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We can thankamé for an important result in the theory of the elasticf solid
isotropic () bodies that is concerned with the transformatiothefdifferential equations
for elastic displacement into a system of generd&logtnal coordinates.

That result, which he published liouville’s Journal [(1841), pp. 52] and also in his
celebrated bookecons sur les coordinées curviligngg. 290), and had derived while
investing his customary mastery in the calculations, lmarexpressed in a form that
leaves nothing to be desired in the name of simplicity.

Let x, y, z be the rectangular, rectilinear coordinates of a poiatsolid elastic body
in its original state of elastic equilibrium, and let u, y + v, z + w be its coordinates
after an elastic deformation has taken place. Asdasvn, the determination af, v, w
will then depend upon three simultaneous second-order linedial pdifferential
equations that are valid for then entire elastic bodg three first-order boundary
conditions that are true for the outer surface of Itbely. If one defines the nine
derivatives of the displacemenisv, w with respect ta, y, z, and from them, the six
guantities:

oo ow
ox' oy 0z’
and
6v+6w 6w+6u 6u+6v

0z 9y’ ox 09z dy ox’

which one, withSaint-Venant ("), can call the thredilatations and the threshears
then the boundary conditions for elastic bodies oflang can be represented in terms of
those six quantities themselves and the partial drffedeequations can be represented in
terms of the differential quotients with respeckity, z.

However, in the case of isotropy, there is a simfuem for the partial differential
equations. If one considers, in addition to the sixalilans and shears, the three doubled
components of the elementary rotation:

() 1. e., one whose elasticity is independent of directio
(") Liouville’s Journal (1863), pp. 260, 262.
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:@—a_vv, V:a_\/\/_%’ W:%—a_v’
0z 0y ox 0z dy 0X

and defines theolume dilatatiorfrom the three dilatations:

_du oOv ow
p=— +— +

X oy oz

then the partial differential equations of the elasispldcements of isotropic bodies will
have the characteristic property that they can beposed of the differential quotients of
the four combinationp, U, V, W.

Having assumed thdtamé’s result expresses the idea that the charactepisijerty
of the partial differential equations that was just akmd also remains true for
curvilinear orthogonal coordinates. If one forms theresgsions for the volume
dilatation and the three components of the elememtatation, which are taken in the
direction of increasing coordinates, then one can compbsepartial differential
equations of the elastic displacements from those doiantities and their differential
guotients with respect to the three coordinates.

That makes it clear that a result that can be egpdeso simply must be derived
without recourse to calculation.

Jacobi has shown | that the transformation into general (and in paldicu
orthogonal) coordinates of the partial differential &pns that emerge from the
variation of a multiple integral will be simplified mensely when one performs that
transformation on the integral, and not on the diffitial equations.

These ideas, whichacobi set down for the problem ohedependent variable, have
been extended b@arl Neumann to the problem othreedependent variables that occurs
in the elasticity of isotropic bodies ). However, in the present cagecobis method
by itself will not suffice to yield a satisfactory deation of the form thatamé found for
the transformed equations. Namely, the dilatationssaedrs, on the one hand, and the
elementary rotations, on the other, define two groups ofttjearfor which there exists a
special, and very simple, type of transformation forheatcthem. By contrast, if one
mixes the two groups then one can no longer recognize a esifapl in the
transformation of such mixed quantities.

In the following pages, | will show that when one pmhpeeparates both groups and
shifts one’s attention from the partial differential geots to the total differentials under
the transformation of coordinates, one will arrivie Lamé’s result with almost no
calculation.

1. The basic equation of elasticity and the form it takes ithe case of isotropy—
Greenreduced the equations of elasticity to a single equatminetxpressed the idea that
the variation of a triple integral is equivalent to thement of the given forces. If one

() Bd.36, pp. 113, of this Journal.
(") Bd.57, pp. 281, of this Journal.
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treats the displacements as infinitely small thert thesic equation for the case of
isotropic bodies will read:

1) P =K oQ,
in Kirchhoff ’s notation (). In this:

(1) d3:5<3>P+5<2>P:de[x5u+ YO w 25w+j A Xo & Yo «( )D |\

means the moment of the given forces, and in faencompasses the integraf®P,
which is extended over the volume elemdiit of all forces that act upon the interior
points of the body, and the integraf®P, which is extended over the outer surface
elementdw of the forces that act upon the points of the ldauy of the body.Q means
the integral:

