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Translated by D. H. Delphenich

The Ansatze thaHeisenbergrecently gave will be developed into a systematic thexfr quantum
mechanics (initially for systems of one degree of foe€d The mathematical tool is the matrix calculus.
After it is briefly presented, the mechanical equatiofisnotion will be derived from a variational
principle, and it will be proved that the law of energy &othr’s frequency condition will follow from the
mechanical equations on the groundsiefsenberds quantum condition. The question of the uniqueness
of the solution and the meaning of the phases in theapastillations will be discussed in the example of
the anharmonic oscillator. The conclusion includes teemgpt to introduce the laws of electromagnetic
fields into the new theory.

Introduction. — The Anséatze thaHeisenberg (*) recently published in this
Zeitschrift for a new kinematics and mechanics thauldiacorrespond to the basic
demands of quantum theory seem, to us, to have a breadpe. They signify an
attempt to justify the new facts by the creation aleav, actually-measurable system of
concepts, rather than a more-or-less heuristic anetdoaclaptation of the old known
concepts. Heisenberg has expressed the physical concepts that guided him sty clear
that any extended remark would seem superfluous. Howievarformal, mathematical
context, his considerations are still in an early stageleMelopment, as he himself
emphasized. He explained his hypotheses only in simpla@es and did not advance
to a general theory. Encouraged by the fact that welcaady understand his argument
in statu nascendiafter he had completed his investigations, we endeatoredrify the
formal mathematical content of his Ansétzen, andesofmour results will be presented
here. They show that it is actually possible to tettee structure of a closed mathematical
theory of quantum mechanics on the foundations Hh@senberg gave that has a
remarkably close analogy with classical mechanicswiith still respects the features
that characterize quantum phenomena.

With Heisenberg we initially restrict ourselves to systems wibime degree of
freedom which we assume to heeriodic (classical speaking). We will address the
generalization of the mathematical theory to systedharbitrarily many degrees of
freedom, as well as to aperiodic motions, in a contionadf this treatise. As an
essential generalization of tieisenberg Ansatze, we will not restrict our treatment to
either non-relativistic mechanics or to calculatiomgh Cartesian coordinates. The

() W. Heisenberg Zeit. Phys33(1925), 879.
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single restriction that we will impose in regard to choates lies in the fact our
considerations will refer tbbration coordinateswhich areperiodic functions of time in
the classical theory. In general, in many casesedéms natural to employ other
coordinates — for example, the rotation angl®r the rotator, which is a linear function
of time. Heisenbergalso proceeded in that way in his treatment of theawotaiowever,

it must remain undecided whether the processes thappked there can be justified
from the standpoint of a consistent theory of quantieahanics.

The mathematical basis féteisenberdgs consideration is thenultiplication lawfor
guantum-theoretic quantities, which he deduced by a cleveog@nalThe depiction of
his formalism that we shall give here rests upon theark that this rule is nothing but
the law ofmatrix multiplicationthat is well-known to mathematicians. A square\arra
(with discrete or continuous indices) that is infinieboth directions — viz., a so-called
matrix — is the representative of a physical quantity thatvisrgas a function of time in
the classical theory. The mathematical model fer tbw quantum mechanics is then
characterized by the usemhtrix analysisin place of the usual numerical analysis.

We have attempted to touch upon the simplest questionsnemhanics and
electrodynamics with those methods here. Reasoning lbyggna naturalariational
principle will yield equations of motioffor the most generalamiltonian function in a
close analogy with the classical canonical equatioffs®e quantum condition, combined
with a relation that flows out of the equations of rmotiadmits a simple matrix notation.
With its help, one will succeed in proving the generaldialiof thelaw of energyand
Bohr’s frequency condition the sense thaieisenbergassumed, which is a proof that
he also could not complete for the simple examplaslib treated. We shall then return
to one of those examples in more detail in order to@®aedgndication of the role that the
phases of the partial oscillations play in the new thetn conclusion, we will show that
the basic laws of the electromagnetic field in vacwam also be easily addressed by the
new method, and that will give a basis for the assumphatHeisenbergmade that the
squares of the contributions of the elements of th&ixnthat represents the electric
moment of an atom gives a measure of the transitiolpglities.

Chapter | — Matrix analysis

8 1. Elementary operations. Functions— We shall calculate with infinite square
matrices (%), which we would like to denote by bold-faced symbols hereile the
conventional symbols shall always mean ordinary numbers:

a(00) a(01)) a(02) ---

- _| a(0o) a@1) a(2) --
as@nm = a(20) a(21) a(22) --

() One can find more details on matrix analysis in, BayBocher, Einfiihrung in die hdhere Algelra
in English, the translation bans Beck Leipzig, Teubner, 1910, 88§ 22 to 23. Furthermore, one can
conferR. Courant andD. Hilbert, Methoden der mathematischen PhysiBdrlin, Springer, 1924; Chap.
1.
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The equality of two matrices means the equality of dreesponding components:
a=b means a(nm) =b (nm). (1)
Addition will be defined by the addition of corresporglstomponents:
a=b+c means a(nm =b (nm) +c (nm). (2)

Multiplication is defined by the “rows times columnsile that is known from the
theory of determinants:

a=bc means a(nm) = ib(nk) d kn). (3)
k=0
Powers are defined by repeated multiplicatione &ksociative law for multiplication
and the distributive one for the combination ofiadd and multiplication are both true:
(ab) c=a (bc), 4
a(b+c)=ab+ac (5)
By contrast, the commutative law of multiplicatimmot true: The equatioab = ba

is not generally correct. If it were true tharandb would be said ta&aommute. The
identity matrixthat is defined by:

0,.,=0 for nzm
1= i 6
(I { 5 =1 (6)
has the property that:
al=1a=a. (6a)
The matrixa " that isreciprocalto a is defined by {):
atazaa'=1 7)

We say thamean valueof a matrixa to mean the matrix whose diagonal elements
coincide with those od, while all of the remaining elements are zero:

a = (dma(nm). (8)

Thediagonal sunof the matrixa shall mean the sum of these diagonal elements, and
D (a) will denote:

D (a) = > a(nn). 9)

() Itis known forfinite square matrices that" is always established uniquely by this definition when
thedeterminant Aof a is non-zero. 1A = 0 then there is no reciprocal matrixato
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One easily proves from (3) that: If the diagonal safra producty = X1 X2 ... X IS
finite then it will remain unchanged under cyclic permiotaof the factors:

