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The Ansätze that Heisenberg recently gave will be developed into a systematic theory of quantum 
mechanics (initially for systems of one degree of freedom).  The mathematical tool is the matrix calculus.  
After it is briefly presented, the mechanical equations of motion will be derived from a variational 
principle, and it will be proved that the law of energy and Bohr’s frequency condition will follow from the 
mechanical equations on the grounds of Heisenberg’s quantum condition.  The question of the uniqueness 
of the solution and the meaning of the phases in the partial oscillations will be discussed in the example of 
the anharmonic oscillator.  The conclusion includes an attempt to introduce the laws of electromagnetic 
fields into the new theory. 
 
 
 Introduction.  – The Ansätze that Heisenberg (1) recently published in this 
Zeitschrift for a new kinematics and mechanics that would correspond to the basic 
demands of quantum theory seem, to us, to have a broader scope.  They signify an 
attempt to justify the new facts by the creation of a new, actually-measurable system of 
concepts, rather than a more-or-less heuristic and forced adaptation of the old known 
concepts.  Heisenberg has expressed the physical concepts that guided him so clearly 
that any extended remark would seem superfluous.  However, in a formal, mathematical 
context, his considerations are still in an early stage of development, as he himself 
emphasized.  He explained his hypotheses only in simple examples and did not advance 
to a general theory.  Encouraged by the fact that we can already understand his argument 
in statu nascendi, after he had completed his investigations, we endeavored to clarify the 
formal mathematical content of his Ansätzen, and some of our results will be presented 
here.  They show that it is actually possible to erect the structure of a closed mathematical 
theory of quantum mechanics on the foundations that Heisenberg gave that has a 
remarkably close analogy with classical mechanics, but which still respects the features 
that characterize quantum phenomena. 
 With Heisenberg, we initially restrict ourselves to systems with one degree of 
freedom, which we assume to be periodic (classical speaking).  We will address the 
generalization of the mathematical theory to systems of arbitrarily many degrees of 
freedom, as well as to aperiodic motions, in a continuation of this treatise.  As an 
essential generalization of the Heisenberg Ansätze, we will not restrict our treatment to 
either non-relativistic mechanics or to calculations with Cartesian coordinates.  The 

                                                
 (1) W. Heisenberg, Zeit. Phys. 33 (1925), 879. 
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single restriction that we will impose in regard to coordinates lies in the fact our 
considerations will refer to libration coordinates, which are periodic functions of time in 
the classical theory.  In general, in many cases, it seems natural to employ other 
coordinates – for example, the rotation angle ϕ for the rotator, which is a linear function 
of time.  Heisenberg also proceeded in that way in his treatment of the rotator.  However, 
it must remain undecided whether the processes that he applied there can be justified 
from the standpoint of a consistent theory of quantum mechanics. 
 The mathematical basis for Heisenberg’s consideration is the multiplication law for 
quantum-theoretic quantities, which he deduced by a clever analogy.  The depiction of 
his formalism that we shall give here rests upon the remark that this rule is nothing but 
the law of matrix multiplication that is well-known to mathematicians.  A square array 
(with discrete or continuous indices) that is infinite in both directions – viz., a so-called 
matrix – is the representative of a physical quantity that is given as a function of time in 
the classical theory.  The mathematical model for the new quantum mechanics is then 
characterized by the use of matrix analysis, in place of the usual numerical analysis. 
 We have attempted to touch upon the simplest questions of mechanics and 
electrodynamics with those methods here.  Reasoning by analogy, a natural variational 
principle will yield equations of motion for the most general Hamiltonian  function in a 
close analogy with the classical canonical equations.  The quantum condition, combined 
with a relation that flows out of the equations of motion, admits a simple matrix notation.  
With its help, one will succeed in proving the general validity of the law of energy and 
Bohr’s frequency condition in the sense that Heisenberg assumed, which is a proof that 
he also could not complete for the simple examples that be treated.  We shall then return 
to one of those examples in more detail in order to get some indication of the role that the 
phases of the partial oscillations play in the new theory.  In conclusion, we will show that 
the basic laws of the electromagnetic field in vacuum can also be easily addressed by the 
new method, and that will give a basis for the assumption that Heisenberg made that the 
squares of the contributions of the elements of the matrix that represents the electric 
moment of an atom gives a measure of the transition probabilities. 
 
 

Chapter I – Matrix analysis 
 

 § 1. Elementary operations. Functions. – We shall calculate with infinite square 
matrices (1), which we would like to denote by bold-faced symbols here, while the 
conventional symbols shall always mean ordinary numbers: 
 

a = (a (n m)) = 

(00) (01) (02)

(10) (11) (12)

(20) (21) (22)

a a a

a a a

a a a

 
 
 
 
 
 

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

. 

                                                
 (1) One can find more details on matrix analysis in, say, M. Bôcher, Einführung in die höhere Algebra; 
in English, the translation by Hans Beck, Leipzig, Teubner, 1910, §§ 22 to 23.  Furthermore, one can 
confer R. Courant and D. Hilbert , Methoden der mathematischen Physik I, Berlin, Springer, 1924; Chap. 
1.  
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 The equality of two matrices means the equality of the corresponding components: 
 

a = b  means  a (nm) = b (nm).   (1) 
  
 Addition will be defined by the addition of corresponding components: 
 

a = b + c means  a (nm) = b (nm) + c (nm).  (2) 
 
 Multiplication is defined by the “rows times columns” rule that is known from the 
theory of determinants: 

a = bc  means  a (nm) = 
0

( ) ( ).
k

b nk c km
∞

=
∑   (3) 

 
 Powers are defined by repeated multiplication.  The associative law for multiplication 
and the distributive one for the combination of addition and multiplication are both true: 
 

(ab) c = a (bc),     (4) 
 

a (b + c) = ab + ac.     (5) 
 
 By contrast, the commutative law of multiplication is not true: The equation ab = ba 
is not generally correct.  If it were true then a and b would be said to commute.  The 
identity matrix that is defined by: 
 

1 = (δmn) 
0 for

1
nm

nn

n mδ
δ

= ≠
 =

   (6) 

has the property that: 
a1 = 1a = a.      (6a) 

 
 The matrix a−1 that is reciprocal to a is defined by (1): 
 

a−1 a = a a−1 = 1.     (7) 
 
 We say the mean value of a matrix a to mean the matrix whose diagonal elements 
coincide with those of a, while all of the remaining elements are zero: 
 

a  = (δnm a (nm)).     (8) 
 
 The diagonal sum of the matrix a shall mean the sum of these diagonal elements, and 
D (a) will denote: 

D (a) = ( )
n

a nn∑ .     (9) 

                                                
 (1) It is known for finite square matrices that a−1 is always established uniquely by this definition when 
the determinant A of a is non-zero.  If A = 0 then there is no reciprocal matrix to a.  
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 One easily proves from (3) that: If the diagonal sum of a product y = x1 x2 … xm is 
finite then it will remain unchanged under cyclic permutation of the factors: 
 

D (x1 x2 … xm) = D (xr xr+1 … xm x1 x2 … xr−1).  (10) 
 
 It is obviously sufficient to convince oneself of the validity of theorem for two 
factors. 
 If the components of the matrices a, b are functions of one parameter t then: 
 

( ) ( )
k

d
a nk b km

dt
∑ = { ( ) ( ) ( ) ( )}

k

a nk b km a nk b km+∑ ɺɺ , 

 
or, from the definition (3): 

( )
d

dt
ab = +ab abɺɺ .     (11) 

 
 A repeated application of (11) gives: 
 

1 2( )n

d

dt
x x x⋯ = 1 2 1 2 1 2n n n+ + +x x x x x x x x xɺ ɺ ɺ⋯ ⋯ ⋯ ⋯ .   (11′) 

 
 Functions of matrices will be defined by the calculation processes (2), (3).  Initially, 
the most general function f (x1, x2, …, xm) to come under consideration here shall be one 
that can be formally represented by a sum of finitely or infinitely-many products of 
powers in the arguments xk with numbers as coefficients.  Functions yl (x1, …, xm)  can 
also be defined then by equations: 

1 1 1

1 1

( , , ; , , ) 0,

..........................................

