). One will then get: 

 

(3) u = − 
3

1
[( )( ) ( )( )]

4
a a a a

do
y y v u z z u w

r
   


 − − − − −  . 

 

Corresponding expressions are obtained for v and w. One sees the identity of that calculation with 

the one that Helmholtz performed in his theory of vortex motion. I repeated it here merely to 

analytically prove the applicability of Helmholtz’s formulas for the case of immersed bodies. We 

can also convince ourselves of that by the following reasoning: We imagine that the surface O is 

suddenly removed, and our fluid rings are surrounded with fluid of the same type at rest. At the 

same time, we also remove all of the bodies that are immersed in the fluid and replace them with 

fluid at rest. Viscosity between the newly-added fluid and the one that was originally present shall 

exist at one moment, but will again vanish at another. As a result of that, all of the boundary 

surfaces of the originally-present fluid will be covered by an infinitely-thin layer of rotating fluid 

particles, and they will become what Helmholtz called vortex surfaces. The fluid pressure will 

generally be different on both sides of any element of the vortex surface, so it will begin to both 

move and deform. However, we can inhibit that by letting a force act upon each surface element 

from the outside that brings about equilibrium with the pressures that act upon it. All of the vortex 

surfaces will then remain at rest, and the motion of the fluid will then be the same as it was in the 

case where its interior was replaced by the solid body. The pressures that act upon the outer sides 

of the vortex surfaces are the same as the ones that the surfaces of the solid bodies were exposed 

to in the former case. However, Helmholtz’s formulas are immediately applicable to the latter 

problem. The expressions that were found for u, v, w are the components of the force that certain 

electrical currents that flow in the outer surface exert upon a magnetic pole that is found at the 

point x, y, z per unit volume of magnetic fluid. Namely, if we set: 

 

(4) g =  wa –  va , h =  ua –  wa , k =  va –  ua , i = 
2 2 2g h k+ +  

 

then those quantities will fulfill the condition: g  + h  + k  = 0. A line G that is drawn through 

the point P on the surface whose direction cosines are proportional to the values of g, h, k that 

prevail there will then be tangent to the surface and likewise perpendicular to the direction of the 

velocity H of the fluid at the point P. If we regard the surface as a vortex surface then i will be the 

intensity, and G will be the direction of the vortex filament that goes through P. We would now 

like to imagine that the total surface of all bodies, as well as the surface O, is covered with electrical 

currents in such a way that the direction of the current at each point P of the surface is parallel to 

G, so it will make angles with the coordinate axes whose cosines are g / i, h / i, k / i. However, its 
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intensity is chosen in such a way that when we draw an infinitely-small straight line dq parallel to 

the direction H, so it is perpendicular to the direction of the current through P, the total intensity 

of the current that goes through dq will be equal to i dq. It will simplify the presentation if we 

imagine that all surfaces are covered with infinitely-many 

electrical currents that are infinitely dense, and each of 

which possesses a constant (that is equal for all of them) 

infinitely-small intensity . The number of currents that 

then go through our line element dq is (i / ) dq. It will 

already follow from the fact that vortex filaments can 

never terminate that all of the electrical currents that 

cover the surfaces will be closed, i.e., that none of them 

can begin or end suddenly. Moreover, one can convince 

oneself of that in the following way: We consider an 

element dx  dy in the xy-plane and lay a prism through it 

whose sides are parallel to the z-axis. It cuts out the 

element ABCD from any of the surfaces (see the 

accompanying figure). Let the direction of the current in 

that element be MN. The number of currents that go through AB will then be: 

 

Z1 = 
sin ( , )i AB MN AB




 . 

 

The direction cosines of the line are g / i, h / i, k / i. Those of the line AB, which is perpendicular 

to the y-axis and the normal to the surface, are: 
2 2



 +
, 0, − 

2 2



 +
, from which one finds 

with no difficulty that: 

sin (MN, AB) = 
2 2

h

i  +
 . 

 

Moreover, if dx is the projection of AB onto the x-axis then AB = dx 
2 2 /  + . We will then 

get: 

Z1 = 
h dx

 
. 

 

We likewise get the value of Z2 = 
g dy

 
 for the number of currents that go through AC. The number 

of electrical currents that exit from CD is 1
1

dZ
Z dy

dy
+ , and likewise the number of currents that 

exit through BD will be 2
2

dZ
Z dx

dx
+ . The excess of the number that exit from the surface element 

Z 

N 

M 

A 
B 

D 

C 

O X 

Y 

dx 

dy 
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ABCD over the number that enter it, so the number of currents that begin in that surface element, 

is then: 

1
1

dZ
Z dy

dy
+  = 

d g d h dx dy

dx dy  

    
+    

    
. 

 

However, as a result of equations (4), one has 
g


 = a aw v




− , 

h


 = a au w




−  . If one represents 

the equation of the surface in question by z = f (x, y) then: 



 = − 

df

dx
, 




 = − 

df

dy
, and a result: 

 

d g d h

dx dy 

   
+   

   
 = a a a adu dv dw dwdf df

dy dx dx dy dy dx
− +  −  . 

