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 We can thank Lamé for an important result in the theory of the elasticity of solid 
isotropic (*) bodies that is concerned with the transformation of the differential equations 
for elastic displacement into a system of general orthogonal coordinates. 
 That result, which he published in Liouville ’s Journal [(1841), pp. 52] and also in his 
celebrated book Leçons sur les coordinées curvilignes (pp. 290), and had derived while 
investing his customary mastery in the calculations, can be expressed in a form that 
leaves nothing to be desired in the name of simplicity. 
 Let x, y, z be the rectangular, rectilinear coordinates of a point in a solid elastic body 
in its original state of elastic equilibrium, and let x + u, y + v, z + w be its coordinates 
after an elastic deformation has taken place.  As is known, the determination of u, v, w 
will then depend upon three simultaneous second-order linear partial differential 
equations that are valid for then entire elastic body and three first-order boundary 
conditions that are true for the outer surface of the body.  If one defines the nine 
derivatives of the displacements u, v, w with respect to x, y, z, and from them, the six 
quantities: 
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which one, with Saint-Venant (** ), can call the three dilatations and the three shears, 
then the boundary conditions for elastic bodies of any kind can be represented in terms of 
those six quantities themselves and the partial differential equations can be represented in 
terms of the differential quotients with respect to x, y, z. 
 However, in the case of isotropy, there is a simpler form for the partial differential 
equations.  If one considers, in addition to the six dilatations and shears, the three doubled 
components of the elementary rotation: 
 

                                                
 (*) I. e., one whose elasticity is independent of direction.  
 (** ) Liouville’s Journal (1863), pp. 260, 262.  
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and defines the volume dilatation from the three dilatations: 
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then the partial differential equations of the elastic displacements of isotropic bodies will 
have the characteristic property that they can be composed of the differential quotients of 
the four combinations p, U, V, W. 
 Having assumed that, Lamé’s result expresses the idea that the characteristic property 
of the partial differential equations that was just explained also remains true for 
curvilinear orthogonal coordinates.  If one forms the expressions for the volume 
dilatation and the three components of the elementary rotation, which are taken in the 
direction of increasing coordinates, then one can compose the partial differential 
equations of the elastic displacements from those four quantities and their differential 
quotients with respect to the three coordinates. 
 That makes it clear that a result that can be expressed so simply must be derived 
without recourse to calculation. 
 Jacobi has shown (*) that the transformation into general (and in particular, 
orthogonal) coordinates of the partial differential equations that emerge from the 
variation of a multiple integral will be simplified immensely when one performs that 
transformation on the integral, and not on the differential equations. 
 These ideas, which Jacobi set down for the problem of one dependent variable, have 
been extended by Carl Neumann to the problem of three dependent variables that occurs 
in the elasticity of isotropic bodies (** ).  However, in the present case, Jacobi’s method 
by itself will not suffice to yield a satisfactory derivation of the form that Lamé found for 
the transformed equations.  Namely, the dilatations and shears, on the one hand, and the 
elementary rotations, on the other, define two groups of quantities for which there exists a 
special, and very simple, type of transformation for each of them.  By contrast, if one 
mixes the two groups then one can no longer recognize a simple law in the 
transformation of such mixed quantities. 
 In the following pages, I will show that when one properly separates both groups and 
shifts one’s attention from the partial differential quotients to the total differentials under 
the transformation of coordinates, one will arrive at Lamé’s result with almost no 
calculation. 
 
 
 1. The basic equation of elasticity and the form it takes in the case of isotropy. – 
Green reduced the equations of elasticity to a single equation that expressed the idea that 
the variation of a triple integral is equivalent to the moment of the given forces.  If one 

                                                
 (*) Bd. 36, pp. 113, of this Journal. 
 (** ) Bd. 57, pp. 281, of this Journal.  
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treats the displacements as infinitely small then that basic equation for the case of 
isotropic bodies will read: 
 
(1)      δP = K δ Ω, 
 
in Kirchhoff ’s notation (*).  In this: 
 

(1′)  δP = δ (3)P + δ (2)P = [ ] [( ) ( ) ( ) ]dT X u Y v Z w d X u Y v Z wδ δ δ ω δ δ δ+ + + + +∫ ∫  

 
means the moment of the given forces, and in fact, it encompasses the integral δ (3)P, 
which is extended over the volume element dT, of all forces that act upon the interior 
points of the body, and the integral δ (2)P, which is extended over the outer surface 
element dω of the forces that act upon the points of the boundary of the body.  Ω means 
the integral: 
 

(2)  
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that K and Kθ are the two elasticity constants.  The term – g sp that occurs in the integral 

Ω, which is not found in Kirchhoff ’s investigations, is added in order to include the case 
that Duhamel and Franz Neumann examined in which a non-uniformly-distributed heat: 
 

s (x, y, z) 
 

acts upon the individual parts of the elastic body, along with the elastic deformations.  
The constant g that appears as a factor in that term depends upon the linear thermal 

expansion coefficient e of the elastic body by way of the equation (** ): 

 
g = 2 (1 + 3θ) e . 

