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Problem: Given a perfectly flexible and homogeneous string that hefests has
unequal thickness and whose elements are subject totitve accentral forces that are
inversely proportional to the distance, find the law byahhhe thickness must vary at
each point of the curve and the curve that the string endsbit in the equilibrium state
in order for the tension in that state to vary from pa@t to another in proportion to the
thickness or for the string to present a chance otirgghat is everywhere equal.

Solution: Let a be the constant ratio that exists between the thiskaeand the
tensionT at each point of the string in the equilibrium stateet R = f (r) denote the
intensity of the given central force, which we fisstppose to be an arbitrary function of
the distance, but we will have:

d [ﬁT%j =+aTR>ds
ds r

d [ﬁTﬂj ~+aTRYds
ds r

for any element of the string. The center of thedads taken to be the coordinate origin,
and the signs in the right-hand sides are + or — accotalvwlether the force is attractive
or repulsive, respectively.

Add the preceding two equations, after having first mudtipthendx/ dsanddy/ ds
respectively, and then byy-andx, resp. One will get:

dT=+aTRdr d T(xﬂ— yﬁ(j =0,
ds ds

S0, upon integrating:
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d dx
(1) T=Cceg?/Ro T(wl—y—J=Cf
ds "~ ds

The penultimate equation already tells us what thederati each point of the string will
be in the equilibrium state. One easily deduces tlo&ribss:

(2) w=aT=aC galRd

In order to then get the equation for the equilibrium ewfthe string, it will suffice to
eliminateT from equations (1). One will then find that:

dy dX_ C ;ader
X—=—y—=—e
ds ds C

and upon passing to polar coordinates:

r2d6’ _ C' ;ader
—_— = _e ,
dr’+r2dg* C
SO
40= dr .
2 Fla r ,
r\/ C,zrze+2 Jrer g
hence, upon integrating:
3) o+a= | dr

I

2 F2a r .
r\/ Czrze+2 Jra -1

The constants that were introduced by the integnatare easy to interpret. If the two
guadratures that enter into the right-hand sidequfation (3) are both taken by starting
from the foot of the normal that is drawn throudte torigin to the curve that is
represented by that equation (3) then the constaatsC’/ C, C will be nothing but the
values ofé, r, T, respectively, that pertain to that point. Astloe constana, one knows
that it expresses the constant ratio that exist&dsn the thickness and the tension at
each point of the string in the equilibrium stateis almost pointless to say that the four
constants that one deals with are determined ih special case by expressing the idea
that the string passes through two points, thha# a well-defined length between those
two points, and finally that it has a known thickaet a point.

We now leave behind the previous generalities fdeo to occupy ourselves
exclusively with the case in which the force isarsely proportional to the distance.
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We then set:
f(r) = E,
r

in which the unit of force is the force that acts atnd distance. Equations (2) and (3)
will become:

_ r +a e dr
(4) w_a-la[_j ' e_a)_ fo 2(1xa) '
r0

upon taking the integrals as we did above, starfiogn the foot of the normal that is
drawn through the origin to the curve that thengtiassumes in the equilibrium state, and
calling the values of, r, T at that point&, ro, To, respectively.

The integral contained in the right-hand sidelef tast equation is easily evaluated
upon setting:

1+a
L1 =secq, S0 J'r dr :J’¢ d¢ _ ¢
h o [ y®  blra 1xa
r (j -1
rO

(5) r'*2 cos (1x a) (6— &) = r1*=.

and one will find that this equation is:

That shows us that the equilibrium curves of thmgtin the case considered are nothing
but the remarkable curves that Serret consideredht first time in Tome VII of this
Journal and whose arc lengths represent Eulerian integfaihe second kind in a large
number of cases. One knows that these curvesdcthe circle, the equilateral
hyperbola, the lemniscate, etc., as special cddeseover, the value & upon which the
nature of the equilibrium curve will depend, as Ivesd the values of, andr, that are
determined in each special case must be obtaisedaa said above, by expressing the
ideas that the curve must pass through two poimdstiaat it must have a known length
between those curves.

Recall the first of equations (4):

(6) w= al, (Lj_ :

o

That equation tells us the thickness of the staihgach point as a function Qfviz., the
distance from the origin to the point considered¢ha equilibrium position. One can
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once more express the thickness at each point ascaofuof the volume of the string
that is included between that point and a well-definedhtpoiThe formula that one
obtains to that effect, which has a very remarkablenfdras the advantage of being
applicable no matter what position that the stringup&s, and consequently, when it is
stretched into a straight line on a plane.

