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Introduction

The mathematical tools that the physicist needsrderoto represent the classical
domain of his science seem to be narrowly restrictedcope. Systems of partial
differential equations dominated that period of physics wheshcompletely behind us
today in this age of quantum physics. Furthermore, tiseomly a surprisingly small
number of differential equations that present themsealpeatedly. Indeed, there is, e.g.,
no domain of continuum physics in whiBlvissoris equation does not play a role. That
fact, which is already conspicuous for the beginner, doet rest upon mere
happenstance, but upon a principle of research that &aseseconomy of thought. The
formulas that mathematics provides are there alreaddg, indeed a relatively small
number of them have been worked out to the extentthigaphysicist can then begin
anything. Therefore, he will convert and manipulate hisiecap material and the laws
that he obtains from it until they take on a preagemhform. In classical physics, the
logical treatment of a domain is first considered t@dmplete when it has been reduced
to a chapter in “normal” mathematics.

There is only one conspicuous exception: wlassical thermodynamics.

The methods that are usually applied in order to deriee bidsic laws in that
discipline depart completely from the otherwise-custgnmethods. One already sees
that in the fact that there is no other domain of msysn which arguments and
conclusions are applied that have any similarity eoglocess o€arnot cycles. If one
further asks which formulas and theorems of mathematitsactually be used for the
thermodynamic inferences then one will hardly be ablehtyacterize them as such. The
physical theories whose presentation one should appeaa¢ teo singular in their details
that nothing seems to remain after one deducts that phgsiazent. But that cannot be
the case. Thermodynamics then culminates in adypiathematical assertion, namely,
the existence of a certain function of the stateupaters — viz., entropy — and gives
prescriptions for its calculation. One would have to iadhat thermodynamics, in its
traditional form, has still not realized the logicdéal of separating the physical content
from the mathematical representation.
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Therefore, in the year 1909, a treatise ®y Carathéodory (*) appeared that
completely achieved that goal. That paper has beenooked by the physics
community almost entirely. That is partly based in tlyvabstract manner of
representation that aimed for maximum generality antlyparwhere it was published:
Most physicists would devote little attention to a tissaon thermodynamics that is
published in Mathematischen Annalen and in which cyclic pesseare not mentioned
once, and yet it deserves to be read, not only tdycthe basic concepts, but also for the
advantage that the new representation offers as taaeaking is concerned.

In order to lighten the burden of studyi@grathéodory’s treatise, | have made an
attempt to present its basic ideas here in an entinglglsifashion and submit them to
my colleagues. | know that thermodynamics exersgr@ngly intellectual charm in the
form that the old masters gave to it and is anchoreg fuenly in the consciousness of
physicists. Perhaps the new foundations will nonethetede some friends. If it also
lacks those wonderful inroads that lead from the fattsxperience to the fundamental
laws in an almost-magical way then it is, in return,rentransparent and appeals to
simply the “normal” mathematics that everyone leasried.

In what follows, | will seamlessly relate the traf thought that leads from the facts
of experience to the mathematical formulas of thelfumental laws. Therefore, | will,
however, treat the terms that coincide with the usuahmar of representation only
briefly and illuminate in detail only those points at @fhsomething new appears. Here,
a certain critique of the classical method of proof nalst be inserted. However, it shall
by no means imply that | wish to diminish the magnificechievements of the masters
whose intuition has led the way, but only to remov@e®f the detritus that no one has
dared to deal with up to now out of an excessively piousradbe to tradition.

8§ 1. — Definitions.

We would like to confine our considerations to the $a&sipsystems of all, namely,
the ones that are composed of chemically-unchanging gasefluids. However, our
method can be adapted to completely-arbitrary systentiseokind that one prefers to
consider in thermodynamics with no difficulty. We Mabme back to them briefly in the
concluding remarks.

We assume that the basic ideas of mechanics (suabllase, mass, force, pressure,
etc.) are known, but not the thermal ones (such apeeture, amount of heat, etc.),
since defining them rigorously is our goal.

The intrinsic state of a fluid of given mass will tdetermined by purelynechanical
considerations as long as its volume is known; the pressuhen a function of volume.
However, the latter is not the case, in fact. Qare change pressure at constant volume
and conversely, namely, by those processes that olsehealting or cooling and which
will be accompanied by the sensations of hotness dness. Now, théhermodynamic
way of looking at things consists of introducing the wodlV as something that varies
independently of the pressupe We shall assume that the intrinsic state of tbeyb
(fluid) is determined completely by being givenp.

() C. Carathéodory, “Untersuchungen iiber die Grundlagen der ThermodynarMiath. Ann. 61
(1909), 355.
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The individual bodies of that kind shall be separatedhfeach other and from the
outside by “walls” that we should not include among tbdiés considered, although we
shall make special idealizations about their behaviatedd, here we shall consider only
two types of walls that have in common the fact thay areampermeable to matterAs
is known, walls that are permeable to matter also alajygnificant role in theoretical
thermochemistry, but allowing them would introduce nceesal difficulties, and we
will touch upon them only briefly in the concluding seati Hence, we shall restrict
ourselves here to walls that are impermeable to heat &dmbatic ones) and ones that
are permeable to heat (viz., diathermal ones). Howsirare we have not introduced the
concept of heat, we must also arrange that the definiif a wall does not involve that
concept.

The adiabatic wall shall be defined by the following property: If a bodyims
equilibrium with an adiabatic container then, when @exeludes distant forces, that
equilibrium should be capable of being perturbed by only theomof parts of the wall,
but no other external processes. To anticipate tHexomcepts, that means simply that
such a wall will not allow changes in equilibrium byatiag, but only through an
expenditure of mechanical work that can be produced only bsthien of parts of the
wall (stirring, compressioret al) when one excludes spatially-distributed distant ferce
This concept of an adiabatic container cannot be @okeld in the theory and is
employed in the same way that it is in ordinary thetymamics. However, its practical
realization in a “calorimeter” that is as complei® possible is also the prerequisite for
that thermodynamic measurement.