( , , ; , , ) 0.

n n

n n n

= 


= 

f y y x x

f y y x x

… …

… …

   (12) 

 
Namely, in order to obtain functions yl of the aforementioned form that satisfy equations 
(12), one needs only to develop the yl as series in increasing powers of the xk and 
determine the coefficients of the series by substituting the former series into (12).  One 
sees that this will always imply just as many equations as unknowns.  The number of 
equations and unknowns is admittedly larger than it is in the application of the method of 
undetermined coefficients in the usual analysis that calculates with commutative 
multiplication.  Upon substituting the series for the yl in each of the equations (12) and 
combining the associated terms one will obtain summands of the form C′ x1 x2, as well as 
ones of the form C″ x2 x1, and C′, as well as C″ (and not just C′ + C″ ), must vanish 
separately.  However, two terms x1 x2 and x2 x1 with two available coefficients will also 
appear in the development of each yl then. 
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 § 2.  Symbolic differentiation. – A process of calculation that will be much more 
useful later on that we would like to consider in detail here shall be referred to as the 
differentiation of a matrix function.  However, one should note that this process possesses 
properties that are similar to those of the differentiation in ordinary analysis only in some 
respects.  For example, the product rule of differentiation and the rule for the 
differentiation of a function of a function will no longer be valid, in general.  Only when 
all of the matrices that appear commute with each other will all of the rules of ordinary 
analysis be valid for this differentiation. 
 Let: 

y = 
1

m

s

l
m=
∏x = 

1 2 sl l lx x x⋯ .    (13) 

 We define: 
 

k

∂
∂

y
x

= 
1

1 1 1
r m m

s rs

l k l l
r m r m

δ
−

= = + =
∑ ∏ ∏x x   

0 for ,

1.
jk

kk

j kδ
δ

= ≠
 =

   (14) 

 
 In words, that rule reads: Think of all factors in the given product as being written out 
individually (so, e.g., x1 x1 x1 x2 x2, instead of 3 2

1 2x x ).  Remove any factor xk and define 

the product of all factors that follow it and all factors that precede it (in that sequence).  
The sum of all terms that are constructed in that way will be the differential quotient of 
the product with respect to that xk . 
 Some examples might clarify this process: 
 

 y = xn, 
∂
∂
y
x

= n xn−1, 

 

 y = 1 2
n mx x , 

1

∂
∂

y
x

= 1 2 1
1 2 1 2 1 2 1
n m n m m n− − −+ + +x x x x x x x⋯ , 

 

 y = 2
1 2 1 3x x x x , 

1

∂
∂

y
x

= x1 x2 x1 x3 + x2 x1 x3 x1 + 2
3 1 2x x x . 

 
 Furthermore, if we demand that: 
 

1 2( )

k

∂ +
∂

y y
x

= 1 2

k k

∂ ∂+
∂ ∂
y y
x x

    (15) 

 
then the derivative ∂y / ∂x will be defined for the most general function y. 
 With those definitions and that of the diagonal sum (9), one has the relation: 
 

( )

( )k

D

x nm

∂
∂

y
= 

k

∂
∂

y
x

(mn),     (16) 
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in which the mn-component of the matrix ∂y / ∂xk is on the right-hand side.  In order to 
prove (16), it is obviously sufficient to consider a function y of the form (13).  From (14) 
and (3), one will have: 
 

k

∂
∂

y
x

(mn) = 
1

1 1
1 1 1

( ) ( )
r p p

s rs

l k l p p l p p
r p r p

x x
τ

δ τ τ τ τ
−

+ +
= = + =
∑ ∑ ∏ ∏ ;  (17) 

 
τr+1 = m, τr+1 = τ1 , τr = n. 

 
 On the other hand, one can infer from (3) and (9) that: 
 

( )

( )k

D

x nm

∂
∂

y
=

1

1 1
1 1 1

( ) ( )
r p p

r ss

l k l p p l p p
r p p r

x x
τ

δ τ τ τ τ
−

+ +
= = = +
∑ ∑ ∏ ∏ ,   (17′) 

 
τ1 = τs+1, τr = n ,  τr+1 = m. 

 
A comparison of (17) and (17′) will give (16). 
 Let us emphasize a fact right now that will be important later and which can be read 
off from the definition (14): 
 
 The partial derivatives of a product are invariant under cyclic permutations of the 
factors. 
 
This theorem will also follow from (10), due to (16). 
 To conclude these preliminary remarks, a few words shall be devoted to the functions 
g (p, q) of two variables.  For: 

y = ps qr,     (18) 
one will have, from (14): 

∂
∂
y
p

= 
1

1

0

s
s l r l

l

−
− −

=
∑p q p ,  

∂
∂
y
q

= 
1

1

0

s
r j s j

j

−
− −

=
∑q p q .  (18′) 

 
 From § 1, the most general function g (p, q) to be considered can be represented by a 
linear combination of terms of the form: 
 

z = 
1

( )j j

k
s r

j=
∏ p q .     (19) 

 With the abbreviation: 

Pl = 
1

1 1

( ) ( )j j j j

k l
s r s r

j l j

−

= + =
∏ ∏p q p q ,    (20) 

the derivatives can be written: 
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1
1

1 0

1
1

1 0

,

.

l

l l

l

l l

sk
s m r m

l
l m

sk
r m s m

l
l m

−
− −

= =

−
− −

= =

∂ = ∂ 


∂ =
∂ 

∑∑

∑∑

z
p q P p

p

z
q P p q

q

   (21) 

 
 We can infer an important consequence of these equations.  We consider the matrices: 
 

d1 = 
∂ ∂−
∂ ∂
z z

q q
q q

, d2 = 
∂ ∂−
∂ ∂
z z

p p
p p

.   (22) 

 
 From (21), one will have: 

 d1 = 
0

( )l l l l

k
r s s r

l l
l =

−∑ q P p P p q , 

 

 d2 = 
0

( )l l l l

k
s r r s

l l
l =

−∑ p q P q P p , 

and it will follow from this that: 
 

d1 + d2 = 
0

( )l l l l

k
s r s r

l l
l =

−∑ p q P P p q . 

 
 The second term of one summand in this will always cancel the first term of the 
following one, and the first and last terms will cancel the entire sum.  Hence: 
 

d1 + d2 = 0.     (23) 
 
 Due to its linear character in z, this relation is true for not only the expressions z of 
the form (19), but, at the same time, also for arbitrary analytic functions g (p, q) (1). 
 To conclude this brief presentation of matrix analysis, we would like to prove the 
theorem: 
 
 Any matrix equation: 

F (x1, x2, …, xr) = 0 
 

will remain true when one subjects all argument matrices xj to one and the same 
permutation of all rows and columns. 
 
 It is obviously enough to show that for the two matrices a, b that go to a′, b′ under 
that operation, the invariances: 

                                                
 (1) More generally, for functions of r variables, one will have: 

r r

r rr

 ∂ ∂
∑ − ∂ ∂ 

g g
x x

x x
= 0. 
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a′ + b′ = (a + b)′, a′ b′ = (a b)′ 
 

will be true, in which the right-hand side means those matrices that arise from a + b and 
ab, resp., by those permutations. 
 We shall prove this when we replace the operation of permutation with multiplication 
by a suitable matrix (1). 
 We write a permutation as: 
 

0 1 2 3

0 1 2 3

k k k k

 
 
 

⋯

⋯
 = 

n

n

k

 
 
 

. 

 
 We associate this with the permutation matrix: 
 

p = (p (nm)),  p(nm) = 
1 for ,

0 otherwise.
nm k=




. 