Take the polar axis to be the normal to the curve @)ishdrawn through the origin,
and set:

l+ta=m, aTo=w,

to simplify. Equations (5) and (6) become:
(7) r™ cosm@=r.",

®) o= %H |

0

We infer the differential of arc length that the mfriis endowed with from the

penultimate equation:
m+l
r
ds=r, (—j déa,
r0

so we will have:

for the volume that is counted by starting from the pajas. If we eliminated from that
equation and equation (8), which amounts to:

m-1

%~ (cosm@)™
)

then we will find:

2m

9) vz @l (ﬁjmﬂ -1
m* |y

for the desired equation. After the constamésro, andm have been determined, that
equation will give the volume of the string as a functaf the thickness at the point
where one stops, and conversely.

That same equation can serve to determine the fornedtting.

We associate the string that has been stretchea sit@ight line on a plane with the
volume that is generated by a circle of variable rathas moves parallel to itself while
touching the extremities of the same diameter of adim& a curve, and we propose to
determine the equation of that director curve. Wete the initial diameter of the
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generating circle, and lgt+ y, be the diameter when that circle has traversedpheex
along the straight line. We will have:

_ TTpx 2 _ T, _IT 2
V=2 [y (v )t ax @= %, W=y +yo)"

If one substitutes these values in equation (9) thenadlhget:

4m

x 2 i
[ (y+ yoy?dx = 220 [y“’(’j -1,
0 m yO

so upon differentiating this, one will have:

(10)

and integrating:

(11)

The quadrature that is contained in the right-hand sidbeofast equation is a binomial

. + .
integral that can be evaluated, from known principtagy whenrg—1 or ZL IS an
m m

integer. The first condition is fulfilled fan = - 1, while the second one is fulfilled far
= +1: For the first of those values far, equation (7) will represent a circumference; for

the other two, it will represent a parabola whose fasust the origin and an external
epicycloid that has modulus. If one performs the integration in those three céses

one will find, in succession, that equation (11) is:

(Y +Yo) COS% =Yo,
0

- 4 U2 - 4 U2
5:[y+yoj [yﬂaj 1 +|Og[y+ xj +[y+ x] oL
f'o Yo Yo Yo Yo




Bonnet — Geometrical and mechanical properties of semankable curves 6

N -4 273
Yo 2,
respectively. However, without stopping to discuss thpseial cases (which lead, as

one knows, to some very complicated results), we nlethat one can represent the curve
by equation (10) or (11) for amy by a geometric construction. Indeed, set:

2(m+1)

Yty | ™ _ v
I

(m+ 1)x=u,

so equation (10) will become:
(12) du=

and it is clear that if we can construct the cuhat is represented by the latter equation
then we can also have as many points as we ddasirg tne curve that is represented by
equation (10) by a geometric construction.

Now, | say that if one rolls the curve that is negented by equation (7) along a
straight line then the center of that curve wilsdabe a curve that is included in equation
(12).

In order to do that, if we remark thatand & are polar coordinates of an arbitrary
point of the curve, when we take those coordinatiffs respect to an axis and origin that
are arbitrary, but invariably coupled with that wir andx andy are the rectangular
coordinates of the point that serves as the ovidian we roll that curve along tlxeaxis
in such a manner that the contact will occur atgbmt whose coordinates areand &
then we will have:

dx_ rdé _ rde

dy dr’ Y Jdrr+ride?

Now, suppose that the curve that one rolls isahe that is represented by equation
(7), so one will then have:

1 ’de _ (r)"
( jzm | J dr’ +r’dg? )
| -1
0

(13)

dé _
r—-=
dr

ﬁ‘q

and consequently:
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S S )

dy (rjzm , ’ o ,
—| -1

r0

(14) dx =

which is an equation that is included in equatib?) (
One can deduce some known results from thisndfroakes:

then equation (14) will be that of a cycloid andiagpn (7) will be that of a circle. We
then get back to the characteristic property ofcydoid. |If:

then equation (14) will be that of a catenary agdagion (7) will be that of a parabola
when it is referred to its focus, so one can catelthat when one rolls a parabola on a
line, the focus of the parabola will describe a&npaty. If one sets:

then equation (14) will be that of a rectangulasgt curve and equation (7) will be that
of an equilateral hyperbola when referred to itssaxWe can then say that the center of
an equilateral hyperbola that rolls on a line wékcribe a rectangular elastic curve, etc.