Thediathermal wallwill be defined by the following property: When two bodikat
are otherwise adiabatically contained are separated dach other by a diathermal wall,
they should not be capable of being in equilibrium for abjtrvalues of their state
parameterg;, Vi1, andp,, V2, but in order for that to be the case, a certaatiosl must
exist between those four quantities:

F(pl,Vl,pz,Vz)ZO. (1)

Such an equation is then an expression for thermaacipnte introduce the wall only in
order to exclude exchanges of mass. Walls for which aubing is possible (viz., semi-
permeable walls) must be defined in an entirely analogoumenawhich we shall
suggest in the concluding remarks.

8 2. — Empirical temperature.

The notion of temperature is based upon the experimemtahat when two bodies
are in thermal equilibrium with a third one then thell also be in thermal equilibrium
with each other. If one employs the formula (1pasay of expressing thermal contact
then that law obviously reads:

The existence of the equations:

F1(p2, V2, ps3, V3) =0, Fa (P1,Vi1,ps,V3) =0
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implies the existence of the equation:

Fs (p1, V1, p2, V2) =0,

or more generally: The validity of any two of thesdations implies the validity of the
third one.

However, that is possible only when those three equatare equivalent to the
following ones:

f1 (p1, V1) =f2 (p2, V2) =13 (ps, Va).

One can always write the equilibrium condition (1jween two bodies in the form:

f1 (P, V1) =2 (p2, V2) (2)
then.
One can now employ one of the two bodies abhesmometerand introduce the
values of the function:

f2(D2,V2):79

as the émpirica) temperature The equilibrium condition, when in the form (2), lwil
then says that the first body is in equilibrium wikhle second one — viz., ttlgermometer
— when a certain relationship:

fi(pr, Vi) =2 (3

exists between the state parameters Vi and the empirical temperatus2 That
relationship is called thequation of statef the body. The associated curves ingke
plane are called thesotherms Any arbitrary function of? can be chosen to be the
empirical temperature with an equal justification; leenbe isotherms will always stay
the same. That choice is restricted only from a malcstandpoint. Namely, the only
bodies that one will choose to be thermometric sutees will be the ones for which no
two distinct states are in thermal equilibrium (and therefore édmbse fluids that are in
the domain of states that form droplets or gases), becdhsrwise the uniqueness of the
thermometric data would be endangered.

However, it is absolutely necessary to emphasizextinacrdinary arbitrariness in the
choice of specific temperature scales. The preferémceyas thermometers can be
justified by the fact that experiments show that theadings will coincide independently
of the choice of gas in the regime considered. Thdiased upon the fact that the
isotherms are represented by the hyperbplas const. for all gases in a highly-diluted
state. However, the fact that one can choose pigdbat productpV = & to be the
temperature of the gas and not any other function oy pV)> = dor ./ pV = 9 —
cannot be justified logically in terms of this way obking at the theory, but at most by
the doubtful argument of “simplicity” or by anticipaginthe later results of
thermodynamics (cf., §).

Once the temperature scale has been established, meenpdoyp, J orV, & as the
state variables, instead @fV.
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8 3. — The first fundamental law.

One now wishes to define the concepttathl heat and thus to believe that the
historical development of that thermodynamic concepas justified. However, one
must then introduce heat as a substance that flows Hiaiter to colder bodies, which
was the reigning view of things up kbayer’s discovery of the convertibility of heat into
other forms of energy. However, the view that heas & substance ceased to be valid
with that discovery. As long as one knows that ®di&n be heated without giving up
their heat to the surrounding bodies (perhaps by aerehure of mechanical work), the
concept of total heat will undoubtedly lose its meani@me must first know the law of
convertibility before one can know the special precastiander which heat can be
measured by a quantity called the “total heat.”

We will thereforenot introduce the concept of total heat initially and feetnect it
with the phenomena that are formulated in the firslamental law after the fact. In that
way, we will not only obtain greater logical clatityut we will also link up immediately
with the experiments by whicloule proved the first fundamental law.

The experiments consist of bringing afiabatically-closedody (viz., water) from a
state 1 to a state 2 by an expenditure of work and slgoivat for fixed initial and final
states, it will always require the same amount ofkwoegardless of the form, type, and
manner by which that work is applied. That is the aactaatent of the first fundamental
law. Incidentally, the change of state in the bodymeasured by the change in
temperature according to an empirical scale and ultimagéelgiculated in the units of
heat that have been passed down by history. It wiletbex be assumed that the second
state quantity (viz., volume) remains constant in pradii@., no appreciable work will
be produced by extension). If we then overlook all ih@bnceptually superfluous then
we can formulate the result &bule’'s experiment as follows:

First fundamental law: One and the same mechanical work (equivalent electrical
energy, resp.) will be necessary to bring a body (or a system oéyddom a well-
defined initial state to a well-defined final state adiabatically, anilltbe independent
of the type of transition.

One appeals to the following data then in order to cetelyl characterize such an
adiabatic change of state:

1. The equilibrium parameters of the initial stadg, (/o for a body).
2. The final statep( V).
3. The work expendeA.

If one establishes the initial state then the wérkwill depend upon only the
parameter values of the final state. One writes:

A=U-Uq, (4)

in which U is a function of the state (hence, @1V in the case of a body), and is its
value in the initial stateU is called theenergyof the system.
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The difference between that way of introducing the ggn@rnction and the usual one
is then based upon the fact that only adiabatic preseme employed here, while one
otherwise defined) to be the sum of the supplied work and heat for arlijpescesses.
However, the latter definition goes beyond what the exmntal phenomena give
directly, and employs the concept of total heat, maegowhich is attached to the
atavistic character of an indestructible substance.h&urore, it occludes the fact that
is a directly-measurable quantity that is implied imraggly as a function of the state
parameter byloule's experiment. In fact, if the initial state is fckence and for all then
one can measure the work that is required to reach tatg that is adiabatically-
attainable, which will give the value tf for the final state directly. In principle, one can
also reachany state in that way. The restriction of the secomddémental law to
reachable states can always be omitted then by exclgating initial and final states.

Now, the thermodynamics that can be measured proceedslmg to exactly that
plan, in fact. Perhaps that emerges most clearlyarentirely-modern process Nérnst
for determining the energy content (viz., specific heat) that process, the body under
investigation is itself the “calorimeter” (i.e., it Whe adiabatically isolated, if possible),
and one then measures how much (electrical) work one sapgly it with in order to
attain a well-defined change of state that will beratirized by the datum of a thermo-
element and the assumption tRat const.