D (X1 X2 ... Xm) =D (Xr Xr+1 -.. Xm X1 X2 ... Xr-1). (10)

It is obviously sufficient to convince oneself of thaligity of theorem fortwo
factors.
If the components of the matricasb are functions of one parametehen:

%Za(nk) b(kmy= Y {a(nk) K kin+ & nk b K,

or, from the definition (3):

i(ala) = ab+ab. (11)
dt
A repeated application of (11) gives:

%(Xlxz"'xn)lexz'“xn+X1X2"'Xn+"'+xf(2"'x (11)

n*

Functionsof matrices will be defined by the calculation peeses (2), (3). Initially,
the most general functidn(xs, Xz, ..., Xm) to come under consideration here shall be one
that can be formally represented by a sum of finit infinitely-many products of
powers in the arguments with numbersas coefficients. Functions (xi, ..., Xn) can
also be defined then by equations:

£y Y X X,)= 0,
........................................ (12)

f (Y- Y i Xg,n X, )= 0.

Namely, in order to obtain functions of the aforementioned form that satisfy equations
(12), one needs only to develop theas series in increasing powers of theand
determine the coefficients of the series by sulistiy) the former series into (12). One
sees that this will always imply just as many egunst as unknowns. The number of
equations and unknowns is admittedly larger thasii the application of the method of
undetermined coefficients in the usual analysist tbalculates withcommutative
multiplication. Upon substituting the series foet, in each of the equations (12) and
combining the associated terms one will obtain samis of the fornC’x; x», as well as
ones of the fornC” x, x;, andC’, as well asC” (and not justC’ + C”), must vanish
separately. However, two termsx, andx, X; with two available coefficients will also
appear in the development of eaglthen.



Born and Jordan — On quantum mechanics. 5

8 2. Symbolic differentiation.— A process of calculation that will be much more
useful later on that we would like to consider in deaife shall be referred to as the
differentiationof a matrix function. However, one should note th# process possesses
properties that are similar to those of the diffeimin in ordinary analysis only in some
respects. For example, the product rule of differepnatand the rule for the
differentiation of a function of a function will nehger be valid, in general. Only when
all of the matrices that appeeommutewith each other will all of the rules of ordinary
analysis be valid for this differentiation.

Let:
y=11%,= XX, "X, - (13)
We define:
S S rt o, =0 for j#Kk,
=34 [] % []%. { K ’ (14)
axk =L merdd e Oy =1.

In words, that rule reads: Think of all factors in theegiproduct as being written out
individually (so, €.9.X1 X1 X1 X2 Xz, instead ok’ x3). Remove any factox and define

the product of all factors that follow it and all factdhat precede it (in that sequence).
The sum of all terms that are constructed in that wilybe the differential quotient of

the product with respect to that.
Some examples might clarify this process:

0
y::Xn, —jl:ITX
0Xx
0
y = X] X3, u - XPEXT X EX IR+ XX T
0X,
oy _ + + 2
y = X X, X1 X5, 7—X1X2X1X3 X2 X1 X3 X1 + X3 X] X,
1

Furthermore, if we demand that:

oy, +Y,) _ 9y, 0y, (15)
an an an

then the derivativa@y / 0x will be defined for the most general functipn
With those definitions and that of the diagonahq®), one has the relation:

oD(y) _ oy
an(nm) ox, (mn), (16)
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in which themn-component of the matrigy / dxi is on the right-hand side. In order to
prove (16), it is obviously sufficient to consider a fuoe y of the form (13). From (14)
and (3), one will have:

ay _ S S r-1 .
a_Xk (mn) - ;drkz plz_r‘qulp (Tprpﬂ) |p_:l )qp (Tprp+1) ’ (17)
Ire1 =M, Irv1 = 11, Ir=n

On the other hand, one can infer from (3) and (9) that:

aD (y) _ S r-1 S
=29 , 17
axk (ner ; Ik Z |p_:! le (Tprpﬂ) plz_r!l)qp (Tprp+1) ( )
Tl = TS+11 Z-I’ = na TI’+1 =m.

A comparison of (17) and (DAwill give (16).
Let us emphasize a fact right now that will be ampgnt later and which can be read
off from the definition (14):

The partial derivatives of a product are invariambder cyclic permutations of the
factors.

This theorem will also follow from (10), due to {16
To conclude these preliminary remarks, a few waidsdl be devoted to the functions
g (p, q) of two variables. For:

y=p°q, (18)
one will have, from (14):
ay < s—1-1 41 Al ay & r=1-j (S
S-S 2P ap, ——-=2.97'pq . (18)
op .Z;‘ oq ;

From 81, the most general functian(p, q) to be considered can be represented by a
linear combination of terms of the form:

k
z=[1(p>q"). (19)
(]
With the abbreviation:
k -1
P = ﬂ(psjq“)rl(pﬁq“'), (20)
=

j=l+1
the derivatives can be written:
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|

-1
§-1-m m

p* Pp

v 3
=)

(21)

N T

‘M* ‘M*

qr 1m|:)psf

=0

o;|o; c»|o)
o

3

We can infer an important consequence of these eqsatile consider the matrices:

0z 0z 0z 0z
di=g——-—q, do=p——-——p. 22
1=9 Jg 0q g 2=P op ap P (22)

From (21), one will have:

k

di=> @ Pp' -Rpq),
1=0
k

d=> (p"a'R-q Rp),
1=0

and it will follow from this that:

k
di+d2= (p°a'R-Rp'q').

1=0

The second term of one summand in this will alwegacel the first term of the
following one, and the first and last terms wilhcal the entire sum. Hence:

d; +d, =0. (23)

Due to its linear character m this relation is true for not only the expressiarof
the form (19), but, at the same time, also forteaby analytic functions (p, g) ().

To conclude this brief presentation of matrix gssl, we would like to prove the
theorem:

Any matrix equation:
F (X1, X2, ..., %) =0

will remain true when one subjects all argument matrigeso one and the same
permutation of all rows and columns.

It is obviously enough to show that for the twotne@sa, b that go toa’, b’ under
that operation, the invariances:

() More generally, for functions ofvariables, one will have:

g _0dg9, |_
- =0.
Z(X' ox, Ox, X’]

r T
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a+b =@+b), ab=@hb)
will be true, in which the right-hand side means thosgrices that arise from+ b and

ab, resp., by those permutations.