 

In forming the partial differential quotients, z is regarded as a function of x and y here, as a result 

of the equation z = f (x, y), so: 

adu

dy
 = a au u df

y z dy

 
+ 

 
, 

 

and similar expressions are obtained for the other partial quotients. The symbol  means a 

differentiation for which x, y, and z are considered to be independent. If we recall that, in general, 

the equations: 

av

z




 = aw

y




, aw

x




 = au

z




, au

y




 = av

x




 

 

will also follow for the surface then we will get: 

 

d g d h

dx dy 

   
+   

   
 = 0 . 

 

No new currents will have their sources in our surface element then, and since that will be true for 

every element, no current will begin or end suddenly anywhere on the surface, so all current will 

be closed. If we consider any surface element do, define the product of its length with its intensity 

for every current element that is contained in it, and add all of those products then the sum that we 

have defined, which we would like to denote by   ds, will be equal to i do. Furthermore, when 

we denote the direction cosines of the current that flows through do, so the quantities g / i, h / i, 

/k i , by a, b, c, respectively, we will have: 

 

a ds  = g do , b ds  = h do , c ds  = k do , 
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and we will easily convince ourselves that the values for u, v, w that were found in equation (3) 

are nothing but the components, divided by – 4, of the electromagnetic effect of all of those 

currents on a magnetic pole that is found at a point x, y, z per unit volume of magnetic fluid. The 

velocity potential at the point x, y, z is then the potential of the electrical current at that magnetic 

pole, divided by – 4. (The sign of the potential is chosen such that the positive derivatives are 

equal to the forces.) 

 The way of distributing electrical currents on surface that we have considered, which we would 

like to refer to briefly as a minimal configuration, possesses noteworthy property, namely, that the 

expression: 

P = 
2

1
2

cos ds ds

r

  
  , 

 

so the potential of all currents acting on each other, will be a minimum for it. In it, ds and ds  are 

two current elements, r is the distance between then,  is the angle between them, the two 

integrations are over all elements of any one current, and the summations extend over all currents 

that are found on the surfaces. We denote the projections of the element ds on the coordinate axes 

by dx, dy, dz and its direction cosines by a, b, c. If the same quantities for ds  are denoted by ,dx

dy , dz , a , b , c , resp., then we will have 

 

P = 
2

2

dx dx dy dy dz dz

r

   + +
  . 

 

We now let the positions of all currents on the surface vary by infinitely little. The lengths of the 

individual currents can change in that way, but they must then remain closed under the introduction 

of new current elements. The total intensity of all currents that flow through the cross-section of 

any ring will therefore be invariable. Namely, it will be determined by the increase k that the 

velocity will take on when one orbits around the ring. Namely, if that total intensity is equal to I, 

so its potential at a magnetic pole per unit volume of magnetic fluid will increase by – 4 I when 

one encircles the ring, and since the velocity potential is equal to the potential of the current divided 

by – 4, I must be equal to k. The encircling is counted as positive when it happens from left to 

right relative to a figure flowing with the current, as seen from the front. Since the variation of P 

that results from the changes in position of all ds must be equal to the variation that results from 

the changes in position of all ds , one will get: 

 

 P =  

2 ( )[( ) ( ) ( ) ]dx d x dy d y dz d z dx dx dy dy dz dz x x x y y y z z z

r r

     


        + + + + − + − + − 
− 

 
  . 

 

In order to eliminate the differentials of the variations, we partially integrate the first term. When 

we consider that all of the currents must remain closed, so the variations must be equal at the upper 

and lower limits, that will give: 
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 P = 2

3
{ [( ) ( ) ( ) ( )]

ds ds
x y y a b z z a c x x bb c c

r
 


      − + − − − +   

 + [( ) ( ) ( ) ( )]y z z cb x x a b y y a a cc       − + − − − +  

 + [( ) ( ) ( )( )]}z x x ac y y bc z z aa bb       − + − − − +  

 

 = { ( ) ( ) ( )}ds x c H b K y a K cG z b H aG   − + − + −  , 

when we set: 

G = 
3

( ) ( )y y c z z b
ds

r


   − − −
  = 

3

( ) ( )y y k z z h
do

r

   − − −
 , 

H = 
3

( ) ( )z z a x x c
ds

r


   − − −
  = 

3

( ) ( )z z g x x k
do

r

   − − −
 , 

K = 
3

( ) ( )x x b y y a
ds

r


   − − −
  = 

3

( ) ( )x x h y y g
do

r

   − − −
 . 

 

G, H, K are then nothing but the components of the effect of all currents acting upon a magnetic 

pole per unit volume of magnetic fluid. They will be indeterminate on the surfaces. Namely, we 

see that they are equal to – 4 ua, – 4 va, – 4 wa on the outer sides. By contrast, they will be zero 

on the inner sides, since the potential of the current on a magnetic pole is single-valued in the 

whole interior of the body, and its derivative normal to the surface is equal to zero on the surface. 

In order to avoid that double-valuedness, we imagine that the current is spread across the surface 

in a uniform layer of infinitely-small thickness. The values of the quantities G, H, K are then equal 

to zero on the inner side of the layer and take the values – 4 ua, – 4 va, – 4 wa on the outer sides 

uniformly. The displacements  x,  y,  z shall be taken to be equal for all current elements that 

lie in a layer. It is easy to prove that we must then set G, H, K equal to their mean values – 2 ua, 

– 2 va, 2 ,aw−  resp. The variations are then subject to the condition that   x +   y +   z = 

0 since the currents should not leave the surface. The condition that  P should not vanish will then 

reduce to: 

c H b K



−
 = 

a K vG



−
 = 

bG a H



−
. 