It is only after one has posed the first fundamet@bitem that it will be possible to
introduce a sensible notion of total heat. The chemasés to the energy of a body itself
as itsheat contentand the change in energy as tieat effect That is also justified
entirely as long as one can point to a change in temyperthat is mainly coupled with
the change of state that is associated with the changeergy. The connection to the
historical concept of total heat will be achieved whea employs the caloric unit that
equals the energy that is required to bring about adedihed change in temperature in
1 g of water (at constant volume). That energyestiuivalent heatvhen it is expressed
in mechanical units (e.g., ergs). The first fundamdatalgives one information about
the extent to which it is possible to operate with heat substance in the traditional way,
as is the case e.g., when one uses a water calorimeterder for the heat to “flow”
(without conversion), any expenditure of work must belusled. Hence, the energy
increase in the water in the calorimeter will measure énergy increase in the
submerged body only when changes in volume (other procésgesot work, resp.) are
not allowed or intrinsically trivial. Although thatgseiction is obvious when one poses
the first fundamental law, it is also absurd from tleset. One canow define the total
heat for entirely-arbitrary processes, as well. lat ttase, one must assume that the
energy is known as a function of the state and thatwork expended by an arbitrary
process can be measured. Tkat suppliedy the process will then be:

Q=U-W-A ()

The concept of heat will not play any autonomous roighat follows. We use it only as
a brief way of referring to the difference between itiease in energy and the work
supplied.

We shall now think of the energy function for any badysomething that is known
by way of “calorimetric” measurements. We can sayfofiewing about the energy of
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system®f bodies: If two bodies are adiabatically isolateernt, by definition, the energy
of the system will be equal to the sum of the enerdiéiseoindividual bodies:

U=U;+U,. (6)

However, in general, the energy of two bodies thatiramntact with each other is not
additive, but the deviation is only proportional to theaané the outer surface and can
then be neglected for large volumes. When we do watcan confirm the experience
that energy also behaves additively when there riddecontact. Since we shall only
concern ourselves with adiabatic and diathermal wadle, we will always be able to
apply equation (6) then.

8 4. — Quasi-static (reversible) changes of state.

In the formulation of the first fundamental laviaet mechanical work is regarded as
measurable, in principle. In order for that to be abtuyabssible for any process, no
matter how turbulently it might evolve, one mustuams that the instantaneous values of
the forces that are exerted upon the moving parts aféltie can be registered; the work
can then be calculated as the product of the displateane the force. However, that is
achieved in only a few cases in practice. For fast mgtiambulent currents and waves
will arise inside the fluid that will generate randomgstges on the walls in a completely
uncontrollable way. In order to exclude such procesa@sprocesses for measuring the
work supplied are mainly useful:

1. One employs stationary processes; e.g., ones tittrs that rotate with constant
angular velocity (as one uses idaule experiment to determine the equivalent heat).

One then constructs a stationary fluid flow in whick #tirrer has to overcome a
constant resistance. If one neglects that relgtiaebitrary-brief time intervals at the
beginning and end of the experiment in which one acdekerdnen the work can be
determined from the product of the angular velocity wighangular momentum.

Heating by a stationary electrical current also lgdoto that class of processes, in
principle.

2. One carries out the process infinitely slowly inrsacway that the state at each
moment can be regarded as a state of equilibrium.

One should call such processgsasi-static but one ordinarily uses the word
reversible because they generally have the property of being ibiertive would not
like to go into the conditions under which that would lxe ¢ase in more detail here, but
only assume that they are fulfilled, and both ternmkthen be employed as if they were
synonymous.

In ordinary thermodynamics, one can regard any curstate space (th@/-plane, in
the case of a fluid) as the image of a reversible ggses. In that way, one is of the
opinion that a reversible supply of heat can be effeate such a way that one
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successively brings the bodies in question into thecmatlact with large heat reservoirs
that differ only by infinitely-small increments of teewature. SuchGedanken
experimentsare certainly permissible. However, that would take ushnoo far from
the experiments that have actually been performed anddwioecome something
repulsive to the mathematically trained. It is therefoertainly to our advantage that
such a situation can be avoided entirely. We canicesiurselves to nothing but
adiabatic, quasi-static (reversible) processes, siree ¢an actually be performed and
will be performed experimentally if they consist of fauéntly-slow motions of the
(adiabatic) walls. For such processes, one cansalse rigorously that in the limit of
infinitely-small velocities, any intermediate stasea state of equilibrium. The kinetic
energy will then vanish quadratically with the veloatie
The work supplied by a reversible infinitesimal changeoinmedV in a fluid is:

dA=-dV, (6)

in which p is the equilibrium pressure. The first fundamental (&vwill then assume
the form:
dQ=dU+pdv=0. (7)

One will get the corresponding equation for systemsaifies that are separated by
adiabatic and diathermal walls by addition, since tilexgy function, as well as the work
done, are additive. For example, for two bodies, otiehawve:

dQ:dQ1+dQ2:dU1+dU2+p1dV1+p2dV2:0. (8)

Finite, quasi-static, adiabatic changes of state pezlictable consequences of
equilibrium, and therefore curves in state space (curvése pV-plane for a body) that
satisfy conditions of the form (7) or (8) at eachipoiThose curves are calladiabats.

Formulas (7) and (8), which express the first fundanhelai®, are differential
equations for the adiabats. If one then exprelgsas a function of two state parameters
— sayV and# — then one will have:

ouU ouU

dUu=—dV+—dJ.
ov 03
Hence, equation (7) reads:
ouU ouU
dQ=|—+p|dV+—d =0. 7
Q ( PV pj Y (7

Equation (8) is interesting in the case of thermal adritatween two bodies. The system
will then be characterized by three independent stasameders — say, the two volumes
V1, V2, and the common temperatufen terms of which the pressures can be expressed
by the state equations:

f1(pr, V1) =f2 (P2, Vo) = 4.

Equation (8) will then become:
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_[0U, oy, ou,  aduU, _
dQ (avfpljdvl{avf Qj d\é+[619+ 619) & =0. 8)
Equations such as'rand (8) are calledPfaffian differential equationsthe adiabats
must satisfy them.