Q:de{ezwpz—gsp
(2) @:(@jz.p 6_\/ 2+(a_vvj2+i é’.}-ﬂvz.}._l(ﬂv.}.a_jz.p_l a_u+a_ i
ox ay dz) *\oz oy *\ax o loyo x’
_0u odv odw
p__+_+_l
ox 0dy 0z

thatK andK @ are the two elasticity constants. The termspthat occurs in the integral

Q, which is not found iKirchhoff ’s investigations, is added in order to include ¢hse
thatDuhamel andFranz Neumannexamined in which a non-uniformly-distributed heat

s(x.y.2)

acts upon the individual parts of the elastic baalgng with the elastic deformations.
The constanig that appears as a factor in that term depends tiporinear thermal

expansion coefficient of the elastic body by way of the equation: (

g=21+3Pe.
If one reduces the variatia¥Q to its simplest form:

0Q =00 + 59Qq,

() Bd.40, pp. 55, of this Journal.

(") ConferFranz Neumann for the law of double refraction of light in compressechon-uniformly
heated non-crystalline bodies. Abhandlungen der Berlidkadémie from the year (1841), pp. 100, in
which he tookf= 1/2 .
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according to the prescriptions of the calculus of vamiej in whichd® refers to the part
of the variation that pertains to the volume integwad 0 refers to the part that pertains
to the outer surface integral, then the basic equatipwi(l split into the two equations:

(1.a) oP¥P=K 0®Q,

(1b) 0PpP=K 0@Q.

That latter, which subsumes the three conditionsHerouter surface of the elastic body,
cannot be simplified further, in general. By contréisg former, which subsumes the
three partial differential equations, admits an esaksitnplification, and indeed, by way
of a conversion oB® Q that is equivalent to the characteristic propertyhef partial

differential equations that relates to the aforemeetiocase of isotropy.
If one sets:

4F=U%+V2+W? G=A+B+¢,

in whichU, V, W mean the doubled components of the elementary rotations

_0ov_ow _0ow du W= ou_o0v
0z 0y’ ox 0z’ dy ox’

as above, andl, 9B, ¢ mean the second-order functional determinants:

o = ovow ovow B = owou owdu . _0udv_Qudv

dy 0z 0z0y 0z dx 9xdz  oxdy Ayox
then¢ can be represented in the form:
E=p’+ 23 -25.
If one introduces the new integrals:

Q' = [dTRF+A+6) F-gsp, [ =[dTe
then one will have:
Q=Q"'-2T.

However, the integrdl is not a triple (or volume) integral, properly agig, but an
outer surface integral. Namely, just as a simputiegral:

of
J. dx& ,
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in which one finds a differential quotient, is not a prope&ggral, but depends upon only
the values of the functiohthat it takes on the limits of the integration, scann-fold
integral:

o(f,....f.)

0(X,..., %) (m=n)

jd)(ln-d)gi)ﬁ - J'd&“'d)s

in which one finds a functional determinafit that is formed fronm of then integration

variablesx, ..., X, , is not generally a properfold integral, but at most am ¢ 1)-fold
one. SincéM can be brought into the form)(

m:a(flml)+a(flm2)+...+a(flmm), Qﬁy:a_m,
0x, 0%, ox, aﬂ
axﬂ

the integral in question will not depend upon théues of the functionf, ..., f, inside
of a domain of integration that is defined in mdfold continuum, but only upon the
values that exist on the boundary of the continutiorn = 3,m= 2, the integral ():

r :jdxdydz(m+93+¢)

belongs to that category, §¢ and therefor®dl, as well, will merely be an outer surface
integral (7). If one recalls the equation:

Q=Q"-2T

and one also performs the splitting of the variaiginto the partsd® and 3@ for the
remaining integrals then one will gét” = 0 and:

0¥ =060q.

()  Jacobi, “Theoria novi multiplicatoris,” Bd27, pp. 203, of this Journal.
(") The value of as an outer surface integral will be given by the féamu

2 = [daf[ uOp—£dcos(v, » +[ VOp-€ Ycos(, y+[ i p £ Whcos¢ , 3}

when one forms the expressiefy with:
of of of

= —uU+—v+—w
ox ody 0z

for any functionf of X, y, zand lets ¢, ), (v, y), (v, 2) denote the angles that the outward-pointing normal
to the outer surface elematwmakes with the positive halves of the coordinate axgs, res

() The special case in which the domain of integrattbi can be further reduced will not be
considered here.

ef
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With that conversion, (&) will go to 3®P =K 6® Q'. In the case of isotropy, there
is then the following simplified form that will allow the partdifferential equations of
elasticity to be summarized in one equation:

3) 9P =K ¥ q,
Q’:de{23+(1+H) o2 —g sp,
(4) 4F =U%+V2+W? = ov_ow 2+(6_W—@j2+ @—a_vz
0z 0y Ox 0z oy 0
_ou v oz
ox 0y 0z

2. Transformation of the linear dilatations. — In what follows, as | did before in 8§
1, | will need the symbo# for the operation of elastic variation, such that mwheneans
any function of the coordinate$, + £f will mean the value of after an elastic
deformation has taken place.