 

That condition is, in fact, fulfilled by the way that we have distributed the current as a minimal 

configuration, as we see, when we replace G, H, K with the values – 2 ua, – 2 va, – 2 wa, resp., 

and imagine that a = g / i, b = h / i, c = k / i. If currents of constant intensity, but varying length, 

flow on the outer surface (or even the inner one) of an annular body along its centerline, so they 

are constrained to encircle it, then they will be in (generally labile) equilibrium under the influence 

of their electrodynamical interaction, so their mutual potential will be a minimum, so they will be 

found to be in the minimal configuration. They will then be analogous to the distribution of static 

electric electricity on the outer surface of a conductor. However, in some special cases, the splitting 

of a current of intensity zero into two equal and opposite ones can perturb that picture, while the 

analogue is always possible for static electricity. It is immediately clear that when such an 

equilibrium configuration of currents is possible, their potential must fulfill the requirements that 
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are imposed upon the velocity potential. We can also base the proof of our theorem on that. The 

effect of the current on a magnetic pole in the interior of the body or outside the surface O is 

therefore zero. 

 We would now like to calculate the total vis viva that is contained in the fluid. If  represents 

the density of the fluid then it will be: 

T = 

22 2

1
2

d d d
dx dy dz

dx dy dz

  


     
+ +     

      
  . 

 

 is the velocity potential, so it is the potential, divided by – 4, of all electrical current at a 

magnetic pole per unit volume of magnetic fluid. If we now denote the potential, divided by – 4, 

of a single current at one such magnetic pole by  , and denote a summation over all currents on 

all surfaces by  then we will have: 

 

d

dx


 = 

d y

dx


 , 

2
d

dx

 
 
 

 = 
d d

dx dx

  
   = 

d d

dx dx

  
 . 

 

In the last formula,  , as well as   , is the potential, divided by – 4, of each individual current 

(say,   is that of the current S, and    is that of the current S  ), and both summations extended 

over all currents. As a result, we will have: 

 

T = 
2

d d d d d d
dx dy dz

dx dx dy dy dz dz

            
 +  +  

 
   . 

 

However, from Green’s theorem: 

 

(6) 
d d d d d d

dx dy dz
dx dx dy dy dz dz

           
 +  +  

 
  = − 

d d
do d

dn dn

   
 

 
−  , 

 

in which do is a surface element of the solid body, but d is a surface element of a cross-section 

by which one can make the space that is filled with fluid simply connected. d / dn means a 

differentiation in the direction of the normal that points into the fluid.  will have the same value 

on both sides of a cross-section, with the exception of one of them. That would be the cross-section 

whose boundary line lies on the same surface of the ring as the current S. We can choose the 

boundary line of that cross-section to be the current itself. The values of   on both sides of that 

cross-section differ by  since that is the common intensity of all currents. One then has: 

 

d
d

dn

 



  = 

d
d

dn

 
 


 , 
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so it is equal to the mutual potential of the currents S and S  , divided by – 4. In so doing, it is 

assumed that the mutual potential of two currents of intensities J and J   is 
cosds ds

J J
r


 , in 

which the intensities are measured in so-called electromagnetic units. When we sum equation (6) 

over  and   and multiply by  / 2, we will have: 

 

T = − 
2 2

d d
do d

dn dn

     
 

 
−   . 

 

The second term on the right of this is the mutual potential of all currents, multiplied by  / 4 

since the sum of the potential of each of them on themselves contribute only vanishingly little to 

it. However, the first term on the right is equal to: 

 

− 
2

d
d

dn

  
 


   = − 

2

d
do

dn

 
  = 0 , 

 

since d / dn vanishes for all surface elements. The total vis viva that is contained in the fluid is 

then equal to the mutual potential of all those currents S, multiplied by  / 4. The total intensity 

of any current that flows in a ring must then be equal to the increase k that the velocity potential 

experiences during a circuit of the ring, and its direction is counted as positive when the circuit 

takes place from left to right when seen from the front by a figure that flows with the current. The 

distribution of current is determined by that in such a way that  P will vanish when the surfaces 

are fixed. If we displace all bodies infinitely-little and imagine that when the current is  brought to 

its new position, that will correspond to a minimal configuration then the increase in P will consist 

of two parts, one of which originates in the displacement of the currents in the bodies while the 

distribution on their surface remains unchanged, and the other one stems from the change in that 

current distribution that is necessary in order for it to produce the minimal configuration that 

corresponds to the new position of the ring. However, the latter is equal to zero, because we know 

that  P will be equal to zero for a variation of the distribution of currents with no change in the 

position of the surface. The variation that the total potential of the currents experiences is then 

equal to the potential that it would experience if the distribution of currents on the outer surface of 

the bodies were not changed. 