It is inevitably necessary to study the properties ofeltierential equations more
closely. One cannot get around that, even in the taditi representation of
thermodynamics. It is then the goal of the structuahghermodynamics to show that
“the absolute temperature is the integrating factahefdifferential of heat.” Now, that
investigation is usually carried out quite superficiallyMany textbooks lack any
definition of the integrating factor at all, let aloaelevelopment of the conditions for the
existence of such a thing. However, our problem heretigancritique the individual
books, but to show that one needs to take only one rtewardo the examination of the
integrability of thePfaffian differential equations (as is done in the bettesemations of
the classical theory) in order for the formulas adrthodynamics to fall into one’s lap
like ripe fruit.

(To be continued)
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(Continuation)

8§ 5. — Mathematical lemmas.

The following developments constitute the actual mastead formalism of
thermodynamics. In order to achieve the ideal of sepay physical content from
mathematical form that was consecrated in the intramhycive will have to develop the
theory ofPfaffian differential equations in its own right. We witlein be dealing with
theorems of the simplest kind that even a beginneundarstand.

We next consider thay-plane and aPfaffian differential expressionn the two
variablesx, y:

dQ=Xdx+Ydy (9)
whereX, Y are functions ox, y.

The thermodynamic equation’’has that form.dQ is not a complete differential, in
general. If it were then one would had@ = d¢, whereg would be a function af andy,
so one would need to have:

The coefficients of thefaffian expression must then fulfill the condition:

dy 0OX
The associateBfaffian equatiordQ = 0 has a one-parameter family of curves in the

xy-plane as its solutions, suchysy (x, ¢) or ¢ (x, y) =c. One can then write it as the
first-order ordinary differential equation:

dy X
Y- 2 11
dx Y (1)

whose right-hand side is a known functionxodndy. The geometric meaning of the
differential equation is that a direction (11) is givat each point in the plane, and
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integrating of the differential equation means that dnasvs those curves whose tangents
coincide with the given direction at each point.

For that family of curves, one will then haat® = 0, as well aslg = 0. As a result,
the left-hand sides must be proportional. We set:

dg = % (12)

and callA theintegrating factorof dQ, sincedQ will go to the complete differentialg
when one divides by. Naturally,A is a function ok andy.

A Pfaffian differential expression in two variables véllvayspossess an integrating
factor then.

If one replacesp with any function ofg — say,¢ (¢) — theng™ = c will likewise
represent the solutions of the differential equatione @ill then have:

d¢*:d;¢md¢:d;¢”£:d_?,
d¢ dg A A
ie.:
« _, dg
1) _Ad¢D (13)

is an integrating factor fa¥Q. Thus, there are infinitely-many integrating facttwet tare
connected by the relation (13).
We shall now turn to Bfaffian expression in three variables:

dQ=Xdx+Ydy+Zdz (14)

in which X, Y, Z are continuous functions gfy, z

The thermodynamic equationY®as that form.

The ratios of the differential$x : dy : dzmean a direction iryzspace. Théfaffian
equationdQ = 0 then says that the ratios of this directionsata linear equation that
therefore restricts the direction that goes througthespatial point to a certain plane.
Integrating the differential equation means drawing thoswes whose tangents fall
along such a direction at each point.

dQ is not a complete differential, in general. If tiagre true, so one would haa€
=d¢, whereg is a function ok, y, z, then one would need to have:

= %, Y = %, Z= 0¢
0x oy 0z
so the coefficients of thefaffian expression would have to satisfy the three carditi

oY_oz  9Z_9X X _aY

—= , —=—. (15)
0z oy ox 0z ady ox
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Any solution curve would then satisfy the equatiiix, y, 2 =c; i.e., it must lie in a
surface of the family that is thus represented.

The next question to ask is whether one can alwaysafindtegrating factod (x, y,
2) here, such that:

d¢:¥

will be a complete differential. If that were tlsase then any solution curve of the
differential equatiordQ = 0 would also satisfdg = 0, so it would lie in a surface of the
family:

p(xy.2=c.

Geometrically, that means that the planes thategreesented by the differential equation
dQ = 0, which include the allowable directions of advammencide with the tangential
planes of a one-parameter family of surfaces.

However, that does not by any means need to be thefeaswbitrarily-given
coefficientsX, Y, Z. One can continuously associate each spatial pointanpine that
goes through it in such a way that those planesadenvelop a family of surfaces. The
simplest example of such a configuration islthear complexor thenull systemwhich
one can describe as follows: One draws a helix around-alxis through each spatial
point P, such that all of those helices have the same gitciihe normal planes to the
tangents to those curves then define the planes ofa oenplex and have the property
that they donot envelop any surface. In order to see that intuitivehg considers the
neighborhood of the-axis itself. The plane that belongs to a pdtnon thez-axis is
perpendicular to the-axis. At all infinitely-close points of that plane tlae equally far
from thez-axis, the planes that are associated withzthris have skew normals and go
into each other by rotation around thaxis. It is obvious that such a plane configuration
IS not tangent to any surface.

One can also see that analytically: Rfaffian differential equation’) that belongs
to the linear complex reads:

dQ=-ydz+xdy+kdz=0,

as is easy to see. If there were an integratingifasb one would haveQ = A d¢, then
one would need to have:

() The example of:
dQ=xdy+kd«=0

is even simpler analytically. The existence of aagrating factor in that case must imply that:

6¢_O 09 X
ox ay y

09 _k
' 0z A
It follows from the first equation that depends upoy andz, and the last one implies that the same thing is
true for A, so the second one will then imply a contradiction.
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99 __
0Xx

99 9_kK

y X
A oy A 0z A

It would follow from this that:

32360 2230 2230

op=x 04 9A__yor  0d_xoA
ox " ay ox  koz dy koz

or

One concludes from this that= 0.

It is absolutely necessary to make it clear by such phkemtthat the existence of an
integrating factor is an exception; i.e., an anomdbtherwise, one would not remotely
understand the sense of the second fundamental law, isisays simply that precisely
that anomaly is present in th&faffian differential equations of thermodynamics. A
painstaking representation must also accompany the “déi'ssiom of the theory then.

However, we shall go yet another step further, aatstep will allow us to throw out
all of the truly complicated considerations that ondir@rily used in order to derive the
second fundamental law and replace them with the foapglication of a mathematical
theorem that is as simple and intuitive as possible.