 
Let the transpose of the matrix p be: 
 

pɶ  = ( ( ))p nmɶ ,  ( )p nmɶ =
1 for ,

0 otherwise.
nn k=




 

 
 Upon multiplying both of these, it will follow that: 
 

ppɶ  = ( ) ( )
k

p nk p km
 
 
 
∑ ɶ  = (δnm) = 1, 

 
since both factors p (nk) and ( )p kmɶ  are simultaneously non-zero only when k = kn = km, 
so n = m.  Therefore, pɶ  is the reciprocal of p: 
 

pɶ = p−1. 
 Let a be an arbitrary matrix, so: 
 

p a = ( ) ( )
k

p nk a km
 
 
 
∑  = (a (kn, m)) 

 

                                                
 (1) The process of proof that is chosen here has the advantage that it can make the close connection 
between permutations and an important class of general matrix transformations more clear.  However, the 
validity of the theorem in question can also be inferred directly from the remark that in the definitions of 
equality, as well as addition and multiplication, of matrices, no use was made of the ordering of the rows 
(columns, resp.). 
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will be a matrix that arises from a by a permutation 
n

n

k

 
 
 

 of the rows.  If one and the 

same permutation is applied to rows and columns then that will yield the matrix: 
 

a′ = p a p−1. 
 
 It follows from this with nothing further that: 
 
  a′ + b′ = p (a + b) p−1 = (a + b)′, 
     a′ b′  = p a b p−1  = (a b)′, 
 
with which our assertion is proved. 
 One then sees that no sequence or ordering of the elements can be determined by 
matrix equations. 
 Moreover, the much more general theorem is obviously true that any matrix equation 
is invariant under transformations of the form: 
 

a′ = b a b−1, 
 
in which b means an arbitrary matrix.  Of course, later on, we will see that this is no 
longer true for matrix differential equations with no further assumptions. 
 
 

Chapter II – Dynamics 
 

 § 3. The basic laws. – The dynamical system is described by coordinates q and 
impulses p.  They shall be represented by matrices: 
 

q = (q (nm) e2πirν (nm) t), p = (p (nm) e2πirν (nm) t) .  (24) 
 
The ν (nm) in these expressions mean the quantum-theoretical frequencies that belong to 
the transitions between the states with quantum numbers n and m.  The matrices (24) 
shall be Hermitian; i.e., under matrix transposition, each component shall go to its 
conjugate value, and indeed that must be true for all real t.  We will then have: 
 

q(nm) q (mn) = | q (nm) |2    (25) 
and 

ν (nm) = − ν (mn).     (26) 
 
If q is a Cartesian coordinate then the quantity (25) will be definitive for the probabilities 
(1) of the transitions n �  m. 
 We would like to further demand that: 
 

                                                
 (1) On this subject, see § 8. 
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ν (nm) + ν (kl) + ν (lj ) = 0.    (27) 
 
With (26), that be expressed as: There are quantities Wn such that: 
 

hν (nm) = Wn – Wm .     (28) 
 
It follows from this, with (2), (3), that the function g (p, q) will always take the form: 
 

g = (g (nm) e2π i ν (nm) t) 
 
again, and indeed, the matrix (g (mn)) will emerge in that way from the matrices (q (nm)), 
(p (nm)) by just the same process by which g was obtained from q, p.  For that reason, 
from now on, we can choose the briefer notation: 
 

q = (q (nm)),  p = (p (nm)),    (30) 
 

in place of the representation (24), which we shall abandon. 
 When we once more recall (24), [(29), resp.], we will get the matrix: 
 

gɺ = 2πi (ν (nm) g (nm))    (31) 
 
for the temporal derivative of the matrix g = (g (nm)). 
 If ν (nm) ≠ 0 for n ≠ m (as we would like to assume) then gɺ  = 0 would mean that g is 

a diagonal matrix with g (nm) = δnm g (nm). 
 A differential equation gɺ = a is invariant under the process that subjects the rows and 
columns of all matrices, as well as the numbers Wn to the same permutation.  In order to 
see that, we consider the diagonal matrix: 
 

W = (δnm Wn); 
we will then have: 

 Wg = ( )nk n
k

W g kmδ 
 
 
∑  = (δnm g (nm)), 

 

 gW = ( ) km k
k

g nk Wδ 
 
 
∑  = (Wm g (nm)), 

so, from (31): 

gɺ  =
2 i

h

π
((Wn – Wm) g (nm)) =

2 i

h

π
(Wg – gW). 

 
 Now, if p is a permutation matrix then the transform: 
 

W′ = p W p−1 = ( )
k kn m nWδ  

 
will be a diagonal matrix with the permuted Wn in the diagonal.  One will then have: 



Born and Jordan – On quantum mechanics. 11 

1−p gpɺ  = 
2 i

h

π
(W′g′ – g′W′) = ′gɺ , 

 
in which g′ = p g p−1, and ′gɺ  means the temporal derivative of g′ that is constructed using 
the rule (31) with permuted Wn . 
 The rows and columns of gɺ  then suffer the same permutation as those of g, and our 
assertion follows from that. 
 It should be noted that a corresponding theorem for an arbitrary transformation of the 
form a′ = b a b−1 is not true, since W′ would no longer be a diagonal matrix in that case.  
Despite that difficulty, a closer study of these general transformations seems imperative 
to us, because it promises to give a glimpse into the deeper connections of the new 
theory; we will come back to this later (1). 
 For the case of a Hamiltonian  function of the form: 
 

H = 
1

2m
p2 + U (q), 

 
we will assume, with Heisenberg, that the equations of motion read just like the classical 
ones, such that we can write: 

1
,

,

m

∂ = = ∂ 
∂ ∂ = − = −
∂ ∂ 

H
q p

p

H U
p

q q

ɺ

ɺ

     (32) 

with the symbolism of § 2. 
 We shall attempt to determine associated equations of motion for the general case of 
an arbitrary Hamiltonian  function H (p, q), as well, by reasoning by analogy.  That will 
be necessary when one goes on to relativistic mechanics, and especially to the treatment 
of the motion of electrons that interact with magnetic fields.  In the latter case, the 
function H can no longer be represented in Cartesian coordinates as the sum of two 
functions, one of which depends upon only the impulses and the other of which depends 
upon only the coordinates. 
 Classically, the equations of motion are derived from the action principle: 
 

1

0

t

t

L dt∫ = 
1

0

{ ( , )}
t

t

pq H p q dt−∫ ɺ  = extremum.   (33) 

  
 If we think of inserting the Fourier development of L in this, and we take the time 
interval t1 – t0 to be sufficiently large then only the constant term of L will contribute to 
the integral.  The form that the action principle will then take is then closely related to the 
following fact in quantum mechanics: 
 

                                                
 (1) Cf., the continuation of this paper that is soon to appear.  
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 The diagonal sum D (L ) = ( )
k

L kk∑  shall be extremized: 

 
D (L ) = ( ( , ))D −pq H p qɺ  = extremum,   (34) 

 
and indeed for a suitable choice of p and q and with given ν (nm). 
 
 When one sets the derivatives of D (L ) with respect to the elements of p and q equal 
to zero, one will then have the equations of motion: 
 

 2π i ν (nm) q (nm) = 
( )

( )

D

p mn

∂
∂

L
, 

 

 2π i ν (nm) p (nm) = 
( )

( )

D

q mn

∂
∂

L
. 

 
 One sees from (26), (31), and (16) that these equations of motion can generally be 
written in the canonical form: 

,

.