 We would now like to go on to the case in which the body is not at rest in the fluid, and indeed 

we would like to assume that it will change in form, but not in volume, since the calculations will 

not become any more difficult by doing so. By contrast, the surface O shall be at rest, although its 

motion would not modify the process of calculation essentially, either. The components of the 

velocity of any surface element do of the body shall be called , , . For the moment, we would 

like to merely construct the surface of the body from a substance that is different from the fluid 

but imagine that its interior is again filled with fluid that is originally at rest, and naturally, as long 

as the surface of the body moves, that fluid will also be put into motion, and indeed while a single-

valued velocity potential exists. We further set: 
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A = − 
1

4

u
dx dy dz

r


   , B = − 

1

4

v
dx dy dz

r


   , C = − 

1

4

w
dx dy dz

r


   , 

 

in which the integration extends over all of the fluid that is found inside of the surface O outside 

and inside of the body. One will then have: 

 

u = 
2 2 2

2 2 2

d A d A d A

dx dy dz
+ + , v = 

2 2 2

2 2 2

d B d B d B

dx dy dz
+ + , w = 

2 2 2

2 2 2

d C d C d C

dx dy dz
+ + , 

dA dB dC

dx dy dz
+ +  = 0 

 

again in the entire fluid. In order to prove the last of those equations, we transform the derivatives 

of A, B, C as before, for the fluid inside, as well as outside, the body. Now,  u +  v +  w is 

indeed no longer equal to zero on its surface. However, that quantity will possess the same value 

on both sides of the surface, so the terms in the expression for 
dA dB dC

dx dy dz
+ +  that relate to the 

limits will again drop out. If we keep that fact in mind and transform the three quantities: 

 

L = 
dB dC

dz dy
− ,  M = 

dC dA

dx dz
− , N = 

dA dB

dy dx
−  

then we will get: 

 

L = 
( ) ( )1

4

a i a iw w v v
do

r

 



− − −
 ,  M = 

( ) ( )1

4

a i a iw w v v
do

r

 



− − −
 , 

N = 
( ) ( )1

4

a i a iw w v v
do

r

 



− − −
 , 

 

in which ua, va, wa are the velocity components of the fluid on the outer side of do, while ui, vi, wi 

are the components on the inner side. Since we assume that the surface O is at rest, we will have 

ui = vi = wi = 0 for it, but ua, va, wa will be simply the components of the velocities that exist on its 

elements. As before, that will give: 

 

u = 
dN dM

dy dz
−  = − 

3 3

( ) ( ) ( ) ( )1
( ) ( )

4

a i a i a i a iv v u u u u w w
do y y z z

r r

   



− − − − − − 
 − − − 

 
  . 

 

One will get corresponding expressions for v and u. u, v, w are once more the force components of 

closed electrical currents that flow in the outer surface on a magnetic pole per unit volume of 

magnetic fluid. The intensity and direction of the current is determined as before, except that the 

differences ua – ui, va – vi, wa – wi will enter in place of ua, va, wa . If we lay an infinitely-small line 

dq anywhere that is perpendicular to the direction of the current then the intensity of the current 
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that goes through dq will be i dq. However, the cosines of the angles that the direction of current 

defines with the coordinate axes are g / i, h / i, k / i, in which we now have: 

 

g =  (wa – wi) −  (va – vi) , h =  (ua – ui) −  (wa – wi) , k =  (va – vi) −  (ua – ui) , 

 

i = 
2 2 2g h k+ + . 

 

If we imagine that the outer surface is covered with infinitely-many currents of constant, but 

infinitely-small, intensity  then (i / ) dq will be the number of currents that go through dq. The 

potential (divided by – 4) of that current on a magnetic pole per unit volume of the magnetic fluid 

will then be the velocity potential outside, as well as inside, the body. It is constant outside of O. 

The potential of all currents on each other, so the expression P = 21
2

cosds ds

r





 , will 

once more exhibit a minimum property. Namely, if we transform its variation as before, that will 

give: 

 P = [ ( ) ( ) ( )]ds x x H b K y a K cG z bG a H   − + − + −   , 

in which: 

 

G = 
( ) ( )k y y h z z

do
r

   − − −
 ,  H = 

( ) ( )g z z k x x
do

r

   − − −
 ,  K = 

( ) ( )h x x g y y
do

r

   − − −
 . 

 

When all surfaces are imagined to be covered by an infinitely-thin current layer, the quantities G, 

H, K will again have the same uniform values on the inside of it that they have on the outside. 

Their mean values, which will be taken here, are: − 2 (ua + ui), − 2 (va + vi), − 2 (wa + wi) . We 

now choose the three functions , ,  of x, y, z such that on the outer surface of any body, they 

are equal to the velocity components on the corresponding surface element and fulfill the equation: 

d d d

dx dy dz

  
+ +  = 0 in the interior of the body and determine three other functions l, m, n of x, y, z 

by the equations: 

dn dm

dy dz
−  =  ,  

dl dn

dz dx
−  =  ,  

dm dl

dx dy
−  =  . 

 

If we now denote the expression: 

 

(5)   ( )ds a l b m c n + +   = ( )l dx mdy n dz + +   

 

by Q, in which the integration extends over all length elements of a current and the summation 

extends over all currents on all surfaces (l, m, n are generally different for each body), then after 

eliminating the differentials of the variations: 
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(6)  

 ( ) ( ) ( ) .

dm dn dl dl
Q ds x b c b c

dx dx dy dz

dn dl dm dm
y c a c a

dy dy dz dx

dl dm dn dn
z a b a b

dy dz dx dy

ds x b c y c a z a b

  





         

   
= + − −   

 


  + + − − 
 

  
 + + − −  
  


= − + − + −

 

 

 

 

One will then get: 

 

  (P – 4p Q) = 2 { [ ( 2 ) ( 2 )]a i a ids x b w w c v v    + − − + −   

+ [ ( 2 ) ( 2 ) [ ( 2 ) ( 2 )]}a i a i a i a iy c u u a w w z a v v b u u     + − − + − + + − − + − . 