We have seen that afffaffian differential expressions can be divided into two
classes, namely, the ones with integrating factadgla one without them. We will now
address the search fanother feature of that distinction that is less abstractl a
effortlessly brings us into contact with those faatsexperience from which the second
fundamental law arises in thermodynamics. That featithe reachability of one point
from the other by a solution curve of tifaffian differential equation (viz., by an
adiabat, in thermodynamics).

If we first consider the case of the plane again firexisely one curve of the family
@ (%, y) =c will go through each point, y. Therefore, one can by no means reaadry
point in the neighborhood of that point with a solataurve.

Now let us go on to case of space. Since it is ¢lerthings will happens just as
they do in the plane for the class Bfaffian differential equations that have an
integrating factor. All solutions curves will then é&®in the surfaces of the family (x,

Y, 2) = ¢, so one can hardly reach all of the points thaghimr a point, y, x, but only
one that lie in the same surface, even when one akimksd paths that are composed of
several differentiable pieces. However, there ameaghable points in any arbitrary
neighborhood of the starting point.

We now invert the theorem and ask: If there is an ghiae point in any arbitrary
neighborhood of a point then does Bfaffian equation have an integrating factor?

It is intuitively clear that this will be the cas€On the grounds of continuity, the
unreachable points will fill up an entire subspace whasethary consists of reachable
points; however, that boundary is a surface. Since abvious that every unreachable,
infinitesimally-close point will correspond to a sedopoint in the opposite direction,



Born — A critique of the traditional presentation of thedynamics. 5

moreover, the boundary surface will include all reachgolmts; i.e., there will be an
integrating factor.
In order to shape this train of thought into a rigorous fpe next remark that all
solutions of thé’faffian equation:
dQ=Xdx+Ydy+Zdz=0
that evolve in a given surfaée
x=xXuvVv), y=yUuv), z=z(uV)

will satisfy aPfaffian equation of the form:

dQ=Udu+Vdv=0,
in which one sets:

U:x%+Yﬂ+Za_z’
ou oJu Ju
V:X%+Yﬂ+za—z.
ou oJu Ju

Therefore, precisely one solution curve will go througbhepoint of the surfade
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Figure 1. Figure 2.

We now assume that there is an unreachable point ineigbborhood of a poirk;
let it be calledQ. One can then easily see that in any neighborhddd there are
unreachable points along any ligethat goes througP and whose direction does not
itself satisfy thePfaffian equation precisely & We draw (Fig. 1) the plarte through
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Q andg. There will then be precisely one solution curvehefRfaffian curve in it that
goes througl®, and wherQ is sufficiently close td?, that curve will meet the ling at a
pointR. R must then be unreachable frén If there were then a solution that goes from
P to R then one could also arrive at a (piece-wise) contiawsmlution curve that goes to
Q, which would contradict the assumption. However,pbiat Q always be chosen to be
close enough t& thatR will lie arbitrarily close taP.

We now imagine that the lirgeis coupled to an arbitrarily cylindrical surfaCeby a
sufficiently close parallel ling' (Fig. 2). There is precisely one solution cukven that
surface that goes throughthen, which might meef atM. We now link the two lineg
andg' by a second cylindrical surfa€¥. There is precisely one solution cuk/@n that
surface that goes through which might meeg atN.

We now assert théd must coincide witlP. One can then convert the surf&@nto
C continuously. Therefore, the curkémust go tdk continuously, and must be shifted
to P continuously. One can then Mtdrift over toP by further deformations. However,
N is a reachable point on the (piece-wise) continuous lpdth There is then a finite
interval aboutP along the lineg that consists of only reachable points, and that will
contradict the previously-proven fact that unreachable tpoie along g in any
neighborhood oP.

Figure 3.
Now, whenN coincides withP, the curvek will describe a surfacé& under a
deformation of the cylindeC that includes all of the solutions that start frBr{Fig. 3).
With that, we have proved the following theorem, whiak,we will see, embodies
the mathematical essence of the second fundameatakth:
Theorem:

If a Pfaffian differential expression:

dQ=Xdx+Ydy+Zdz
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has the property that there is a point in any neighborhood of a pdxtyP2) that is not
reachable by solutions of the equation d@then it will have an integrating factor.

We add that there are also an infinite number of integydactors then that can be
constructed from one of them by using formula (13).

All of these arguments can be carried ovePtaffian differential expressions with
more than three variables with no further discussion.

8 6. — The second fundamental law.

Up to now, our representation of thermodynamics doesdliffet essentially from the
traditional one, except that we have tried to defingenmrecise concepts. The actual
difference first emerges when one presents the secormental law. Naturally, the
starting point is exactly the same, namely, the daeixperience that certain processes are
impossible. However, the two representations alreaeigeninto each other when one
formulates that fact and even more so in the derivatiothhe second fundamental law
from it. In order to ease the comparison, we sha&fgme it with a sketch of the usual
theory that we shall formulate as concisely andragsly as possible.

|. The traditional representation.

The empirical basis is usually expressed by the ptexipfClausiusandThomson
which read:

Clausius’s principle:

There is no mechanism that allows heat to flow from a colder heatestuec hotter
one in such a way that neither mechanical work will be done nor fuctienges will
come about for distributed bodies.

Thomson'’s principle:

There is no mechanism that allows a heat source to remove heat aritabmto
work without the distributed bodies undergoing further changes (viz., pessibility of
the perpetuum mobile of the second kind).

Both principles are equivalent to each other. One oomsiders &arnot cycle,
Ordinarily, one restricts oneself to gases for whadlhprocesses can be interpreted as
curves in thepV-plane in order to do that, but naturally, that will rsutffice for the
general derivation of the second fundamental law. Niady, one can restrict oneself to
systems with three independent variables, because lgerfuricrease in the variables
would require no new analysis. The state-space will beethree-dimensional. States in
it with the same temperature will lie on the surfagesconst.
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Those isothermal surfaces will cut out a one-paranfataily of isotherms on any
other surfacé. At the same time, those two-dimensional surf&cesl! be covered by a
one-parameter family of adiabats (i.e., solutionBfaffian differential equatiodQ = 0).
The curvilinear rectangle in the surfdédhat is constructed from two isothermfis and
& represents €arnot cycle. One can realize it approximately when one firstgs the
system into contact with a very large heat-soléewith a temperature$, that is
practically constant and then alters it adiabaticallyl ite temperature is% . One then
brings it into contact with a second heat-soMéenvhose temperature & , and finally
lets it return to its initial state adiabatically. Afis the work done on the system during
the entire cycleQ); is the heat that is absorbed Wy, andQ; is the heat that is given off
by W; then from the first fundamental law, one will have:

A=Q—-Qq.