 
 If one reduces the variation δ Ω to its simplest form: 
 

δ Ω = δ (3)Ω + δ (2)Ω, 
 

                                                
 (*) Bd. 40, pp. 55, of this Journal. 
 (** ) Confer Franz Neumann for the law of double refraction of light in compressed or non-uniformly 
heated non-crystalline bodies.  Abhandlungen der Berliner Akademie from the year (1841), pp. 100, in 
which he took θ = 1/2 .  
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according to the prescriptions of the calculus of variations, in which δ (3) refers to the part 
of the variation that pertains to the volume integral and δ (2) refers to the part that pertains 
to the outer surface integral, then the basic equation (1) will split into the two equations: 
 
(1.a)     δ (3)P = K δ (3) Ω,  
 
(1.b)     δ (2)P = K δ (2) Ω . 
 
That latter, which subsumes the three conditions for the outer surface of the elastic body, 
cannot be simplified further, in general.  By contrast, the former, which subsumes the 
three partial differential equations, admits an essential simplification, and indeed, by way 
of a conversion of δ (3) Ω that is equivalent to the characteristic property of the partial 
differential equations that relates to the aforementioned case of isotropy. 
 If one sets: 

4 F = U 2 + V 2 + W 2,  G = A + B + C, 

 
in which U, V, W mean the doubled components of the elementary rotations  
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as above, and A, B, C mean the second-order functional determinants: 
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then E can be represented in the form: 

 
E = p2 + 2F – 2G . 

 
If one introduces the new integrals: 
 

Ω′ = 2{2 (1 ) }dT p spθ+ + −∫ F g , Γ = dT∫ G  

then one will have: 
Ω = Ω′ – 2 Γ. 

 
However, the integral Γ is not a triple (or volume) integral, properly speaking, but an 
outer surface integral.  Namely, just as a simple integral: 
 

f
dx

x

∂
∂∫ , 
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in which one finds a differential quotient, is not a proper integral, but depends upon only 
the values of the function f that it takes on the limits of the integration, so is an n-fold 
integral: 

1 ndx dx∫ ⋯ M  = 1
1

1

( , , )

( , , )
m
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m

f f
dx dx

x x
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…

⋯

…

 (m ≤ n), 

 
in which one finds a functional determinant M that is formed from m of the n integration 

variables x1, …, xn , is not generally a proper n-fold integral, but at most an (n – 1)-fold 
one.  Since M can be brought into the form (*): 

 

M = 11 1 1 2

1 2
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∂
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the integral in question will not depend upon the values of the functions f1, …, fm inside 
of a domain of integration that is defined in an n-fold continuum, but only upon the 
values that exist on the boundary of the continuum.  For n = 3, m = 2, the integral (** ): 
 

Γ = ( )dx dy dz + +∫ A B C  

 
belongs to that category, so Γ, and therefore δ Γ, as well, will merely be an outer surface 
integral (*** ).  If one recalls the equation: 
 

Ω = Ω′ – 2 Γ 
 
and one also performs the splitting of the variation δ into the parts δ (3) and δ (2) for the 
remaining integrals then one will get δ Γ = 0 and: 
 

δ (3) Ω = δ (3) Ω′. 
 

                                                
 (*) Jacobi, “Theoria novi multiplicatoris,” Bd. 27, pp. 203, of this Journal. 
 (** )  The value of Γ as an outer surface integral will be given by the formula: 
 

2Γ = {[ ]cos( , ) [ ] cos( , ) [ ]cos( , )d u p u x v p v y w p w zω ε ν ε ν ε ν⋅ − + ⋅ − + ⋅ −∫ } 
 
when one forms the expression ε f, with: 