 

Now since the velocity components of the fluid inside of the body, as well as outside of it, in the 

direction of the normal to its outer surface must be equal to the velocity components of the 

corresponding surface element in that direction, one will have: 

 

 (ua + ui – 2) +  (va + vi – 2) +  (wa + wi – 2) = 0 . 

 

However, it follows from that equation and the equation a  + b  + c  = 0 that: 

 

( 2 ) ( 2 )a i a ib w w c v v 



+ − − + −
 = ( 2 ) ( 2 )a i a ic u u a w w 



+ − − + −  = 
( 2 ) ( 2 )a i a ia v v b u u 



+ − − + −
. 

 

 (P – 4 Q) will then vanish for all  x,  y,  z that satisfy the condition that   x +   y +   z 

= 0 so for any variation of the position of the current when it does not leave the outer surface and 

remains closed with unchanged intensity. In the special case where the form of the body does not 

change, if , ,  are the components of the progressive velocity and p, q, r are those of the 

instantaneous angular velocity then: 

 

Q = 
2 2 2 2 2 21 1 1

2 2 2
[ ( ) ( ) ( ) ]z dx x dy y dz p y z dx q z x dy r x y dz   + + − + − + − +   . 

 

We would like to refer to the expressions under the integral sign in formula (6) that are multiplied 

by  x,  y,  z, so the three quantities (b  – c )  ds, (c  – a )  ds, (a  – b )  ds, as the 

components of the force that acts on the current element ds whose force potential is Q. The force 

that such magnetic masses would exert upon the current element is the force with the components 

, ,  would exert upon a magnetic pole. It is perpendicular to the current element ds and its 

direction of motion, its intensity is  ds times the components of the velocity of ds, which is 
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perpendicular to ds. Since it is always normal to the direction of motion, it will do no work. The 

distribution of electric current on the body is then the one for which the body would be in 

equilibrium under the influence of its electrodynamical interaction and the force (times – 4) that 

acts on every current element as a result of the force potential Q. 

 In the special case where all points on the surface O are found at an infinite distance, at least 

of order R, and the space that they enclose is simply connected, the potential of the current that is 

found on the outer surface of the body at each point of O will be infinitely-small of order at least 
21/ R , so its derivatives will be infinitely-small of order at least 31/ R . Therefore, the velocity on 

the outer surface will also be of that order, so the intensity of the electrical current that flows 

through it per unit area will be, as well. The electrical current that is found on the unit area will 

then produce a potential that is infinitely small of order at least 41/ R  at finite points. The potential 

of all currents that are found on O will then be infinitely-small of order at least 21/ R  at finite 

points, so its derivatives will vanish with increasing R. If we further assume that they are nothing 

but rings whose cross-section perpendicular to the centerline vanishes then if the constant k is to 

be finite, the velocity on the outer surface of the ring must be infinite and almost perpendicular to 

the centerline. The fictitious electrical current on the outer surface of the ring must then flow along 

the centerline, and since the ring is infinitely thin, one can imagine that it flows through the 

centerline by neglecting infinitely-small quantities. It is now important to point out that in this 

case, the velocity potential itself is still finite when one is infinitely-close to the outer surface of 

the ring. In fact, except for a constant, the potential of an electrical current on a magnetic potential 

per unit volume of magnetic fluid must be equal to at most 4 times the intensity of the current, 

and since the total intensity of the current that flows through the ring is finite, its potential will be 

finite, as well. By comparison, its derivatives will become infinite on the outer surface of the ring. 

We will find a suitable form for the velocity potential  in this case in the following way: If 1 is 

the velocity potential that would prevail if the ring were at rest in its instantaneous position, while 

2 is the one that would prevail if the same ring moved in the same way under the existence of a 

single-valued velocity potential, then 1 + 2 will fulfill all of the conditions that are imposed on 

 . Thus,  = 1 + 2 . Since 2 is single-valued, but d2 / dn vanishes on the outer surface of the 

ring, the vis viva T of the fluid that surrounds the ring will then be: 

 

T = − 1 2 2
1 1

2 2 2

d d d
d d do

dn dn dn

    
  − −   . 

 

do is once more an element of the outer surface of the ring, and d is an element of a cross-section. 

If the velocity of the ring is finite then so is the intensity of the current that creates the potential 2 

per unit area, and since the area that the current flows through is infinitely small, 2 itself will be 

infinitely small. Its derivatives are finite in only an infinitely-small part of space, but otherwise 

infinitely-small;  is everywhere-finite. The last two terms in the expression for T will vanish then. 