If %1 < & then one refers to the quotients:

A:—Qz_Ql:&—l (16)
Ql Ql Ql

as the “efficiency” of the “machine” that is composedta system and the heat sources.

It then follows from the principles d@lausius or Thomson that the efficiency for
given , , & is not only independent of the type @arnot cycle for one and the same
system, but also for different systems that havestirae value of their efficiency and
operate between the same heat sources. In ordeowthlat, one considers a composite
process by which one machine perform€arnot cycle in one sense and another
machine performs €arnot cycle in a different sense, and one arranges thadr ditle
works done are equ@l = A’ or that the total heats that are supplied to the cdwat
reservoirW, are equa@Q; = Q;. Now, if:

A_A
s 0

Q Q

then it will follow from the fact thaf = A’ that one has botQ; - Q <0 andQ; — Q, <

0; i.e., the colder reservoir would absorb heat andwvdmener one would supply it. It
would follow fromQ: = Q, thatA - A" >0 andQ; - Q, > 0 ; i.e., the system would do
work only at the expense of the heat contem/pf However, if:

A A
<

Q Q

then a consideration of the inverse process would yieldséinee contradiction to the
principles ofClausiusandThomson
As a result:
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%égzewh&) (17)

1

must be auniversal functionof the two temperature$), % of the heat sources,
independently of the type of system, the chosen suFaard the two adiabats.

Now, if one sets% =%, & = 4+ AF and letsAF converge to zero then, since one
obviously hass (¢, &) = 0, one will get:

dQ
—=9g()d?,
Q
in which one has set:
0G(3,,5
g(@{_( : 2)} ,
6792 8,=8,=3

to abbreviateg (&) is also a universal function & It would then follow that the heat
supplied on an isotherm of the system would be:

Q= wd*”, (18)

in whichW depends upon the defining segments of the twdatlieand can be different
for each system.

One now considers a simple fluid, in particulahose state is determined by two
variables. ThdPfaffian differential equation of the heat would thewénan integrating
factor,dQ = A d¢, and one could choose the quantiti€and ¢ to be the independent
variables. NowW can depend upon the parametgrs @, of the two adiabats of the
Carnot process. Now, if one sefls= ¢, ¢» = ¢ + Ag and letsAg converge to zero then
if one recalls that obviously one will ha%é(g, ¢) = 0, one will get:

(9)d?

dQ:¢w@d¢Jg ,

in which one sets:

CD (¢) - |:aw(¢l’¢2)j| ,
a¢2 $=0,=¢
to abbreviate.

One now introduces trabsolute temperature:

T=cd* (61)

in which the constanC is fixed when one prescribes the difference inoahe
temperature between any two fixed points — say,seteit equal to 160
If one further defines thentropy:
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1
=2 [®(#)dg (20)

and then gets thesual formulation of the second fundamental law:
dQ=TdS (21)

However, that formula is initially true only for sitepfluids with two variables. Its
extension to arbitrary systems would require specialaisal It would once more suffice
to consider the case of three variables, for whichetgtence of an integrating factor is
not trivial. Initially, one can express the efficienmfyan arbitrary system in terms of the
absolute temperature. From (18) and (19), one will thea:hav

1
=WoT,
QR=Y¥Z

and since¥ has the same values for both isotherms ofd&not process, it will follow
that:

Qz_Q1: L-T
Q T
or
QA_Q
T ) T, .

One can write this by saying that the line integral ov€amot cycle is zero:

F?za

C

However, the same thing will be true for any closedticoaus curveK. If one then
lays a surfac& through that curve then one can construct a net of isushend adiabats
onF, and one will obviously have:

j%ﬁmmzf§,

K

in which the summation corresponds to the individtearnot processes of the net inside
the curveK, and the limit means the transition to an infilyitBne mesh for the net. As a
result one will have:

d
[F=0
T

K

for any closed curve; i.e., when the integral:
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d
s=| aQ
T

is extended from one point to a second one along aiy patill be independent of that
path, and therefore a state function.

One can generally prove that the absolute temperatueyahermodynamic system
is an integrating factor of the differential of heathe same way.

(Conclusion to follow)
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(Conclusion)

[I. The new representation.

The crux ofCarathéodory’s theory is the knowledge that with the help of the
previously-proven theorems dPfaffian differential expressions, a much more general
formulation of the experimental principle that certgrocesses are impossible will
suffice for one to arrive at the second fundamelatalin the simplest way with no new
physical analysis.

Ordinarily, one gives much weight to formulating theerimental principle in such a
way that it will exhibitas manyprocesses as possible that are impracticable. Itctheul
in no waypossible to move heat from a colder body to a hotteoote convert heat into
work completely without some sort of “compensation.”

However, the experience that there aeetain impracticable processed all does
suffice for one to derive the second fundamental lampdetely. It will then suffice to
refer to such primitive phenomena as the fact thadaabatically-closed system cannot
give up its energy content completely in the form ofkvoThat is based upon the fact
that when one chooses the forms and positions of #lis at the beginning and end of
the process identically, such a system can becomerhoy that process, but never
colder. At most, one can arrange that the temperatilneemain constant by performing
the process quasi-statically. There will then be lztiaally-unreachable neighboring
states, and indeed obviously in an arbitrary neighborhood ata#ngng state. However,
it is entirely irrelevant for the consequences arthodynamics to knowhich of the
neighboring states are unreachable; it is enough that thuds exist. We therefore
formulate the fact of experience that is based upensdrond fundamental law as
follows:

Carathéodory’s principle:

In an arbitrary neighborhood of each state there are states that are not reachabl
from the initial state by adiabatic processes.

In particular, there are, above all, neighboringestéhat are reachable by quasi-static,
adiabatic processes, and thus, along adiabats.
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It now follows, with the help of our mathematical Bses, that thePfaffian
differential expressiodQ — viz., the differential of heat — always has angmiéng
factor, and that will then imply the formulas of thdynamics with ease, while the
traditional theory first sets the vast machinery ofcygslic processes in motion at that
point.