We shall prove this when we replace the operation whgiation with multiplication
by a suitable matrix'.

We write a permutation as:

[o 1 2 3 j_(nj
k k k k) (k)
We associate this with tipermutation matrix:

1 form=k,
0 otherwise’

p = (p (nm), p(nm) = {

Let the transpose of the matpxbe:

f =k,
b = (p(nm), p(nm)={ L forn=k

0 otherwise

Upon multiplying both of these, it will follow tha
pﬁ:[mekadj:@a:L
k

since both factorp (nkK) and p(km are simultaneously non-zero only when k, = kn,
son=m. Thereforep is the reciprocal gb:

p=p™
Let a be an arbitrary matrix, so:

pa= [Z p(nk) & kn)j = (@ (kn, m)

() The process of proof that is chosen here has the adpathat it can make the close connection
between permutations and an important class of genetakrimansformations more clear. However, the
validity of the theorem in question can also be infkm&ectly from the remark that in the definitions of

equality, as well asaddition andmultiplication, of matrices, no use was made of the ordering of the rows
(columns, resp.).
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will be a matrix that arises from by a permutatior[lzj of the rows. If one and the
same permutation is applied to rows and columns thenvihgield the matrix:
a=pap-
It follows from this with nothing further that:

d+b =p@+b)p’ =@+b),
db’ =pabp?* =(@bh),

with which our assertion is proved.

One then sees that no sequence or ordering of the rekewen be determined by
matrix equations.

Moreover, the much more general theorem is obviouslythateany matrix equation
is invariant under transformations of the form:

a=bab?

in which b means ararbitrary matrix. Of course, later on, we will see that tisigno
longer true for matrix differential equations with no hat assumptions.

Chapter Il — Dynamics

8 3. The basic laws— The dynamical system is described dnordinatesq and
impulsesp. They shall be represented by matrices:
q = (@ (nm) &7, p=(p(nm) &7VOMY (24)
The v (nm) in these expressions mean the quantum-theoretical fieigsethat belong to
the transitions between the states wgtrantum numbers andm. The matrices (24)
shall beHermitian; i.e., under matrix transposition, each component galito its
conjugate value, and indeed that must be true for alt.réake will then have:

q(nm) g (mn) = |g (nm) [ (25)
and
v(nm) =- v (mn). (26)

If g is aCartesiancoordinate then the quantity (25) will be definitive tioe probabilities
(!) of the transition® =2 m.

We would like to further demand that:

() On this subject, seeS
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v(inm +v(kl)+v(j)=0. (27)
With (26), that be expressed as: There are quariiitiesich that:
hv (nm) = W, —W,. (28)

It follows from this, with (2), (3), that the functigy (p, q) will always take the form:

ezm v(nm) t)

g9=(@((m

again, and indeed, the matrix(nn)) will emerge in that way from the matriceg(fm)),
(p (nm)) by just the same process by whighvas obtained frong, p. For that reason,
from now on, we can choose the briefer notation:

q = (@ (nm), p = (p (nm), (30)

in place of the representation (24), which we shalhdba.
When we once more recall (24), [(29), resp.], we géall the matrix:

9= 275 (v (nm) g (hm) (31)

for thetemporal derivativeof the matrixg = (g (nm)).
If v(nm) # 0 forn# m(as we would like to assume) thgn= 0 would mean thaj is

a diagonal matrix witly (nm) = &m g (NM).
A differential equationg = a is invariant under the process that subjects the rodis an

columns of all matrices, as well as the numiWggo the same permutation. In order to
see that, we consider the diagonal matrix:

W = (@mwn);
we will then have:

Wg = [Z%Wn o kn)} = (&mg (nm),

gwW = [Zg(nk) 5ka\4} = (Wm g (nm),
k
so, from (31):
. _2m 27
g :T ((Wh —Wh) g (nm)) :T (Wg —gW).
Now, if p is a permutation matrix then the transform:
W' =pWp™*=(3,,W,)

will be a diagonal matrix with the permut®d, in the diagonal. One will then have:
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., onm ,
pgp™ =T(W’g'—g’W’)= g,

in whichg =p g p’, andg means the temporal derivativegdtthat is constructed using
the rule (31) with permutedy, .

The rows and columns aj then suffer the same permutation as thosg ahd our
assertion follows from that.

It should be noted that a corresponding theorem farhitrary transformation of the
forma =b a b’ is not true, sinc&V' would no longer be a diagonal matrix in that case.
Despite that difficulty, a closer study of these gah&mansformations seems imperative
to us, because it promises to give a glimpse into tlepeteconnections of the new
theory; we will come back to this laté).(

For the case of Hamiltonian function of the form:

1
= —p’+U(q),
2m

we will assume, withHeisenberg that theequations of motionead just like the classical
ones, such that we can write:

GO 1
» (32)
__O0H__dJ
g 0q’

with the symbolism of &.

We shall attempt to determine associated equatibnotion for the general case of
an arbitraryHamiltonian functionH (p, q), as well, by reasoning by analogy. That will
be necessary when one goes on to relativistic nmachaand especially to the treatment
of the motion of electrons that interact with magndields. In the latter case, the
function H can no longer be represented in Cartesian codedinas the sum of two
functions, one of which depends upon only the imgsiland the other of which depends
upon only the coordinates.

Classically, the equations of motion are derivedrfthe action principle:

det: jl{ pg- H( p qQ} dt=extremum. (33)

to to

If we think of inserting the Fourier developmeritLoin this, and we take the time
intervalt; —to to be sufficiently large then only the constamtritef L will contribute to
the integral. The form that the action principldl #hen take is then closely related to the
following fact in quantum mechanics:

() Cf., the continuation of this paper that is soon to appe
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The diagonal sum [[L) = Z L (kk) shall be extremized:
k

D(L)=D(pg—-H(p,q)) = extremum, (34)

and indeed for a suitable choicemandq and with giverv (nm).

When one sets the derivativesd{L) with respect to the elementspfindg equal
to zero, one will then have the equations of motion

. _ 0D(L)
2 - H
i v (nm g (nm) dp(mn)
. _ 0D(L)
2 =—".
i v (nm p (nm) dq(mn)

One sees from (26), (31), and (16) that thesetemsaof motion can generally be
written in thecanonicalform:

oH
op’
oH

p——%.