V.

If, instead of rolling the curve that is represehby equation (7) along a line, one
rolls a curve that is parallel to the former, tloere will get a very simple result that does
not differ very much from the one that we obtaibgdolling the curve (7).

First, recall that geometers call a cupagallel to a given curve when it is the locus
of the points that are obtained by taking an arthefsame lengtha along each normal to
that curve that starts from the contact point.
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That being the case, one easily sees thatiid ;7 are the rectangular coordinates of
any point on the curve that is parallel to the curvel{@&h) one will have:

&=rcosf+acosm-1)4
n=rsin@-asinmn-1)4,

or, upon lettingo and ¢ denote the polar coordinates that correspond to thangdar
coordinatesf ands :

(15) pet = ref T+ gg MOV
(16) peti= re? 4 gdm o
with the condition:

(17) r™ cosm@=r.".

We now recall equations (13). Upon changmgito p and @ into ¢, they will
become:

(18) dx __pdg B o’ dg

_ = , y ,
dy dp \ do? + p? dg?

and we can eliminatg 6, p, and ¢ from those two equations and equations (15), (16),
and (17).
From the equality (15), we will first infer that:

e dp+ p V-1 dr = &N dr+ r? -1 - (m-1) ae™ WL /-1 @,

so, upon multiplying this by equation (16) and equating theamélimaginary parts of
the two sides, respectively, we will get:

pdo =rdr—(m-1)dr sihnm@dé+acosm@dr—ar sinmfdé,
o/ do=r?dr— (m- 1)dr cosm@dé+ asinmédr +ar cosmddd- (m— 1)a’ dé
If one simplifies this by means of the equation:
cosm@dr =r sin £dg,
which one deduces from equation (17), then one will get:
pdo=dr[r-(m-1)acosmd,

Fdp= (rcosm@+a)[r— (m- l)acosn® ]d9: (rcosm@+a)[r— (m—- 1)acosn® ]dr
cosmé r sinméd '
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We infer from this that:
fdg _r cosméd+a
dp rsinmé

Furthermore, equations (15) and (16), when multiplied by e#wdr, will give:
o =r?+a® + 2ar cosmé,

If one substitutes this in equations (18), while remarkingt the second of those

equations amounts to:
[, dy?
= 1+—,
P=Y 0l

then, due to the first, one will find that:

rsinmezyﬂ, r cosmé=y—a,
dx

or finally, by means of equation (17):

dx= y dy

2m

(y-a) (yr— ajl_m -1

0

That equation will become equation (14) when onea&e 0, as it must. One can infer
various more or less curious results by varying For example, if one sets = 2, in
which case the curve (17) will be an equilatergbdmpola, then one will find that the
equation of the curve that is generated will be:

y(yz dy

d)(:ro—_
4
1-| =2
rO

V.

The curves that are represented by equation @2xh includes the cycloid as a
particular case, are obtained by generalizing s¢peoperties of that curve.

One knows that for the cycloid, the radius of etuve is twice the normal. We
propose to find, more generally, the curve for whiee radius of curvature is equalrto
times the normal. We will have:
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q 11

=my, or
¥ 1+p> my

2

1+p
q

for the differential equation of the desired curiéone multiplies the two sides byd¥

and observes that:
d
qdy=Pdy=pdp

dx

then one will get:

2pdp_ 2 dy

1+p> my'
SO, upon integrating:

1+ p2 =C y2/m’
SO

dy

dx= ————,

which is an equation of the same form as equatfi@ (
Similarly, since the cycloid is the curve of fagtdescent in a vacuum, the integral

jﬂdx

must be a minimum for the cycloid. Now, the curtlest are included in equation (12)
will give a minimum for the most general integral:

[yJi+p® dx,

as one see in (Euler'8)ethodus inveniengdetc., page 50.
One will obtain some curves for which the ones #ra represented by equations (12)

are only special cases upon generalizing some ptbeerties of the cycloid.
Hence, we propose to find the curve for which thdius of curvaturep has a

constant ratio with the™ power of the ordinate. We will first have:

q _ _

so, upon multiplying by 2y and integrating:
(1 +p2)—l/2 — C + C,yl—n’

SO
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(C+Cy™")dy
19 dx = :
(19) X \/1—(C+C' o

which is an equation that will come back to equafip4) when one seG= 0.