The principle teaches us nothing nemmediately for a fluid whose state is
determined by two variables — sa¥,7 . That is because Rfaffian expression in two
variables willalwayshave an integrating factor.

One must then go on to systems with at least twoeboiti thermal equilibrium.
Something analogous also happens in the usual theory wieerets two machines
performCarnot cyclesbetween the same heat sources in the opposite sdisagver,
one does not need to take that detour. One simply demsstwo bodies in thermal
contact whose heat differential are given by form@g and represents Rfaffian
expression of three variabl® , V., 4. The union of our mathematical theorem with
Carathéodory’s principle will then give the result that one cat: s

dQ=dQ +dQ =1dg, (22)

in which A and¢ are certain state functions.
On the other hand, one also has:

dQ. =/, dgy, dQ = /A2 dg,, (23)
SO

A d¢ = Al d¢1 + Az d¢2 (24)
One can now choosg , ¢., andZto be the independent variables, instead;0fV, . A

and ¢ can then be regarded as functiongpof ¢-, J, and formula (24) will show, with
no further discussion, that:

o oo, (25)

Due to the third of these equatiogisdoes not depend upah but only upong; andg. .
As a result, the quotients:

A A
A
will also be independent d&f:
ii: O, ii: O
03 A 09 A

or
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Now, A; is a state quantity for the first body, and thus depempds: only ¢; and 9.
Likewise, A, is a state quantity of the second body, so it depends oply ¢, and 5.
The first equality sign can be valid only when both quistidepend upon only.
Hence, one will have:

dlogA, _ dlogA, _ dlogA _

99 99 o5 9 (20)

in which the functiong () is universal It will then have the same value for the two
arbitrary bodies, as well as for the system thatoisposed of them. A brief argument
will then lead tathe existence of a universal temperature functiith entirely “normal”
mathematics, from which the usual temperature scalebeawleduced by a simple
normalization of the integrating factor.

We shall now drop the index and understdnd mean the integrating factor of an
arbitrary system; it will then follow that:

log A = j g(9) dd + log @, (27)

in which log® denotes the integration constant, which will depapon the other state
variables of the system, and for a fluid they wobddjustg. Moreover, one gets:

A= 0d?P? (28)

For any thermodynamic system, the integratingofaitten splits into two factors, one
of which depends upon only temperature and therothevhich depends upon the
remaining state variables. One then introducesalselute temperature:

T=cd'% (29)

in which the constanC is established when one prescribes the absolutpemture
difference between two fixed points; one sets iitaddp, say, 100
With that definition, the differential of heat Widlecome:

dQ:Ad¢:Tg‘§m¢. (30)

If one is now dealing with an individual fluid th&ncan depend upon only. One can
then define a state quantity that depends upong@blythe formula:

= ZJo@). (31)

which is likewise constant on the adiabats. Oris ¢ahe entropy it is defined up to an
additive constant.
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One then obtains tfermula for the second fundamental law:
dQ=TdS; (32)

i.e., with that normalization, the absolute temperatuitl be the integrating factor of the
differential of heat.

However, the same thing is also true for a systemvofliodies that are in thermal
contact (and for an arbitrary system, in generalpnt(24) and (30), one will then have:

® dg =P, dgy + D, dg2 (33)
SO

092 —o, 092 —o,.
¢, 09,

Here,®; depends upon only; , and®, depends upon onlg, . If one now differentiates
the first equation with respect 3 and the second one with respecigtahen one will
get:
2
0P d¢ P 0°¢g _
09,09, 04,09,

00 3p o 0P _
04, 09, 09,09,

It will then follow by subtraction that the functialndeterminant is:

APp) _ 9P 0g 9P 04 _
(4. ¢,) 09,00, 09,00,

Thus,® will be a function ofg. One can then define the entropy by (31) fordystem
and from (33), one will have:
dS=d§ +dS$=d(§+9). (34)

With a suitable determination of the additive canst one might then set:
S=S5+S. (35)
The entropy of a system is the sum of the entropies of the saoissyste

It should be remarked here that for complex systeor which the components of
their masses can be permuted, the additivity oktiteopy must be proved in particular,
which is always possible in a completely analogoag. We shall not pursue the design
of the formal systems in thermodynamics any furtkerce we are concerned with only
the basic principles.
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8 7. — Irreversible changes of state.

We shall now examine the behavior of entropy for abjtiprocesses that are not
guasi-static, and indeed, we shall initially consider gfzistem that we have treated up to
now that consists of two bodies in thermal contact.

It depends upon three variables, which we previously clo&eV;, V., andJ .
Now, we would like to employ the entrofyas the third variables instead®f

Let /%, V2, andS’ be the values of the variables in the initial statd, latV; , V», S

be their values in the final state. We assert thaaligrossible processé&; they will be
either non-increasing or non-decreasing. Namely, @measrive at the final state by
taking the following two steps:

1. One changes the volumes quasi-statically f’¢mV, to Vi, Vo . The entropy
remains constantly equal 8 during that.

2. One varies the state at constant voluMes V., by doing work adiabatically
(stirring, friction, etc.) until the entropy has bemmverted fron8’ into S.

Now, if S were sometimes larger tha® and sometimes smaller for different
processes then every state V,, Sthat is in a neighborhood of the initial statg, V,’,

S would be adiabatically reachable. Indeed, one couldyfresly the volumes then.
However, that contradicts the fact of experience liatat the foundations of the second
fundamental law. Hence, one must always have e&he® or S< S

If one starts from another initial state then on# s&e that the impossibility of an
increase or decrease in entropy must always be true isatine sense due to continuity.
However, the same thing is also true for two differgrgtesms, due to the additivity
property of entropy.

Whether the entropy can only increase or only decré@gends upon the constant
in formula (29) [(31), resp.]. Naturally, one choosem isuch a way that the absolute
temperature is positive. A single experiment will tiseffice to establish the sign of the
change in entropy. Experience shows that entropyrrdaeeases (say, for gases; cf,,
infra, §8).

It will then follow that if the entropy is not caiasit for any change of state then no
adiabatic change could be found that would take themystam the final state back to
the initial one. In that sense, one has the theorem:

Any change of state for which the value of the entropy varieeisnsible.