(35)

Heisenbergemployed a relation that had been presente@iimymas (*) and Kuhn
(®) as his quantum condition. The equation:

1/v

J=¢pdg= [ pgdt
0

of “classical” quantum theory can, when one appeathe Fourier development pfand
q:

00 00

p:szeZHivrt, q:queZHivrt,

r=—00 r=—00

be converted into:

0
1=2m ) rﬁ(q,,p_,). (36)

If p= mq in this then thg, can be expressed in terms of theand one will get the
classical equation whose analogous conversionardidferential equation will yield the

() W. Thomas Naturwiss13 (1925), 627.
() W. Kuhn, Zeit. Phys33(1925), 408.
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relation ofThomasandKuhn. Since the assumptign= mq should not be made here,

we must immediately translate equation (36) into a diffi@eequation.
One should have a correspondence between:

ir%ﬂLnJ and %i«wwannmn—qmwnmﬁn)r

theq (nm), p (nm) on the right in this that include a negative xdee set to zero. In that
way, one will get the quantum condition:

2. (P(nK) a(kn— d nk § k)7=2Lni (37)

as the analogue of (36).
This represents an infinitude of equations, najrete for eaci.
In particular, forp =mq, it will imply that:

_ h
E;V(M®IQ(n©F-—§E§;,

which coincides with théleisenbergform of the quantum condition — viz., thaomas-

Kuhn equation. (37) must be regarded as the propargkeration of that equation.
Moreover, one sees from (10) that the diagonal Bufp, q) — D (g, p) = 0, while

(37) leads td (p, q) — D (g, p) = . The matrices considered are therefore neveefini

).

8 4. Consequences. Laws of energy and frequeneyWith these preliminaries from
the previous paragraphs, the basic laws of the meshanics can be given completely.
All further laws of quantum mechanics that shoudd @ndowed with general validity
must beprovablein terms of them. Some of the laws to be proved mainly come
under consideration are thawv of energyand theBohr frequency condition.The law of
energy says that whet is the energy, one will havel = 0, or thatH is adiagonal
matrix. According to Heisenberg the diagonal termd¢d (nn) of H will then be
interpreted as thenergies of the various states of the systamal theBohr frequency
condition will require that:

hv (nm) =H (nn) —H (mm),
or
W, =H (nn) + const.
We consider the quantity:
d=pg-qp.
From (11), (35) will become:

() Nor do they belong to the class of “restricted” inénimatrices that have been considered almost
exclusively by the mathematicians until now.
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d =pg+pg-qp-qgp

From (22), (23), one then had= 0, andd is a diagonal matrix. However, the
diagonal terms ofd are established by the quantum condition (37) precisely. |
summary, with the use of the identity matfixhat is defined by (6), we will get the
equation:

h
pg-gp=——1, (38)
27

which we call thesharpened quantum conditicend which we will base all further
conclusions upon.

One can infer from the form of this equation thatrfequationA) were derived from
(38) then A) would remain true when one switchedvith g and simultaneously replaced
h with —h. For that reason, of the equations:

P a=qp" +n2Lnip”‘l, (39)
n n h n-1
a'p=pq'-n_—q", (39)

only one them can be proved from (38), which can be done bytiodupiite easily.
We would now like to prove the laws of energy and fregye as they were
expressed above, and first for the case:

H =H;i (p) +H2(q).

From what was done in8g H; (p) andH; (q) can be formally replaced by the power
series:

Hi(p) =Y ap", Ha2(@)=> bq"

in this. Formulas (39), (3Pthen allow one to see that:

H-gH = -1,
27 0p (40)
h oH

Hp-pH = - ——,
27 0q

and a comparison with the equations of motion (@8)yield:
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. 2
q :T(Hq —-gH),

27 (41)
p :T(Hp —pH).
. . . H .
Now, if the matrixHg —gH is briefly denoted b+ then one will have:
g
H| |H ‘H ‘
= b+a| |;
ab a
however, forg =g (p, q), it will generally follow from this that:
._2m|H| _27i
9=—| |=——(Hg—-gH). (43)
hilg h

For the proof, one then needs only to calculgt@as a function op, g and p, §q by

H
as a function op, g and , and to think of

H
means of (11), (11), as well %3

applying (41) then. If one segs= H in (43), in particular, then one will get:
H =o0. (44)

Once the law of energy has been provedtdnd known as a diagonal matrix, (41)
will take on the form:
hv(nm q(nm = H (hn) - H (mm) q (nm),

hv(m p (nm = H () - H (mm) p (nm),

from which, the frequency condition will follow.

If we now go on to the more genekamiltonian functionsH =H" (p, q) then we
will easily see from some examples, suctas p? g, that we no longer havel"= 0, in
general. However, one sees that Hamiltonian functionH =1(p® q + q p%) will

produce the same equations of motioiasand thatH will once more be equal to zero.
We then express the laws of energy and frequency as:

For every functiorH” =H" (p, q), there is a functiord = H (p, q) such thatH™ and
H will imply the same equations of motion when they are regarded asltbtaan
functions, and thaH will play the role of a temporally-constant energy that fulfills the
frequency condition for these equations of motion.
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From the argument that was made above, it is seffficihat the given functioH
should satisfy equations (40), along with:

a_H :ai , a_H :ai . (45)
op Op oq 0q

From §1, H™ can be formally represented as a sum of products of pafprandq, and
due to the linearity of equations (40), (45)Hn H, we will simply have to give the
summand irH that corresponds to each summanéfiin We then need to consider only
the case:

H = ﬂ(psjq“)- (46)

From the remarks in 8, equations (45) must be fulfilled whéhis set equal to a linear
form in those products of powers pfq that arise fronH™ by cyclic permutation of the

factors; in that way, only the sum of the coeffitgewill be taken to be equal to 1. Itis
not as easy to answer the question of how thesei@deats must be chosen in order for
equations (40) to be fulfilled. It might suffice herdreat the case &f= 1, so:

H =p°q". (47)
Formula (39) can be generalized p (

m n n . m_ h =
pra-pgqg=m_—,0q
271 1=0

n

-1~ pn—lql . (48)

Forn =1, that is once more (39); in general, it walllédw from (48) that due to (39),
one will have:

m n+l ntl . m

h
p" g™ —p™ g =(pr”q”—p”q”7q+m?q
7

n .~ ml

p

Switchingp andq, with a change of sign dn will yield the new formula:

() Another generalization will be given by the formulas:

m,n_ m n h j : :
m n_ Sl _ (7j n+ m—1'
P q J_:01 (J(J o) 4P

m,n_ m n _h j . .
noam_ Sl _ (7j m-j n—j’
qap j:o](lj(lj om) P

in whichj increases to the smaller of the numbrers.
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n- .

hot
pmq”—p”q”‘=n2—m2p YlgTtpl (48)
1=0

A comparison with (48) will yield:
1 > s=1 o1 Al 1 . r=j S ~ i
_— =_— . 49
S+1,Z;‘p aPp r+1JZ::;q P (49)
We now assert that from (4#, is associated with:

1 3 s=1 o1 Al
H —__2 P g p . 50
s+1 ( )

1=0

We must prove only (40), in which we must recathfiula (18) from §2.
Now, from (50), one will have:

s+l r)
)

1
H _ H - r S+1_
pP-p _S+1(q p P-q

and from (48) that is equivalent to the lower eturain (40).
With the use of (49), we will further get:

1
H _ H: S r+1_ r+1 ,
q-q —Hl(p g -q"" pd)

which, from (48), is equivalent to the upper equation (40). Tésiréd proof is complete
with that.

Whereas in classical mechanics, the constancynefgg H= 0 can be read off
immediately from the canonical equations, the lafveaergy H = 0 in quantum
mechanics is much less transparent, as one sees.

One will recognize the extent to which its proviis far from trivial, given the
assumptions that were made, when one seeks to pineveonstancy oH simply by
calculating H, which is closer to the classical method of pro®b that end, one must
first representd as a function op, g andp, ¢ by means of (11), (1) into which one

must introduce the value%li, Z—Hfor p, g, resp. That will yieldH as a function op
q op

andg. Equation (38) (the one that is derived frommithe formulas that are cited in the
footnote on the previous page, resp.) allows onetalculate this function as a sum of
termsa p° ' and to prove that the coefficieatof each such term will vanish. This
calculation will be developed')(for the most general case that was treated above

() This can be accomplished with the help of Y38 the case dfl = Z%n p? + U (q).
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another way everywhere that it hardly seems to betigable. Nonetheless, if the laws
of energy and frequency can be proved in such a gener@xtothen it would seem to
us that this would give one a strong support for the hagiethis theory actually includes
deep physical laws.

In conclusion, let us note just one result thasyeo infer from the formulas of this
paragraph:

Equations(35), (37)can be replaced wit(B8) and (44) (in whichH meansenergy;
the frequencies are then to be determined from the frequency condition.

We shall go into the important applications that thisotem admits in the
continuation to this paper.

Chapter Il — Examination of the anharmonic oscillator

Heisenberg has already considered the anharmonic tcildh:

1, « 1
H==p’+2q>+24g° 51
2p 2q 3 q (51)

thoroughly. Nevertheless, we shall devote a nexsngation to it here, and indeed with
the goal of establishing threost generabolution of the basic equations for that case. If
the basic equations of the theory were actually pleta and required no further
extension then the absolute values(hm) |, |p (hm) | of the components af andp,
resp., would have to be establishedquelyby them, and it would be important to test
this with the example (51). By contrast, we shaangect that an indeterminacy would
still exist in regard to thphasespnm, ¢hmin:

amm=lqmm e,
p(nm=|p(nm|e’m.

For statistics — e.g., the interaction of quantuoms with external radiation fields — it
would be of fundamental significance to establise tlegree of this indeterminacy
precisely.

8 5. Harmonic oscillator. — The starting point of our argument is the theofryhe
harmonic oscillator. For small one can regard the motion according to equatiéh ds
a perturbation of the harmonic oscillation with greergy:

H = 1I02 @éqz_ 52
2 2 (52)
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An extension ofHeisenberdgs consideration is necessary for even this simple
problem. An essential statement on the form of thatisn can be inferred from an
analogous argument. Namely, since classically onharmonic component is present,
Heisenbergassumed that the matrix represented only the trangigitmeen neighboring
states, so it would have the form:

0o g™ o 0O O

q(lO) 0 q(12) 0 0

q= (21) 0 q(23) 0

0 q (53)

We endeavor to construct the entire theory autonomowugthout appealing to the
classical theory on the grounds of the correspondenceida. We will then investigate
whether or not the form (53) of the matrix can be derif®@m the basic equations
themselves, or which additional demands must be imposed thia¢ is not the case,
resp.

One sees, with no further discussion, from what sead in 83 on invariance under
permutations of rows and columns that the exact fofrtie matrix (53) can never be
deduced from the basic equations. If one then switclee®ttrs and columns in the same
way then the canonical equations and the quantum conditioremain invariant, so one
would have then found a new, apparently distinct, salutidhat way. We would like to
prove that the solution can always be brought into tha {&3) by a mere renumbering
of the elements. The equation of motion:

G+afq=0 (54)
reads:

(vZm-vi)qainm=0 (55)
for the elements, in which:
w=2mvy, hv(inm =W, —W,.

It will follow from the sharpened quantum condition:

h
pg-gqp=—=1 (56)
27

that for eachn there must exist am’ such thag (n n”) # 0. If there were an for which
all g (n n’) would be zero then thd” diagonal term op q —q p would be equal to zero,
which would contradict the quantum condition. (55) thmplies that am’ will always
exist for which one has:

| Wh —=Wi | =huy .
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However, since we have assumed in our basic principdgone always haaj, # W, for
n # m, at mosttwo such indices andn’ can exist. The associat®éd-, W, will then be
solutions of the quadratic equation:
(Wh —X)* = h?p2.
If two such indices1’, n” actually exist then it will follow that the asso@dtfrequencies
will obey:
v(inn)=-v(nn”). (57)

Moreover, from (56), one will have:
YvknankF=vm'm{qnn)F-lqmn’)f}= %, (58)

and the energy (52) will become:

Hinm =34 {-vinn)vkmamKakm+viqgnK g km}

=2 q(nk)g (k m{vg-v(n K v(km}

In particular, form =n, one will have:
H(nn)=Wy=47vi(lq(nn’) F+]q(nn”) ). (59)

Now, three further cases are possible:

a) There is nm”, and one hag/ >W, .

b) There is n”, and one hag/,- <W, .