It is known that the displacements that take placnanfinitely-small distance from
the point &, y, 2 can be composed of two types of variations of the etedi, the first
of which consists of a linear dilatation without radat.

Letx’, y’, 2’ be the coordinates of a point that belongs to the eledTein its original
position, letr be the length of the line that points froxny{, 2) to (X', y’ z’), and leta, a1,
a, denote the cosine of the angle that this line mak#stiwe directions of increasing
y, . r will be converted into + £r under elastic deformation, so as is known, the linear
dilatationer / r will be given by the equation:

%:Zaikaiak (i’kzo’ 1’ 2)’

in which:
a’+al+ai=1
and
aoo:%, all:ﬂ, azzza—w,
0x oy 0z

a;, =1 @.}.a_vv Qo :l(a_V\/_*_@j o =1 a_U+a_V
720z ay) 272 ox  0z)’ Y72 oy ax)
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The two expression&, p that appear in the integr@l can be represented in terms of the
coefficientsay in the form ():
€=>a,
ik

p= Zaii -
They are simultaneous invariants for the two quadfatios:

zaik a.aq., zaiz
ik

and will therefore remain unchanged for all orthogotmahsformations; i.e., if one
represents the linear dilatation in any rectilinear wnviinear orthogonal coordinate
system in the form:

= 2hAA

in which g, 4, £ mean the direction cosines that correspond to thatdo@de system,
then¢ andp will have the expressions in terms of thethat they had in terms of tlag .

Let p, o1, o2 be three functions of y, z that define an orthogonal coordinate system,
sodp, doi, do, will be linear functions odlx, dy, dzthat satisfy the equation:

2 2 2
dx2+dyz+d22:dr'§ +dé1+dé;z.

In the rectilinear, rectangular coordinate systenhekty, z theu, v, wwill likewise
be the elastic variations of the coordinates and patements in the sense of the latter.
In the system of thg, o1, 0, that will no longer be the case, since the elagti@ations
Ep, 0, £, Of the coordinatep, o1, 0, and the displacemeni Ry, R, in the sense of
increasingo, o1, 2 are coupled to each other by the equations:

£P,
R=2H.
h

| shall denote the coordinates of the two infinitellyse pointsX, y, 2) and &, y’, z’)
by o, p1, 22 and o', o, p,, resp., in the new system. The distance between wim

then be given by the equation:

() The index ork or both of them will be assigned the values 0, 1, 2érsttnple or double sums that
will occur in what follows.
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SETRCRRGS

After the elastic deformation has taken plaéayill go to:

! 1 1 , 2 , , 2
(I’+£I’)2:('0_'0+£'0 _gpj2+ P— Pt ED —EP + Po— P EP,— &P, .
h+¢ch |‘1+g|'l Q'*'gi}

Of the three fractions whose squares define the rightiiside of that equation, since
elastic variations can be treated as if they weraitefy small, one transforms the first
one by means of the equations:

'—p+ED & 1 ehy, |, .
e pz—{[l—ﬂ(p—p)wp—ep},

h+¢&h h

D -+ 2 6 ) + 2

6,01 6,02 (:02 - :02)

EP —EpP=

into

p-prep—ep_(,,0(p) _eh\p'-p 0ep) pi=p , 0(EP) Po= Py
h+e&h 0p h h o0p, h 00, h

When one replaces the squarer of £ r in the equation above with this expression
and the two similarly-constructed ones, one witl tipe following result for the dilatation
erfr:

= 2hAA
where
b = 22) _eh b _{ga(epk)+ga(spi)j
i — ) ik — % )
oph h. 9o h adp
ﬁ:pi’_pl, ,32+,312+,322:1.