Furthermore, that implies that entropy will have axmam in equilibrium, and one
will easily get the remaining extremal theorems ofrii@ynamics from this. We shall
not go into that, but we must say a few words aboutadsimptions under which the
proof that was given above for the systems that wensidered here, which consist of
two (or more) bodies in thermal contact, can be adafmenore complicated systems.
The main idea was obviously that the two volumes could éeed completely
independently of each other and that, other than thoseneslonly oneother variable —
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viz., entropy — was present. Now, the corresponding seaiieis) true in full generality:
Not only that conclusion, but also the entire structdrdn@rmodynamics, has to assume
that for a system oh independent variables) — 1 of them have the character of
geometric quantities whose values one can vary arbyravihereas only one “thermal”
variable (e.g., temperature, entropy) is present. Honvekat restriction is not only
characteristic of th&Carathéodory form of thermodynamics, but is also true for the
traditional theory, except that it does not emergeleexlg there in the derivation of the
fundamental laws as it does here. Yet, it is probabfficiently well-known that if one
actually wishes to calculate the entropy in a specia¢ ¢hen one must be in such a
position that one can “perform the process reversibdHowever, that means nothing else
but the fact that one can vary all variables excepoher (the temperature) arbitrarily. In
order to do that, one appeals to semi-permeable wallsiarildr artifices.

§ 8. — Examples.

We have explained the abstract train of thought inrainedy non-pedagogical way
and not by examples, and we did that on purpose. Abovev@lhave not considered
ideal gases, which play such a dominant role in many peggerg of thermodynamics.
It is precisely my opinion that this predominance of lidgases brings with it the
disadvantage that the student can easily come to thak all of thermodynamics
depends upon the existence of certain gaseous substandesurally, there are
presentations that rise above that flaw, but it is noid@d in other ones. In the latter,
the gas temperatur2 = pV seems to be the foundation for absolute temperatackif it
is also shown along the way that the latter is indep@noliethe existence of particular
bodies and can be determined by thermo-caloric measaotemkvarious types then the
process will be logically unsatisfying. There is not shghtest basis priori for one to
introduce precisely? = pV as the empirical temperature, and not, say, (pV)? or any
other (monotone) functio? =f (p V).

Here, we would like to adopt that more general Ansaid derive the absolute
temperature from it; however, we still need the (galetric) determination of the energy
functionU. As usual, in order to do that, we appeal to the (@)l Joule-Thomson
experiment, which says that for an adiabatic expansi@gas without any expenditure
of work (in the first approximation), no change in the praogt[or the gas temperature
g =1 (p V)] will occur. It follows from this that) will depend upon only. We then
set:

pv=F (), U=U().

We define the adiabatic equation from this:

d0=dU+pdv=U (@ dd+F (& ¥ =o.

If one writes:
U'®)

\Y
———=dJ+dlogV
F (@)

dQ=F(z9){
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and sets:
U’ @) 49
log © () = j F(19)
then one will have:
dQ=F () dlogoV=0.
Hence, one set:
A=F (9), ¢ =logOV.

However, from (13), there are infinitely-many intaging factors; e.g., if one sets:

¢ =e’=0V
then one will get:
dg _ L))
=F :
dg" (e O)Y}

There is absolutely no basis for singling out thegrating factolt = F () = pV, as is
usually done. That is justified only by the secdmadamental law, moreover. One will
always find that:

dlog F (&)

90 =—45

from formula (26), in whichg is regarded as constant in the differentiatiord #ren
from (29):
T=CF()=CpV

The agreement of absolute temperature with thd gl scale is then proved with that.
For the entropy, the formuQ = T dSwill then imply that:

S=S+—= Io oV
c g
That will go over to the known expression when sets:

U=cT, C=

pulle

One will then have:
c c
log® = | —dT ==logT,
g J.RT R g
SO
pV=RT, S=%-clogT+RlogV.

A second example for the determination of absdiemeperature iblackbody radiation.
The empirical foundations are:
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1. The radiation pressupes connected with the energy densitpy the formula:

wle

2. The energy density depends upon only the temperature:

u=u(d.
The same thing is also true f
The total energy in the volunméis:
U=3Vp

The Pfaffian equation for adiabats reads:

dQ=dU+pdvV=4p dV+ 3vdp=0,
and can be written:
dQ=pvlogV*p®=0.
One can then set:
A=pV, ¢ =logV*p’

If one expresses as a function op () and¢ then one will get:

1 ¢
logA==logp+= .
g 2 agp 4
Thus, from (26) and (27), one will have:
dlog p** @
=————, logd==~,
9(J) 35 g 4
and from (29):
T=Cp"
One ordinarily employs the notation:
3
a= F
and then obtains tHgtefan-Boltzmannlaw:
u=3=aT"
Furthermore, from (23), the entropy will be:
1 1 4 4 4 da
S=—|®dgp == | dp = =€ ==V p''= -V T’= —VT°
CI / CI g C C d c* 3
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when the constant is determined in such a way3a0 forT = 0. The entropy density
is then:
s= 273
3

8 9. — Generalizations.

We have already emphasized several times that oue erdin of thought can be
adapted to complex systems whose homogeneous componeittasas can exchange
matter with no further discussion, except that it nhespossible to change all variables
but one arbitrarily. Therefore, sufficiently-many engal conditions must be given at
any phase boundary to replace the simple conditiothefmal equilibrium (e.g., an
equation of state). Furthermore, one can introduce semmeable walls through which
one can achieve the free mobility of the necessamnben of arbitrarily-varying
parameters.

Since the theorems d#faffian equations are true for arbitrarily many variables, and
not just three, all of our conclusions can be adaptdd matfurther discussion.

Whereas it is advantageous to avoid the usual cyclicepses in the general theory,
for the actual calculation of thermodynamic functioihgs often quite convenient to use
cyclic processes. In particulddernst's theorem can be best evaluated in such a way
that one employs cyclic processes with one branchetbalves from the absolute zero
point.

As Carathéodory emphasized, one will first encounter greater diffiesltin the
thermodynamic foundation of the theory of radiatiod &he processes in moving bodies,
because the state of the system cannot be describefirtie asumber of parameters in
those cases. Indeed, up to now, those domains have dbheagstreated with only the
statistical methods of kinetic theory.
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