¢) There exists an”,

In caseb), we now considen’, instead on. At most two indicesn(")’ and q”)"
belong to it, and one of them must be equal.tdNith that, we come back to one of the

cases) orc), and for that reason, we can ignbje
In casen), one will havev (n"n) = + 1, , and it will follow from (58) that:

VoEIq(nn’)F=%, (60)

so from (59):
Wo=H((nn=47viqhn) F=1wh
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Due to the assumptiow,, # Wy, for n # m, there is then at mosineindexn = ng for
which case) is true.
If such amg exists then we can give a sequence of numbers:

No, N1, N2, N3, ...
in such a way that:
(L and Wi > Wk.
One then always have:
(Mir2)” =Nic .

Hence, fork > 0, (58) and (59) will imply that:

H (en) = 4°VEd] a (N, M) £+ 19 (nk, i) P, (61)
$h=4m"w {l a (", Nes) F =19 (N, ne) £ (62)

It follows from (60) and (62) that:

> h
Nk, Nsa) | = k+1), 63
|9 (N, Mee) | 82I/0( ) (63)
and it will then follow from (61) that:
W, =H (N, n) = roh (k+ 3). (64)

Now, we would still like to see whether it is pids that there is na for which case
a) is valid. Beginning with an arbitrary, we can then define, =n; andn; =n-; ; for

each of them, we again defime=n,, n'=ng, andn’,=ng, n’;,=n-, etc. In that way,
we will get a sequence of numbers:

e..,No, N1, No,Ng, o, ..., (65)

and equations (61), (62) will be true for evérigetween -0 and +«. However, that is
impossible. From (62), the quantities= | g (N1 , N [ will then define an equidistant
number sequence, and since they are positive,st hmve a smallest one. We can once
more denote the corresponding indexrgyand then come back to the previous case;
formulas (63), (64) are also valid here.

One further sees that every numhenust be included in the numbess; otherwise,
one could define a new sequence (65) withs its starting term, which would again
make formula (60) true. The starting terms of ls#fjuences would then have the same
valueW, =H (n n), which is impossible.

With that, we have proved that the indices 0,,13,2.. can be reordered into a new
sequencea, Ny, Ny, Ng, ... such that the solution has theisenbergform (53). That
would then seem to be the “normal form” for the eyah solution. From (64), it has the
property that:
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W,

> .
Nys1 N

Conversely, if one demands tha&ft = H (n n) should always increase withthat one will
necessarily havey = k ; this principle then establishes the normal form uniquely.
However, only the notation will be fixed in that wandathe calculation will take a more
transparent fornphysically,nothing new will come about in that way.

In this, we have a deeper difference from the seassatal determination of the
stationary states that has been used up to now. |d3$&aally-calculated paths close into
each other continuously, whereby the quantum paths thatsubsequently rejected will
also define a well-defined sequence from the outset. &hemechanics represents a
true theory of the discontinuum, in which no ment®miade of the sequence of quantum
states that are defined by the physical process, as such,the quantum numbers are
really nothing but distinctive indices that one can orded normalize according to
whatever practical viewpoint one desires (e.g., in irgingaenergy\h).

8 6. Anharmonic oscillator.— The equations of motion:
§+afq+Ag®=0, (66)

together with the quantum condition, give the followingtem of equations for the
elements:

(af —a’(nm) N+ d nk @ kir= 0,

_h (67)
Zk‘,w(nk) a(nk d km__ﬂr'
We shall attempt to solve this by a series devatm:
winm =a’(nm+A”( N+ A2 0?( k-, }
2 (68)
qinm =d(nm+A §( nywA® G nyr--

For A = 0, one has the case of the harmonic oscilléiatrwas treated in the previous
paragraph. We write the solution (53) in the form:

(M =a, dm1+ a, drim, (69)
in which the overbar denotes the complex-conjugatmtity. If one takes the square and

higher powers of the matro® = (@° (N m) then matrices of a similar form will appear,
namely, sums of terms:

(O =& dmp + &, Fpm. (70)

One will then be in a good position to put the soluinto the form:
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q’(nm =(3%,
qP(nm = (R, +( X2,
42 (nm = (98 +( ), ()

in which one always alternates between odd and eveerwalf the indep.
In fact, if one inserts this into the approximate equatio

(@ -’ (nm?) (nM-20°(nw®( nin & njrd. G Nk KmoO,

(72)
SCAR(A ke UK T o Ok ki Breo

(@ ~a’(nm)?) ?(nm-20°( ™ nm G nr (@ nyh
+2f (M) (nm) d(n+). (& nk G( kyr Y k@ Rym O

A% (73)
g{af(nk)(q‘)(n& d( kin+ & nk B kKt G hkig RBn

+a(nk) (d’(nk d(km+ @(nk) (kM) +?(nk §( nk § kir=0

and observes the multiplication rule:

Zanm(a(npk) (,7)(I(<1r)n:§2 nm ph P &( ” m é,n—m—p q
k

+Qn,n+p,n+p~q{n/7r+pq5nmﬁq (74)
+ Qn,n—p,rrp*qfr’r o7 » pa_nm Pq
+Qn,n—p,rrrrq5r’r /1w p qa_nm P q

then when one sets the individual factorsdofns equal to zero, one will see that all
conditions can be fulfilled exactly by the Ansatz (7dnd the higher terms in (71) will
vanish identically.

In the individual cases, calculation will give théldaving:

After one substitutes the expressions in (71), thediretjuations (72) will yield:
2af %, +|a, f+ 18, f= O,

=3af %, + 8,8, =0, (75)
) =0,

n,n-1

while the second one will be fulfilled identicallfone will then have:
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x =-la f+laf
2af ’
(76)
X, = angzzzﬂ_
The first of equations (73) yields:
20 8,ah0., + 28, X1+ 28, X+ By Kt 8,0 %= 0,
—8@3)/n+an>41+1+%2 )'%:0' (77)

of”

n,n-2

:O’

while the second equation is not fulfilled identigabut implies a determining equation
for y, :

ahyn+_q1 yn_ E‘rl_yn-l__a?l y*l+2| 5('2_2| sgZi

a2, i, (78)
——=la,f-—= 13, f= 0
W Wy
The solution reads:
1
afn,znlﬁﬁ(lam F+la,, f+3la, 1)
1 (79)
Y :% a, &,8,,-
If one further sets:
On:anyn-*__q'] yn’ (80)
to abbreviate, then the can be determined from the equation:
1 1 1 ) ’
nn—nn-l—a(lahl“—laq_llwg Ianfl%zl—é B 1B 7 (81)