∂ = ∂ 
∂ = −
∂ 

H
q

p

H
p

p

ɺ

ɺ

     (35) 

 
 Heisenberg employed a relation that had been presented by Thomas (1) and Kuhn  
(2) as his quantum condition.  The equation: 
 

J = p dq∫�  = 
1/

0

p q dt
ν

∫ ɺ  

 
of “classical” quantum theory can, when one appeals to the Fourier development of p and 
q: 

p = 2 i tp e π ν τ
τ

τ

∞

=−∞
∑ , q = 2 i tq e π ν τ

τ
τ

∞

=−∞
∑ , 

be converted into: 

1 = 2 ( , )i q p
J τ τ

τ
π τ

∞

−
=−∞

∂
∂∑ .    (36) 

 
 If p = mqɺ  in this then the pτ can be expressed in terms of the qτ , and one will get the 
classical equation whose analogous conversion into a differential equation will yield the 

                                                
 (1) W. Thomas, Naturwiss. 13 (1925), 627.  
 (2) W. Kuhn , Zeit. Phys. 33 (1925), 408.  
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relation of Thomas and Kuhn .  Since the assumption p = mqɺ  should not be made here, 
we must immediately translate equation (36) into a differential equation. 
 One should have a correspondence between: 
 

( , )q p
J τ τ

τ
τ

∞

−
=−∞

∂
∂∑  and 

1
( ( , ) ( , ) ( , ) ( , ))q n n p n n q n n p n n

h τ
τ τ τ τ

∞

=−∞
+ + − − −∑ ; 

 
the q (nm), p (nm) on the right in this that include a negative index are set to zero.  In that 
way, one will get the quantum condition: 
 

( ( ) ( ) ( ) ( ))
k

p nk q kn q nk p kn−∑ =
2

h

iπ
   (37) 

 
as the analogue of (36). 
 This represents an infinitude of equations, namely, one for each n. 
 In particular, for p =mqɺ , it will imply that: 
 

2( )| ( ) |
k

kn q nkν∑ =
28

h

mπ
, 

 
which coincides with the Heisenberg form of the quantum condition – viz., the Thomas-
Kuhn  equation.  (37) must be regarded as the proper generalization of that equation. 
 Moreover, one sees from (10) that the diagonal sum D (p, q) – D (q, p) = 0, while 
(37) leads to D (p, q) – D (q, p) = ∞.  The matrices considered are therefore never finite 
(1). 
 
 
 § 4. Consequences. Laws of energy and frequency. – With these preliminaries from 
the previous paragraphs, the basic laws of the new mechanics can be given completely.  
All further laws of quantum mechanics that should be endowed with general validity 
must be provable in terms of them.  Some of the laws to be proved that mainly come 
under consideration are the law of energy and the Bohr frequency condition.  The law of 
energy says that when H is the energy, one will have Hɺ  = 0, or that H is a diagonal 
matrix.  According to Heisenberg, the diagonal terms H (nn) of H will then be 
interpreted as the energies of the various states of the system, and the Bohr frequency 
condition will require that: 

hν (nm) = H (nn) – H (mm), 
or 

Wn = H (nn) + const. 
 We consider the quantity: 

d = p q – q p. 
 From (11), (35) will become: 

                                                
 (1) Nor do they belong to the class of “restricted” infinite matrices that have been considered almost 
exclusively by the mathematicians until now. 
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 dɺ  = + − −pq pq qp qpɺ ɺ ɺ ɺ  
 

  = 
∂ ∂ ∂ ∂− + −
∂ ∂ ∂ ∂
H H H H

q q p p
q q p p

. 

 
 From (22), (23), one then has dɺ = 0, and d is a diagonal matrix.  However, the 
diagonal terms of d are established by the quantum condition (37) precisely.  In 
summary, with the use of the identity matrix 1 that is defined by (6), we will get the 
equation: 

p q – q p = 
2

h

iπ
1,     (38) 

 
which we call the sharpened quantum condition and which we will base all further 
conclusions upon. 
 One can infer from the form of this equation that if an equation (A) were derived from 
(38) then (A) would remain true when one switched p with q and simultaneously replaced 
h with – h.  For that reason, of the equations: 
 

pn q = q pn + 1

2
nh

n
iπ

−p ,    (39) 

 

qn p = p qn − 1

2
nh

n
iπ

−q ,    (39′) 

 
only one them can be proved from (38), which can be done by induction quite easily. 
 We would now like to prove the laws of energy and frequency, as they were 
expressed above, and first for the case: 
 

H = H1 (p) + H2 (q). 
 
 From what was done in § 1, H1 (p) and H2 (q) can be formally replaced by the power 
series: 

H1 (p) = n
s

s

a∑ p ,  H2 (q) = n
s

s

b∑ q  

 
in this.  Formulas (39), (39′) then allow one to see that: 
 

,
2

,
2

h

i

h

i

π

π

∂ − = ∂ 
∂ − = −
∂ 

H
Hq qH

p

H
Hp pH

q

     (40) 

 
and a comparison with the equations of motion (35) will yield: 
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2
( ),

2
( ).

i

h
i

h

π

π

= − 

= −


q Hq qH

p Hp pH

ɺ

ɺ

    (41) 

 

 Now, if the matrix Hg – gH is briefly denoted by 
H

g
 then one will have: 

 
H

ab
= +

H H
b a

a b
; 

 
however, for g = g (p, q), it will generally follow from this that: 
 

gɺ = 
2 i

h

π H

g
 =

2 i

h

π
(Hg – gH).   (43) 

 
For the proof, one then needs only to calculate gɺ  as a function of p, q and pɺ , qɺ  by 

means of (11), (11), as well as 
H

g
 as a function of p, q and 

H

p
, 

H

q
, and to think of 

applying (41) then.  If one sets g = H in (43), in particular, then one will get: 
 

Hɺ  = 0.      (44) 
 
 Once the law of energy has been proved and H is known as a diagonal matrix, (41) 
will take on the form: 
 h ν (nm) q (nm) = (H (nn) − H (mm)) q (nm), 
 
 h ν (nm) p (nm) = (H (nn) − H (mm)) p (nm), 
 
from which, the frequency condition will follow. 
 If we now go on to the more general Hamiltonian  functions H* = H* (p, q) then we 
will easily see from some examples, such as H* = p2 q, that we no longer have ∗Hɺ = 0, in 
general.  However, one sees that the Hamiltonian  function H = 1

2 (p2 q + q p2) will 

produce the same equations of motion as H*, and that Hɺ  will once more be equal to zero.  
We then express the laws of energy and frequency as: 
 
 For every function H* = H* (p, q), there is a function H = H (p, q) such that H* and 
H will imply the same equations of motion when they are regarded as Hamiltonian 
functions, and that H will play the role of a temporally-constant energy that fulfills the 
frequency condition for these equations of motion. 
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 From the argument that was made above, it is sufficient that the given function H 
should satisfy equations (40), along with: 
 

∂
∂
H
p

=
•∂

∂
H
p

,  
∂
∂
H
q

=
•∂

∂
H
q

.    (45) 

 
From § 1, H* can be formally represented as a sum of products of powers of p and q, and 
due to the linearity of equations (40), (45) in H, H*, we will simply have to give the 
summand in H that corresponds to each summand in H*.  We then need to consider only 
the case: 

H* = 
1

( )j j

k
s r

j=
∏ p q .    (46) 

 
From the remarks in § 2, equations (45) must be fulfilled when H is set equal to a linear 
form in those products of powers of p, q that arise from H* by cyclic permutation of the 
factors; in that way, only the sum of the coefficients will be taken to be equal to 1.  It is 
not as easy to answer the question of how these coefficients must be chosen in order for 
equations (40) to be fulfilled.  It might suffice here to treat the case of k = 1, so: 
 

H* = ps qr .     (47) 
 
 Formula (39) can be generalized to (1): 
 

pm qn – pn qm = 
1

1 1

02

n
n l n l

l

h
m

iπ

−
− − −

=
∑q p q .   (48) 

 
 For n = 1, that is once more (39); in general, it will follow from (48) that due to (39), 
one will have: 

pm qn+1 – pn+1 qm = (pm qn – pn qm) q + 1

2
n mh

m
iπ

+q p . 

