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 In 1884, Le Chatelier (1) axiomatically expressed a general theorem that related to the changes 

of state in systems, but it was not correct at the level of generality that Le Chatelier had assumed. 

Independently of Le Chatelier, I myself was led to a similar theorem, but I sought to limit its 

validity more sharply and prove it (2). That proof was flawed. I believe that the true content and 

limits of the theorem shall be established in what follows. In that way, some basically unjustified 

extensions of it shall be corrected. 

 A system consists of two components (phases, e.g., salt and a saturated solution of it) that are 

in equilibrium. Let it be determined by two parameters x and y. In each component of the system, 

one parameter x is varied by the same amount dx and the two system components, thus altered, are 

brought together again. Let the equilibrium be displaced by the changes (cases of indifferent 

equilibrium are excluded, as before). After recombination, equilibrium is once more established. 

The system shall not be able to exchange energy with the environment during that process. At the 

time, I had not introduced that auxiliary condition. However, it is essential for the following 

derivation. 

 The situation itself is very simple. However, since there is no loss of generality if I base it upon 

a special example, while the assumptions will be expressed more clearly by that, let the chosen 

system be salt and a saturated solution of it. Let the parameters be pressure p and t. 

 

 A. – For the sake of simplicity, set p = 0. The salt and the solution might be heated by t 

separately from each other. Let E be the total internal energy of the two system components. An 

internal energy of: 

(a)       
dE

t
dt

  

has been added to the system. 

 Both parts are now brought back together again, while being prevented from exchanging any 

energy with each other. 

 
 (1) Le Chatelier, C. R. Acad. Sci. Paris 99 (1884), 788.  

 (2) F. Braun, Göttinger Nachrichten, 7 Sept. 1887; Ann. Phys. (Leipzig) 33 (1888), pp. 337. 
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 Now, if the system is once more put into equilibrium then it will adjust to a different 

temperature t t+  , and an amount of salt dm1 will precipitate or dissolve. By assumption, one will 

then have: 

(b)       1

1

E E
t dm

t m

 
 +

 
 = 

E
t

t





. 

 

 In the event that (E / m1) dm1 is positive, it will follow immediately that t  < t, i.e., the 

parameter that was changed arbitrarily by t will perform a retrograde motion during the transition 

to the new equilibrium position, as was postulated in the principle that we speak of. The condition 

that the system must be continuously variable, which was the foundation for that analysis, is 

satisfied. 

 However, the same condition can also be satisfied (purely energetically) when the arbitrary 

change t takes place along a certain line segment in the same (positive) sense) and then stops. It 

will follow from (b) that: 

( )
E

t t
t


 −


 = −
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dm

m




. 

 

E / t is positive, while t t −  can also be positive when the right-hand side is positive, and 

nothing can be said about the latter a priori. 

 Let us introduce an auxiliary concept here (that can perhaps be regarded as an axiom). The 

physical process is obviously the following: Due to the fact that both phases have been heated by 

t (and then brought together again), the equilibrium will be displaced, and establishing the new 

equilibrium will imply a change in temperature. However, that cannot again be a rise in 

temperature for a continuously-varying system, because if the transition into a new equilibrium 

position is first required by an externally-produced rise in temperature then it would seem 

unnatural that the cause of the process would again be raised by its effect. The system would not 

be a continuously-varying one (at least, within a certain region). The change (E / m1) dm1 in 

internal energy would be finite. 

 

 B. – One has the same system and changes the pressure p in the two phases by + p at constant 

temperature. One then brings the phases together again under the given conditions (so adiabatically 

and at constant volume). One will now have: 

 

(c)     
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with analogous notations. 

 The same consequences are true here. The total amount: 
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must be positive, since otherwise p would increase, etc. 

 The theorem is applicable to all systems that are so arranged that one can (mentally) separate 

the components and change just one parameter in each of them. The parameter that is changed 

arbitrarily, but infinitely-little, must then change in the opposite way while equilibrium is being 

established. All that means is that the internal energy that is added to the system, and which brings 

about the change in equilibrium, will be partially converted into a second type of energy. The new 

equilibrium state is made possible only by increasing the second type through a well-defined, but 

likewise infinitely-small, amount, and conversely the continuous variability of the system is also 

made possible only by those conditions. 

 Systems of that type also include, e.g., a galvanic element and a condenser that is charged by 

it. 

 For many systems, such as salt and salt solution, the parameters of the fixed phase (viz., 

pressure and temperature) can change in the positive and negative senses, while those of liquids 

can change with that degree of generality only because we also know of solutions in a state of 

supersaturation. In other systems, such as ice and water, solid and molten paraffin, the variation of 

the parameter in the solid phase is even more restricted (1). Nonetheless, the theorem is still 

applicable. One can, e.g., imagine that the temperature has been brough below the freezing point 

in both phases. Experiments (with supercooled water) then show that each phase will continue to 

exist by itself with no change of phase. Likewise, one can always find a (positive or negative) 

change in pressure that satisfies that condition. 

 By contrast, for one-phase systems, we do not know whether it is possible to change one 

parameter (e.g., pressure) arbitrarily and first affect the other one (say, temperature) in that way. 

One would be able to extend the theorem to those systems only by means of a fiction whose 

justification has not been proved. On the other hand, and on the same grounds, the facts do not 

contradict the principle (even where it might seem as if, e.g., a rise in pressure is coupled with an 

increase in temperature that acts like a higher pressure, in its own right). Compared with systems 

to which we can apply it (since we can separate the processes in time and also always, in fact, find 

that it is verified for them), when it is not possible to make that separation, we will, in fact, be in 

the same position that we were in with one-phase systems. A more general theorem might exist 

then, but we are in a position to establish it experimentally only for certain types of systems. 

 
(Received on 12 May 1910) 
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 (1) In general, one can also realize superheated ice when one raises the pressure, and it would be interesting to 

pursue the temporal amount of change in the internal energy that is produced by raising the pressure in terms of 

molecules. Superheated ice is also present in the known experiment where a thin loaded wire cuts through a block of 

ice. The total change in internal energy is equal to zero in that case. 