ε f = v w
f f f

u
x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
 

for any function f of x, y, z and lets (ν, x), (ν, y), (ν, z) denote the angles that the outward-pointing normal 
to the outer surface element dω makes with the positive halves of the coordinate axes, resp. 
 (*** ) The special case in which the domain of integration of Γ can be further reduced will not be 
considered here. 
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 With that conversion, (1.a) will go to δ (3)P = K δ (3) Ω′.  In the case of isotropy, there 
is then the following simplified form that will allow the partial differential equations of 
elasticity to be summarized in one equation: 
 
(3)      δ (3)P = K δ (3) Ω′, 
 

(4)   

2

2 22
2 2 2

{2 (1 ) },

4 ,

.

dT p sp

v w w u u v
U V W

z y x z y x

u v z
p

x y z

θ


′Ω = + + −

    ∂ ∂ ∂ ∂ ∂ ∂ = + + = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    
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 2. Transformation of the linear dilatations. – In what follows, as I did before in § 
1, I will need the symbol ε for the operation of elastic variation, such that when f means 
any function of the coordinates, f + ε f will mean the value of f after an elastic 
deformation has taken place. 
 It is known that the displacements that take place at an infinitely-small distance from 
the point (x, y, z) can be composed of two types of variations of the element dT, the first 
of which consists of a linear dilatation without rotations. 
 Let x′, y′, z′ be the coordinates of a point that belongs to the element dT in its original 
position, let r be the length of the line that points from (x, y, z) to (x′, y′, z′ ), and let α, α1, 
α2 denote the cosine of the angle that this line makes with the directions of increasing x, 
y, z.  r will be converted into r + ε r under elastic deformation, so as is known, the linear 
dilatation ε r / r will be given by the equation: 
 

r

r

ε
= ik i ka α α∑  (i, k = 0, 1, 2), 

in which: 
2 2 2
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The two expressions E, p that appear in the integral Ω can be represented in terms of the 

coefficients aik in the form (*): 
  E = 2

ik
ik

a∑ , 

 
  p = ii

i

a∑ . 

 
They are simultaneous invariants for the two quadratic forms: 
 

ik i k
ik

a α α∑ ,  2
i

i

α∑  

 
and will therefore remain unchanged for all orthogonal transformations; i.e., if one 
represents the linear dilatation in any rectilinear or curvilinear orthogonal coordinate 
system in the form: 

r

r

ε
= ik i k

ik

b β β∑ , 

 
in which β, β1, β2 mean the direction cosines that correspond to that coordinate system, 
then E and p will have the expressions in terms of the bik that they had in terms of the aik . 

 Let ρ, ρ1, ρ2 be three functions of x, y, z that define an orthogonal coordinate system, 
so dρ, dρ1, dρ2 will be linear functions of dx, dy, dz that satisfy the equation: 
 

dx2 + dy2 + dz2 = 
2 22
1 2

2 2 2
1 2

d dd

h h h

ρ ρρ + + . 

 
 In the rectilinear, rectangular coordinate system of the x, y, z, the u, v, w will likewise 
be the elastic variations of the coordinates and the displacements in the sense of the latter.  
In the system of the ρ, ρ1, ρ2, that will no longer be the case, since the elastic variations 
ερ, ερ1, ερ2 of the coordinates ρ, ρ1, ρ2 and the displacements R, R1, R2 in the sense of 
increasing ρ, ρ1, ρ2 are coupled to each other by the equations: 
 

Ri = i

ih

ε ρ
. 

 
 I shall denote the coordinates of the two infinitely-close points (x, y, z) and (x′, y′, z′ ) 
by ρ, ρ1, ρ2 and ρ′ , 1ρ′ , 2ρ ′ , resp., in the new system.  The distance between them will 

then be given by the equation: 

                                                
 (*) The index i or k or both of them will be assigned the values 0, 1, 2 in the simple or double sums that 
will occur in what follows. 
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r2 = 
2 22
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After the elastic deformation has taken place, r2 will go to: 
 

(r + ε r)2 = 
2 22

1 1 1 1 2 2 2 2
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. 

 
Of the three fractions whose squares define the right-hand side of that equation, since 
elastic variations can be treated as if they were infinitely small, one transforms the first 
one by means of the equations: 
 

 
h h

ρ ρ ερ ερ
ε

′ ′− + −
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1
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h

h h
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+
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 When one replaces the square of r + ε r in the equation above with this expression 
and the two similarly-constructed ones, one will get the following result for the dilatation 
ε r / r : 

r

r

ε
= ik i k
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b β β∑ , 

where 
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( )i i

i i
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ερ ε
ρ

∂ −
∂
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h h
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  βi = i i

ir h

ρ ρ′ −
, β 2 + 2 2

1 2β β+  = 1. 