However, as we saw, the first term − 1
1

2

d
d

dn


  is the potential (times  / 4) of all currents 

that we must imagine are covering the ring at rest, so the currents that are distributed over it in the 

minimal configuration. The variation of the vis viva will also be equal to the variation of that 
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potential then. However, we found that, first of all, the variation of that potential for the minimal 

distribution is just as large as it would be if the currents did not change their positions on the ring 

and the surface O, and that secondly, the potential of the current that is found on O on the current 

that is found on the outer surface of the ring will vanish, and thirdly, that we can imagine that all 

currents flow along the centerline, which will then make its intensity equal to the value of k for the 

ring in question. The increase in the vis viva of the fluid is them equal, up to infinitely-small 

quantities, to  / 4 times the increase in the mutual potential of the currents that flow along the 

centerline with intensity k. That will then yield the proof of Kirchhoff’s theorem for rings of non-

circular cross-section, as well. It might still be remarked that currents that do not flow along the 

centerline, but in such a way that they twine around the centerline solenoidally, would produce a 

velocity potential that is multivalued in the interior of the ring. It will follow immediately from the 

equality of the vis viva with the work done by that current in its motion that the force components 

that fall in the direction of motion will be equal. However, in order to also find the force 

perpendicular to the direction of motion, one must go down a different path. If one would like to 

start from the vis viva then the so-called Hamilton principle might serve that purpose. Namely, 

we form the variation of the quantity: 

 

 = 
2 2 2

0
2

u v w
dt dx dy dz




+ +

  , 

 

such that the total state of motion of the body will change arbitrarily-little at every arbitrary time 

t, but the position of the body at the beginning and the end will remain constant, as well as the time 

interval . The triple integral in  extends over the entire space that is filled with fluid at every 

point in time, so the space outside of the body.  is then the so-called action of the fluid during 

the time interval . We let  x,  y,  z,  u = 
d x

dt


,  v = 

d y

dt


,  w = 

d z

dt


 denote the variations 

that the coordinates and velocity components of the fluid-particle that had the coordinates x, y, z 

at time t would experience at that same time by the change in the state of motion of the body. Thus, 

 u,  v,  w are not variations of the velocity components that prevail at a constant spatial point. 

We will then have: 

  = 
0

( )dt dx dy dz u u v v w w



   + +   

 = 
0

d x d y d z
dt dx dy dz u v w

dt dt dt


  


 

+ + 
 

   . 

 

If we integrate by parts over t here and observe that u, v, w include t explicitly, as well as due to 

the fact that x, y, z are also functions of t, then that will give: 

 

  = 
0

dx dy dz u u v v w w


   + +  
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−
0

du du du du dv dv dv dv
dt dx dy dz x u v w y u v w

dt dx dy dz dt dx dy dz



  
    

+ + + + + + +    
   

   

 + 
dw dw dw dw

z u v w
dt dx dy dz


 

+ + +  
 

. 

 

If no forces act upon the fluid from the outside then the terms in the integral on the right-hand side 

that are multiplied by  x,  y,  z are equal to −
dp

dx
, −

dp

dy
,  −

dp

dz
. If we consider that the 

displacements  x,  y,  z must not perturb the continuity of the fluid, so we must have 

d x d y d z

dx dy dz

  
+ +  = 0 , and partially integrate the term that is multiplied by  x over x, the one 

that is multiplied by  y over y, and the one that is multiplied by  z over z, then that will give: 

 

  = 
0

0

cosdx dy dz u x v y w z dt do p q




     + + −   , 

 

in which  q is the total displacement of the fluid particle that lies on the outer surface element do, 

and  is the angle between its direction and the normal that is raised over do on the side of the 

fluid. The last term in the expression for   will take the opposite sign when p represents the 

pressure that acts upon outer surface element do of the body, not on the fluid. When X do, Y do, 

Z do  are the components of that pressure, it will also be equal to 
0

( )dt do X x Y y Z z



  + +   

then. If we ignore the first terms in the expression for    then the term that is multiplied by  x 

will give us the force that acts upon do in the direction of the x-axis. Similarly, the terms that are 

multiplied by  y and  z represent the forces that act in the directions of the y and z-axes, resp., 

which one likewise recognizes to be Hamilton’s principle in the form that was first applied to 

hydrodynamics by Thomson and Tait. By contrast, the first term shows that this application is 

generally incorrect. That is based in the fact that the derivation of Hamilton’s principle assumes 

that the initial and final positions of all material points suffer no variation. However, in our case, 

that is true for only the points of the solid body, while the final positions of the fluid particles will 

vary, in general, and therefore the first term. We can again partially-integrate the part of it that is 

multiplied by  x relative to x, etc. It will then go to −
0

cosdo q


    , but the integration will 

not only extend over the outer surface of the body, but also over all cross-sections by which the 

space that is filled with fluid can be made simply connected. Since we have assumed that the initial 

and final positions of the body experienced no variation, cos  will vanish for the entire outer 

surface of the body. The term that originates in the in variation at the limits will vanish then as 

long as the velocity potential is single-valued. Under that condition, the application of Hamilton’s 

principle, as Thomson and Tait did, will be, in fact, admissible, except that the vanishing of the 

term that stems from the variation at the limits cannot be assumed to be obvious, but must first be 
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proved. However, one would be led to an incorrect result in the case where a multivalued velocity 

potential (or none at all) exists. In the former case, the term that stems from the variation at the 

limits will be converted into 
0

cosk do q


    , in which k has the previous meaning. The 

integration extends over all elements of a cross-section, and the  sign means a summation over 

all cross-sections. cosdo q    is the mass of the fluid that flows through a cross-section. When 

the initial position of the fluid particles does not vary, the term that originates in the variation at 

the limits is then the sum of the products of the fluid masses that go through all cross-sections in 

the direction of increasing  with the constant k for the cross-section in question. In order to find 

the forces that act upon the body by that method, in each special case, one must then convert that 

term into an integral that is taken for t between zero and  that includes only  x,  y,  z under the 

integral sign. I shall again begin with the simpler case in which the outer surfaces of all bodies are 

at rest.  will not include time then, and the pressure p that acts upon any outer surface element do 

will be equal to a constant minus 2 2 21
2

( )a a au v w + + . We would now like to calculate the 

electrodynamical force that the current element that covers the element do exerts upon all of the 

other ones. Its components in the directions of the three coordinates axes are: 