One knows that one will find the cycloid upon louk for the curve for which the
space that is found between it and its developnsesmhallest; i.e., upon searching for the
curve that makes the integral:

jpds:j%dx

a minimum.
If, more generally, one proposes to find the cdorenhich the integral:

3n+l

jp”ds:j%dx

is a minimum then one will find a curve that isluded in equation (19).

Euler, who solved the latter problem in IMethodus inveniendietc., page 66, did
not point out that its solution coincides with tharve for which there exists a constant
ratio between the radius of curvature and a povtreoordinate.

Here is a simple way of establishing that coincae

From the method of variations, the curve whosénatd makes the integral:

3n+l

2y 2
J'(1+ Dn) dx
q

a minimum will have the differential equation:

3n+l 3n+l
2y 2 2y 2
AP ? _ycrp-n &HP)
q

or
3n+l

2y 2
@*p)> zn) =C+C’'p.

If pis the radius of curvature of the desired curemtbne will have:
_ @+ p?)”
q )
o)



Bonnet — Geometrical and mechanical properties of semankable curves 12

n. C+Cp
1+ p?

0

:

can be considered to be the equation of the curve.infgrs from this that:

_ c-C
n,On 1 do= ﬁdp,
and since:
_ @+ p?)”
q 1
one will have:
C-Cp

np"do= dp = (C —C’'p) dx=C dx — Cdy,

SO
p™t=Cx+C’y+C
which is an equation that can be put into the form:
1 1

p"t=ay, or p=amym

by suitably changing the position and directiontlod axes, and that is what we had
proposed to look into.

VI.
We look for the development of the curve thatapresented by equation (12), or
more simply, by the equation:

(20) ax= B
y"-1

Let X, y be the coordinates of an arbitrary point of thatve, let o be the radius of
curvature at that point, and let £ be the coordinates of the center of curvaturédnait t
point. One will have:
9B__ X 42+ dpz=di
da dy

Now one deduces from equation (20) that:




Bonnet — Geometrical and mechanical properties of semankable curves

SO
m+2 .
do= —=y™2dy.
m
One will then have:

Lo 2 arap=( 2] yray,

da - lym—l,

S0 one can infer that:
dg__ da _ /ola2+d,6’2:m+2dy
1 / ym -1 ym m ’

m+2dy, and ,[)’:m—+2y+C,
m m

SO

dg=

and

da =

m+2 _ m , )
- dy«/y“—l—d,[z’\/(mﬁ cj 1,

13

If one translates thg-axis parallel to itself in such a manner as to endde constant

disappear, and one replaceandf with x andy then one will have:

dx = dy\/(%ﬁ— ij -1.

That equation represents a curve that is simil#ineéamne that has the equation:

(21) dx=dyy y"-1,

and which is obviously the orthogonal trajectory tbé curves that are included in

equation (14).

Although the curves that were just obtained, aridbse equation can always be
converted into the form (21), are less remarkabda tthe ones that are represented by
equation (20), they nonetheless enjoy some vengusiproperties. Like the latter, they
include the cycloid, and one will obtain them byhgelizing several properties of that
curve. Hence, those curves are the ones for wancérbitrary power of the arc length is
proportional to the abscissa. Now, one knows tiatcycloid is the curve for which the
square of the arc length is proportional to thecsisa. The property of tautochronism

that the cycloid enjoys shows that for that cutlie,integral:

'[h ds

o Jh-x
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is independent df. More generally, the curves that are represented by equatl) are
the ones for which the integral:

joh(h— X)" ds

is independent oh. One will recognize that easily by either method tRaisson
presented (see hidécanique,Tome premier, page 373) or by the calculus of differential
with fractional indices of Liouville, etc.

VII.

I will conclude by recalling a minimum property that theves (7) enjoy and which
was pointed out by Euler in hidethodus inveniengdetc. page 53. From that property,
the curves (7) are the ones for which the integral:

jr”dsz J'r”«/dr2+r2d92

is a minimum. Indeed, the method of variation willeggus the differential equation of

the latter curves as:
n 12

r'r
ryré+r?=C+ ——,
Jri+r’?

SO

hence:

and therefore, upon integrating as in §

r"™lcos+1)(@-a)=C.