 
Since E and p have the same expressions in terms of the bik that they have in terms of the 

aik , one will have: 
E = 2

ik
ik

b∑ , p = ii
i

b∑ . 

 
The quantities that enter into the integral Ω are transformed into the coordinate system of 
the ρ , ρ1 , ρ2 in that way, and when one sets: 
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ri = ε ρi , 

 
to abbreviate, the new expression for that integral will be: 
 

(5) 

2 1 2
1 2
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1
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i
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d d d
dT p sp dT h h h

h h h
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
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∫
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 3. Transforming the elementary rotation. – In this paragraph, the second type of 
change in the volume element dT that results from an elastic deformation shall be 
considered, which consists of a rotation of the element without any linear dilatation.  
Twice the values of the three components of that rotation around the x, y, z axes are: 
 

U = 
v w

z y

∂ ∂−
∂ ∂

,  V = 
w u

x z

∂ ∂−
∂ ∂

,  W = 
u v

y x

∂ ∂−
∂ ∂

, 

 
so the square of the entire rotation will be identical with the quantity F that enters into the 

integral Ω′, which is defined by the equation: 
 

4 F = U 2 + V 2 + W 2. 

 
The physical meaning of this can already be recognized from the outset in the fact that F 

is an invariant under the transformation into general orthogonal coordinates, but the 
invariant character of F is different from that of the quantities E, p that were transformed 

above.  Further developments will show that the two types of invariability have an adjoint 
relationship to each other. 
 If one considers, along with the differentials of the coordinates, any other type of 
infinitely-small changes that the two systems of quantities x, y, z and ρ, ρ1, ρ2 suffer 
simultaneously and denote those variations by δx, δy, δz and δρ, δρ1, δρ2, resp., then 
those variations will have the same linear relationship to each other that the differentials 
have, so they will also fulfill the same second-degree condition, and one will have, at the 
same time: 

  dx2 + dy2 + dz2 = 
2 22
1 2

2 2 2
1 2

d dd

h h h

ρ ρρ + + , 

 

  δx2 + δy2 + δz2 = 
2 22
1 2

2 2 2
1 2h h h

δρ δρδρ + + . 
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Furthermore, as one easily convinces oneself, a third relation will follow from the 
agreement of the linear relations: 
 

dx δx + dy δy + dz δz = 1 1 2 2
2 2 2

1 2

d dd

h h h

ρ δρ ρ δρρ δρ + + . 

 
If one multiplies the first two of those three equations and applies the known formula for 
representing the product of two sums of three squares as the sum of four squares and 
subtracts the square of the third equation from the result then that will yield: 
 

X2 + Y2 + Z2 = R2 + 2 2
1 2+R R , 

where: 
 
 X = dy δ z – dz δ y , Y = dz δ x – dx δ z , Z = dx δ y – dy δ x , 

 

 R = 1 2 2 1

1 2

d d

h h

ρ δρ ρ δρ−
, R1 = 2 2

2

d d

hh

ρ δρ ρ δρ−
, R2 = 1 1

1

d d

hh

ρ δρ ρ δρ−
. 

 
 When one lets the variations δ in: 
 

dx δx + dy δy + dz δz = 1 1 2 2
2 2 2

1 2

d dd

h h h

ρ δρ ρ δρρ δρ + +  

 
go to elastic variations ε and sets: 

σi = 
2

i

ih

ε ρ
 = i

i

R

h
, 

then one will get: 
u dx + v dy + w dz = σ dρ + σ1 dρ1 + σ2 dρ2 , 

or, when one sets: 
 

f (dx) = u dx + v dy + w dz, g (dρ) = σ dρ + σ1 dρ1 + σ2 dρ2 , 
 
to abbreviate: 

f (dx) = g (dρ) . 
 

That equation will be satisfied identically by the linear relations between dx, dy, dz and 
dρ, dρ1, dρ2, so they will also be true when they are posed for the differential variations, 
so one will have: 

f (δx) = g (δρ) . 
 
When one varies the first of these equations, differentiates the second one, and takes the 
difference between the two results, that will yield (*): 
                                                
 (*) Confer the treatise of Lipschitz, Bd. 70, pp. 77, of this Journal.  
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δ f (dx) – df (δx) = δ g (dρ) – dg (δρ), 
or, in developed form: 
 

X U + Y V + Z W = R S + R1 S1 + R2 S2 , 

where 
 

S = h1 h2 1 2

2 1

σ σ
ρ ρ

 ∂ ∂− ∂ ∂ 
, S1 = h h2 2

2

σ σ
ρ ρ

 ∂ ∂− ∂ ∂ 
, S2 = h h1 1

1

σσ
ρ ρ

 ∂∂ − ∂ ∂ 
. 