 
Switching p and q, with a change of sign on h, will yield the new formula: 
 

                                                
 (1) Another generalization will be given by the formulas: 
 

  pm qn = 
,

0

!
2

jm n

j

m n h
j

j j iπ=

    
∑     

    
qn−j pm−j, 

 

  qn pm = 
,

0

!
2

jm n

j

m n h
j

j j iπ=

   − 
∑     

    
pm−j qn−j, 

 
in which j increases to the smaller of the numbers m, n. 
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pm qn – pn qm = 
1

1 1

02

n
m j n j

l

h
n

iπ

−
− − −

=
∑ p q p .   (48′) 

 
 A comparison with (48) will yield: 
 

0

1

1

s
s l r l

ls
−

=+ ∑ p q p = 
0

1

1

r
r j s j

jr
−

=+ ∑ q p q .   (49) 

 
 We now assert that from (47), H* is associated with: 
 

H = 
0

1

1

s
s l r l

ls
−

=+ ∑ p q p .    (50) 

 
 We must prove only (40), in which we must recall formula (18′) from § 2. 
 Now, from (50), one will have: 
 

H p – p H =
1

1s+
(qr ps+1 – ps+1 qr), 

 
and from (48) that is equivalent to the lower equation in (40). 
 With the use of (49), we will further get: 
 

H q – q H =
1

1r +
(ps qr+1 – qr+1 ps), 

 
which, from (48′), is equivalent to the upper equation (40).  The desired proof is complete 
with that. 
 Whereas in classical mechanics, the constancy of energy Hɺ = 0 can be read off 
immediately from the canonical equations, the law of energy Hɺ  = 0 in quantum 
mechanics is much less transparent, as one sees. 
 One will recognize the extent to which its provability is far from trivial, given the 
assumptions that were made, when one seeks to prove the constancy of H simply by 
calculating Hɺ , which is closer to the classical method of proof.  To that end, one must 
first represent Hɺ  as a function of p, q and pɺ , qɺ  by means of (11), (11′), into which one 

must introduce the values 
∂
∂
H
q

, 
∂
∂
H
p

for pɺ , qɺ , resp.  That will yield Hɺ  as a function of p 

and q.  Equation (38) (the one that is derived from it in the formulas that are cited in the 
footnote on the previous page, resp.) allows one to recalculate this function as a sum of 
terms a ps qr and to prove that the coefficient a of each such term will vanish.  This 
calculation will be developed (1) for the most general case that was treated above in 

                                                

 (1) This can be accomplished with the help of (39′) for the case of H = 
1

2m
p2 + U (q).  
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another way everywhere that it hardly seems to be practicable.  Nonetheless, if the laws 
of energy and frequency can be proved in such a general context, then it would seem to 
us that this would give one a strong support for the hope that this theory actually includes 
deep physical laws. 
 In conclusion, let us note just one result that is easy to infer from the formulas of this 
paragraph: 
 
 Equations (35), (37) can be replaced with (38) and (44) (in which H means energy); 
the frequencies are then to be determined from the frequency condition. 
 
 We shall go into the important applications that this theorem admits in the 
continuation to this paper. 
 
 

Chapter III – Examination of the anharmonic oscillator 
 

 Heisenberg has already considered the anharmonic oscillator with: 
 

H = 
2

2 2 301 1

2 2 3

ω λ+ +p q q     (51) 

 
thoroughly.  Nevertheless, we shall devote a new investigation to it here, and indeed with 
the goal of establishing the most general solution of the basic equations for that case.  If 
the basic equations of the theory were actually complete and required no further 
extension then the absolute values | q (nm) |, | p (nm) | of the components of q and p, 
resp., would have to be established uniquely by them, and it would be important to test 
this with the example (51).  By contrast, we should expect that an indeterminacy would 
still exist in regard to the phases ϕnm, ψnm in: 
 
 q (n m) = | q (n m) | nmieϕ , 
 p (n m) = | p (n m) | nmieψ . 
 
For statistics – e.g., the interaction of quantum atoms with external radiation fields – it 
would be of fundamental significance to establish the degree of this indeterminacy 
precisely. 
 
 
 § 5. Harmonic oscillator. – The starting point of our argument is the theory of the 
harmonic oscillator.  For small λ, one can regard the motion according to equation (51) as 
a perturbation of the harmonic oscillation with the energy: 
 

H = 
2

2 201

2 2

ω+p q .     (52) 

 



Born and Jordan – On quantum mechanics. 19 

 An extension of Heisenberg’s consideration is necessary for even this simple 
problem.  An essential statement on the form of the solution can be inferred from an 
analogous argument.  Namely, since classically only one harmonic component is present, 
Heisenberg assumed that the matrix represented only the transition between neighboring 
states, so it would have the form: 
 

q = 

(01)

(10) (12)

(21) (23)

0 0 0 0

0 0 0

0 0 0

q

q q

q q

 
 
 
 
  
 

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

.   (53) 

 
We endeavor to construct the entire theory autonomously, without appealing to the 
classical theory on the grounds of the correspondence principle.  We will then investigate 
whether or not the form (53) of the matrix can be derived from the basic equations 
themselves, or which additional demands must be imposed when that is not the case, 
resp. 
 One sees, with no further discussion, from what was said in § 3 on invariance under 
permutations of rows and columns that the exact form of the matrix (53) can never be 
deduced from the basic equations.  If one then switches the rows and columns in the same 
way then the canonical equations and the quantum condition will remain invariant, so one 
would have then found a new, apparently distinct, solution in that way.  We would like to 
prove that the solution can always be brought into the form (53) by a mere renumbering 
of the elements.  The equation of motion: 
 

2
0ω+q qɺɺ = 0      (54) 

reads: 
(ν 2 (n m) − 2

0ν ) q (n m) = 0     (55) 

 
for the elements, in which: 
 

ω0 = 2π ν0
 , hν (n m) = Wn – Wm . 

 
It will follow from the sharpened quantum condition: 
 

p q – q p =
2

h

iπ
1     (56) 

 
that for each n there must exist an n′ such that q (n n′ ) ≠ 0.  If there were an n for which 
all q (n n′ ) would be zero then the nth diagonal term of p q – q p would be equal to zero, 
which would contradict the quantum condition.  (55) then implies that an n′ will always 
exist for which one has: 

| Wn – Wn′ | = hν0 . 
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However, since we have assumed in our basic principles that one always has Wn ≠ Wm for 
n ≠ m, at most two such indices n and n′ can exist.  The associated Wn′ , Wn″ will then be 
solutions of the quadratic equation: 

(Wn – x)2 = h2 2
0ν . 

 
If two such indices n′, n″ actually exist then it will follow that the associated frequencies 
will obey: 

ν (n n′ ) = − ν (n n″ ).     (57) 
 
Moreover, from (56), one will have: 
 

2( ) | ( ) |
k

kn q nkν∑ = ν (n′ n) {| q (n n′ ) |2 − | q (n n″ ) |2} = 
28

h

π
,  (58) 

 
and the energy (52) will become: 
 
 H (n m)  = 21

2 4 {
k

π −∑ ν (n n′ ) ν (k m) q (n k) q (k m) + 2
0ν q (n k) q (k m)} 

 
 = 22 ( )

k

q nkπ ∑ q (k m){ 2
0ν − ν (n k) ν (k m)}. 

 
In particular, for m = n, one will have: 
 

H (n n) = Wn = 4π 2 2
0ν (| q (n n′ ) |2 + | q (n n″ ) |2).   (59) 

 
Now, three further cases are possible: 
 
 a) There is no n″, and one has Wn′ > Wn . 
 
 b) There is no n″, and one has Wn′ < Wn . 
 
 c) There exists an n″. 
 