The expressions (76) and (79) show that the quesiif, X, y, can be expressed by the

solution of the zeroth approximatiaen. Their phases can then be established by tHose o
the harmonic oscillator. Things seem to be othevior the quantitieg, ; indeed,7, is
then determined uniquely by (81), butcannot be established completely from (80). It
is likely that an extended determining equation yerwill arise from the following
approximations. We must leave that question opee, lbut we would like to mention its
essential meaning for the sake of the unity ofdahre theory. It will then happen that
no statistical questions at all will depend uporethler our conjecture is correct that of
the phases of thg (n m), one of them in each row (or column) of the matrix réma
undetermined.
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In conclusion, we would like to give the explicit farfas that one obtains when one
substitutes the previously-found & solution for the harmonic oscillator. From (63),
they read:

an =,/ C(n+1) é", C=——-= (82)

in normal form. With that, one gets from (76), ;7/@1):

X, = —£(2n+1),

205
X, :% (n+1)(n+2) &b o), (83)

\/Zi J (n+1)(n+ 2)(n+ 3) & dmtdna)

yn - 1
4,70, ok, =0
» - 5C (84)
n,n-1 3@ ’

hence:

11C*?
M — -1 = (2n + 1),
9 w

o 11C2
m=a9,+3d Y, =§E(n+1)2-

If one setg/, = |y, | €% then one will have:

C3 3
1y | c08 o gy == 114/ C Jn+1. (85)

4

2]a,| 18 o
Nothing more can be said aboutin this approximation.

However, we would like to write out the final fomtas under the assumption thiat
= ¢n. They then read (up to terms of order higher thaamin A):

w(n, n—l):cq)—)l2§£ N+,

3ad (86)
w(nnN=-2)=2y +---;
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C
nN=-A—(2n+1+---,
a(n, n )2( n+1)

11Cn
=,/ Cné¥| 1+ 2=
q(n,n-1)= Cné& ( + 18 +. j

(87)
a(n, n- 2)=)IE«/ n(n-1) &2 4.
3
acn, n—3):)l2‘/641/ n(n=1)(n- 2) &hetratdd 4o
12a,
We have also calculated the energy directly and fonad t
5C? 17
Wi = hy,| n+ A? n+1)+— |+ ... 88
h 0( 2) 3(%2(()30) (88)

The frequency condition is, in fact, fulfilled, sincae has, when one goes back to (82):

2
Wn —Wn—]_ = hVO - Az ZC

n+.. :L w(n, n-1),
2

Wh —Wh2 = 2y + ... :L w(n, n—2).
2

One can, wittHeisenberg connect formula (88) with the remark that a deviati@mf
the classical theory exists already in the termso@fekt order that one can rectify
formally with a “half-integer” quantum numbaef =n + 1/2. Moreover, our expressions
w(n, n E 1) agree with (86) and the classical frequengiesisely. The classical energy
is then ():

2
WH = hyyn— A2 2E s

3af
and thus the classical frequencies will be:

(kI) 2
ax _1oW, =hyyn-A2 H‘:3C—n+

h an 3l
= Wy (n,n=1) :%(\Nn(qu) _M_clu)) .

() SeeM. Born, AtommechanikBerlin, 1925, Chapter 4, 82, pp. 294. One must sat= 1/3 in
formula (6) in order to come into agreement with ourains
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We have ultimately shown that the expression (88) can he obtained from the
Kramers-Born perturbation formula (up to the additive constant).

Chapter IV — Remarks on electrodynamics

According toHeisenberg the square of the absolute value(h m) F of the element
of g for the case in whichg is a Cartesian coordinate is definitive of tjuanp
probabilities. Here, to conclude, we would like to show the way by cWhihis
assumption can be obtained as a foundation from maoer@earguments. In order to do
that, it will be necessary to address the question af lthe basic equations of
electrodynamics are to be reinterpreted in the senskeohew theory. However, we
would like to emphasize that the argument that will les@nted here has only a heuristic
character; they only serve to help us recognize our fuedth viewpoint on the
problem. A thorough treatment of the questions that agpearshall be given later, in
which, above all, the relationship of the theory tisaput forth to the theory of light
guanta will be discussed.

Here, we would like to discuss only those points taat be reached without going
into the exact form of the quantum condition for eyss of many degrees of freedom.
One can see that one can already go rather farelattrodynamics in that way by the
following argument: The electromagnetically-osciltgtcavity represents a system with
infinitely many degrees of freedorilonetheless, the basic theorems that were developed
in the foregoing chapters, which indeed refer to only syst#ose degree of freedom,
are sufficient for its treatment, because it will @oa system otincoupledoscillators
after it is analyzed into eigen-oscillations. It igdig possible to doubt the way that this
system should be treated. For it, the fact thatbdmac electromagnetic equations are
linear (viz., the principle of superposition) proves toehapecial significance. It will
then follow from that fact that the virtual oscillasaareharmonic and the validity of the
law of energy will be independent of the quantum condlifior harmonic oscillators
precisely (as opposed to the behavior of other systeltm®)lows from:

H =1(p*+afq?)
that
H =1(pp+pp+af g+ ar qq)
=1af(-qp—pq+pqg+qp)
= 0.

Correspondingly, one would then expect that the iadgws of the electrodynamics of
the vacuum (viz., the laws of energy and impulse) coul@rbged at in a completely
general way from th&laxwell equations alone, when reinterpreted in terms of neatric
without having to go into the quantum condition. Whenhage shown that, we will
likewise obtain the means to give a basisHeisenbergs statement about the meaning

of [a(nmf
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§ 7. Maxwell's equations. Law of energy and impulse- We would like to agree in
advance thatvectors as usual, will always be denoted by German symbdide vhe
difference between numbers and matrices will stillfokcated by ordinary and boldface
characters. We choose our units of measurements innobioja with Abraham’s
textbook {).

The electromagnetic processasvacuowill be represented as the superposition of
plane waves. For such plane waves, we will regardetbetric and magnetic field
strengthsg, $3 asmatriceswhose elements are harmonically-oscillating planeesaso,

e.g., for a suitable position of the coordinate system:
¢ = (@ (nm) éniv(nm)(t—x/c)). (89)

Of course, one must realize tmaim are generally no longer restricted to a discrete
values in this, and that they also no longer réfersingle numbers, but systems of
numbers (viz., vectors).