 
 However, one has the following known algebraic theorem: 
 
 If X, Y, Z and R, R1, R2 are two systems of variables that depend upon each other 

linearly and simultaneously satisfy the condition: 
 

X2 + Y2 + Z2 = R2 + 2 2
1 2+R R , 

 
and if those two systems are coupled with two other systems U, V, W and S, S1, S2 by 

the identity: 
XU + YV + ZW = RS + R1 S1 + R2 S2 

 
then the new system will be likewise linearly-dependent and likewise satisfy the 
condition: 

U 2 + V 2 + W 2 = S2 + 2 2
1 2+S S . 

 
 With that, the transformation of: 
 

2 F = 1
2 (U 2 + V 2 + W 2) = 2 2 21

1 22 ( )+ +S S S  

 
into the new coordinates is completed, so the quantities 1

2S, 1
2S1, 1

2S2,  are, as one 

easily convinces oneself, the components of the elementary rotation around the directions 
of increasing ρ, ρ1, ρ2 .  Since p was already transformed in § 2, all of the quantities that 
enter into the integral Ω′ will be expressed in terms of the new coordinates, and one will 
get the value: 

(6)   

2 1 2
1 2

2

2

{2 (1 ) }, , ,

4 , ,

, ,

k l
i i k l

i l k

i i i
i

i i i

d d d
dT p sp dT h h h

h h

h R
p

h

ρ ρ ρθ ϖ
ϖ

σ σ
ρ ρ

σϖ σ
ρ ϖ


 ′Ω = + + − = =

  ∂ ∂ = = −  ∂ ∂ 
  ∂ = = 
 ∂  

∫

∑

∑

F g

F S S  
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for Ω′, in which i k l means a positive permutation of the indices 0 1 2. 
 The transformation of the displacements that is included in the equation that was used 
above: 

u dx + v dy + w dz = i i
i

dpσ∑ = i
i

i i

R
d

h
ρ∑ , 

 
can be posed analogously for the moments of the forces that are given on the boundary, 
namely: 

X du + Y dv + Z dw = i
i

i i

P

h
δ∑ r = i i i

i

P h δσ∑ , 

 
and one transforms the moments of the given forces accordingly by way of the equations: 
 

(7)   

(2)

(3)

( )
[( ) ( ) ( ) ] ,

[ ] ,

i
i

i i

i i i
i

P
P d X u Y v Z w d

h

P dT X u Y v Z w dT P h

δ ω δ δ δ ω δ

δ δ δ δ δσ

 = + + =

 = + + =


∑∫ ∫

∑∫ ∫

r

 

 
in which Pi and (Pi) mean the components of the given internal and external forces, resp., 
in the directions of increasing ρi . 
 
 
 4. The partial differential equations and boundary conditions in general 
orthogonal coordinates. – In order to obtain the partial differential equations and 
boundary conditions in final form, one now comes to the development of the variations 
δ (2) Ω and δ (3) Ω′.  If an integral: 
 

Ω = ( , , , , , , )i
k i

k

dT f ρ
ρ

∂
∂∫ ⋯ … … …

r
r ,  dT = 1 2d d dρ ρ ρ

ϖ
 (i, k = 0, 1, 2) 

 
is given then the final form of its variation will be known: 
 

δ Ω = 
1 1

cos ( , )i i i
i k i k k

i k i kk k

dT f f d f
h

δ ϖ ω δ ν ρ
ρ ϖ

 ∂  − +  ∂   
∑ ∑ ∑ ∑∫ ∫r r , 

where 

f i = 
i

f∂
∂r

, i
kf  = 

i

k

f

ρ

∂
∂∂
∂
r

, 

 
and (ν, ρk) means the angle that the outward-pointing normal to the outer surface element 
dω defines with the direction of increasing ρk .  One will then have: 
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δ (2) Ω = 
1

cos ( , )i
i k k

i k k

d f
h

ω δ ν ρ∑ ∑∫ r , 

where: 
f = E + θ p2 – g s p. 

One likewise has: 

 − δ (3) Ω′ = 
1i i

i k
i k k

dT f fδ ϖ
ρ ϖ

 ∂  −  ∂   
∑ ∑∫ r , 

 
 F = 2 F + (1 + θ) p2 – g s p,  

 

 F i = 
i

F

σ
∂
∂

, i
kF  = 

i

k

F
σ
ρ

∂
∂∂
∂

. 