 In case b), we now consider n′, instead of n.  At most two indices (n′ )′ and (n′ )″ 
belong to it, and one of them must be equal to n.  With that, we come back to one of the 
cases a) or c), and for that reason, we can ignore b). 
 In case a), one will have ν (n′ n) = + ν0 , and it will follow from (58) that: 
 

ν0 ⋅⋅⋅⋅ | q (n n′ ) |2 = 
28

h

π
,     (60) 

so from (59): 
Wn = H (n n) = 4π 2 2

0ν | q (n n′ ) |2 = 1
2 ν0 h. 
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Due to the assumption Wn ≠ Wm for n ≠ m, there is then at most one index n = n0 for 
which case a) is true. 
 If such an n0 exists then we can give a sequence of numbers: 
 

n0, n1, n2, n3, … 
in such a way that: 

(nk)′ = nk+1 and Wk+1 > Wk . 
One then always have: 

(nk+1)″ = nk . 
 
Hence, for k > 0, (58) and (59) will imply that: 
 

H (nk nk) = 4π 2 2
0ν {| q (nk , nk+1 ) |

2 + | q (nk , nk−1) |
2},   (61) 

1
2 h = 4π 2ν0 {| q (nk , nk+1 ) |

2 − | q (nk , nk−1) |
2}.        (62) 

 
 It follows from (60) and (62) that: 
 

| q (nk , nk+1) |
2 = 

2
08

h

π ν
(k + 1),    (63) 

 
and it will then follow from (61) that: 
 

knW = H (nk , nk) = ν0 h (k + 1
2 ).      (64) 

 
 Now, we would still like to see whether it is possible that there is no n for which case 
a) is valid.  Beginning with an arbitrary n0 , we can then define 0n′  = n1 and 0n′′  = n−1 ; for 

each of them, we again define 1n′ = n2 , 1n′′ = n0 , and 1n−′ = n0 , 1n−′′ = n−2 , etc.  In that way, 

we will get a sequence of numbers: 
 

…, n−2 , n−1 , n0 , n1 , n2 , …,     (65) 
 
and equations (61), (62) will be true for every k between – ∞ and + ∞.  However, that is 
impossible.  From (62), the quantities xk = | q (nk+1 , nk) |

2 will then define an equidistant 
number sequence, and since they are positive, it must have a smallest one.  We can once 
more denote the corresponding index by n0 and then come back to the previous case; 
formulas (63), (64) are also valid here. 
 One further sees that every number n must be included in the numbers nk ; otherwise, 
one could define a new sequence (65) with n as its starting term, which would again 
make formula (60) true.  The starting terms of both sequences would then have the same 
value Wn = H (n n), which is impossible. 
 With that, we have proved that the indices 0, 1, 2, 3, … can be reordered into a new 
sequence n0, n1, n2, n3, … such that the solution has the Heisenberg form (53).  That 
would then seem to be the “normal form” for the general solution.  From (64), it has the 
property that: 
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1knW
+

> 
knW . 

 
Conversely, if one demands that Wn = H (n n) should always increase with n that one will 
necessarily have nk = k ; this principle then establishes the normal form uniquely.  
However, only the notation will be fixed in that way, and the calculation will take a more 
transparent form; physically, nothing new will come about in that way. 
 In this, we have a deeper difference from the semi-classical determination of the 
stationary states that has been used up to now.  The classically-calculated paths close into 
each other continuously, whereby the quantum paths that were subsequently rejected will 
also define a well-defined sequence from the outset.  The new mechanics represents a 
true theory of the discontinuum, in which no mention is made of the sequence of quantum 
states that are defined by the physical process, as such, since the quantum numbers are 
really nothing but distinctive indices that one can order and normalize according to 
whatever practical viewpoint one desires (e.g., in increasing energy Wn). 
 

 
 § 6. Anharmonic oscillator. – The equations of motion: 
 

2
0ω+q qɺɺ + λ q2 = 0,     (66) 

 
together with the quantum condition, give the following system of equations for the 
elements: 

2 2
0( ( )) ( ) ( ) ( ) 0,

( ) ( ) ( ) .
4

k

k

nm q nm q nk q km

h
nk q nk q kn

ω ω λ

ω
π

− + =


= −


∑

∑
  (67) 

 
 We shall attempt to solve this by a series development: 
 

0 (1) 2 (2)

0 (1) 2 (2)

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( )

n m n m n m n m

q n m q n m q n m q n m

ω ω λ ω λ ω
λ λ

= + + +


= + + + 

⋯

⋯
  (68) 

 
 For λ = 0, one has the case of the harmonic oscillator that was treated in the previous 
paragraph.  We write the solution (53) in the form: 
 

q0 (n m) = an δn, m−1 + ma δn−1, m ,    (69) 

 
in which the overbar denotes the complex-conjugate quantity.  If one takes the square and 
higher powers of the matrix q0 = (q0 (n m)) then matrices of a similar form will appear, 
namely, sums of terms: 

( )( ) p
nmξ  = ξn δn, m−p + mξ δn−p, m .    (70) 

 
One will then be in a good position to put the solution into the form: 
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0 (1)

(1) 0 (2)

(2) (1) (3)

( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ,

........................

nm

nm nm

nm nm

q n m a

q n m x x

q n m y y

=
′= + 
′= + 


    (71) 

 
in which one always alternates between odd and even values of the index p. 
 In fact, if one inserts this into the approximate equations: 
 

2 0 2 (1) 0 (1) 0 0 0
0

0 0 (1) (1) 0 (1) 0 0

( ( ) ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0,
:

{ ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( )} 0,
k

k

nm q n m nm nm q nm q n k q k m

n k q nk q k n q nk q k n nk q nk q k n

ω ω ω ω
λ

ω ω

 − − + =
 
 

+ + = 
 

∑

∑
(72) 

 
2 0 2 (2) 0 (1) (1) 0 2
0

0 (2) 0 0 (1) (1) 0

2

0 0 (2) (1) (1) (2) 0

(1) 0 (1) (1

( ( ) ) ( ) 2 ( ) ( ) ( ) ( ( )

2 ( ) ( ) ( ) ( ( ) ( ) ( ) ( )) 0

:

{ ( ) ( ( ) ( ) ( ) ( ) ( ) ( ))

( ) ( ( ) ( )

k

k

n m q nm n m n m q nm n m

n m n m q n m q nk q k m q nk q k m

n k q n k q k m q n k q k m q n k q k n

n k q n k q k m q

ω ω ω ω ω
ω ω

λ
ω

ω

− − −
+ + + =

+ +

+ +

∑

∑
) 0 (2) 0 0( ) ( )) ( ) ( ) ( ) 0n k q k m nk q nk q k mω

 
 
 
  
 
 
 
 

+ =  

(73) 

 
and observes the multiplication rule: 
 

( ) ( )
, , ,

, , ,

, , ,

, , ,

( ) ( )p q
nkm nk km n n p n p q n m p n m p q

k

n n p n p q n n p q n m p q

n n p n p q n p n p n m p q

n n p n p q n p n p q n m p q

ξ η ξ η δ

ξ η δ
ξ η δ
ξ η δ

+ + + + − −

+ + − + − − +

− − + − − + −

− − − − − − + +

Ω = Ω

+ Ω


+ Ω 
+ Ω 

∑

  (74) 

 
then when one sets the individual factors of δn, m−s equal to zero, one will see that all 
conditions can be fulfilled exactly by the Ansatz (71), and the higher terms in (71) will 
vanish identically. 
 In the individual cases, calculation will give the following: 
 
 After one substitutes the expressions in (71), the first of equations (72) will yield: 
 

2 2 2
0 1

2
0 1

(1)
, 1

2 | | | | 0,

3 0,

0,

n n n

n n n

n n

x a a

x a a

ω
ω

ω

−

′ +

−

+ + =
− + = 
= 

   (75) 

 
while the second one will be fulfilled identically.  One will then have: 
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2 2
1

2
0

1
2
0

| | | |
,

2

.
3

n n
n

n n
n

a a
x

a a
x

ω

ω

−

+

+= − 


′ =


    (76) 

The first of equations (73) yields: 
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0 , 1 1 1 1 1