One preserves thdaxwell equations in the form of matrix equations:

rot § — %e =0,  rot€ + %3‘3 0. (90)

The differentiations with respect 1y, z t are then to be thought of as being performed
on each individual element of the matrix. (

We would now like to derive the law of energy-ing®i In order to do that, it will be
necessary to make some prefatory remarks on théhuation of matrix vectors.

We define thescalar productby:

(A, B) =AB = A B, + A, B, + A, B, (91)

and thevector producby:

Since matrix multiplication is not commutative, tieations:
AB = BA, [RB] = - [BA]
arenotgenerally true.

By contrast, we assert that:

div [22A23] = (rot A, 2B) — (A, rot 2B). (93)

() M. Abraham, Theorie der Elektrizitatll, Leipzig, 1914.

() In some situations, another way of conceptualizivgelectromagnetic field is required, for which
the spatial coordinates do not appear as numbers, but moce as matrices. That will have a
corresponding alteration of the meaning of the spatiadreifitial quotients in thielaxwell equations as a
consequence. We shall come back to this in the cotitinuaf this paper.
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We now define the energy denswy (as a scalar matrix) by:

W= 1 (€2 + 99 (94)
8mr
From (11), one will then have:
8W = EE+EE+HH+HH,
and from (90):
%TW = (&, rot$) + (rotH, &) — (H, rot &) — (rot &, H),

so, from (93):
W+ divSs =0, (95)
in which:

= 83([@ 9] -[9 €)). (96)
JT

This isPoynting’s lawfor matrix electrodynamicss means theadiation vector
The law of impulse can be derived similarly: Omrdirtes theViaxwell stresses by:

1
sz :8_]7_(@%(_@2)/_@22)4_(52)(_52;,_5?,

: (97)
Tyz :8_]7_(eyez+€ ze y+$j y6 z+'6 16 }’
and thampulse densitpf the radiation by:
1 1
g=56=—(€9]-[9H €. (98)
C 8rrc
One then gets:
oT
4= oT,, AR +c’)TXZ (99)
ox o0y 0z

by a similar calculation.

Naturally, one will arrive at these relations mameuitively when one employs the
four-dimensional representation of the theory ddtreity. A systematic treatment of the
four-dimensional vector analysis and the theorsedtivity on the basis of matrix theory,
with its non-commutative multiplication, shall bergn at a later point.

8 8. Spherical waves. Radiation from a dipole- In order to pursue our goal of
calculating the radiation of an oscillator, we mustv draw our attention tepherical
waves.
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For that purpose, we shall introduce Hertzian vector3 as a matrix vector. We get
¢ and$ from 3 by means of the equations:

¢ = grad div3 —0—123 , ) :%rot?). (100)

In the classical theorgd is proportional to:

E leziv(t—r Ic)
r
for a spherical wave.
Now, it is known that this expression can be writtenthe superposition of plane
waves {) on the basis of the identity:

| KT

€
r

= %T [e 2 dw. (101)

In this, v is the numerical vector from the center of theesal wave to the reference
point, s is a unit vector, andw= dsy dsy ds, . Thus, plane waves, which are represented

by matrices of the form (89), can be obtained in our théxyr integrating over the
directions of the wave normals in the representasfcanspherical wave:

27y (nm)(t-r/c)
j ; (102)

3:(eq(nme— -

r

the matrixe g = (e q (n M) in this represents the electric moment that theewaoduces.

The calculations that lead from here to the determinaif the electromagnetic field
and radiation are the same as in the classical ythemicer, as a numerical vector,

commutes with any matrix. One obtains:

el

52_@7[“&
o 1 (103)
€= gp[t[t'cﬂ],
and that will give:
e v .
S :4m37[t ql . (104)

() See, e.gP. Debye Ann. Phys. (BerlinB0 (1909), 755; Formula {J, pp. 758.
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The integration over all spatial directions proceedthe same way as it does in the
classical theory. The result for the energy thaaated per second reads:

[edi =4 (105)

In order to obtain the mean radiation, one must the mean of this expression over
time; the diagonal matrix:

268 =
gq (106)

will then arise in that way.
If the oscillator oscillates in a fixed directitilen we can replace the matrix vector

with the matrix scalag = (q (n m); the radiation will then become:

2¢8 5 _ 321'e’ 4 2
ek Bl [Zk:'/(”k) IQ(nk)Ij- (107)

We still cannot give a complete theory of radiatiere, from which one could
inevitably go from the ordering of the individuarins in this series to the stationary
states. A more precise examination of the reaatibthe radiation on the oscillator
would be necessary for that, and therefore a thebdamping. We will come back to
that later. Here, we would only like to find outh&ther the radiation is actually
determined by the quantitieg [n m) . The expression (107) shows that this is the,case
but at the same time, we see that the quantit@sate written out are not all of the
radiation that emanates spontaneously from a gtatjo state. The spontaneous
transitions always result from only lower-energgtaes or states with lower quantum
numbers, with a suitable numbering. We can nowest®w this situation can be
expressed in our theory in an entirely formal wiayorder to do that, we do not take the
mean value, but thdiagonal sunof the radiation matrix (105); that will give:

2.vnk*la(nkF. (108)

3
3C n,k

26 .. 3271°e?
D(@"'ZJ:

Here, we can sum the right-hand side again arte:wri

e Z[Zv(nk)ﬂq(nk)lzj. (109)

The desired ordering is achieved with that: Edaales belongs to the radiation that
corresponds to the transitions from all st&tesn, each of which has the intensity that is
known from the classical theory. That will agreghvexperiment when one assumes that
the indices are ordered by increasing energiés.
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Heisenberdgs assumption, in the restricted sense that is chaizateabove, is then
justified with that.

It should be likewise emphasized here that this colenn regard to the jump
probabilities is independent of the assumption of the rgemkracy of the system; viz.,
the distinctness of alM,. In conclusion, we shall stress that st&tistical weight®f the
states are established along with the transition prbtiedi and indeed each state that is
characterized by a row and column (a diagonal ter/pimust be ascribed the same
statistical weight. The fact that this result (wlyameralized to systems of many degrees
of freedom) leads to the basic principle Bdse-Einsteinstatistics of light quanta by
itself will be explained later.

Remark added in proof. — Meanwhile, the generalization of the theory to many
degrees of freedom that was announced above has be&rdwout along withW.
Heisenbergand will be presented in the continuation to this pap&rious points that
were touched upon here already will be discussed moreugbly, since they have been
further clarified in the meantime.