If one replaces E and p in f with their expressions: 

 

E = 2
ik

ik

b∑ , bii = 
1i i

k
ki i k

h

hρ ρ
∂ ∂−
∂ ∂∑
r

r , bik = 1
2

i k k i

k i i k

h h

h hρ ρ
 ∂ ∂+ ∂ ∂ 

r r
, 

 

p = ii
i

b∑ = i k

i i

ϖ
ρ ϖ
∂  

 ∂  
∑

r
, 

 
then that will yield the following values for the derivatives i

if , i
kf  of f that enter into 

δ (2)Ω : 
i

if  = 2 [bii + θ p – 1
2 g s] , 

i
kf  = 2 bik k

i

h

h
,  

and therefore: 

δ (2)Ω =
1

2 cos( , )ik k
i kk

d c
h

ω ν ρ∑ ∑∫ , 

where: 
cii = bii + θ p – 1

2 g s,  cik = bik . 

 
If one substitutes that value of δ (2) Ω and the value (7) of δ (2) P in the basic equation: 
 

δ (2) P = K δ (2) Ω 
 

for the boundary conditions then one will get the three conditions equations for the outer 
surface, when expressed in the new coordinates, in which all three of them can be 
represented in the form: 
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(8)   [bii + θ p – 1
2 g s] cos (ν, ρi ) + bik cos (ν, ρk ) + bii cos (ν, ρl ) =

1

2K
 (Pi), 

 
in which i k l means a permutation of the indices 0 1 2, and: 
 

(8′)   bii = 
1i i

k
ki i k

h

hρ ρ
∂ ∂−
∂ ∂∑
r

r , bik = 1
2

i k k i

k i i k

h h

h hρ ρ
 ∂ ∂+ ∂ ∂ 

r r
, 

 
which is a result that will coincide with Lamé’s formulas on pp. 281, 282 of his Leçons 
sur les coordinées curvilignes when one sets s = 0. 
 If one sets F and p in F equal to their expressions: 

 

4F = 2
i

i
∑S ,  Si = hk hl k l

l k

σ σ
ρ ρ

 ∂ ∂− ∂ ∂ 
, p = 

2 2
i i i

i
i i i

h hσϖ σ
ϖ ρ ρ ϖ
 ∂ ∂+ ∂ ∂ 

∑ , 

 
in which i k l means a positive permutation of 0 1 2, and introduces the quantity: 
 

q = 2 (1 + θ) p – g s, 

 
then one will get the following values for the derivatives F i, i

iF , i
kF  of F that appear in 

δ (3) Ω′ : 

F i = 
2
i

i

h
qϖ

ρ ϖ
∂ ⋅

∂
,  i

iF  = 2
ih q ,  i

kF = (i k l) hi hk Sl , 

 
in which (i k l) means positive or negative unity according to whether ikl is a positive or 
negative permutation of 0 1 2.  One will then get the final expression for δ (3) Ω′ : 
 

− δ (3) Ω′ = 2 ( ) l k
i i

i i k l l k

q
dT h ikl

h h
δσ ϖ

ρ ρ ρ
  ∂ ∂ ∂ + −  ∂ ∂ ∂   

∑∫
S S

. 

 
If one substitutes that value of δ (3) Ω′ and the value (7) of δ (3) P in the basic equation: 
 

δ (3) P = K δ (3) Ω′ 
 
for the partial differential equations and establishes that i k l should be a positive 
permutation of 0 1 2 then one will get three partial differential equations that are 
expressed in the new coordinates, and all three of them will be represented in the form: 
 

(9)     k l

l k k lh hρ ρ
∂ ∂−

∂ ∂
S S

= 
1i i

k l i k l

h Pq

h h K h hρ
∂ + ⋅
∂

, 
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in which i k l means a positive permutation of 0 1 2, and: 
 

(9′)  Si = hk hl k l

l k

σ σ
ρ ρ

 ∂ ∂− ∂ ∂ 
,    q = 2 (1 + θ) p – g s,   p = 

2
i i

i i

h σϖ
ρ ϖ
 ∂
 ∂  

∑ ,   σi = i

i

R

h
. 

 
When one sets s = 0, these equations will agree with Lamé’s systems (25), (26), (27), pp. 
290, 291 in his Leçons sur les coordinées curvilignes. 
 
 Berlin, January 1873. 
 

_________ 