2
0 1 2

(1)
, 2

2 2 2 0,

8 0,

0,
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ω ω
ω

ω
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+ +

−

′ ′ + + + + =
′ ′ ′− + + = 
= 

  (77) 

 
while the second equation is not fulfilled identically, but implies a determining equation 
for yn : 

2 2
1 1 1 1 2

(2) (2)
, 1 , 12 2

1
0 0

2 | | 2 | |

| | | | 0.
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a a
ω ω

ω ω
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


− − = 
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  (78) 

 The solution reads: 

(2) 2 2 2
, 1 1 13

0

24
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1
(| | | | 3 | | ),

3

1
.
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n n n n n

n n n n

a a a

y a a a

ω
ω

ω

+ + −

+

= + + 


′ =


   (79) 

If one further sets: 
ηn = n n n na y a y+ ,      (80) 

 
to abbreviate, then the η can be determined from the equation: 
 

ηn − ηn−1 = 4 4 2 2 2 2
1 1 1 24

0

1 1 1
(| | | | | | | | | | | | )

9 9n n n n n na a a a a a
ω − + − −− + − .  (81) 

 
The expressions (76) and (79) show that the quantities xn, nx′ , ny′  can be expressed by the 

solution of the zeroth approximation an .  Their phases can then be established by those of 
the harmonic oscillator.  Things seem to be otherwise for the quantities yn ; indeed, ηn is 
then determined uniquely by (81), but yn cannot be established completely from (80).  It 
is likely that an extended determining equation for yn will arise from the following 
approximations.  We must leave that question open here, but we would like to mention its 
essential meaning for the sake of the unity of the entire theory.  It will then happen that 
no statistical questions at all will depend upon whether our conjecture is correct that of 
the phases of the q (n m), one of them in each row (or column) of the matrix remain 
undetermined. 
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 In conclusion, we would like to give the explicit formulas that one obtains when one 
substitutes the previously-found (§ 5) solution for the harmonic oscillator.  From (63), 
they read: 

an = ( 1) niC n eϕ+ ,  C = 
04

h

πω
= 

2
08

h

π ν
   (82) 

 
in normal form.  With that, one gets from (76), (79), (81): 
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   (83) 

 
(1) (1)
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, 1 3
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n

ω ω

ω
ω
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−
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

     (84) 

hence: 

 ηn − ηn−1 =
2

4
0

11

9

C

ω
(2n + 1), 

 

ηn = n n n na y a y+  = 
2

4
0

11

9

C

ω
(n + 1)2. 

 
If one sets yn = | yn | nieϕ  then one will have: 
 

| yn | cos (ϕn − ψn) =
2 | |

n

na

η
= 

3
3

4
0

11
1

18

C
n

ω
+ .   (85) 

 
Nothing more can be said about yn in this approximation. 
 However, we would like to write out the final formulas under the assumption that ψn 
= ϕn .  They then read (up to terms of order higher than two in λ): 
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( , 2) 2 ;

C
n n n
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ω ω λ
ω

ω ω
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− = + 

⋯

⋯

    (86) 
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  (87) 

 
We have also calculated the energy directly and found that: 
 

Wn = 
2

2
0 2

0

1 5 17
( 1)

2 3 30

C
h n n nν λ

ω
   + − + +   
   

+ …   (88) 

 
The frequency condition is, in fact, fulfilled, since one has, when one goes back to (82): 
 

 Wn – Wn−1 = hν0 − 
2

2
2
0

2C
nλ

ω
 + …  = 

2

h

π
 ω (n, n – 1), 

 

 Wn – Wn−2 = 2hν0 + …  = 
2

h

π
 ω (n, n – 2). 

 
One can, with Heisenberg, connect formula (88) with the remark that a deviation from 
the classical theory exists already in the terms of lowest order that one can rectify 
formally with a “half-integer” quantum number n′ = n + 1/2.  Moreover, our expressions 
ω (n, n – 1) agree with (86) and the classical frequencies precisely.  The classical energy 
is then (1): 

( )kl
nW = hν0 n − λ2 ⋅⋅⋅⋅

2

2
0

5

3

C

ω
n2 + …, 

 
and thus the classical frequencies will be: 
 

 ωkl =
( )1 kl

nW

h n

∂
∂

= hν0 n − λ2 ⋅⋅⋅⋅
2

2
0

5

3

C

ω
n + … 

  = ωqu (n, n – 1) = ( ) ( )
1

1
( )qu qu

n nW W
h −− . 

 

                                                
 (1) See M. Born , Atommechanik, Berlin, 1925, Chapter 4, § 42, pp. 294.  One must set a = 1/3 in 
formula (6) in order to come into agreement with our Ansatz.  
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We have ultimately shown that the expression (88) can also be obtained from the 
Kramers-Born  perturbation formula (up to the additive constant). 
 
 

Chapter IV – Remarks on electrodynamics 
 

 According to Heisenberg, the square of the absolute value | q (n m) |2 of the element 
of q for the case in which q is a Cartesian coordinate is definitive of the jump 
probabilities.  Here, to conclude, we would like to show the way by which this 
assumption can be obtained as a foundation from more general arguments.  In order to do 
that, it will be necessary to address the question of how the basic equations of 
electrodynamics are to be reinterpreted in the sense of the new theory.  However, we 
would like to emphasize that the argument that will be presented here has only a heuristic 
character; they only serve to help us recognize our fundamental viewpoint on the 
problem.  A thorough treatment of the questions that appear here shall be given later, in 
which, above all, the relationship of the theory that is put forth to the theory of light 
quanta will be discussed. 
 Here, we would like to discuss only those points that can be reached without going 
into the exact form of the quantum condition for systems of many degrees of freedom.  
One can see that one can already go rather far into electrodynamics in that way by the 
following argument: The electromagnetically-oscillating cavity represents a system with 
infinitely many degrees of freedom.  Nonetheless, the basic theorems that were developed 
in the foregoing chapters, which indeed refer to only systems of one degree of freedom, 
are sufficient for its treatment, because it will go to a system of uncoupled oscillators 
after it is analyzed into eigen-oscillations.  It is hardly possible to doubt the way that this 
system should be treated.  For it, the fact that the basic electromagnetic equations are 
linear (viz., the principle of superposition) proves to have special significance.  It will 
then follow from that fact that the virtual oscillators are harmonic, and the validity of the 
law of energy will be independent of the quantum condition for harmonic oscillators 
precisely (as opposed to the behavior of other systems).  It follows from: 
 

H = 2 2 21
02 ( )ω+p q  

that 
 Hɺ  = 2 21

0 02 ( )ω ω+ + +pp pp qq qqɺ ɺ ɺ ɺ  

  = 21
02 ( )ω − − + +qp pq pq qp  

  = 0. 
 
Correspondingly, one would then expect that the integral laws of the electrodynamics of 
the vacuum (viz., the laws of energy and impulse) could be arrived at in a completely 
general way from the Maxwell equations alone, when reinterpreted in terms of matrices, 
without having to go into the quantum condition.  When we have shown that, we will 
likewise obtain the means to give a basis for Heisenberg’s statement about the meaning 
of 2| ( ) |q n m  
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 § 7. Maxwell’s equations. Law of energy and impulse. – We would like to agree in 
advance that vectors, as usual, will always be denoted by German symbols, while the 
difference between numbers and matrices will still be indicated by ordinary and boldface 
characters.  We choose our units of measurements in conjunction with Abraham’s 
textbook (1). 
 The electromagnetic processes in vacuo will be represented as the superposition of 
plane waves.  For such plane waves, we will regard the electric and magnetic field 
strengths E, H as matrices whose elements are harmonically-oscillating plane waves, so, 

e.g., for a suitable position of the coordinate system: 
 

E = ( )2 ( )( / )( ) i nm t x cnm eπ ν −
E .    (89) 