 

X = do (k H – h K) , Y = do (g K – k G) , Z = do (h G – g H) , 

 

from the known formulas for the action of closed currents on a current element. With the 

previously-applied notation, one will then have: 

 

G = 
3

( ) ( )k y y h z z
do

r

   − − −
 ,    H = 

3

( ) ( )g z z k y y
do

r

   − − −
 ,    K = 

3

( ) ( )h x x g y y
do

r

   − − −
  

 

here. As we have seen, the values G, H, K will be indeterminate as long as the currents flow through 

an absolute surface. By contrast, if we replace the surface with a layer of infinitely-small thickness 

in which each surface element is filled with currents uniformly then they will increase from zero 

to – 4 ua, – 4 va, – 4 wa, resp., from the inner side to the outer side. Thus, the forces that act 

upon a current element, and which are indeed proportional to the quantities G, H, K will also 

increase uniformly from the inner side to the outer side, and in order to find the total force that acts 

upon the current layer that covers the outer surface element, we must replace G, H, K with their 

mean values – 2 ua, – 2 va, – 2 wa, resp. When we also replace g, h, k with their values and 

consider the equation  ua +  va +  wa = 0, we will then get: 

 

X = − 2 2 22 ( )a a au v w do  + + ,      Y = − 2 2 22 ( )a a au v w do  + + ,      Z = − 2 2 22 ( )a a au v w do  + + . 

 

The electrodynamical effect, like the hydrodynamical pressure, is then perpendicular to do. Its 

intensity is 2 2 22 ( )a a au v w do + + , so except for a constant, it will be equal to 4 /  times that 

hydrodynamical pressure. If the bodies are nothing but infinitely-thin rings then the currents that 

are found on the outer surfaces can be considered to be ones that flow along the centerline with an 
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intensity of k. Furthermore, the effect of the currents that are found on O will vanish when that 

surface is at infinity. Therefore, in that case, the total effect that any ring experiences from the 

fluid will be equal, but in the opposite direction, to  / 4 times the electrodynamical effect that 

the current that flows along the centerline of that ring with an intensity of k will experience from 

all other currents that flow in the remaining rings in a similar manner. That will be true when the 

bodies are at rest. However, things will be more complicated when they are moving, and I would 

presently like to go into the details of that only in the case of an infinitely-thin ring in an unbounded 

fluid. As before, we imagine that the interior of the ring is filled a moving fluid for which a single-

valued velocity potential exists. If the velocity potential is a for a point on the outer surface of the 

ring and i on the inner side then a, as well as i, will be finite on each side, so the differential 

quotients of those quantities with respect to time will be, as well, since the existence of an 

oscillation with infinitely-small periods would obviously be excluded if the motion of the ring 

were continuous. The point of the outer surface considered shall advance with the velocity 

components , , . The quotient of the total differential of a with the differential of time will 

then be a a a ad d d d

dt dx dy dz

   
  + + + , and likewise, for i, one will have: i i id d d

dt dx dy

  
 + +  

id

dz


+ . The difference of the two will then be a finite quantity E in any event. We can then set: 

a a a a i i i id d d d d d d d

dt dx dy dz dt dx dy dz

       
     + + + − − − −  = E . 

 

We would now like to denote the pressure that acts upon an element of the outer surface of the 

ring from the outside by pa and the pressure that acts upon the same element from inside of the 

ring of fictitious fluid by pi . We will then have: 

 

pa – pi = 

2 22 2 2 2

2 2

i i i i i a a ad d d d d d d d

dt dx dy dz dt dx dy dz

        
 

             
+ + + − − + +             

                

 . 

 

If we introduce the quantity E here in place of a id d

dt dt

 
−  then we will get: 

 

pa – pi = 
2 22 2 2 2

2 2

i i i a a ad d d d d d
E

dx dy dz dx dy dz

      
      

             
− + − + − − − + − + − −             

                

 . 

 

We would once more like to calculate the electrodynamical effect that all of the current elements 

that cover the outer surface element do experience from the remaining ones, in addition to the 

forces, times – 4, whose velocity potential is the quantity Q that is determined by the formula (5). 

We gave the definition of those forces before. The three components of the forces that act upon do 

can then be calculated precisely as they were in the case of a body at rest. When all of the currents 

that cover the element do are on its outer side, they will be: 
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Xa = 4 i do [b (wa – ) – c (va – )] ,  Ya = 4 i do [c (ua – ) – a (wa – )] , 

 

Za = 4 i do [a (va – ) – b (ua – )] , 

 

in which a, b, c are again the direction cosines of the current in do. We will likewise get: 

 

Xi = 4 i do [b (wi – ) – c (vi – )] ,   Yi = 4 i do [c (ui – ) – a (wi – )] , 

 

Zi = 4 i do [a (vi – ) – b (ui – )] 

 

for the inner side. If the currents are in the interior of the layer that covers do then part of the 

current will be counted as internal and the other part as external, and if one is to find the 

components of all forces that act upon the current elements that cover do then one must take the 

arithmetic means of the values above. They will then possess the values: 

 

X = 2 i do [b (wa + wi – 2) – c (va + vi – 2)] ,   Y = 2 i do [c (ua + ui – 1) – a (wa + wi – 2)] , 

 

Z = 2 i do [a (va + vi – 2) – b (ua + ui – 2)] . 