Since¢ andp have the same expressions in terms objhhat they have in terms of the

aik , one will have:
€= ztﬁ » P :zbn -
ik i

The quantities that enter into the integaére transformed into the coordinate system of
thep, o1, o> In that way, and when one sets:
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nvn=&£Aa,

to abbreviate, the new expression for that integrallweill

Q=[dT{¢+6p - g sh ar=9292.90; - hnp
w

e 0y 1 _h how h oy
© = B o [Mﬂ. hmj

P=2.h = wzap. (tEJ

hR

3. Transforming the elementary rotation.— In this paragraph, the second type of
change in the volume elemedt that results from an elastic deformation shall be
considered, which consists of a rotation of thanelet without any linear dilatation.
Twice the values of the three components of thation around the, y, z axes are:

_ov_ow V_aw ou W= ou_ o0v

oz ay’ ox 0z’ Ty ox

so the square of the entire rotation will be ideadtvith the quantityy that enters into the
integralQ’, which is defined by the equation:

4F=U2+VZ2+W?

The physical meaning of this can already be reasghfrom the outset in the fact tiat

is an invariant under the transformation into geh@rthogonal coordinates, but the
invariant character df is different from that of the quantiti€s p that were transformed

above. Further developments will show that the typ@s of invariability have an adjoint
relationship to each other.

If one considers, along with the differentialstbé coordinates, any other type of
infinitely-small changes that the two systems o&mjitiesx, y, z and p, o, ©» suffer
simultaneously and denote those variationsdkydy, oz and do, do1, I, resp., then
those variations will have the same linear relaopm to each other that the differentials
have, so they will also fulfill the same second+@egcondition, and one will have, at the

same time:
2

2
0¢ +dy +dZ = 927, 90, 40
h™ R

2
52+ 5P+ & = 5,0 5(1)1 5,;:22.




Borchardt — Transforming the equations of elasticity geoeral orthogonal coordinates 10

Furthermore, as one easily convinces oneself, a thiatiael will follow from the
agreement of the linear relations:

dx &+ dy &y + dz & = dflfp ¥ dpﬁf"l ¥ dp;;pZ.

If one multiplies the first two of those three equasi@and applies the known formula for
representing the product of two sums of three squareseasuth of four squares and
subtracts the square of the third equation from the rémiritthat will yield:

X2+9%+ 32 =R+ K2+ M2,
where:

X =dyodz-dzdy, ) =dzox—dxoz, 3 =dxdy—-dyox,

;= 9090, -dp, 0, o, _dp,9p-dpop, ;= 4o —dp o

h h, hh, ’ hh

When one lets the variatiodsn:

dXd('*‘dy@"'dZ&: dpfp_*_dp;fdpl_*_ dp;fdpz

go to elastic variations and sets:
E O
OI- = 'Lz)l = 5
h® h

then one will get:
udx+vdy+wdz=codp+ 0o do+ & do,,
or, when one sets:

f(dX) =u dx+vdy+wdz gdp =cdo+ o do + o do,

to abbreviate:
f(dx) =g (do) .

That equation will be satisfied identically by the linealations betweedx, dy, dz and
do, do, do, so they will also be true when they are posed foditferential variations,
so one will have:

(o) =g (90) .

When one varies the first of these equations, diffexes the second one, and takes the
difference between the two results, that will yield (

() Confer the treatise dfipschitz, Bd. 70, pp. 77, of this Journal.
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of (dx) —df () = g (dp) —dg (),
or, in developed form:

XU+YPV+IW=R G +R1 61 +R, S,
where

Gzhlhz (%—60—2}, Glzhhz (aaz—a—aj, Gzzhhl (a—a—ﬂj
0p, 0p, dp  0p, op, 0p

However, one has the following known algebraic theore

If X,%), 3 and®R, R1, R, are two systems of variables that depend upon each other
linearly and simultaneously satisfy the condition:

X2+9%+ 32 =R+ K2+ M2,

and if those two systems are coupled with two othstesysU, V, W andG, &1, &, by
the identity:
XU +YPV+3W=RG +R1 61 + R, 6,

then the new system will be likewise linearly-dependemi &kewise satisfy the
condition:

U2+VZ2+W?=6°+62+&2,
With that, the transformation of:
2F=1(U2+VZ+W?) = 1(6°+67+6))

into the new coordinates is completed, so the quanti®s 1&,, $&,, are, as one
easily convinces oneself, the components of the ele@merdtation around the directions
of increasingo, o1, 0. Sincep was already transformed in2§ all of the quantities that

enter into the integrdl’ will be expressed in terms of the new coordinated,care will
get the value:

Q' =[dT{25+1+6) P’ ~g Sp, dT:%, @= hhj

©®) 3=y, =h h@;k —Z—Zk'j,

p:wZi(ﬁj, (o] :%,

~oip\ w
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for Q', in whichi k | means a positive permutation of the indices 0 1 2.
The transformation of the displacements that ikided in the equation that was used
above:

udx+vdy+wdz=) o,dp= Z%dpi ,

can be posed analogously for the moments of the fohe¢sare given on the boundary,
namely:

X du+Y dv+ Z dw= zﬂc&i =Y Phao,

and one transforms the moments of the given forcesrdingly by way of the equations:

5‘”P=Idw[(X)5u+(Y)5v+( 20 w:j mz%&,,
(7) i
oOP=[dT[Xour Yo w 2 W= dD. P b,

in whichP; and @) mean the components of the given internal and extenees, resp.,
in the directions of increasing .

4. The partial differential equations and boundary conditions m general
orthogonal coordinates.— In order to obtain the partial differential equaticansd
boundary conditions in final form, one now comes todbeelopment of the variations
0?0 andd®Q'. Ifan integral:

dx,

Q= '[dT f("',pk,...,ti ,...,£ y
k

» gr= 3P4 90, iy _( 1 9
w

is given then the final form of its variation wile known:

i 0 (1 1
5Q:Zde5r[f —Zk:ma—pk(— fkﬂ+zi:jdcu5q ZH f cos¥ 0. )

w K
where
fil= ﬂ fki = of ,
00,

and (, &) means the angle that the outward-pointing notméhe outer surface element
dwdefines with the direction of increasipg. One will then have:
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0?0 = z.[da)(fti z% fki cos{ .o, ),
i k

where:
f=¢+0p°—gsp
One likewise has:

. 0 (1 .
_ 53 Qr — . i i
) }i JdTa { f }kjm—apk (—m fl H

F=2F+(1+9p°—gsp

F - a_a-i, Fk - aa—a_l .
00,

If one replace€ andp in f with their expressions:

B R Ry _[hos  noo
¢=) b, bi=—-—>_—r, bk = 3| ———=+—~—|,
2.8 o0 h4op ‘ {m%%m}

p=Tn-a3 ()

then that will yield the following values for theemvatives f', f! of f that enter into
o%q
fii:2[bii+9 —%gS], fki:2bik%,

and therefore:
5@0 :22 J‘ dw%; G COSV o,
where: |
Gi=bi +9p-Ligs, Cik = bik .
If one substitutes that value 82 Q and the value (7) a® P in the basic equation:
5PP=Ks?Q

for the boundary conditions then one will get thieeé conditions equations for the outer
surface, when expressed in the new coordinatesvhich all three of them can be
represented in the form:
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(8) bi + &p—3gs cos ¥, @) +bkcos ¢, o) +bicos,a) :i (P),

in whichi k | means a permutation of the indices 0 1 2, and:

. _ Oy oh _,| h 0y  h Oy
8 bi = T, b =1
© TR = {map. hapk}

which is a result that will coincide withamé’s formulas on pp. 281, 282 of Hig¢ons
sur les coordinées curviligneghen one sets= 0.
If one setss andp in F equal to their expressions:

weyel,  e=nn(92-2) peay(e0.g 0T
i : i

00, w 0P, oo w

in whichi k | means a positive permutation of 0 1 2, and intceduhe quantity:
q=2(1+Hp-gs
then one will get the following values for the detivesF ', F', F. of F that appear in
o¥Q"
i_ 0K e i_ g
Fl=o—-10q, F' = h’q, Fe=>0kl)h h&,

in which ( k I) means positive or negative unity according to tiwekl is a positive or
negative permutation of 0 1 2. One will then det final expression fod® Q' :

590 = % 068 08
o0 ZdecSai{hzaplﬂlkl)m{ }}

If one substitutes that value 6f2 Q' and the value (7) a¥® P in the basic equation:
o¥P=K ¥

for the partial differential equations and estdids thati k | should be a positive
permutation of 0 1 2 then one will get three parddferential equations that are
expressed in the new coordinates, and all thréleeof will be represented in the form:

06 _06 _ haq GP

(9)
op h dpc h mhaﬂ Khh'
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in whichi k | means a positive permutation of 0 1 2, and:

. o do, _do, _ _ _ 0 (kg _R
9) Gl_hkhl[ap, apkj, q=21+fp-gs p wzapi(wj, o h

When one sets= 0, these equations will agree withmé’s systems (25), (26), (27), pp.
290, 291 in hid.econs sur les coordinées curvilignes

Berlin, January 1873.