 
Of course, one must realize that n, m are generally no longer restricted to a discrete set of 
values in this, and that they also no longer refer to single numbers, but systems of 
numbers (viz., vectors). 
 One preserves the Maxwell equations in the form of matrix equations: 
 

rot H − 
1

c
ɺE  = 0, rot E + 

1

c
ɺH  = 0.   (90) 

 
The differentiations with respect to x¸ y, z, t are then to be thought of as being performed 
on each individual element of the matrix (2). 
 We would now like to derive the law of energy-impulse.  In order to do that, it will be 
necessary to make some prefatory remarks on the multiplication of matrix vectors. 
 We define the scalar product by: 
 

(A, B) = AB = Ax Bx + Ay By + Az Bz   (91) 

 
and the vector product by: 

[A B]x = Ay Bz − Az By .    (92) 

 
Since matrix multiplication is not commutative, the relations: 
 

AB = BA,  [AB] = − [BA] 

are not generally true. 
 By contrast, we assert that: 
 

div [AB] = (rot A, B) − (A, rot B).   (93) 

 
                                                
 (1) M. Abraham , Theorie der Elektrizität, II, Leipzig, 1914. 
 (2) In some situations, another way of conceptualizing the electromagnetic field is required, for which 
the spatial coordinates do not appear as numbers, but once more as matrices.  That will have a 
corresponding alteration of the meaning of the spatial differential quotients in the Maxwell equations as a 
consequence.  We shall come back to this in the continuation of this paper. 
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We now define the energy density W (as a scalar matrix) by: 
 

W = 
1

8π
(E2 + H2).     (94) 

From (11), one will then have: 
 

8π Wɺ = + + +ɺ ɺ ɺ ɺEE EE HH HH , 
and from (90): 

8

c

π
W = (E, rot H) + (rot H, E) – (H, rot E) – (rot E, H), 

so, from (93): 
Wɺ + div S = 0,     (95) 

in which: 

S = 
8

c

π
([E H] – [H E]).    (96) 

 
This is Poynting’s law for matrix electrodynamics; S means the radiation vector. 

 The law of impulse can be derived similarly: One defines the Maxwell stresses by: 
 

2 2 2 2 2 21
( ) ( ),

8
1

( ),
8

xz x y z x y z

yz y z z y y z z y

π

π

= − − + − − 

= + + +


T

T

E E E H H H

E E E E H H H H

   (97) 

 
and the impulse density of the radiation by: 
 

g = 
2

1

c
S =

1

8 cπ
([E H] – [H E]).     (98) 

One then gets: 

ɺg= xyxx xz

x y z

∂∂ ∂+ +
∂ ∂ ∂

TT T
      (99) 

by a similar calculation. 
 Naturally, one will arrive at these relations more intuitively when one employs the 
four-dimensional representation of the theory of relativity.  A systematic treatment of the 
four-dimensional vector analysis and the theory of relativity on the basis of matrix theory, 
with its non-commutative multiplication, shall be given at a later point. 
 
 
 § 8. Spherical waves. Radiation from a dipole. – In order to pursue our goal of 
calculating the radiation of an oscillator, we must now draw our attention to spherical 
waves. 
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 For that purpose, we shall introduce the Hertzian vector Z as a matrix vector.  We get 

E and H from Z by means of the equations: 

 

E = grad div Z −
2

1

c
ɺɺZ , H =

1
rot

c
ɺZ .   (100) 

 
In the classical theory, Z is proportional to: 

 
2 ( / )1 i t r ce

r
π ν −  

for a spherical wave. 
 Now, it is known that this expression can be written as the superposition of plane 
waves (1) on the basis of the identity: 
 

i re

r

κ

= ( )

2
ii

e dκκ ω
π ∫

r s .     (101) 

  
In this, r is the numerical vector from the center of the spherical wave to the reference 

point, s is a unit vector, and dω = dsx dsy dsz .  Thus, plane waves, which are represented 

by matrices of the form (89), can be obtained in our theory by integrating over the 
directions of the wave normals in the representation of a spherical wave: 
 

Z = 
2 ( )( / )

( )
i nm t r ce

e nm
r

π ν − 
 
 
q ;    (102) 

 
the matrix e q = (e q (n m)) in this represents the electric moment that the wave produces. 

 The calculations that lead from here to the determination of the electromagnetic field 
and radiation are the same as in the classical theory, since r, as a numerical vector, 

commutes with any matrix.  One obtains: 
 

2 2

2 2

1
[ ],

1
[ [ ]],

e

c r
e

c r

= − 

=


ɺɺ

ɺɺ

r

r r

H q

E q

    (103) 

and that will give: 

S =
3 2

[ ]
4

e

c rπ
ɺɺ

r
rq .     (104) 

 

                                                
 (1) See, e.g., P. Debye, Ann. Phys. (Berlin) 30 (1909), 755; Formula (7″), pp. 758.  
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 The integration over all spatial directions proceeds in the same way as it does in the 
classical theory.  The result for the energy that is radiated per second reads: 
 

d∫ fS  = 
2

3

2

3

e

c
ɺɺq.      (105) 

 
 In order to obtain the mean radiation, one must take the mean of this expression over 
time; the diagonal matrix: 

2
2

3

2

3

e

c
ɺɺq       (106) 

will then arise in that way. 
 If the oscillator oscillates in a fixed direction then we can replace the matrix vector q 

with the matrix scalar q = (q (n m)); the radiation will then become: 
 

2
2

3

2

3

e

c
ɺɺq = 

4 2
4 2

3

32
( ) | ( ) |

3 k

e
n k q n k

c

π ν 
 
 
∑ .   (107) 

 
 We still cannot give a complete theory of radiation here, from which one could 
inevitably go from the ordering of the individual terms in this series to the stationary 
states.  A more precise examination of the reaction of the radiation on the oscillator 
would be necessary for that, and therefore a theory of damping.  We will come back to 
that later.  Here, we would only like to find out whether the radiation is actually 
determined by the quantities | q (n m) |2.  The expression (107) shows that this is the case, 
but at the same time, we see that the quantities that are written out are not all of the 
radiation that emanates spontaneously from a stationary state.  The spontaneous 
transitions always result from only lower-energy states or states with lower quantum 
numbers, with a suitable numbering.  We can now state how this situation can be 
expressed in our theory in an entirely formal way: In order to do that, we do not take the 
mean value, but the diagonal sum of the radiation matrix (105); that will give: 
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2

3

e
D

c

 
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ɺɺɺq =
4 2

4 2
3

,

32
( ) | ( ) |

3 n k

e
n k q n k

c

π ν∑ .   (108)  

 
 Here, we can sum the right-hand side again and write: 
 

4 2
4 2

3

64
( ) | ( ) |

3 n k n

e
n k q n k

c

π ν
<

 
 
 

∑ ∑ .    (109) 

 
 The desired ordering is achieved with that: Each state n belongs to the radiation that 
corresponds to the transitions from all states k < n, each of which has the intensity that is 
known from the classical theory.  That will agree with experiment when one assumes that 
the indices n are ordered by increasing energies Wn . 
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 Heisenberg’s assumption, in the restricted sense that is characterized above, is then 
justified with that. 
 It should be likewise emphasized here that this convention in regard to the jump 
probabilities is independent of the assumption of the nondegeneracy of the system; viz., 
the distinctness of all Wn.  In conclusion, we shall stress that the statistical weights of the 
states are established along with the transition probabilities, and indeed each state that is 
characterized by a row and column (a diagonal term of W) must be ascribed the same 
statistical weight.  The fact that this result (when generalized to systems of many degrees 
of freedom) leads to the basic principle of Bose-Einstein statistics of light quanta by 
itself will be explained later. 
 
 Remark added in proof. – Meanwhile, the generalization of the theory to many 
degrees of freedom that was announced above has been worked out along with W. 
Heisenberg and will be presented in the continuation to this paper.  Various points that 
were touched upon here already will be discussed more thoroughly, since they have been 
further clarified in the meantime. 
 

____________ 
 

 