 

Their resultant is perpendicular to do. We would like to denote it by R. To save space, we set: 

 

ui –  =  , vi –  =  , wi –  =  , ua –  = x , va –  = y , wa –  = z , 

 

y  – z  =  ,  z  – x  =  ,  x  – y  =  , 

 

and we will then get: 

 

2

R

do
 = 2 2 2 2( ) ( ) ( ) [ ( ) ( ) ( )]i a b c     + + + + + − + + + + +x y z x y z . 

 

We would now like to replace g, h, k with their values in the equation i = 2 2 2g h k+ + , which 

will then give: 

 

i = 
2 2 2 2( ) ( ) ( ) [ ( ) ( ) ( )]a b c     + + − + +x- y- z- x- y- z- . 

 

However, since the derivative of  in the direction of the current that flows through do cannot have 

any jumps, we will have: 

 

(7)    a (x – ) + b (y – ) + c (x – ) = 0  
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so: 

i = 2 2 2( ) ( ) ( )  + +x- y- z- . 

 

Since the projection of the velocity in the direction of the normal to do inside, as well as outside 

of the fluid, must be equal to the projection of the velocity of do in that same direction, we have: 

 

 x +  y +  z = 0 ,   +   +   = 0 . 

 

It will then follow from those two equations and the equation  a +  b +  c = 0 that: a  + b  + 

c  = 0 . If we combine that equation with equation (7) then we will get: 

 

a = 
( ) ( )

n

   − − −z y
, b = 

( ) ( )

n

   − − −x z
, c = 

( ) ( )

n

   − − −y x
, 

 

in which: 
2n  = [ (z – ) –  (y – )]2 + [ (x – ) –  (z – )]2 + [ (y – ) –  (x – )]2 

= 
2 2 2 2 2 2( )[( ) ( ) ( ) ]     + + − + − + −x y z  . 

 

Substituting those values will then give: 

a (x + ) + b (y + ) + c (z + ) = 
2 2 22( )

n

  + +
 = 

2 2 22

i

  + +
. 

 

When one also replaces i with its value, one will then have: 

 

2

R

do
 = 2 2 2 2 2 2 2 2 2[( ) ( ) ( ) ] [( ) ( ) ( ) ] 4( )        + + + + + + + − + +x y z x- y- z- , 

 

and after some reductions: 

2

R

do
 = x2 + y2 + z2 − 

2 2 2  − − , 

so 

R = 

2 22 2 2 2

2 a a a i i id d d d d d
do

dx dy dz dx dy dz

     
      

           
− + − + − − − − − − −           

            

, 

 

and as a result: 

(8)     pa do = 
4

i

R
p do E do





− −  . 
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If the velocity and acceleration of the ring are finite then the same will be true of pi ; we likewise 

know that E is finite. If we would now like to use the expression for pa do to find the forces and 

force-couples that are affixed to the ring then we must multiply it by certain finite quantities and 

integrate over the infinitely-small outer surface of the ring. pi do, as well as  E do, will only 

produce infinitely-small quantities then. When we neglect infinitely-small quantities, the forces 

and force-couples that are affixed to the ring will then be just as large as when only the force −

4

R


 acts upon each surface element. That will be – 

4




 times the force that all currents exert upon 

the current elements that cover the outer surface element do as a result of the potential Q. However, 

for infinitely-thin rings, not only can all currents be imagined to be concentrated along the 

centerline, but we can also regard the velocity and acceleration inside of a very short piece of the 

ring as constant. For the case of a moving infinitely-thin solid ring, the effect that is exerted upon 

each ring is equal, but oppositely-directed, to the electrodynamical effect, multiplied by  / 4, 

that would be exerted upon the current that flows in the ring with an intensity of k by the current 

that flows in the remaining rings in the same way. But that must be combined with the force with 

the potential  Q. If the ring is not rigid, but deformable with no change in length and cross-section, 

like flexible strings, then when one again seeks the force that is affixed to an element of length d 

of the ring that is infinitely-small, but infinitely-long, compared to the dimensions of the cross-

section, from the expression (8) for pa do, the two terms pi do and –  E do would once more yield 

only vanishing contributions. That force (except for the ones that keep any flexible ring in 

equilibrium) will then be equal to –  / 4 times the effect of all currents on the current element 

d, plus the force with potential  Q. From what we found before, the latter is perpendicular to d 

and its direction of motion. Its intensity is equal to  k d times the component of its velocity that 

is perpendicular to d. It points towards the side where the direction of motion of the element and 

that of the fluid are opposite. In conclusion, I shall add that it was assumed in all of this that the 

pressure that acts upon the fluid at infinity does not become negative on the outer surface of the 

ring; otherwise, a separation surface would arise. If the ring were infinitely-thin then the velocity 

of its outer surface would become infinite. The pressure that must exist in the fluid in order for no 

separation surface to arise would also be infinite then. 

 

 Graz, 5 November 1870. 

 

__________ 


